孝感市孝南区2020-2021学年新人教版七年级下期末数学试卷含答案解析(A卷全套)

合集下载

孝感市人教版七年级下学期期末数学试题题

孝感市人教版七年级下学期期末数学试题题

孝感市人教版七年级下学期期末数学试题题一、选择题1.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 2.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形3.下列图形可由平移得到的是( ) A . B . C . D .4.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 5.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D . 6.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣87.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .8.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-9.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.计算:2202120192020⨯-=__________12.计算:312-⎛⎫ ⎪⎝⎭= . 13.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.14.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.15.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.16.分解因式:x 2﹣4x=__.17.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.18.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.19.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.20.计算212⎛⎫= ⎪⎝⎭______. 三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 22.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.23.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.24.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).25.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.26.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+-27.解下列方程组或不等式组(1)24231x y x y +=⎧⎨-=⎩ (2)()211113x x x x ⎧--≤⎪⎨+>-⎪⎩28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D .2.B解析:B【分析】根据三角形内角和为180°,求出三个角的度数进行判断即可.【详解】解:∵三角形内角和为180°, ∴118030123A ∠=⨯︒=︒++ 218060123B ∠=⨯︒=︒++ 318090123C ∠=⨯︒=︒++, ∴△ABC 为直角三角形,故选:B .【点睛】此题考查三角形内角和,熟知三角形内角和为180°,根据各角占比求出各角度数即可判断.3.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A4.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.5.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.6.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.7.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A、B、C选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D.【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B、因式分解不彻底,故B选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、是整式的乘法,故D不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.9.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.-1【分析】根据平方差公式即可求解.【详解】=-1故答案为:-1.【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则. 解析:-1【分析】根据平方差公式即可求解.【详解】2202120192020⨯-=()()22220201202012020202012020+⨯--=--=-1故答案为:-1.【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则.12.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.13.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x ,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 14.14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE ,S △A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S 1+S 2即可得解.【详解】解:∵BE=CE ,S △ABC =12∴S △ACE =12S △ABC =12×12=6, ∵AD=2BD ,S △ABC =12 ∴S △ACD =23S △ABC =23×12=8, ∴S 1+S 2=S △ACD +S △ACE =8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.15.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 16.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).17.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m ).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).18.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.19.5【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 20.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为 .【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】 解:222111==224⎛⎫ ⎪⎝⎭. 故答案为14. 【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.三、解答题21.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(3)依据已知条件求得∠CGF 的度数,进而利用平行线的性质得出∠CEF 的度数,依据对顶角相等即可得到∠AEM 的度数.【详解】(1)∵∠CED =∠GHD ,∴CB ∥GF ;(2)∠AED +∠D =180°;理由:∵CB ∥GF ,∴∠C =∠FGD ,又∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(3)∵∠GHD =∠EHF =80°,∠D =30°,∴∠CGF =80°+30°=110°,又∵CE ∥GF ,∴∠C =180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.24.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.25.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x =70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.26.(1)5;(2)6a【分析】(1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可;(2)先算积的乘方和同底数幂的乘法,再合并同类项即可.【详解】解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++-105=-5=(2)()3242(3)2a a a -⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解题关键.27.(1)21x y =⎧⎨=⎩(2)12x ≤< 【分析】(1)运用加减消元法先消除x ,求y 的值后代入方程②求x 得解;(2)先分别解每个不等式,然后求公共部分,确定不等式组的解集.【详解】解:(1)24231x y x y +=⎧⎨-=⎩①② ①×2-②,得 7y=7,∴y=1.把y=1代入②,得 x=2.∴21x y =⎧⎨=⎩. (2)解不等式 ()211x x --≤得 1x ≥. 解不等式113x x +>- 得 2x <. ∴不等式组的解集为12x ≤<.【点睛】此题考查解方程组和不等式组,属常规基础题,难度不大.28.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答; (3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+= ()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.。

最新人教版数学七年级下学期《期末考试题》含答案解析

最新人教版数学七年级下学期《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b --B . 22a b --C . 22a bD . 22a b ++ 2. 在实数4、3、13、0.3、π、2.1234567891011121314…(自然数依次排列)、38-中,无理数有( ) A . 2个 B . 3个 C . 4个 D . 5个3. 下列命题中,属于真命题的是 ( )A . 两个锐角的和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 4. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3) 5. 如图,直线A B ,C D 被直线EF 所截,交点分别为点E,F ,若A B ∥C D ,下列结论正确的是( )A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°6. 下列说法正确是( )A . 周长相等的锐角三角形都全等B . 周长相等的直角三角形都全等C . 周长相等钝角三角形都全等D . 周长相等的等边三角形都全等7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)1020 30 40 户数 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,208. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <9. 不等式组42103x x >⎧⎪⎨-+≥⎪⎩的整数解为( ) A . 0,1,2,3 B . 1,2,3C . 2,3D . 3 10. 要反映某市某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可二、填空题(本共 18 分,每小题 3 分)11. 分解因式:﹣m 2+4m ﹣4═_____.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y 轴,且A B =3,则点B 的坐标是___13. 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.14. 如图,A D 是△A B C 的中线,E 是A D 的中点,如果S △A B D =12,那么S △C D E =__. 15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P (m+2,2m ﹣1)在第四象限,则m 的值为_____.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.三、解答题17. 计算:3827﹣(π﹣1)0﹣(12)﹣1.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0). (1)△A B C 的形状是 等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y 轴上找一点P ,如果△PA B 是等腰三角形,请直接写出点P 的坐标.答案与解析一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b -- B . 22a b -- C . 22a b D . 22a b ++【答案】B【解析】【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2A >-2B ,故选B .【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.2.、13、0.3、π、2.1234567891011121314…(自然数依次排列),无理数有( ) A . 2个B . 3个C . 4个D . 5个 【答案】B【解析】π,2.1234567891011121314…(自然数依次排列),共3个,故选B .3. 下列命题中,属于真命题的是 ( )A . 两个锐角和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 【答案】D【解析】【分析】【详解】试题解析:A . 两个锐角的和是锐角,错误;B . 同一平面内,如果A ⊥B ,B ⊥C ,则A ∥C ,错误; C . 同位角相等,错误;D . 在同一平面内,如果A //B ,B //C ,则A //C ,正确.故选D .4. 点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3)【答案】C【解析】【分析】【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=-4,y=3.即点P的坐标是(-4,3),故选C .5. 如图,直线A B ,C D 被直线EF所截,交点分别为点E,F,若A B ∥C D ,下列结论正确的是()A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°【答案】D【解析】试题解析:∵A B ∥C D ,∴∠3+∠A EF=180°.所以D 选项正确,故选D .6. 下列说法正确的是()A . 周长相等的锐角三角形都全等B . 周长相等直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的等边三角形都全等【答案】D【解析】试题分析:根据全等三角形的判定方法依次分析各选项即可作出判断.A .周长相等的锐角三角形不一定全等,B .周长相等的直角三角形不一定全等,C .周长相等的钝角三角形不一定全等,故错误;D .周长相等的等腰直角三角形都全等,本选项正确.考点:全等三角形的判定点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .8. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <【答案】C【解析】【分析】分两种情况:①A 和B 构成一个直角三角形,且A 是斜边,B 是直角边,所以A >B ;②若B 是垂足时,A =B .【详解】如图,A 是斜边,B 是直角边,∴A >B ,若点A 、点B 所在直线垂直直线m,则A =B ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题.9. 不等式组42103xx>⎧⎪⎨-+≥⎪⎩的整数解为()A . 0,1,2,3B . 1,2,3C . 2,3D . 3 【答案】B【解析】试题分析:解不等式4x>2,可得x>12;解不等式103x-+≥,解得x≤3,因此不等式组的解集为12<x≤3,所以整数解为1,2,3.故选B .点睛:此题主要考查了不等式组的解法,根据不等式的解法分别解两个不等式,取其公共部分,然后确定其整数解即可.10. 要反映某市某一周每天的最高气温的变化趋势,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C .【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.二、填空题(本共18 分,每小题3 分)11. 分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y轴,且A B =3,则点B 的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A (-2,-1),A B ∥y轴,∴点B 的横坐标为-2,∵A B =3,∴点B 的纵坐标为-1+3=2或-1-3=-4,∴B 点的坐标为(-2,2)或(-2,-4).13. 小华将直角坐标系中猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.【答案】(-1,3)、(1,3)【解析】【分析】利用坐标系中的移动法则右加左减,上加下减来确定向右平移后的各点的坐标即可【详解】∵向右平移三个单位长度,横坐标分别加3,纵坐标不变∴移动后猫眼的坐标为:(-1,3)、(1,3)【点睛】在坐标系中确定点的位置和平移是本题的考点,熟练掌握平移法则是解题的关键.14. 如图,A D 是△A B C 的中线,E是A D 的中点,如果S△A B D =12,那么S△C D E=__.【答案】6.【解析】试题解析:△A C D 的面积=△A B D 的面积=12,△C D E的面积=12△A C D 的面积=12×12=6.15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m ﹣1)在第四象限,则m的值为_____.【答案】﹣1或0.【解析】试题分析:由点P(m+2,2m﹣1)在第四象限,可得m+2>0,2m-1<0,解得﹣2<m<12,又因点的横、纵坐标均为整数可得m是整数,所以m的值为﹣1或0.考点:点的坐标.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.【答案】17【解析】【分析】【详解】解∵等腰三角形的两条边长分别是3C m、7C m,∴当此三角形的腰长为3C m时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7C m,底边长为3C m,∴此等腰三角形的周长=7+7+3=17C m,故答案为:17.三、解答题17. 3827π﹣1)0﹣(12)﹣1.【答案】3. 【解析】试题分析:原式利用零指数幂、负整数指数幂法则,以及分数指数幂法则计算即可得到结果.试题解析:原式=3827﹣1﹣2=6﹣1﹣2=3.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.【答案】2.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=A 2﹣2A +1﹣4A B +4B 2+2A =(A ﹣2B )2+1,当A ﹣2B =﹣1时,原式=2.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【答案】(1)x(x+4)(x﹣4);(2)(x+2)2(x﹣3)2.【解析】试题分析:(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.试题解析:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【答案】x>3.【解析】试题分析:先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.试题解析:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .【答案】见解析.【解析】【分析】易证△A B D ≌△A C D ,则可得证.【详解】解:证明:∵∠1=∠2,∴B D =C D ,在△A B D 与△A C D 中,A B =A C ,B D =C D ,A D =A D ,∴△A B D ≌△A C D (SSS),∴∠B A D =∠C A D ,即A D 平分∠B A C .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .【答案】证明见解析.【解析】【分析】【详解】试题分析:先根据垂直的定义得出∠A PQ+∠2=90°,再由∠1+∠2=90°得出∠A PQ=∠1,进而可得出结论.试题解析:如图,∵PM ⊥PQ (已知),∴∠A PQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠A PQ=∠1(同角的余角相等),∴A B ∥C D (内错角相等,两直线平行).23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T 恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T 恤的数量分别是多少?【答案】生产帽子1900件,生产T 恤4100件.【解析】试题分析:设生产帽子x 件,生产T 恤y 件,根据“两种纪念品共生产6000件,且T 恤比帽子的2倍多300件”列方程组求解可得.试题解析::设生产帽子x 件,生产T 恤y 件.根据题意,得:6000{2300x y y x ++==, 解得:1900{4100x y == 答:生产帽子1900件,生产T 恤4100件.【点睛】此题主要考查了二元一次方程组的应用,弄清题意,找出合适的等量关系,据此列出方程组是解题关键.24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.【答案】(1)详见解析;(2)100;(3)360.【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【详解】(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.【点睛】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0).(1)△A B C 的形状是等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y轴上找一点P,如果△PA B 是等腰三角形,请直接写出点P的坐标.【答案】(1)等腰直角三角形,(2)22(3)P(0,﹣2)或P(0,2﹣22或P(0,2+22或P(0,0).【解析】【分析】(1)根据点的坐标判断出OA =OB =OC ,从而得出结论;(2)根据点的坐标求出求出B C ,OA ,再用三角形面积公式即可;(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出B P,A P,再分三种情况计算即可.【详解】∵A (0,2)、B (﹣2,0)、C (2,0).∴OB =OC =OA ,∴△A B C 是等腰三角形,∵A O⊥B C ,∴△A B C 是等腰直角三角形.故答案为等腰直角三角形,(2)∵A (0,2)、B (﹣2,0)、C (2,0).∴B C =4,OA =2,∴S△A B C =12B C ×A O=12×4×2=4,∵A (0,2)、B (﹣2,0), ∴4+4=22(3)设点P(0,m),∵A (0,2)、B (﹣2,0),∴,A P=|m﹣2|,∵△PA B 是等腰三角形,∴①当A B =B P时,∴,∴m=±2,∴P(0,2)(与点A 重合,舍去)或P(0,﹣2),②当A B =A P时,∴﹣2|,∴m=2﹣∴P(0,2﹣P(0,③当A P=B P时,∴|m﹣,∴m=0,∴P(0,0),∴P(0,﹣2)或P(0,2﹣P(0,P(0,0).【点睛】此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.。

2020-2021学年湖北省孝感市孝南区部分学校七年级(下)联考数学试卷(附答案详解)

2020-2021学年湖北省孝感市孝南区部分学校七年级(下)联考数学试卷(附答案详解)

2020-2021学年湖北省孝感市孝南区部分学校七年级(下)联考数学试卷(3月份)一、选择题(本大题共8小题,共24.0分)1.下列各图中,∠1与∠2是对顶角的是()A. B.C. D.2.下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.3.如图,直线DE与BC相交于点O,∠1与∠2互余,∠AOE=116°,则∠BOE的度数是()A. 144°B. 164°C. 154°D. 150°4.下列所示的四个图形中,∠1和∠2是同位角的是()A. ②③B. ①②③C. ③④D. ①②④5.如图,下列条件中,不能判断AB//CD的是()A. ∠3=∠2B. ∠1=∠4C. ∠B=∠5D. ∠D+∠BAD=180°6.下列命题中是真命题的是()A. 如果a+b<0,那么ab<0B. 内错角相等C. 三角形的内角和等于180°D. 相等的角是对顶角7.下列说法正确的是()A. 1的平方根是1B. 1是1的平方根C. (−2)2的平方根是−2D. −1的平方根是−18.如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,DE交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有()A. ②③B. ①②③C. ①③④D. ①②③④二、填空题(本大题共8小题,共24.0分)9.如图,已知AB//CD,∠1=110°,则∠A的度数为______ .10.命题“如果两个实数相等,那么它们的平方相等”的逆命题是______,逆命题是______(填“真”或“假”)命题.11.如图是一块长方形的场地,长AB=72m,宽AD=31m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为______ m2.12.请写出一个比√10小的正整数______ .13.已知∠α与∠1是对顶角,∠1的余角是55°18′36′′,则∠α=______度.14.已知√3≈1.732,√30≈5.477,则√0.3≈______ .15.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,其中能判断a//b的条件是:______(把你认为正确的序号填在空格内).16.如图,边长为1的正方形ABCD,沿数轴顺时针连续滚动.起点A和−2重合,则数轴上数2018所对应的字母是______.三、计算题(本大题共1小题,共6.0分)3−|√5−2|.17.计算:−22+√36−√−64四、解答题(本大题共7小题,共56.0分)18.求出下列各式中的x.(1)4x2=49;(2)(2−x)3=−64.19.完成推理填空:已知,如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1.试说明AD平分∠BAC.证明:∵AD⊥BC于点D,EG⊥BC于点G(已知),∴∠ADC =∠______=90°(垂直的定义), ∴AD//EG(______), ∴∠1=∠2(______),∠______=∠3,(两直线平行,同位角相等) 又∵∠E =∠1(已知),∴∠______=∠______(等量代换), ∴AD 平分∠BAC .20. (1)若一个数的平方根是2a +2和3a −7,求这个数;(2)已知x 为实数,且√x −33−√2x +13=0,求x 2+x −3的平方根.21. 已知如图BC 交DE 于O ,给出下面三个论断:①∠B =∠E ;②AB//DE ;③BC//EF .请以其中的两个论断为条件,填入“题设”栏中,以一个论断为结论,填入“结论”栏中,使之成为一个正确的命题,并加以证明. 题设:已知如图,BC 交DE 于O ,______.(填题号) 结论:那么______(填题号)22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=______ .(2)若连接AD、CF,则这两条线段之间的关系是______ ;(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.23.列方程解答下面问题.小丽手中有块长方形的硬纸片,其中长BC比宽AB多10cm,长方形的周长是100cm.(1)求长方形的长和宽;(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为520cm2的新纸片作为他用.试判断小丽能否成功,并说明理由.24.已知:如图所示,直线MN//GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.答案和解析1.【答案】A【解析】解:A、∠1与∠2是对顶角,故A选项正确;B、∠1与∠2不是对顶角,故B选项错误;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:A.根据对顶角的定义对各选项分析判断后利用排除法求解.本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2.【答案】D【解析】解:线段AD的长表示点A到直线BC距离,则AD⊥BC,符合题意的是图D,故选D.点到直线的距离是指垂线段的长度.本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.3.【答案】C【解析】解:∵∠1与∠2互余,∴∠1+∠2=90°,∴∠AOC=90°,∴∠COE=∠AOE−∠AOC=26°,∴∠BOD=∠COE=26°,∴∠BOE=180°−∠BOD=154°,故选:C.根据余角的概念求出∠COE,根据对顶角相等求出∠BOD,根据邻补角的概念计算,得到答案.本题考查的是对顶角和邻补角、余角和补角的概念,掌握对顶角相等、邻补角之和等于180°是解题的关键.4.【答案】D【解析】解:图①②④中,∠1和∠2是同位角,故选:D.利用同位角定义进行解答即可.此题主要考查了同位角,关键是掌握同位角的边构成“F“形.5.【答案】B【解析】解:A、∠3和∠2是直线AB、CD被直线AC所截形成的内错角,内错角相等,可以判断AB//CD,不符合题意;B、∠1和∠4是直线AD、BC被直线AC所截形成的内错角,内错角相等,可以判断AD//BC,不能判断AB//CD,符合题意;C、∠B和∠5是直线直线AB、CD被直线BE所截形成的同位角,同位角相等,可以判断AB//CD,不符合题意;D、∠D和∠BAD直线直线AB、CD被直线AD所截形成的同旁内角,同旁内角互补,可以判断AB//CD,不符合题意;故选:B.根据平行线的判定定理分别进行判断即可本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;另外要能确定“三线八角”中的截线从而准确找出另外两线平行.6.【答案】C【解析】解:A、当a=−1,b=−2时,a+b=−3<0,ab=2>0,则如果a+b<0,那么ab<0,是假命题;B、两直线平行,内错角相等,本选项说法是假命题;C、三角形的内角和等于180°,是真命题;D、相等的角不一定是对顶角,本选项说法是假命题;故选:C.根据有理数的加法法则、乘法法则,平行线的性质、三角形内角和定理、对顶角的概念判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【答案】B【解析】解:A、1的平方根是±1,故此选项错误;B、1是1的平方根,正确;C、(−2)2=4的平方根是±2,故此选项错误;D、−1没有平方根,故此选项错误;故选:B.直接利用平方根的定义分别分析得出答案.此题主要考查了平方根,正确掌握平方根的定义是解题关键.8.【答案】C【解析】解:∵△DEF的是直角三角形ABC沿着斜边AC的方向平移后得到的,且A、D、C、F四点在同一条直线上,∴BE//AC,AB//DE,BC=EF,BE=CF,故③正确;∴四边形ABED是平行四边形,∴∠A=∠BED,故①正确;∵BG=4,∴AD=BE>BG,∴△ABC平移的距离>4,故②正确;∵EF=10,∴CG=BC−BG=EF−BG=10−4=6,∵△BEG的面积等于4,BG⋅GE=4,∴12∴GE=2,(6+10)×2=16,故④正确;∴四边形GCFE的面积=12故选:C.由平移的性质得到BE//AC,AB//DE,BC=EF,BE=CF,故③正确;根据平行四边形的性质得到∠A=∠BED,故①正确;根据直角三角形斜边大于直角边得到△ABC平移的距离>4,故②错误;根据三角形的面积公式得到GE=2,根据梯形的面积公式得(6+10)×2=16,故④正确.到四边形GCFE的面积=12本题考查了平移的性质,面积的计算,平行四边形的判定和性质,正确的识别图形是解题的关键.9.【答案】70°【解析】解:如图,∠1=∠2=110°,∵AB//CD,∴∠A+∠2=180°,∴∠A=180°−∠2=70°,故答案为:70°.结合图形知∠1=∠2=110°,由AB//CD知∠A+∠2=180°,据此可得答案.本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补的性质.10.【答案】如果两个实数的平方相等,那么这两个实数相等假命题【解析】解:命题“如果两个实数相等,那么它们的平方相等”的逆命题是“如果两个实数的平方相等,那么这两个实数相等”,当a2=b2时,a=±b,则逆命题是假命题,故答案为:如果两个实数的平方相等,那么这两个实数相等;假命题.根据逆命题的概念写出逆命题,根据实数的平方的概念判断即可.本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.【答案】2100【解析】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为72−2=70m,这个长方形的宽为:31−1=30m,因此草坪的面积=70×30=2100平方米.故答案为:2100.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.考查了生活中的平移现象,本题要看图解答,解答此题要熟悉矩形的性质.12.【答案】答案不唯一;例如:3【解析】解:写出一个比√10小的正整数:答案不唯一;例如3.故答案为:答案不唯一;例如3.直接利用估算无理数的方法得出一个符合题意的答案.此题主要考查了估算无理数的大小,正确估算无理数大小是解题关键.13.【答案】34.69【解析】解:∵∠α与∠1是对顶角,∴∠α=∠1.∵∠1的余角是55°18′36′′,∴∠1=90°−55°18′36′′=34°41′24′′=34.69°.∴∠α=34.69°.故答案为:34.69.由对顶角的性质可知∠α=∠1,然后根据余角的定义计算即可.本题主要考查的是对顶角的性质和余角的定义,掌握对顶角的性质和余角的定义是解题的关键.14.【答案】0.5477【解析】解:∵√30≈5.477,∴√0.3≈0.5477.故答案为:0.5477.根据算术平方根的小数点移动规律得出即可.本题考查了对算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.15.【答案】①②③④【解析】解:①∠1=∠2可根据同位角相等,两直线平行得到a//b;②∠3=∠6可根据内错角相等,两直线平行得到a//b;③∠1=∠8=∠2可根据同位角相等,两直线平行得到a//b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a//b ; 故答案为①②③④.根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.本题考查平行线的判定,记住同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,解题的关键是搞清楚同位角、内错角、同旁内角的概念. 16.【答案】A【解析】解:2018−(−2)=2020,2020÷4=505,数轴上数2018所对应的字母是A .故答案为:A .正方形ABCD 沿着数轴顺时针每滚动一周,B 、C 、D 、A 依次循环一次,2018与−2之间有2020个单位长度,即转动2020÷4=505,也就是对应A 点.此题考查了数轴,以及循环的有关知识,关键是把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.17.【答案】解:−22+√36−√−643−|√5−2|=−4+6+4−√5+2=8−√5.【解析】分别按照乘方、求平方根、求立方根及绝对值的化简法则化简,再合并同类项及同类二次根式即可.本题考查了乘方、求平方根、求立方根及绝对值的化简等实数运算,熟练掌握相关性质及定理是解题的关键.18.【答案】解:(1)∵4x 2=49,∴x 2=494, ∴x 1=72,x 2=−72;(2)∵(2−x)3=−64,∴2−x =−4,∴x =6.【解析】(1)先两边都除以4,再利用平方根的定义求解即可;(2)根据立方根的定义求出(2−x)的值,然后即可得解.本题主要考查平方根、立方根,解题的关键是掌握平方根和立方根的定义.19.【答案】EGC 同位角相等,两直线平行 两直线平行,内错角相等 E 2 3【解析】证明:∵AD ⊥BC 于点D ,EG ⊥BC 于点G(已知),∴∠ADC =∠EGC =90°,(垂直的定义),∴AD//EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E =∠3(两直线平行,同位角相等),又∵∠E =∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC .故答案为:EGC ;同位角相等,两直线平行;两直线平行,内错角相等;E ;2;3. 由垂直可证明AD//EG ,由平行线的性质可得到∠1=∠2=∠3=∠E ,可证得结论,据此解答即可.本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质的运用是解题的关键,平行线的判定和性质:①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .20.【答案】解:(1)由题意可得:2a +2+3a −7=0a =1∵2a +2=43a −7=−4∴(±4)2=16∴这个数是16;(2)由题意可得:√x −33=√2x +13, ∴x −3=2x +1,∴x =−4,∴x 2+x −3=16−4−3=9,∴x2+x−3的平方根是±3.【解析】(1)根据平方根的定义得到2a+2+3a−7=0,然后解方程即可;(2)根据立方根的定义得到x−3=2x+1,求出x的值,再代入求出x2+x−3的值,再根据平方根的定义即可求解.本题考查了平方根和立方根.解题的关键是掌握平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作±√a.需注意的是一个正数有两个平方根,它们互为相反数,不要漏解.21.【答案】①②③【解析】题设①②,结论③,证明:∵AB//DE,∴∠B=∠DOC,∵∠B=∠E,∴∠DOC=∠E,∴BC//EF,故答案为:①②,③.根据平行线的性质得出∠B=∠DOC,推出∠DOC=∠E,根据平行线的判定推出即可.此题答案不唯一由①③推出②,由②③推出①.本题考查了平行线的性质和判定,主要考查学生的推理能力.22.【答案】(1)7;(2)平行且相等;(3)如图,线段PC即为所求.【解析】【分析】本题考查的是作图−平移变换,熟知图形平移不变性的性质是解答此题的关键.(1)根据图形平移的性质画出平移后的△DEF,再求出其面积即可;(2)根据图形平移的性质可直接得出结论;(3)找出线段AB的中点P,连接PC即可.【解答】解:(1)如图所示,S△DEF=4×4−12×4×1−12×2×4−12×2×3=16−2−4−3=7.故答案为:7;(2)∵A、C的对应点分别是D、F,∴连接AD、CF,则这两条线段之间的关系是平行且相等.故答案为:平行且相等;(3)见答案.23.【答案】解:(1)设AB=xcm,则BC=(10+x)cm,依题意有:2[x+(10+x)]=100,∴x=20,答:长方形的长为30cm,宽为20cm.(2)设新长方形的长为5acm,宽为4acm,则5a×4a=520,∴a=√26,即新长方形的长为5√26cm,宽为4√26cm,∵26>25,∴√26>5即4√26>20,故小丽不能成功.答:小丽不能用这块正方形纸片裁出符合要求的长方形纸片.【解析】(1)设长方形的宽AB为xcm,长BC为(10+x)cm,根据长方形的周长是100cm,即可得出关于x的一元一次方程,解之即可得出得出x的值即可解决问题;(2)设新长方形纸片的长为5a(a>0)cm,则宽为4acm,根据新纸片的面积,即可得出关于a的一元二次方程,解之即可得知a值,再由4a=4√26>20,即可得出小丽不能成功.本题考查了一元一次方程组的应用、算术平方根,解题的关键是:找准等量关系,正确列出一元一次方程.24.【答案】解:(1)如图1,过点P作PE//MN.∵PB平分∠DBA.∴∠BPE=1∠DBA=40°.2∴∠BPE=∠DBP=40°(两直线平行,内错角相等).∠DCA=25°.同理可证.∠CPE=∠PCA=12∴∠BPC=40°+25°=65°.(2)如图2,过点P作PE//MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∠DBA=50°.∴∠DBP=12∵MN//PE,∴∠BPE=180°−∠DBP=130°(两直线平行,同旁内角互补).∵PC平分∠DCA.∠DCA=25°(两直线平行,内错角相等).∴∠PCA=∠CPE=12∴∠BPC=130°+25°=155°.(3)如图3,过点P作PE//MN.∵BP平分∠DBA.∴∠DBP=40°=∠BPE(两直线平行等,内错角相等).∴CP平分∠DCA.∠DCA=180°−∠DCG=130°.∠DCA=65°.∴∠PCA=12∴∠CPE=180°−∠PCA=150°(两直线平行,同旁内角互补).∴∠BPC=40°+115°=155°.【解析】(1)过点P作PE//MN,根据平行线的性质和角平分线的性质得:∠BPE=1 2∠DBA=40°.∠CPE=∠PCA=12∠DCA=25°,相加可得结论;(2)如图2,过点P作PE//MN,根据平角可得∠DBA=180°−80°=100°.由角平分线和平行线的性质得∠BPE=130°.∠PCA=∠CPE=12∠DCA=25°,相加可得结论;(3)如图3,作平行线,同理可得结论.本题考查了角平分线和平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.。

最新人教版数学七年级下学期《期末测试题》有答案解析

最新人教版数学七年级下学期《期末测试题》有答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________(满分120分,时间120分钟)一、选择题(本大题共10个小题.每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1. 下面的四个图形中,∠1与∠2是对顶角的是( ) A . B . C .D .2. 下列实数中最大的是( ) A . 23 B . π C . 15 D . 4-3. 在平面直角坐标系中,点M (A ,B )位于第一象限,则点N (-A ,-B )位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 4. 二元一次方程3x + 2y = 12的解可以是( )A . 06x y =⎧⎨=⎩B . 33x y =⎧⎨=⎩C . 42x y =⎧⎨=⎩D . 50x y =⎧⎨=⎩5. 如果a b <,那么下列结论不正确的是( )A . 33a b +<+;B . 33a b -<-;C . 33a b <;D . 33a b -<-. 6. 下列调查中,适合抽样调查的是( )A . 了解某班同学的身高情况B . 了解神舟飞船的设备零件的质量情况C . 了解某班同学到学校乘坐的交通工具情况D . 了解全市学生在疫情期间的线上学习情况 7. 不等式4(x -1)<3x -2的正整数解的个数是( )A . 0B . 1C . 2D . 3 8. 要直观介绍空气中各成分的百分比,最适合使用的统计图是( )A . 条形图B . 扇形图C . 折线图D . 直方图 9. 在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x ﹣y =( )A . 2B . 4C . 6D . 810. 在同-平面内,若∠A 与∠B 的两边分别垂直,且∠A 比∠B 的3倍少40°,则∠A 的度数为( )A . 20°B . 55°C . 20°或 125°D . 20°或55°二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上.11. 4的算术平方根是_____. 12. 9月3日是抗日战争胜利纪念日,某校为了解学生对抗日战争的知晓情况,从全校3000名学生中,随机抽取了100名学生进行调查,这次调查的样本容量是_______ 13. 点P (m ﹣1,m+3)在平面直角坐标系的x 轴上,则P 点坐标是_____. 14. 5210a b a b ++-+=,则()2020b a - 的值为_____.15. 在直线A B 上有一点O ,OC ⊥OD ,∠A OC =30°,则∠B OD 的度数是____.16. 已知关于x 的不等式组23030x x a +>⎧⎨-⎩有且只有四个整数解,则A 的取值范围为_____ 三、解答题(本大题共9个小题,共72分)解答应写出必要的文字说明,证明过程或演算步骤.17. 计算: ()23168125425---+-+-18. 解方程组:34165633x y x y +=⎧⎨-=⎩. 19. 解不等式组523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,把解集在数轴上表示出来.并求出其中的负整数解. 20. 已知A B C '''`是ABC 经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示: ABC(,0)A a (3,0)B (5,5)C A B C ''' )2(4,A '(7,)B b '(,7)C c '(1)观察表中各对应点坐标的变化,求出A 、B 、C 的值:(2)在平面直角坐标系中画出ABC ,求出ABC 的面积.21. 完成下面的证明:已知:如图,//AB CD ,BE 与DE 交于E 点.求证:BED B D ∠=∠+∠.证明:过E 作//MN AB//AB CD (已知)//MN ∴ ( ).2∴∠= ( )又//MN AB 1∴∠= ( ). 12∴∠+∠= ( ). 又12BED ∠=∠+∠(已知), ∴BED B D ∠=∠+∠(等量代换) 22. 随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L 的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A 为12~12.5,B 为12.5~13,C 为13~13.5,D 为13.5~14,E 为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L 的情况下可以行驶13km 以上?23. A 地至B 地航线长9750km ,-架飞机从A 地顺风飞往B 地需12.5h ,它逆风飞行同样的航线需13h ,求飞机无风时的平均速度与风速.24. 为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元. (1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?25. 如图1,已知PQ //MN ,且∠B A M =2∠B A N .(1)求∠B A N 的度数;(2)如图1所示,射线A M 绕点A 开始顺时针旋转至A N 便立即回转至A M 位置,射线B P 绕点B 开始顺时针旋转至B Q 便立即回转至B P 位置.若A M 转动速度是每秒2度,B P 转动的速度是每秒1度,若射线B P 先转动30秒,射线A M 才开始转动,在射线B P 到达B Q 之前,射线A M 转动多少秒?两射线互相平行.(3)如图2,若两射线分别绕点A ,B 顺时针方向同时转动,速度同(2),在射线A M到达A N之前,若两射线交于点C ,过C 作∠A C D 交PQ于点D ,且∠A C D =120°,在转动过程中,请探究∠B A C 与∠B C D 的数量关系是否发生变化?若不变,请求出其数量关系:若改变,请说明理由.参考答案(满分120分,时间120分钟)一、选择题(本大题共10个小题.每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1. 下面的四个图形中,∠1与∠2是对顶角的是()A .B .C .D .【答案】C【解析】【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C 图中的∠1与∠2是对顶角,其它都不是.故选:C .【点睛】本题考查对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,牢记定义是解决此问题的关键.2. 下列实数中最大的是()A . 23B . π15 D . 4-【答案】D【解析】【分析】先根据实数的大小比较法则比较大小,再得出选项即可.91516∴34,π≈3.14,4-=4,23≈0.67,∴最大的数是4-,故选D .【点睛】本题考查了实数的大小比较法则和绝对值,能熟记实数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.3. 在平面直角坐标系中,点M(A ,B )位于第一象限,则点N(-A ,-B )位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】C【解析】【分析】根据M所在象限确定A 和B 的符号,然后确定N的横纵坐标的符号,进而确定所在象限.【详解】解:∵点M(A ,B )在第一象限,∴A >0,B >0,则-A <0,-B <0,则N(- A ,-B )在第三象限.故选:C .【点睛】本题考查了点的坐标,正确记忆点在每个象限的符号是关键.4. 二元一次方程3x + 2y = 12解可以是()A .6xy=⎧⎨=⎩B .33xy=⎧⎨=⎩C .42xy=⎧⎨=⎩D .5xy=⎧⎨=⎩【答案】A【解析】【分析】直接将选择项中x,y的值带入二元一次方程3x + 2y = 12,即可判断【详解】解:当x=0,y=6时,方程左边=3×0+2×6=12,右边=12,左边=右边,故x=0,y=6是二元一次方程3x + 2y = 12的解.故选:A【点睛】本题主要考查二元一次方程的解的定义:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.5. 如果a b <,那么下列结论不正确的是( )A . 33a b +<+;B . 33a b -<-;C . 33a b <;D . 33a b -<-.【答案】D【解析】【分析】本题可通过不等式两边同时加减相同的数,其不等号不变判断A ,B 选项;根据不等式两边同时乘一个正数,其不等号不变判断C 选项;最后根据不等式两边同时乘一个负数,其不等号改变判断D 选项.【详解】不等式两边同时加3,不改变不等号方向,故A 正确;不等式两边同时减3,不改变不等号方向,故B 正确;不等式两边同时乘正数3,不改变不等号方向,故C 正确;不等式两边同时乘负数-3,改变不等号方向,故D 错误;故本题答案为D 选项.【点睛】本题考查不等式运算规则,求解不等式过程中两边同时相加减,不等号方向不变,特别注意两边乘除负数时需要变号.6. 下列调查中,适合抽样调查的是( )A . 了解某班同学的身高情况B . 了解神舟飞船的设备零件的质量情况C . 了解某班同学到学校乘坐的交通工具情况D . 了解全市学生在疫情期间的线上学习情况 【答案】D【解析】【分析】由普查得到调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A .了解某班同学的身高情况适合全面调查;B .了解神舟飞船的设备零件的质量情况适合全面调查;C .了解某班同学到学校乘坐的交通工具情况适合全面调查;D .了解全市学生在疫情期间的线上学习情况适合抽样调查;故选:D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7. 不等式4(x-1)<3x-2的正整数解的个数是( )A . 0B . 1C . 2D . 3【答案】B【解析】【分析】去括号、移项、合并同类项,然后系数化成1即可求得不等式组的解集,然后确定正整数解即可.【详解】解:去括号,得:4x-4<3x-2,移项,得:4x-3x<4-2,合并同类项,得:x<2,则正整数解是:1.故选:B .【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.8. 要直观介绍空气中各成分的百分比,最适合使用的统计图是( )A . 条形图B . 扇形图C . 折线图D . 直方图【答案】B【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:要直观介绍空气中各成分的百分比,最适合使用的统计图是扇形统计图,故选:B .【点睛】此题主要考查了统计图的选择,关键是掌握扇形统计图、折线统计图、条形统计图各自的特点.9. 在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A . 2B . 4C . 6D . 8【答案】C【解析】【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x-y)中即可求出结论.【详解】依题意得:22226 x y yx y-=+⎧⎨-=-+⎩,解得:82 xy=⎧⎨=⎩,∴x﹣y=8﹣2=6.故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10. 在同-平面内,若∠A 与∠B 的两边分别垂直,且∠A 比∠B 的3倍少40°,则∠A 的度数为( )A . 20°B . 55°C . 20°或125°D . 20°或55°【答案】C【解析】【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A 比∠B 的3倍少40°,所以它们互补,可设∠B 是x度,利用方程即可解决问题.【详解】解:设∠B 是x度,根据题意,得①两个角相等时,如图1:∠B =∠A =x°,x=3x-40解得,x=20,故∠A =20°,②两个角互补时,如图2:x+3x-40=180,所以x=55,3×55°-40°=125°故∠A 的度数为:20°或125°.故选:C .【点睛】此题主要考查了考查了垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A 与∠B 互补.二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上.11. 4的算术平方根是_____.【答案】2.【解析】试题分析:∵224,∴4算术平方根为2.故答案为2.考点:算术平方根.12. 9月3日是抗日战争胜利纪念日,某校为了解学生对抗日战争的知晓情况,从全校3000名学生中,随机抽取了100名学生进行调查,这次调查的样本容量是_______【答案】100【解析】【分析】根据样本容量是样本中包含的个体的数目,可得答案.【详解】解:本次调查的样本是被随机抽取的100名学生对抗日战争的知晓情况,所以样本容量是100.故答案为:100.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位.13. 点P (m ﹣1,m+3)在平面直角坐标系的x 轴上,则P 点坐标是_____.【答案】()4,0-【解析】【分析】利用在x 轴上的点坐标特征解答即可.【详解】解:由题意,得:m+3=0,解得m =﹣3,∴m ﹣1=﹣4,∴点P 的坐标为(﹣4,0).故答案为(﹣4,0).【点睛】本题考查了x 轴上点的坐标特征,掌握在x 轴上的点纵坐标为0的特征是解答本题的关键. 14. 若5210a b a b +++-+=,则()2020b a - 的值为_____. 【答案】1【解析】【分析】根据算术平方根和绝对值的非负性得到方程组,求出A 和B ,再代入求解.【详解】解:∵5210a b a b +++-+=,∴A +B +5=0,2A -B +1=0,两式相加得:A =-2,代入A +B +5=0,解得:B =-3,∴()2020b a -=1.故答案为:1.【点睛】本题考查了算术平方根和绝对值的非负性,以及乘方运算,解题的关键是理解非负性和乘方运算的符号问题.15. 在直线A B 上有一点O ,OC ⊥OD ,∠A OC =30°,则∠B OD 的度数是____.【答案】60°或120°【解析】【分析】根据题意可知,射线OC 、OD 可能在直线A B 的同侧,也可能在直线A B 的异侧,分两种情况进行讨论即可.【详解】解:由OC ⊥OD ,可得∠D OC =90°,如图1,当∠A OC =30°时,∠B OD =180°-30°-90°=60°;如图2,当∠A OC =30°时,∠A OD =90°-30°=60°,此时,∠B OD =180°-∠A OD =120°.综上所述,∠B OD 的度数是60°或120°,故答案为:60°或120°.【点睛】本题主要考查了垂线的定义,解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.16. 已知关于x的不等式组23030xx a+>⎧⎨-⎩有且只有四个整数解,则A 的取值范围为_____【答案】6≤A <9【解析】【分析】先求出不等式组的解集,根据已知得出不等式组2≤3a<3,求出解集即可.【详解】解:解不等式组23030x x a+>⎧⎨-⎩得:﹣1.5<x≤3a,∵关于x的不等式组23030x x a+>⎧⎨-⎩有且只有四个整数解,∴2≤3a<3,解得:6≤A <9,故答案为:6≤A <9.【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键.三、解答题(本大题共9个小题,共72分) 解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:2-34【解析】【分析】先分别化简各项,再作加减法.【详解】解:原式=32244--++=34【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则.18. 解方程组:34165633x yx y+=⎧⎨-=⎩.【答案】612xy=⎧⎪⎨=-⎪⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:3x+4y=165x-6y=33⎧⎨⎩①②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=12-,则方程组解为:612xy=⎧⎪⎨=-⎪⎩,故答案为612xy=⎧⎪⎨=-⎪⎩,【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19. 解不等式组523(1) 131722 xxx x+>-⎧⎪⎨-≤-⎪⎩,把解集在数轴上表示出来.并求出其中的负整数解.【答案】52-<x≤4,数轴表示见解析,负整数解为-2,-1.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定负整数解即可.【详解】解:523(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩①②,由①得x>52-,解②得x≤4.不等式组的解集是52-<x≤4,在数轴上表示为:则负整数解是:-2,-1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20. 已知A B C'''`是ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:ABC (,0)A a(3,0)B(5,5)CA B C''')2(4,A'(7,)B b'(,7)C c'(1)观察表中各对应点坐标的变化,求出A 、B 、C 的值:(2)在平面直角坐标系中画出ABC,求出ABC的面积.【答案】(1)A =0,B =2,C =9;(2)画图见解析,152 【解析】【分析】 (1)利用表格中对应点的坐标得出横纵坐标的变化进而得出答案;(2)直接利用三角形面积求法进而得出答案.【详解】解:(1)由A (A ,0),A ′(4,2)可得对应点向上平移2个单位,由B (3,0),B ′(7,B )可得对应点向右平移4个单位,故A =4-4=0,B =0+2=2,C =5+4=9;(2)如图所示:△A B C 的面积为:1153522⨯⨯=.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出平移规律是解题关键.21. 完成下面的证明:已知:如图,//AB CD ,BE 与DE 交于E 点.求证:BED B D ∠=∠+∠.证明:过E 作//MN AB//AB CD (已知)//MN ∴ ( ).2∴∠= ( )又//MN AB1∴∠= ( ).12∴∠+∠= ( ).又12BED ∠=∠+∠(已知),∴BED B D ∠=∠+∠(等量代换)【答案】C D ,平行于同一条直线的两条直线平行;∠D ,两直线平行,内错角相等;∠B ,两直线平行,内错角相等;∠B +∠D ,等量加等量和相等.【解析】【分析】根据平行于同一条直线的两条直线平行得A B ∥C D ∥MN ,再根据平行线的性质即可完成证明.【详解】解:过E 作MN ∥A B ,∵A B ∥C D (已知),∴MN ∥C D (平行于同一条直线的两条直线平行),∴∠2=∠D (两直线平行,内错角相等),又∵MN ∥A B ,∴∠l=∠B (两直线平行,内错角相等),∴∠l+∠2=∠B +∠D (等量加等量和相等),又∵∠B ED =∠1+∠2(已知),∴∠B ED =∠B +∠D (等量代换),故答案为:C D ,平行于同一条直线的两条直线平行;∠D ,两直线平行,内错角相等;∠B ,两直线平行,内错角相等;∠B +∠D ,等量加等量和相等.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用. 22. 随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L 的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A 为12~12.5,B 为12.5~13,C 为13~13.5,D 为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?【答案】(1)30;(2)作图见解析;(3)660.【解析】试题分析:(1)根据C 所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B 的百分比,计算得到B 的频数,进而得到D 的频数,据此补全频数分布直方图;(3)根据C ,D ,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.试题解析:(1)进行该试验的车辆数为:9÷30%=30(辆);(2)B :20%×30=6(辆),D :30﹣2﹣6﹣9﹣4=9(辆),补全频数分布直方图如下:(3)900×=660(辆).答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.23. A 地至B 地的航线长9750km,-架飞机从A 地顺风飞往B 地需12.5h,它逆风飞行同样的航线需13h,求飞机无风时的平均速度与风速.【答案】飞机的平均速度为765千米/时,风速为15千米/时【解析】【分析】飞机的平均速度为x千米/时,风速为y千米/时,根据航行问题的数量关系建立方程组求出其解即可.【详解】解:设飞机的平均速度为x千米/时,风速为y千米/时,由题意,得12.512.5975013139750x yx y+=⎧⎨-=⎩,解得76515xy=⎧⎨=⎩,答:飞机的平均速度为765千米/时,风速为15千米/时.【点睛】本题考查了二元一次方程组的实际运用,掌握行程问题的顺风速度=静风速度+风速和逆风速度=静风速度-风速,由此建立方程组是关键.24. 为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【答案】(1)男式单车2000元/辆,女式单车1500元/辆;(2)该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【解析】试题分析:(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m 的范围可得其最值情况.试题解析:解:(1)设男式单车x 元/辆,女式单车y 元/辆,根据题意,得:345416000x y x y =⎧⎨+=⎩,解得:20001500x y =⎧⎨=⎩. 答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m 辆,则购置男式单车(m +4)辆,根据题意,得:()42220004150050000m m m m ++≥⎧⎨++≤⎩,解得:9≤m ≤12,∵m 为整数,∴m 的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W ,则W =2000(m +4)+1500m =3500m +8000,∵W 随m 的增大而增大,∴当m =9时,W 取得最小值,最小值为39500.答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.点睛:本题考查了二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.25. 如图1,已知PQ //MN ,且∠B A M =2∠B A N .(1)求∠B A N 的度数;(2)如图1所示,射线A M 绕点A 开始顺时针旋转至A N 便立即回转至A M 位置,射线B P 绕点B 开始顺时针旋转至B Q 便立即回转至B P 位置.若A M 转动的速度是每秒2度,B P 转动的速度是每秒1度,若射线B P 先转动30秒,射线A M 才开始转动,在射线B P 到达B Q 之前,射线A M 转动多少秒?两射线互相平行.(3)如图2,若两射线分别绕点A ,B 顺时针方向同时转动,速度同(2),在射线A M 到达A N 之前,若两射线交于点C ,过C 作∠A C D 交PQ 于点D ,且∠A C D =120°,在转动过程中,请探究∠B A C 与∠B C D 的数量关系是否发生变化?若不变,请求出其数量关系:若改变,请说明理由.【答案】(1)60°;(2)30或110秒;(3)不变,∠B A C =2∠B C D .【解析】【分析】(1)根据∠B A M+∠B A N=180°,∠B A M:∠B A N=2:1,即可得到∠B A N的度数;(2)设射线A M转动t秒,两射线互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设射线转动时间为t秒,根据∠B A C =2t-120°,∠B C D =120°-∠B C D =t-60°,即可得出∠B A C :∠BC D =2:1,据此可得∠B A C 和∠B C D 关系不会变化.【详解】解:(1)∵∠B A M+∠B A N=180°,∠B A M:∠B A N=2:1,∴∠B A N=180°×13=60°;(2)设射线A M转动t秒,两射线互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PB D =∠B D A ,∵A C ∥B D ,∴∠C A M=∠B D A ,∴∠C A M=∠PB D∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PB D +∠B D A =180°,∵A C ∥B D ,∴∠C A N=∠B D A∴∠PB D +∠C A N=180°∴1×(30+t)+(2t-180)=180,解得t=110,综上所述,射线A M转动30或110秒,两射线互相平行;(3)∠B A C 和∠B C D 关系不会变化.理由:设射线转动时间为t秒,∵∠C A N=180°-2t,∴∠B A C =60°-(180°-2t)=2t-120°,又∵∠A B C =120°-t,∴∠B C A =180°-∠A B C -∠B A C =180°-t,而∠A C D =120°,∴∠B C D =120°-∠B C A =120°-(180°-t)=t-60°,∴∠B A C :∠B C D =2:1,即∠B A C =2∠B C D ,∴∠B A C 和∠B C D 关系不会变化.故答案为:60.【点睛】本题主要考查了平行线的判定与性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。

2020—2021年人教版七年级数学下册期末考试卷及答案【完整版】

2020—2021年人教版七年级数学下册期末考试卷及答案【完整版】

2020—2021年人教版七年级数学下册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)531152x xx x--≥⎧⎪-+⎨-<⎪⎩2.若关于x、y的二元一次方程组325233x y ax y a-=-⎧⎨+=+⎩的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.6.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)17、71x -<≤-.18、(1)a >1;(2)2;(3)a 的值是2.19、(1)∠AOE ,∠BOC ;(2)125°20、证明略22、(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.。

2020-2021学年人教版七年级下期末考试数学试题及答案解析

2020-2021学年人教版七年级下期末考试数学试题及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共20小题)1.(3分)已知|a|=5,√b2=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【解答】解:∵|a|=5,∴a=±5,∵√b2=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.2.(3分)如图,直线AB、CD相交于点O,若∠1+∠2=120°,则∠BOC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1+∠2=120°,∴∠1=60°.∵∠1与∠BOC互为邻补角,∴∠BOC=180°﹣∠1=180°﹣60°=120°.故选:B.3.(3分)若点P(a,b)在第三象限,则点Q(a﹣3,﹣b)一定在()A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵点P (a ,b )在第三象限,∴a <0,b <0,∴a ﹣3<0,﹣b >0,∴点Q (a ﹣3,﹣b )一定在第二象限.故选:B .4.(3分)已知{x =−1y =2是关于x 、y 的二元一次方程组{3x +ny =8mx −y =2的解,则m +2n 的值为( )A .−52B .1C .7D .11【解答】解:把x =﹣1,y =2代入方程组,得{−3+2n =8−m −2=2解得m =﹣4,n =112, ∴m +2n =﹣4+11=7.故选:C .5.(3分)把不等式2﹣x <1的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:不等式移项合并得:﹣x <﹣1,解得:x >1,表示在数轴上,如图所示故选:A .6.(3分)为了解某校3000名学生的视力情况,从中抽取了350名学生的视力,就这个问题来说,说法正确的是( )A .3000名学生的视力是总体B .3000名学生是总体C .每个学生是个体D.350名学生是所抽取的一个样本【解答】解:为了了解3000名学生的视力情况,从中抽取了350名学生进行视力调查,这个问题中的总体是3000名学生的视力情况,个体是每一个学生的视力情况,样本是抽取的350名学生的视力情况;故选:A.7.(3分)设a为正整数,且a<√37<a+1,则a的值为()A.5B.6C.7D.8【解答】解:∵√36<√37<√49,∴6<√37<7,∵a为正整数,且a<√37<a+1,∴a=6.故选:B.8.(3分)实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是()A.﹣2B.0C.﹣2a D.2b【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.9.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.3【解答】解:点P(﹣2,﹣3)到x轴的距离是:3.故选:D.10.(3分)下列选项中a ,b 的取值,可以说明“若a >b ,则|a |>|b |”是假命题的反例为( )A .a =﹣5 b =﹣6B .a =6 b =5C .a =﹣6 b =5D .a =6 b =﹣5【解答】解:当a =﹣5,b =﹣6时,a >b ,但|a |<|b |,∴“若a >b ,则|a |>|b |”是假命题,故选:A .11.(3分)已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c |+√b −7=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a +b +c 的值为() A .12 B .15 C .17 D .20【解答】解:∵且|a ﹣c |+√b −7=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7﹣3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a =5,∴c =5,∴a +b +c =5+7+5=17,故选:C .12.(3分)关于x ,y 的二元一次方程组{2x +3y =2ax −y =a −5的解满足x +y =5,则a 的值为()A .6B .5C .4D .3【解答】解:解方程组{2x +3y =2a x −y =a −5得{x =a −3y =2,又x +y =5,∴a ﹣3+2=5,解得a =6,故选:A .13.(3分)如图所示,直角坐标系中四边形的面积是( )A.15.5B.20.5C.26D.31【解答】解:图中四边形可以视为由两个直角三角形和一个梯形构成,则其面积为:1×2×3+12(3+4)×3+12×1×4=3+212+2=15.5.2故选:A.14.(3分)如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.15.(3分)如图,从C到B地有①②③条路线可以走,每条路线长分别为l,m,n()A.l>m>n B.l=m>n C.m<n=l D.l>n>m【解答】解:由题意可得:∵从C到B地有①②③条路线可以走,每条路线长分别为l,m,n,则AC+AB=l>BC∴l =n >m .故选:C .16.(2分)已知关于x 的不等式组{x −a >03−2x >0的整数解共有5个,则a 的取值范围是( ) A .﹣4<a <﹣3 B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32 【解答】解:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.故选:B .17.(2分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x 的取值范围是( )A .2<x ≤4B .2≤x <4C .2<x <4D .2≤x ≤4【解答】解:依题意,得:{3(3x −2)−2≤283[3(3x −2)−2]−2>28, 解得:2<x ≤4.故选:A .18.(2分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°【解答】解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.19.(2分)我们知道实数和数轴上的点一一对应,如图,正方形的边长为1,点P是半圆与数轴的交点,则点P对应的实数为()A.√2B.√2+1C.2.4D.2.5【解答】解:∵正方形的边长为1,∴根据图示,点P是以1为圆心,以√2(2+12=√2)为半径的圆与x的交点,∴点P表示的数是√2+1.故选:B.20.(2分)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)【解答】解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1),故选:D .二.填空题(共6小题,满分18分,每小题3分)21.(3分)已知方程2x +3y ﹣1=0,用含x 的代数式表示y ,则 y =−23x +13.【解答】解:方程2x +3y ﹣1=0,移项得:3y =1﹣2x ,解得:y =−23x +13.故答案为:y =−23x +13.22.(3分)一个正数a 的平方根分别是2m ﹣1和﹣3m +52,则这个正数a 为 4 .【解答】解:根据题意,得:2m ﹣1+(﹣3m +52)=0,解得:m =32,∴正数a =(2×32−1)2=4,故答案为:4.23.(3分)运算符号⊗的含义是a ⊗b ={a(a ≥b)b(a <b),则(1+x )⊗(1﹣2x )=5时x 的值为 4或﹣2 .【解答】解:当1+x ≥1﹣2x 时,即x ≥0,此时1+x =5,解得x =4;当1+x <1﹣2x 时,即x <0,此时1﹣2x =5,解得x =﹣2.故答案为:4或﹣2.24.(3分)如图,△DEF 是由△ABC 沿直线BC 向右平移得到,若BC =6,当点E 刚好移动到BC 的中点时,则CF = 3 .【解答】解:由平移的性质可得:BC=EF,BE=CF,∵BC=6,点E刚好移动到BC的中点,∴BE=EC=CF=3,故答案为:3.25.(3分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.则由统计图可知,在扇形统计图中,“乒乓球”部分所对应的圆心角的度数是100.8°.【解答】解:调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),则“乒乓球”部分所对应的圆心角的度数是:360°×1450=100.8°;故答案为:100.8°.26.(3分)已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是12.【解答】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=12OM•|x P|=12×4×6=12.故答案为12.三.解答题(共3小题,满分27分)27.(12分)(1)计算:|√3−2|+√−83+√(−2)2−|−2|(2)解方程组{x =2y −13x +y =4(3)解不等式组{4(x +1)<7x +13x −4<x−83,并写出它所有负整数解. 【解答】解:(1)原式=2−√3−2+2﹣2=−√3;(2){x =2y −1①3x +y =4②, 将①代入②,得:3(2y ﹣1)+y =4,解得y =1,将y =1代入①,得:x =1,则方程组的解为{x =1y =1; (3)解不等式4(x +1)<7x +13,得:x >﹣3,解不等式x ﹣4<x−83,得:x <2, 则不等式组的解集为﹣3<x <2,∴这个不等式组的负整数解为﹣2、﹣1.28.(6分)已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F .证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( 垂直的定义 ).∴DB ∥EC ( 同位角相等,两直线平行 ).∴∠C = ∠DBA ( 两直线平行,同位角相等 ).∵∠C =∠D (已知),∴∠D = ∠DBA ( 等量代换 ).∴DF ∥AC ( 内错角相等,两直线平行 ).∴∠A =∠F ( 两直线平行,内错角相等 ).【解答】解:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°(垂直的定义),∴DB ∥EC (同位角相等,两直线平行),∴∠C =∠DBA (两直线平行,同位角相等),∵∠C =∠D (已知),∴∠D =∠DBA (等量代换),∴DF ∥AC (内错角相等,两直线平行),∴∠A =∠F (两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA ,两直线平行,同位角相等;∠DBA ,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.29.(9分)某商场计划用7.8万元从同一供应商处购进A ,B 两种商品,供应商负责运输.已知A 种商品的进价为120元/件,B 种商品的进价为100元/件.如果售价定为:A 种商品135元/件,B 种商品120元/件,那么销售完后可获得利润1.2万元.(1)该商场计划购进A ,B 两种商品各多少件?(2)供应商计划租用甲、乙两种货车共16辆,一次性将A ,B 两种商品运送到商场,已知甲种货车可装A 种商品30件和B 种商品12件,乙种货车可装A 种商品20件和B 种商品30件,试通过计算帮助供应商设计几种运输用车方案?【解答】解:(1)设购进A 种商品x 件,B 种商品y 件.根据题意得:{120x +100y =78000(135−120)x +(120−100)y =12000, 解得:{x =400y =300. 答:购进A 种商品400件,B 种商品300件.(2)设租用甲种货车a 辆,则租用乙种货车(16﹣a )辆,则{30a +20(16−a)≥40012a +30(16−a)≥300. 解得8≤a ≤10.∵a为整数,∴a=8,9,10.故有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A种车10辆,B种车6辆.答:有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A 种车10辆,B种车6辆.。

2020-2021学年七年级下期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,对称轴最少的图形是()A.B.C.D.【解答】解:A.圆有无数条对称轴;B.正七边形有7条对称轴;C.五角星有5条对称轴;D.等腰梯形有1条对称轴.故选:D.2.(3分)下列事件属于确定事件的是()A.今天日本新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上【解答】解:A、今天日本新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.3.(3分)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.4.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.π,r D.C,2π【解答】解:在圆周长的计算公式C=2πr中,变量有C和r,故选:B.5.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.6.(3分)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b⁴,正确;D.(a3)2=a6,故本选项不合题意;故选:C.7.(3分)若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9【解答】解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.8.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,AS=AR,则这四个结论:①P A平分∠RPS;②PR=PS;③QP ∥AR;④∠ABC=∠QPS中正确的有()A.4个B.3个C.2个D.1个【解答】解:(1)在Rt△APS和Rt△APR中,{AP=APAR=AS,∴Rt△APR≌Rt△APS(HL),∴∠P AR=∠P AS,AS=AR,∴P A平分∠BAC,故①②正确;∵AQ=PR,∴∠P AQ=∠APQ,∴∠PQS=∠P AQ+∠APQ=2∠P AQ,又∵P A平分∠BAC,∴∠BAC=2∠P AQ,∴∠PQS=∠BAC,∴PQ∥AR,故③正确;∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等),故④不正确.故选:B.9.(3分)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°【解答】解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.10.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s) 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快【解答】解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.【解答】解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.12.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【解答】解:当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,小智绘制了如图所示的折线图,该事件最有可能是③(填写一个你认为正确的序号).①掷一枚硬币,正面朝上;②掷一个质地均匀的正六面体骰子,向上一面的点数是5;③暗箱中有1个黑球和2个白球,这些球除颜色外无差别,从中任取一球是黑球.【解答】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右, ①中掷一枚硬币,正面朝上的概率为12,不符合题意; ②掷一个质地均匀的正六面体骰子,向上一面的点数是5的概率是16,不符合题意; ③中从中任取一球是黑球的概率为11+2=13,符合题意, 故答案为:③. 14.(3分)在△ABC 中MP ,NO 分别垂直平分AB ,AC .若∠BAC =106°,则∠P AO 的度数是 32° .【解答】解:∵∠BAC =106°,∴∠B +∠C =180°﹣106°=74°,∵MP 是线段AB 的垂直平分线,∴P A =PB ,∴∠P AB =∠B ,同理,∠OAC =∠C ,∴∠P AO =∠BAC ﹣(∠P AB +∠OAC )=∠BAC ﹣(∠B +∠C )=32°,故答案为:32°.三.解答题(共11小题,满分1分)15.计算:2﹣1+√16−(3−√3)0+|√2−12|. 【解答】解:2﹣1+√16−(3−√3)0+|√2−12| =12+4﹣1+√2−12=3+√2.16.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=−12.y=1.【解答】解:(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=−12,y=1时,原式=12×(−12)×1+10×12=﹣6+10=4.18.(1分)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P(尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是40°,160°,140°,80°.(3)等边三角形的巧妙点的个数有C.(A)2(B)6(C)10(D)12【解答】解:(1)∴点P为所求.(2)∴P1,P2,P3,P4,P5,P6所求.∠BPC的度数分别为:40°,160°,140°,80°,40°,40°.综上所述,∠BPC的度数为40°,160°,140°,80°.(3)利用(2)中结论,可知等边三角形有10个巧妙点,故选C.19.完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.20.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使P A+PC最小;(3)在DE上画出点M,使|MB﹣MC|最大.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求;(3)如图所示,点M即为所求.21.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,请你运用自己所学知识说明他们的做法是正确的.【解答】证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.22.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?【解答】解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是430=215;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m =30﹣m ﹣3m ,解得:m =6,即当m =6时,游戏对双方是公平的.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m 3时,水费按每立方米1.1元收费,超过6m 3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm 3,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x ≤6时,y =1.1x ,当x >6时,y =1.1×6+(x ﹣6)×1.6=1.6x ﹣3,即y 与x 之间的函数表达式是y ={1.1x (0≤x ≤6)1.6x −3(x >6); (2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m 3,将y =5.5代入y =1.1x ,解得x =5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m 3,将y =9.8代入y =1.6x ﹣3,解得x =8;答:这两户家庭这个月的用水量分别是5m 3,8m 3.24.设a ,b ,c 为整数,且一切实数x 都有(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,求a +b +c 的值.【解答】解:∵(x ﹣a )(x ﹣8)+1=x 2﹣(a +8)x +8a +1,(x ﹣b )(x ﹣c )=x 2﹣(b +c )x +bc又∵(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,∴﹣(a +8)=﹣(b +c ),∴8a +1=bc ,bc﹣8(b+c)=﹣63,即(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.【解答】(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,{∠BAE =∠CAD AE =AD∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =90°,∠AFB =∠CFD ,∴∠ACD +∠CFD =90°,∴∠BDC =90°;(2)如图2,过A 作AE ⊥AD 交BD 于E ,∵∠BAC =∠DAE =90°,∴∠BAE =∠CAD ,∵∠BAC =∠BDC =90°,∠AFB =∠CFD ,∴∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠BAE =∠CAD AB =AC ∠ABE =∠ACD,∴△ABE ≌△ACD (ASA ),∴AE =AD ,∴∠ADE =∠AED =45°;(3)①如图3,在形内作∠DAE =60°,AE 交BD 于E 点,与(2)同理△ABE ≌△ACD ,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.。

湖北省孝感市孝南区2020-2021学年七年级下学期期末数学试题

湖北省孝感市孝南区2020-2021学年七年级下学期期末数学试题
A. B.
C. D.
7.把不等式组 的解集表示在数轴上,下列选项正确的是( )
A. B.
C. D.
8.坐标平面内有一点 到 轴的距离为 ,到 轴的距离为 ,点 在第二象限,则 点坐标为()
A. B. C. D.
9.下列说法中正确的有()
①在同一平面内,不相交的两条直线必平行
②过一点有且只有一条直线与已知直线垂直
参考答案
1.B
【解析】
解:A.∠1与∠2是对顶角,故本选项错误;
B.∠1与∠2互为邻补角,故本选项正确;
C.∠1与∠2关系不能确定,故本选项错误;
D.∠1+∠2>180°,故故本选项错误.
故选B.
2.D
【分析】
直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.
【详解】
解: ,

故 ,
故选: .
C、了解神舟飞船的设备零件的质量状况,意义特别重大,应采用普查,C正确;
D、了解某品牌食品的色素添加情况,普查具有破坏性,应采用抽样调查,D错误;
故选:C.
【点睛】
此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
11. -2的相反数是_____________,绝对值是________________
12.若 ,且 ,则 __________.
13..已知点 , 且 ,则 __________.
14.如图, ,直线 平移后得到直线 ,则 __________.
15.某正数的两个平方根分别是 和 , 的立方根是 ,则 的算术平方根为__________.

湖北省孝感市2020年七年级第二学期期末联考数学试题含解析

湖北省孝感市2020年七年级第二学期期末联考数学试题含解析

湖北省孝感市2020年七年级第二学期期末联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题只有一个答案正确)1.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .23【答案】C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形, 则构成轴对称图形的概率为:3162= 故选:C .【点睛】此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键.2.下列各式的变形中,正确的是( ) A .11x x x x--= B .()224321x x x -+=+- C .()211x x x x ÷+=+ D .22(-)()x y x y x y =-+ 【答案】D【解析】【分析】根据平方差公式、完全平方公式及分式的运算法则逐一计算,即可判断可得.【详解】 A. 211x x xx --=,此选项错误; B. ()224321x x x -+=--,此选项错误;C. ()211x x x x ÷+=+,此选项错误; D.22(-)()x y x y x y =-+,正确.故选D.【点睛】此题考查完全平方公式,平方差公式,分式的加减法,解题关键在于掌握运算法则.3.一件商品按成本价提高40%后标价,再打8折销售,售价为240元,设这件商品的成本价为x 元,根据题意得,下面所列的方程正确的是( )A .40%80%240x ⨯=B .(140%)80%240x +⨯=C .24040%80%x ⨯⨯=D .40%24080%x =⨯【答案】B【解析】【分析】首先理解题意找出题中存在的等量关系:成本价×(1+40%)×80%=售价240元,根据此列方程即可. 【详解】解:设这件商品的成本价为x 元,成本价提高40%后的标价为x(1+40%),再打8折的售价表示为x(1+40%)×80%,又因售价为240元,列方程为:x(1+40%)×80%=240, 故选B .【点睛】本题考查了一 元一次方程的应用,解此题的关键是理解成本价、标价、售价之间的关系及打8折的含义. 4.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为 ( )A .9B .4C .5D .13 【答案】A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <1.故选A .【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.如图所示,数轴上点P所表示的数可能是()A30B15C10D8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<49P<16∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.6.下列说法中正确的个数是()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与己知直线平行;,则点B为线段AC的中点;⑥不相交的两条直线叫④两点之间的距离是两点间的线段;⑤若AB BC做平行线。

2023-2024学年湖北省孝感市孝南区七年级(下)期末数学试卷(含答案)

2023-2024学年湖北省孝感市孝南区七年级(下)期末数学试卷(含答案)

2023-2024学年湖北省孝感市孝南区七年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.4的平方根是( )A. 2B. −2C. 4D. ±22.要调查下列问题,应采用全面调查的是( )A. 对某校七年级(1)班男生身高情况的调查B. 对湖北省空气质量情况的调查C. 对某型号节能灯使用寿命的调查D. 对全国中学生每天体育锻炼所用时间的调查3.如图,利用工具测量角,则∠1的大小为( )A. 30°B. 60°C. 40°D. 50°4.不等式x+1≥3的解集在数轴上表示正确的是( )A. B.C. D.5.用代入消元法解方程组{2x+y=5①3x+4y=2②变形不正确的是( )A. 由②得x=2−4y3B. 由②得y=2−3x4C. 由①得x=y+52D. 由①得y=5−2x6.方程组{x+y=⊗2x+y=3的解为{x=1y=∗,则被遮盖的两个数⊗,∗分别为( )A. 2,1B. 1,2C. 2,3D. 3,27.若a<b,则下列结论正确的是( )A. 2a>2bB. ax2<bx2C. a+x>b+xD. −a>−b8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(−1,−1)、(−1,2)、(3,−1),则第四个顶点的坐标是( )A. (2,2)B. (3,3)C. (3,2)D. (2,3)9.我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x 辆车,y 人,则下面方程组正确的是( )A. {y =3(x +2)y =2x +9B. {y =3(x +2)y =2x−9C. {y =3(x−2)y =2x +9D. {y =3(x−2)y =2x−910.若关于x 的一元一次不等式{x−m ≥02x +1<3无解,则m 的取值范围是( )A. m <1B. m ≤1C. m >1D. m ≥1二、填空题:本题共5小题,每小题3分,共15分。

最新人教版数学七年级下册《期末考试题》含答案解析

最新人教版数学七年级下册《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(每小题只有一个选项符合题意,请将正确的选项字母填入下表相应空格内,每小题3分,共30分)1. 在3π,0,2,-3.14,27,38-六个数中,无理数的个数为( ) A . 2 B . 3 C . 4 D . 52. 如图,根据下列条件能得到//AD BC 的是( )A . 1B ∠=∠B . 1180∠+∠=︒BCDC . 23∠∠=D . 180BAD B ∠+∠=︒ 3. 下列变形错误的是( )A . 若510->x ,则2x <-B . 若x y >,则22x y >C . 若30x -<,则3x >D . 若a b <,则2211a b c c <++ 4. 下列问题适合做抽样调查是( ) A . 为了了解七(1)班男同学对篮球运动喜欢情况B . 审核某书稿上的错别字C . 调查全国中小学生课外阅读情况D . 飞机起飞前对零部件安全性的检查5. 273-的结果应在下列哪两个连续整数之间( )A . 2和3B . 3和4C . 4和5D . 5和6 6. 下列命题是假命题的是( )A . 在同一平面内,过一点有且只有一条直线与已知直线垂直;B . 负数没有立方根;C . 在同一平面内,若a b ⊥,b c ⊥,则//a cD . 同旁内角互补,两直线平行7. 圆周率π是一个无限不循环小数,即是一个无理数,到目前为止,专家利用超级计算机已将圆周率算到小数点后约100万兆位,世界上第一个将圆周率π计算到小数点后第七位的数学家是( )A . 华罗庚B . 笛卡儿C . 商高D . 祖冲之8. 在平面直角坐标系中,点()24,1--P m m 为y 轴上一点,则点(),3-Q m 关于x 轴的对称点的坐标为( )A . ()2,3-B . ()2,3C . ()1,3D . ()1,3- 9. 如图,直线//m n ,将一直角三角尺的直角顶点放在直线m 上,已知135∠=︒,则2∠的度数为( ) A . 135° B . 145° C . 120° D . 125°10. 我国古代数学著作《孙子算经》中有一道题:”今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:”用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设绳子长x 尺,木条长y 尺,则根据题意所列方程组正确是( ) A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩ B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩ D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩二、填空题(每小题3分,共15分)11. 34=a ,则数a 的平方根是__________.12. 在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为4,到y 轴的距离为3,则点M 的坐标是______.13. 将一张长方形纸片按如图所示的方式折叠,已知50ADE ∠=︒,则EFD ∠的度数为__________.14. 已知|345|56210+-+--=x y x y ,则式子4x y -的值为__________.15. 若关于x 的不等式0x a -≥有2个负整数解,则a 的取值范围为__________.三、解答题(8个小题,共75分)16. 计算:23(3)|12|8---+-17. (1)解方程组:25528x y x y -=⎧⎨+=⎩(2)解不等式组:475(1)2432x x x x -<-⎧⎪-⎨≤-⎪⎩,并将其解集表示在数轴上. 18. 已知42++a b b 是2b +的算术平方根,1--a b a 是1a -的立方根.求323-a b 的值.19. 如图,在平面直角坐标系中,已知点33A-(,),41B --(,),(21)C -,,点(,)P a b 为三角形的边AC 上任意一点,三角形ABC 经过平移后得到三角形111A B C ,点P 的对应点为1(5,2)+-P a b .(1)直接写出点1A ,1B ,1C 的坐标;(2)在图中画出平移后的三角形111A B C ;(3)连接OA 、1OA ,1AA ,求三角形1AOA 的面积。

孝感市孝南区2020-2021学年新人教版七年级下期末数学试卷含答案解析(A卷全套)

孝感市孝南区2020-2021学年新人教版七年级下期末数学试卷含答案解析(A卷全套)

2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷一、精心选择,一锤定音!(本题共10个小题,每小题3分,共30分)1.下列实数中,是无理数的是()A.B.3.14 C.6.D.2.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图3.点P(m+3,m+1)在x轴上,则点P的坐标为()A.(2,0) B.(0,﹣2) C.(4,0) D.(0,﹣4)4.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.2m+1<2n+1 D.﹣3m<﹣3n5.下列结论正确的是()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一直线的两条直线互相平行D.平行于同一直线的两条直线互相平行6.把不等式组的解集表示在数轴上,下列选项正确的是() A.B.C.D.7.下列方程中是二元一次方程的是()A. +y=4 B.xy=3 C.y=x2+1 D.2y+z=48.的算术平方根是()A.4 B.﹣4 C.2 D.±29.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为() A.m≤9 B.m<12 C.m≥9 D.9≤m<1210.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)11.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.若x、y为实数,且|x+3|+=0,则()2021的值为.13.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.16.请你观察、思考下列计算过程:因为112=121,所以=11;因为1112=12321,所以;11112=1234321,所以…,由此猜想=.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.计算(1)已知(x﹣1)2=4,求x的值;(2)|1﹣|+﹣.18.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.19.(1)解不等式≥,并把它的解集表示在数轴上;(2)解不等式组,并指出它的所有整数解.2021图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示.△ABC A(a,0)B(4,0)C(5,5)△A′B′C′A′(4,2)B′(8,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=,b=,c=;(2)在如图所示直角坐标系中画出△ABC和△A′B′C′;(3)连CC′、BB′,直接写出CC′与BB′的数量关系和位置关系:.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计表.组别成绩分组(单位:分)频数频率A50≤x<60400.08B60≤x<70700.14C70≤x<8090cD80≤x<90a0.40E90≤x≤1001000.20合计b1根据以上信息解答下列问题:(1)统计表中a=,b,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是(度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?23.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?24.如图,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,=12,点M从O出发,沿过点A向x轴作垂线,垂足为点B,连接OA,S△AOBy轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON时,请求出t的值.2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷参考答案与试题解析一、精心选择,一锤定音!(本题共10个小题,每小题3分,共30分)1.下列实数中,是无理数的是()A.B.3.14 C.6.D.【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,3.14,6.是有理数,是无理数,故选:D.2.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图【考点】VE:统计图的选择;VD:折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:∵折线统计图表示的是事物的变化情况,∴要反映自贡市一周内每天的最高气温的变化情况,宜采用折线统计图.故选(B)3.点P(m+3,m+1)在x轴上,则点P的坐标为()A.(2,0) B.(0,﹣2) C.(4,0) D.(0,﹣4)【考点】D1:点的坐标.【分析】根据x轴上点的纵坐标为0列出方程求解得到m的值,然后解答即可.【解答】解:∵点P(m+3,m+1)在x轴上,∴m+1=0,∴m=﹣1,∴点P(m+3,m+1)的坐标为(2,0).故选:A.4.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.2m+1<2n+1 D.﹣3m<﹣3n【考点】C2:不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减4,不等号的方向不变,故A不符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边都乘以2,不等号的方向不变,两边都加1,不等号的方向不变,故C 符合题意;D、两边都乘以﹣3,不等号的方向改变,故D不符合题意;故选:C.5.下列结论正确的是()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一直线的两条直线互相平行D.平行于同一直线的两条直线互相平行【考点】J8:平行公理及推论;J7:平行线.【分析】根据平行公理及推论,可得答案.【解答】解:A、在同一平面内,不相交的两条直线叫做平行线,故A不符合题意;B、两直线平行,同位角相等,故B不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,故C不符合题意;D、平行于同一直线的两条直线互相平行,故D符合题意;故选:D.6.把不等式组的解集表示在数轴上,下列选项正确的是() A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【解答】解:解不等式2x+1>﹣1,得:x>﹣1,解不等式x+2≤3,得:x≤1,∴不等式组的解集为:﹣1<x≤1,故选:B.7.下列方程中是二元一次方程的是()A. +y=4 B.xy=3 C.y=x2+1 D.2y+z=4【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,即只含有2个未知数,且含有未知数的项的最高次数是1的整式方程作答.【解答】解:A. +y=4不是整式方程,故不合题意;B.xy=3是二元二次方程,故不合题意;C.y=x2+1是二元二次方程,故不合题意;D.2y+z=4是二元一次方程,符合题意;故选:D.8.的算术平方根是()A.4 B.﹣4 C.2 D.±2【考点】22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故选C.9.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为() A.m≤9 B.m<12 C.m≥9 D.9≤m<12【考点】C7:一元一次不等式的整数解.【分析】解不等式得出x≤,由不等式的正整数解为1、2、3知3≤<4,解之可得答案.【解答】解:解不等式3x﹣m≤0,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1【考点】JA:平行线的性质;J3:垂线.【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=2021则∠BOF=∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=2021则∠POE=∠BOF;根据∠POB=70°﹣∠POE=50°,∠DOF=2021可知④不正确.【解答】解:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠BOE=×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣70°=2021∴∠BOF=∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=2021∴∠POE=∠BOF,所以③正确;∴∠POB=70°﹣∠POE=50°,而∠DOF=2021所以④错误.综上所述,正确的结论为①②③.故选:B.二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)11.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;故答案为:垂线段最短.12.若x、y为实数,且|x+3|+=0,则()2021的值为﹣1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y﹣3=0,解得x=﹣3,y=3.则原式=(﹣1)2021=﹣1.故答案是:﹣1.13.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为,.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:,14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为0.4.【考点】V8:频数(率)分布直方图.【分析】根据频率的计算公式:频率=即可求解.【解答】解:学生仰卧起坐次数在25~30之间的频率是:=0.4.故答案是:0.4.15.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为540m2.【考点】Q1:生活中的平移现象.【分析】把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是矩形,根据矩形的面积公式即可求出结果.【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=2021=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.16.请你观察、思考下列计算过程:因为112=121,所以=11;因为1112=12321,所以;11112=1234321,所以…,由此猜想=111 111 111.【考点】22:算术平方根.【分析】被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.【解答】解:∵,…,∴=111 111 111.故答案为:111 111 111.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.计算(1)已知(x﹣1)2=4,求x的值;(2)|1﹣|+﹣.【考点】2C:实数的运算;21:平方根.【分析】(1)根据平方根的含义和求法,求出x的值是多少即可.(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x=3或﹣1.(2)|1﹣|+﹣=﹣1+2﹣(﹣2)=+318.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.【考点】97:二元一次方程组的解.【分析】(1)方程组利用加减消元法求出解即可;(2)把x与y的值代入方程计算得到2a﹣3b的值,原式变形后代入计算即可求出值.【解答】解:(1),②﹣①得:y=3,把y=3代入①得:x=﹣2,则方程组的解为;(2)把代入方程得:﹣2a+3b=2,即2a﹣3b=﹣2,则原式=﹣2(2a﹣3b)=4.19.(1)解不等式≥,并把它的解集表示在数轴上;(2)解不等式组,并指出它的所有整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母、去括号、移项、合并同类项、系数化成1,最后在数轴上把不等式的解集在数轴上表示出来即可.(2)分别求出不等式组中两不等式的解集,找出解集的公共部分,即可求得它的所有整数解.【解答】解:(1)去分母得:3(x﹣2)≥2(7﹣x),去括号得:3x﹣6≥14﹣2x移项、合并同类项得:5x≥2021系数化成1得:x>4,在数轴上表示不等式的解集为:.(2),由①得:x<2;由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<3,它的所有整数解:﹣1,0,1,2.2021图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.【考点】JB:平行线的判定与性质.【分析】(1)根据平行线的判定得出AB∥EF,根据平行线的性质得出∠ADE=∠3,求出∠ADE=∠B,根据平行线的判定得出即可;(2)根据平行线的性质得出∠C+∠DEC=180°,即可求出答案.【解答】解:(1)DE∥BC,理由是:∵∠1+∠2=180°,∴AB∥EF,∴∠ADE=∠3,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC;(2)∵DE∥BC,∴∠C+∠DEC=180°,∵∠C=65°,∴∠DEC=115°.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示.△ABC A(a,0)B(4,0)C(5,5)△A′B′C′A′(4,2)B′(8,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=0,b=2,c=9;(2)在如图所示直角坐标系中画出△ABC和△A′B′C′;(3)连CC′、BB′,直接写出CC′与BB′的数量关系和位置关系:平行且相等.【考点】Q4:作图﹣平移变换.【分析】(1)根据A、B、C三点横纵坐标的变化即可得出结论;(2)在坐标系内描出各点,再顺次连接即可;(3)根据图形平移的性质即可得出结论.【解答】解:(1)∵A(a,0),A′(4,2);B(4,0),B′(8,b),∴△A′B′C′由△ABC先向上平移2个单位,再向右平移4个单位得到,∴a=0,b=2,c=9.故答案为:0,2,9;(2)如图,△ABC与△A′B′C′即为所求;(3)∵△A′B′C′由△ABC平移而成,∴CC′与BB′的数量关系和位置关系是平行且相等.故答案为:平行且相等.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计表.组别成绩分组(单位:分)频数频率A50≤x<60400.08B60≤x<70700.14C70≤x<8090cD80≤x<90a0.40E90≤x≤1001000.20合计b1根据以上信息解答下列问题:(1)统计表中a=2021,b500,c=0.18;(2)扇形统计图中,m的值为14,“E”所对应的圆心角的度数是72(度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)由A组频数及其频率可得样本容量b,根据“频率=频数÷总数”可分别求得a、c的值;(2)根据B组的频率可得m的值,用360度乘以E组的百分比可得;(3)用样本中E组的百分比乘以总人数即可得出答案.【解答】解:(1)由频数分布表可知,b=40÷0.08=500,∴a=500×0.4=2021c=90÷500=0.18,故答案为:2021500,0.18;(2)∵B组的频率为0.14,∴m=14,“E”所对应的圆心角的度数是360°×202172°,故答案为:14,72;(3)∵4000×0.202100,∴估计成绩在90分及以上的学生大约有800人.23.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设一个足球、一个篮球分别为x、y元,根据:①1个足球费用+2个篮球费用=210元,②2个足球费用+6个篮球费用=580元,据此列方程组求解即可;(2)设可买训练用足球m个,则比赛用足球(96﹣m)个,根据购买训练用足球和比赛用足球的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设一个训练用足球x元、一个比赛用足球为y元,根据题意得,解得:,答:一个训练用足球60元、一个比赛用足球为160元;(2)设可买训练用足球m个,则比赛用足球(96﹣m)个,根据题意得:60m+160(96﹣m)≤6000,解得:m≥93.6,∵m为整数,∴m最大取94.则96﹣m=2.答:这所中学最多可以购买2个比赛用足球.24.如图,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,=12,点M从O出发,沿过点A向x轴作垂线,垂足为点B,连接OA,S△AOBy轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON 的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON 时,请求出t 的值.【考点】KY:三角形综合题.【分析】(1)根据△AOB 的面积列出方程即可解决问题;(2)当0<t <2时①∠ANM=∠OMN +∠BAN .如图2中,过N 点作NH ∥AB ,利用平行的性质证明即可.②根据S 四边形AMON =S 四绞刑ABOM ﹣S △ABN ,计算即可; (3)分两种情形列出方程即可解决问题; 【解答】解:(1)如图1中,∵S △AOB =12,A(3a ,2a), ∴×3a ×2a=12, ∴a 2=4, 又∵a >0, ∴a=2.(2)当0<t <2时①∠ANM=∠OMN +∠BAN ,原因如下: 如图2中,过N 点作NH ∥AB ,∵AB⊥X轴∴AB∥OM∴AB∥NH∥OM∴∠OMN=∠MNH∠BAN=∠ANH∴∠ANM=∠MNH+∠ANH=∠OMN+∠BAN.=12,理由如下:②S四边形AMON∵a=2∴A(6,4)∴OB=6,AB=4,OM=2t BN=3t ON=6﹣3t=S四绞刑ABOM﹣S△ABN,∴S四边形AMON=(AB+OM)×OB﹣×BN×AB =(4+2t)×6﹣×3t×4=12+6t﹣6t=12∴四边形AMON的面积不变(3)∵OM=ON∴2t=6﹣3t或2t=3t﹣6∴t=或6.。

2020-2021学年七年级下学期期末考试数学试题及答案解析

2020-2021学年七年级下学期期末考试数学试题及答案解析

2020-2021学年七年级下学期期末考试数学试卷
一.选择题(共10小题,满分30分)
1.(3分)下面有4个图案,其中有()个是轴对称图形.
A.一个B.二个C.三个D.四个
2.(3分)某种水稻平均亩产820千克,某地计划种植3000亩,预计总产量是()A.2.5×106千克B.2.5×105千克
C.2.46×106千克D.2.46×105千克
3.(3分)下列各运算中,计算正确的是()
A.2a•3a=6a B.(3a2)3=27a6
C.a4÷a2=2a D.(a+b)2=a2+ab+b2
4.(3分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()
A.60°B.65°C.70°D.75°
5.(3分)若m2﹣n2=5,则(m+n)2(m﹣n)2的值是()
A.25B.5C.10D.15
6.(3分)已知电流在一定时间段内正常通过电子元件“”的概率是0.5;则在一定时间段内,由该元件组成的图示电路A、B之间,电流能够正常通过的概率是()
A.0.75B.0.525C.0.5D.0.25
7.(3分)如图,在△ABC中,D是AB上的一点,E是AC上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为()
第1 页共25 页。

2020-2021学年湖北省初中七年级下学期期末数学试卷(有答案)A-精品试卷

2020-2021学年湖北省初中七年级下学期期末数学试卷(有答案)A-精品试卷

最新湖北省七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.正数4的平方根是()A.2 B.±2 C.± D.2.在﹣3、0、π、这四个数中,最小的有理数是()A.0 B.﹣3 C.πD.3.如图,直线a∥b,∠1=108°,则∠2的度数是()A.72°B.82°C.92°D.108°4.若x>y,下列不等式中不一定成立的是()A.x+2>y+2 B.2x>2y C.a﹣x<a﹣y D.x2>y25.下列如图所示的图案,分别是奔驰、奥迪、三菱、大众汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.6.下列调查中,最适宜采用全面调查方式的是()A.对广水市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对广水市初中学生视力情况的调查7.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限8.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将(1)×2+(2)×3 B.要消去x,可以将(1)×3+(2)×(﹣5)C.要消去y,可以将(1)×5+(2)×3 D.要消去x,可以将(1)×(﹣5)+(2)×39.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④10.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为.12.9的算术平方根是,﹣27的立方根是,1﹣的相反数是.13.如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=30°,则∠2= °.14.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a 的取值范围是.15.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是场.16.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位支至点A4(3,2),依此规律跳动下去,点A第2016次跳动至点A2016的坐标是.三、解答题(共9小题,满分72分)17.化简下列式子:﹣+|﹣|.18.解不等式组,并将解集在数轴上表示出来.19.根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A. B. C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.20.完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴(同角的补角相等)∴(内错角相等,两直线平行)∴∠ADE=∠3∵∠3=∠B∴∠ADE=∠B(等量代换)∴DE∥BC∴∠AED=∠C .21.新潮服装店有两件新款服装,B服装的进价比A服装的进价少100元,A、B服装分别以30%和20%的盈利率定价后进行销售,该服装店共获利130元,问A,B两件服装的进价各是多少元?22.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC 向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.23.某中学积极组织学生开展课外阅读活动,为了解本校1500名学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)这次抽样调查的样本容量是;(2)x= ,并将不完整的条形统计图补充完整;(3)若满足t≥3的人数为合格,那么估计该中学每周课外阅读时间量合格人数是多少?24.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.25.建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.正数4的平方根是()A.2 B.±2 C.± D.【考点】平方根.【分析】根据平方根的定义进行解答即可.【解答】解:∵(±2)2=4,∴正数4的平方根是±2.故选B.2.在﹣3、0、π、这四个数中,最小的有理数是()A.0 B.﹣3 C.πD.【考点】实数大小比较.【分析】依据正数大于0,负数小于0,正数大于负数进行比较即可.【解答】解:∵﹣3<0,0<π,0<,∴其中最小的有理数是﹣3.故选:B.3.如图,直线a∥b,∠1=108°,则∠2的度数是()A.72°B.82°C.92°D.108°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=108°,∴∠1=∠3=108°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣108°=72°.故选A.4.若x>y,下列不等式中不一定成立的是()A.x+2>y+2 B.2x>2y C.a﹣x<a﹣y D.x2>y2【考点】不等式的性质.【分析】根据不等式的基本性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,故本选项成立;D、由不等式的性质可知当|x|<|y|时,则x2<y2,故本选项不一定成立故选D.5.下列如图所示的图案,分别是奔驰、奥迪、三菱、大众汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案C可以看作由“基本图案”经过平移得到.故选:B.6.下列调查中,最适宜采用全面调查方式的是()A.对广水市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对广水市初中学生视力情况的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:对广水市中学生每天学习所用时间的调查适宜采用抽样调查方式;对全国中学生心理健康现状的调查适宜采用抽样调查方式;对某班学生进行6月5日是“世界环境日”知晓情况的调查适宜采用全面调查方式;对广水市初中学生视力情况的调查适宜采用抽样调查方式;故选:C.7.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.8.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将(1)×2+(2)×3 B.要消去x,可以将(1)×3+(2)×(﹣5)C.要消去y,可以将(1)×5+(2)×3 D.要消去x,可以将(1)×(﹣5)+(2)×3【考点】解二元一次方程组.【分析】观察方程组中x与y的系数特点,利用加减消元法判断即可.【解答】解:利用加减消元法解方程组,做法正确的是要消去x,可以将(1)×(﹣5)+(2)×3,故选D9.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.10.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意可得:,故选D.二、填空题(共6小题,每小题3分,满分18分)11.已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为20 .【考点】频数与频率.【分析】根据各小组频数之和等于数据总和,进行计算.【解答】解:根据题意,得第四组频数为第4组数据个数,故第四组频数为20.故答案为:20.12.9的算术平方根是 3 ,﹣27的立方根是﹣3 ,1﹣的相反数是﹣1 .【考点】实数的性质;算术平方根;立方根.【分析】【分析】根据算术平方根的定义,立方根的定义,相反数的定义解答即可.【解答】解:∵32=9,∴9的算术平方根是3;∵(﹣3)3=﹣27,∴﹣27的立方根为﹣3;1﹣的相反数是﹣1.故答案为:3;﹣3;﹣1.13.如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=30°,则∠2= 60 °.【考点】平行线的性质.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°.∵a∥b,∴∠2=∠3=60°.故答案为:60.14.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a 的取值范围是1<a≤2 .【考点】不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故答案为:1<a≤2.15.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是 5 场.【考点】一元一次不等式的应用;二元一次方程的应用.【分析】设获胜的场次是x,平y场,负z场,根据最后的积分是17分,可列方程求解.【解答】解:解:设获胜的场次是x,平y场,负z场.由题意3x+y+0•z=17,∴3x+y=17,整数解为或或或或或∴x最大可取到5.故答案为516.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位支至点A4(3,2),依此规律跳动下去,点A第2016次跳动至点A2016的坐标是.【考点】规律型:点的坐标.【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第2016次跳动至点的坐标是.故答案为:.三、解答题(共9小题,满分72分)17.化简下列式子:﹣+|﹣|.【考点】实数的运算.【分析】此题涉及绝对值、立方根、算术平方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:﹣+|﹣|=2﹣+=+18.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x<3,由②得,x≥﹣1,故不等式组的解集为:﹣1≤x<3.在数轴上表示为:.19.根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A. B. C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为x=y ;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【考点】解二元一次方程组.【分析】(1)分别求出三个方程组的解即可;(2)观察三个方程组的解,找出x与y的关系即可;(3)仿照以上外形特征写出方程组,并写出解即可.【解答】解:(1)方程组A的解为,方程组B的解为,方程组C的解为;故答案为:(1);;;(2)以上每个方程组的解中,x值与y值的大小关系是x=y;故答案为:x=y;(3)根据题意举例为:,其解为.20.完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴∠EFD=∠2 (同角的补角相等)∴AB∥EF (内错角相等,两直线平行)∴∠ADE=∠3 (两直线平行,内错角相等)∵∠3=∠B (已知)∴∠ADE=∠B(等量代换)∴DE∥BC (同位角相等,两直线平行)∴∠AED=∠C (两直线平行,同位角相等).【考点】平行线的判定与性质.【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠EFD=180°(邻补角定义),又∵∠1+∠2=180°(已知),∴∠EFD=∠2(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠ADE=∠3(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行),∴∠AED=∠C(两直线平行,同位角相等).21.新潮服装店有两件新款服装,B服装的进价比A服装的进价少100元,A、B服装分别以30%和20%的盈利率定价后进行销售,该服装店共获利130元,问A,B两件服装的进价各是多少元?【考点】分式方程的应用;二元一次方程组的应用.【分析】设A服装成本为x元,B服装成本y元,根据“B服装的进价比A服装的进价少100元,A、B服装分别以30%和20%的盈利率定价后进行销售,该服装店共获利130元”列出方程组,求出方程组的解即可得到结果.【解答】解:设A服装成本为x元,B服装成本y元,由题意得:,解得:,答:A服装成本为300元,B服装成本200元.22.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.【考点】作图﹣平移变换.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(0,y),再根据三角形的面积公式得×4×|h|=6,进而可得y的值.【解答】解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(0,y),再根据三角形的面积公式得:S△PBC=×4×|h|=6,解得|h|=3,求出y的值为(0,1)或(0,﹣5).23.某中学积极组织学生开展课外阅读活动,为了解本校1500名学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)这次抽样调查的样本容量是200 ;(2)x= 30 ,并将不完整的条形统计图补充完整;(3)若满足t≥3的人数为合格,那么估计该中学每周课外阅读时间量合格人数是多少?【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)由等级A的人数除以占的百分比得到调查总人数即可;(2)根据扇形统计图求出x的值,根据调查总人数求出等级为B与C的人数,补全条形统计图即可;(3)根据等级C与D的百分比之和乘以1500即可得到结果.【解答】解:(1)根据题意得:90×45%=200(名),则这次抽样调查的样本容量是200;故答案为:200;(2)根据题意得:x%=1﹣(45%+10%+15%)=30%,即x=30,∵调查的总人数为90÷45%=200(人),∴B等级人数为200×30%=60(人);C等级人数为200×10%=20(人),如图:(2)1500×(10%+15%)=375(人),则估计中学每周课外阅读时间量合格人数是375人.24.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.25.建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元,可列出方程组求解.(2)设新建m个地上停车位,根据小区预计投资金额超过10万元而不超过11万元,可列出不等式求解.(3)根据第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,可写出方案.【解答】解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,由题意得:,解得,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元;﹙2﹚设新建m个地上停车位,则:10<0.1m+0.4(50﹣m)≤11,解得30≤m<,因为m为整数,所以m=30或m=31或m=32或m=33,对应的50﹣m=20或50﹣m=19或50﹣m=18或50﹣m=17,答:有4种建造方案;﹙3﹚当地上停车位=30时,地下=20,30×100+20×300=9000.用掉3600,剩余9000﹣3600=5400.因为修建一个地上停车位的费用是1000,一个地下是4000.5400不能凑成整数,所以不符合题意.同理得:当地上停车位=31,33时.均不能凑成整数.当算到地上停车位=32时,地下停车位=18,则32×100+18×300=8600,8600﹣3600=5000.此时可凑成修建1个地上停车场和一个地下停车位,1000+4000=5000.所以答案是32和18.答:建造方案是建造32个地上停车位,18个地下停车位.2017年3月3日。

2020-2021学年人教版七年级下期末数学试题及答案

2020-2021学年人教版七年级下期末数学试题及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.2.(3分)下列说法:①平面内,垂直于同一直线的两条直线平行;②两条直线被第三条直线所截,内错角相等;③如果直线a∥b,b∥c那么a∥c;④直线外一点与直线上各点连接的所有线段中,垂线段最短;⑤同旁内角的角平分线互相垂直.其中正确的是()A.①③④B.①②⑤C.②③④D.②③⑤【解答】解:①平面内,垂直于同一直线的两条直线平行,原说法正确;②两条平行线被第三条直线所截,内错角相等,原说法错误;③如果直线a∥b,b∥c那么a∥c,原说法正确;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原说法正确;⑤两条平行线被第三条直线所截,同旁内角的角平分线互相垂直,原说法错误.其中正确的是①③④.故选:A.3.(3分)如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个【解答】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.4.(3分)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C 的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24B.40C.42D.48【解答】解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=12×(6+10)×6=48.故选:D.5.(3分)下列各式中没有意义的是()A.√−7B.√0.01C.√(−3)2D.√−83【解答】解:A、√−7,根号下部分是负数,无意义,故此选项符合题意;B、√0.01有意义,故此选项不合题意;C、√(−3)2有意义,故此选项不合题意;D、√−83有意义,故此选项不合题意;故选:A.6.(3分)下列说法:①﹣a2没有算术平方根;②若一个数的平方根等于它本身,则这个数是0或1;③有理数和数轴上的点一一对应;④负数没有立方根,其中正确的是()A.0个B.1个C.2个D.3个【解答】解:①当a=0时,﹣a2=0,有算术平方根0,故①错误;②平方根等于它本身的数只有0,1的平方根是±1,故②错误;③实数和数轴上的点一一对应,故③错误;④负数也有立方根,故④错误.综上,正确的是0个.故选:A.7.(3分)在平面坐标系中,位于第四象限的点是()A.(﹣2020,2020)B.(﹣2020,﹣2020)C.(2020,2020)D.(2020,﹣2020)【解答】解:∵位于第四象限的点:横坐标是正数,纵坐标是负数,∴(2020,﹣2020)在第四象限.故选:D.8.(3分)在平面直角坐标系中,将点(﹣3,2)向左平移5个单位长度,再向上平移1个单位长度后的坐标是()A.(2,1)B.(﹣8,1)C.(2,3)D.(﹣8,3)【解答】解:将点(﹣3,2)向左平移5个单位长度,再向上平移1个单位长度后的坐标是(﹣8,3),故选:D.9.(3分)在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况【解答】解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.10.(3分)把不等式x+1≤2x﹣1的解集在数轴上表示,正确的是()A.B.C.D.【解答】解:由x+1≤2x﹣1,得:x≥2,故选:A.11.(3分)为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A .{x +y =180x 12+y 8=20 B .{x +y =2012x +8y =180 C .{x +y =20x 12+y 8=180 D .{x +y =18012x +8y=20 【解答】解:设A 工程小组整治河道x 米,B 工程小组整治河道y 米,依题意可得: {x +y =180x 12+y 8=20, 故选:A .12.(3分)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为( )A .100元B .105元C .110元D .120元【解答】解:设该商品每件的进价为x 元,则150×80%﹣10﹣x =x ×10%,解得 x =100.即该商品每件的进价为100元.故选:A .二.填空题(共8小题,满分40分,每小题5分)13.(5分)如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°,∵AB ∥EF ,∴∠1=∠3+∠CEF ,∴∠CEF =∠1﹣∠3,∴∠2+∠1﹣∠3=180°,即∠1﹣∠3+∠2=180°.故答案为:∠1﹣∠3+∠2=180°.14.(5分)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的”距离坐标”根据上述规定,“距离坐标”是(3,2)的点共有4个.【解答】解:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是3,2的点,即距离坐标是(3,2)的点,因而共有4个.故答案为:415.(5分)已知1﹣3m是数A的一个平方根,4m﹣2是数A的算术平方根,则数A=4 49或4.【解答】解:∵1﹣3m是数A的一个平方根,4m﹣2是数A的算术平方根,∴1﹣3m=4m﹣2或1﹣3m=﹣(4m﹣2),解得m=37或m=1.∴1﹣3m=−27或1﹣3m=﹣2,∴数A为449或4,故答案为:449或4.16.(5分)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【解答】解:题设为:两个角是等角,结论为:它们的补角相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.17.(5分)小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是 ①②⑤ .(填序号)【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.18.(5分)不等式组{2x −a <1x −2b >3的解集为﹣1<x <1,则(a +2)(b ﹣2)的值等于 ﹣12 . 【解答】解:解不等式组{2x −a <1x −2b >3得解集为:2b +3<x <a+12, ∵不等式组的解集为﹣1<x <1,∴2b +3=﹣1,a+12=1,解得a =1,b =﹣2.代入(a +2)(b ﹣2)=3×(﹣4)=﹣12.故答案为:﹣12.19.(5分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: {x +y =1015−1×10+5y =35, 整理得:{x +y =105y =30, 解得:{x =4y =6. 故答案为:4.20.(5分)若√6的值在两个整数a 与a +1之间,则a = 2 .【解答】解:∵2<√6<3,∴√6的值在两个整数2与3之间,∴可得a =2.故答案为:2.三.解答题(共6小题,满分74分)21.(10分)(1)解方程组:{2x +y =5x −y =1; (2)计算:|√3−3|+√643−√3.【解答】解:(1){2x +y =5①x −y =1②, ①+②得:3x =6,解得:x =2,把x =2代入②得:y =1,则方程组的解为{x =2y =1; (2)原式=3−√3+4−√3=7﹣2√3.22.(10分)如图,在平面直角坐标系中,O 为坐标原点,点A (4,1)B (1,1),C (4,5),D (6,﹣3),E (﹣2,5).(1)在坐标系中描出各点,并画出△AEC ,△BCD .(2)求出△BCD 的面积.【解答】解:(1)如图所示:(2)S△BCD=12×4×4+12×4×4=16.23.(15分)如图,AB∥DG,AD∥EF.(1)试说明:∠1+∠2=180°;(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.【解答】解:(1)∵AD∥EF,∴∠BAD+∠2=180°,∵AB∥DG,∴∠BAD=∠1,∴∠1+∠2=180°.(2)∵∠1+∠2=180°且∠2=138°,∴∠1=42°,∵DG是∠ADC的平分线,∴∠CDG=∠1=42°,∵AB∥DG,∴∠B=∠CDG=42°.24.(10分)某校组织全校2000名学生进行了时事知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=80;(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.【解答】解:(1)a=400﹣148﹣104﹣48﹣20=80,故答案为:80;(2)补全频数分布直方图如下:(3)2000×148400=740(人), 答:全校2000名学生中获奖的大约有740人.25.(14分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉m 盆,求当m 的值等于40时,两种花卉全部销售后获得的利润是多少?【解答】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,{20x +50y =72040x +30y =880, 解得,{x =16y =8, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W =6m +800−16m 8, 化简,得W =4m +100,即W 与x 之间的函数关系式是:W =4m +100,当m =40时,W =260元,答:当m 的值等于40时,两种花卉全部销售后获得的利润是260元.26.(15分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元,由题意,得{30x +20y =850040x +10y =8000. 解得{x =150y =200. 答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000.解得 a ≤20.答:该校至多购进速滑冰鞋20双.。

2020年湖北省孝感市初一下期末达标测试数学试题含解析

2020年湖北省孝感市初一下期末达标测试数学试题含解析

2020年湖北省孝感市初一下期末达标测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题只有一个答案正确)1.下列现象是数学中的平移的是( )A.小朋友荡秋千B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.瓶装饮料在传送带上移动【答案】D【解析】【分析】根据平移的定义,结合选项一一分析,排除错误答案.【详解】A. 小朋友荡秋千是旋转,故选项A错误;B. 碟片在光驱中运行是旋转,故选项B错误;C. “神舟”十号宇宙飞船绕地球运动不是沿直线运动,故选项C错误.D. 瓶装饮料在传送带上移动沿直线运动,符合平移定义,故选项D正确;故选D.【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.2.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【答案】C【解析】试题分析:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选C.考点:函数图象3.如图,数轴上点P 表示的数可能是( )A .2B .5C .10D .15 【答案】B【解析】由数轴可知点P 在2和3之间,因为459<<,所以253<<,故选B .4.如图,从位置P 到直线公路MN 有四条小道,其中路程最短的是( )A .PAB .PBC .PCD .PD【答案】B【解析】【分析】根据垂线的性质即可得到结论.【详解】解:根据垂线段最短得,能最快到达公路MN 的小道是PB ,故选:B .【点睛】本题考查了垂线段最短,熟记垂线的性质是解题的关键.5.一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A .1x ≤B .3x <C .13x ≤<D .1x <【答案】A【解析】【分析】根据不等式组的解集是小于于小的,可得答案.【详解】一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是1x ≤.故选:A【点睛】此题考查在数轴上表示不等式的解集,难度不大6.正多边形每一个内角都等于120°,则从此多边形一个顶点出发可引的对角线的条数是( ) A .5条B .4条C .3条D .2条【答案】C【解析】【分析】多边形的每一个内角都等于120°,多边形的内角与外角互为邻补角,则每个外角是60度,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n−3,即可求得对角线的条数.【详解】∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6−3=3条.故选:C .【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.同时考查了多边形的边数与对角线的条数的关系.7.在人体血液中,红细胞的直径约为47.710-⨯cm ,47.710-⨯用小数表示为( )A .0.000077B .0.00077C .-0.00077D .0.0077 【答案】B【解析】【分析】科学记数法的标准形式为a ×10n (1≤|a|<10,n 为整数),本题数据“47.710-⨯”中的a=7.7,指数n 等于-4,所以,需要把7.7的小数点向左移动4位,就得到原数了.【详解】 47.710-⨯=7.7×0.0001=0.00077,故选B.【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.8.在锐角三角形ABC中,∠A=50°,则∠B的范围是()A.0°<∠B<90°B.40°<∠B<130° C.40°≤∠B≤90°D.40°<∠B<90°【答案】D【解析】【分析】根据三角形的内角和即可得到结论.【详解】∵在锐角三角形ABC中,∠A=50°,则∠B的范围是40°<∠B<90°,故选:D.【点睛】本题主要考查了三角形的内角和,正确理解∠B的范围的确定方法是解决本题的关键.9.某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,中位数是().A.5个B.6个C.7个D.8个【答案】C【解析】【分析】根据中位数的定义,把给出的此组数据中的数按从大小的顺序排列,由于数据个数是50,是偶数,所以处于最中间的两个数的平均数就是此组数据的中位数;.【详解】解:表格中的数据已经按从小到大的顺序进行了排序,这50个数据中,第25、26个数的平均数就是这组数据的中位数。

2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷(附答案详解)

2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷(附答案详解)

2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 下列实数中是无理数的是( )A. 3.14B. √9C. −1D. √32. 下面统计调查中,适合采用全面调查的是( )A. 调查某城市初中生每周“诵读经典”时间B. 疫情期间对国外入境人员的核酸检测C. 调查孝感市市民进行垃圾分类的情况D. 了解某地中学生睡眠时间3. 下列命题中是真命题的是( )A. 相等的角是对顶角B. 平方根是本身的数只有0C. 两条直线被第三条直线所截,内错角相等D. 不相交的两条直线是平行线4. 已知a <b ,则( )A. a +1<b +2B. a −1>b −1C. ac <bcD. a c >bc 5. 我国古代算题:“马四匹,牛六头,共价四十八两(我国古代货币单位);马三匹,牛五头,共价三十八两.问马、牛各价几何?”设马价x 两,牛价y 两,可列方程组为( )A. {4x +6y =483x +5y =38B. {4x +3y =486x +5y =38 C. {6x +4y =485x +3y =38 D. {4x +6y =485x +3y =38 6. 如图,在下列给出的条件中,不能判定AB//EF 的是( )A. ∠B =∠3B. ∠1=∠4C. ∠1=∠BD. ∠B +∠2=180°7. 若不等式组{x +7>3x −3,x −1<m的解集为x <5,则m 的取值范围为( )A. m <4B. m ≤4C. m ≥4D. m >48. 如图所示,平面直角坐标系中,x 轴负半轴上有一点A(−1,0),点A 第1次向上平移1个单位至点A 1(−1,1),接着又向右平移1个单位至点A 2(0,1),然后再向上平移1个单位至点A 3(0,2),向右平移1个单位至点A 4(1,2),…,照此规律平移下去,点A平移至点A 2021时,点A 2021的坐标是( )A. (1008,1010)B. (1009,1010)C. (1009,1011)D. (1008,1011)二、填空题(本大题共8小题,共24.0分)9. 命题:“64的平方根为8”是______ 命题(填“真”或“假”).10. 若关于x ,y 的二元一次方程2x +my =1有一个解为{x =2y =−1,则m =______. 11. 若点P(a +5,2a +1)在第二、四象限角平分线上,则a = ______ .12. 如图,CD ⊥AB ,垂足是点D ,AC =7,BC =5,CD =4,点E 是线段AB 上的一个动点(包括端点),连接CE ,那么CE 长的范围是______.13. 一个容量为100的样本的最大值是120,最小值是48,取组距为10,则可分成______组.14. 如图,是一块从边长为50cm 的正方形中裁出的垫片,现测得FG =9cm ,则这块垫片的周长为______cm .15. 若√13的整数部分为a ,小数部分为b ,求a 2+b −√13的值为______.16. 若将一副三角板按如图放置,下列结论:①∠1=∠3;②若∠2=30°,则AC//DE ;③若∠2=30°,则BC//AD ;④若∠2=30°,则∠CAD =150°.其中正确的序号有______.三、解答题(本大题共8小题,共72.0分)17. (1)计算:√4+|−2|+√−273+(−1)2021;(2)解方程组:{3x +4y =115x −y =3.18. 如图,∠ABC =134°+α,∠A =46°−α,BD ⊥CD 于点D ,EF ⊥CD 于点F .(1)请说明AD//BC 的理由;(2)若∠ADB =45°,求∠FEC 的度数.19. 如图,将△ABC 向右平移3个单位,然后再向上平移1个单位,可以得到△A 1B 1C 1.(1)画出平移后的三角形△A 1B 1C 1;(2)写出△A 1B 1C 1三个顶点坐标:A 1(______,______),B 1(______,______),C 1(______,______);(3)AA′与CC′位置关系______,数量关系是______.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查的学生的人数为______人;(2)补全条形统计图;(3)该校有学生2500人,请估计该校学生对视力保护重视程度为“非常重视”的人数.21. 对于三个实数a 、b 、c ,用max{a,b ,c}表示这三个数中最大的数.例如:max{−1,2,6}=6;max{0,4,4}=4.(1)max{12,√5−12,12}=______;(2)若max{−1−a,2,2a −2}=2,求a 的取值范围.22. 在抗击新冠肺炎疫情期间,市场上防护口罩出现热销,某药店购进了一批N 95口罩和一次性医用外科口罩,供居民使用,第一次购买,N 95口罩每个12元,一次性医用外科口罩每个2元,共花费了3200元;第二次又购买了与第一次相同数量的N 95口罩和一次性医用外科口罩,由于N 95口罩和一次性医用外科口罩每个价格分别下降了16和12,只花费了2500元.(1)求每次购买的N 95口罩和一次性医用外科口罩分别是多少个?(2)若按照第二次购买的价格再一次购买,根据需要,购买的N 95口罩数量是一次性医用外科口罩数量的2倍,现有购买资金3000元,则最多能购买一次性医用外科口罩多少个?23.综合与实践:折纸中的数学知识背景我们在七年级上册第四章《几何图形初步》中探究了简单图形折叠问题,并进行了简单的计算与推理.七年级下册第五章我们学习了平行线的性质与判定,今天我们继续探究:折纸中的数学--长方形纸条的折叠与平行线.知识初探(1)如图1,长方形纸条ABGH中,AB//GH,AH//BG,∠A=∠B=∠G=∠H=90°,将长方形纸条沿直线CD折上,点A落在A′处,点B落在B′处,B′C交AH于点E,若∠ECG=50°,则∠CDE=______;类比再探(2)如图2,在图1的基础上将∠HEC对折,点H落在直线EC上的H′处,点G落在G′处得到折痕EF,则折痕EF与CD有怎样的位置关系?说明理由;(3)如图3,在图2的基础上,过点G作BG的平行线MN,请你猜想∠ECF和∠H′G′M的数量关系,并说明理由.24.如图所示,在平面直角坐标系xOy中,点A,B,C的坐标为(0,a),(b,0),(b,c),其中a,b,c满足(3a−2b)2+√a−b+1=0,|c−4|≤0.(1)求a,b,c的值;S△ABC,求M点坐标;(2)若M在x轴上,且S△COM=12(3)如果在第二象限内有一点P(m−1,1),m在什么取值范围时,△AOP的面积不大于△ABC的面积?求出在符合条件下,△AOP面积最大值时点P的坐标.答案和解析1.【答案】D【解析】解:A.3.14是有限小数,属于有理数,故此选项不符合题意;B.√9=3,是整数,属于有理数,故此选项不符合题意;C.−1是整数,属于有理数,故此选项不符合题意;D.√3是无限不循环小数,是无理数,故此选项符合题意;故选:D.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:A.调查某城市初中生每周“诵读经典”时间,适合抽样调查,故本选项不合题意;B.疫情期间对国外入境人员的核酸检测,适合全面调查,故本选项符合题意;C.调查孝感市市民进行垃圾分类的情况,适合抽样调查,故本选项不合题意;D.了解某地中学生睡眠时间,适合抽样调查,故本选项不合题意;故选:B.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】B【解析】解:A、相等的角不一定是对顶角,故错误,是假命题,不符合题意;B、平方根是本身的只有0,正确,是真命题,符合题意;C、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;D、平面内不相交的两条直线是平行线,故原命题错误,是假命题,不符合题意,故选:B.利用对顶角的定义、平方根的求法、平行线的性质及定义分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解对顶角的定义、平方根的求法、平行线的性质及定义,难度不大.4.【答案】A【解析】解:A.∵a<b,∴a+1<b+2,故本选项符合题意;B.∵a<b,∴a−1<b−1,故本选项不符合题意;C.∵a<b,∴当c<0时,ac>bc,故本选项不符合题意;D.∵a<b,∴当c>0时,ac <bc,故本选项不符合题意;故选:A.根据不等式的性质求解即可.不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.本题考查了不等式的性质,不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.5.【答案】A【解析】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:{4x +6y =483x +5y =38. 故选:A .直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”列出方程组即可.此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.6.【答案】C【解析】解:A 、∵∠B =∠3,∴AB//EF(同位角相等,两直线平行),不符合题意; B 、∵∠1=∠4,∴AB//EF(内错角相等,两直线平行),不符合题意;C 、∵∠1=∠B ,∴BC//DF(同位角相等,两直线平行),不能证出AB//EF ,符合题意;D 、∵∠B +∠2=180,∴AB//EF(同旁内角互补,两直线平行),不符合题意; 故选:C .根据平行线的判定逐项进行判断即可.本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.7.【答案】C【解析】解:{x +7>3x −3 ①x −1<m ②∵解不等式①得:x <5,解不等式②得:x <m +1,又∵不等式组{x +7>3x −3,x −1<m的解集为x <5, ∴m +1≥5,解得:m ≥4,故选:C .先求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可. 本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m 的不等式是解此题的关键.8.【答案】C【解析】解:由题意,A 1(−1,1),A 3(0,2),A 5(1,3),A 7(2,4),⋅⋅⋅,A 2n−1(−2+n,n), ∴A 2021(1009,1011),故选:C .探究规律,利用规律解决问题即可.本题考查坐标与图形变化−平移,解题的关键是学会探究规律的方法,属于中考常考题型.9.【答案】假【解析】解:∵64的平方根为±8,∴命题:“64的平方根为8”是假命题,故答案为:假.根据平方根的概念得到64的平方根为±8,根据假命题的概念判断即可.本题考查的是命题的真假判断,掌握平方根的概念是解题的关键.10.【答案】3【解析】解:将{x =2y =−1代入2x +my =1, 得4−m =1,解得m =3.故答案为:3.将{x =2y =−1代入2x +my =1,即可转化为关于m 的一元一次方程,解答即可. 此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.11.【答案】−2【解析】解:由点P(a +5,2a +1)点在第二、四象限的角平分线上,得a +5+2a +1=0,解得a =−2,故答案为:−2.根据二四象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.本题考查了点的坐标,二四象限角平分线上的点的横坐标与纵坐标互为相反数,一三象限角平分线上的点的横坐标与纵坐标相等.12.【答案】4≤CE≤7【解析】解:∵CD⊥AB,垂足是点D,AC=7,BC=5,CD=4,∴CE长的范围是4≤CE≤7,故答案为:4≤CE≤7.根据垂线段最短解答即可.此题考查垂线段最短,关键是根据垂线段最短解答.13.【答案】8【解析】解:根据题意,极差为120−48=72,=7.2,而7210所以组数为7+1=8.故答案为8.先计算极差,再用极差除以组距10后取整数,然后把这个整数加1得到组数.本题考查了频数(率)分布表:在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.14.【答案】218【解析】解:延长EF交AH于点M,观察图形,得:AM+ED=BC,EF+GH+AB=CD,FG=MH,∴垫片的周长是2BC+2CD+2FG=2×50+2×50+2×9=218(cm).故答案为:218.延长EF交AH于点M,观察图形,可知:AM+ED=BC,EF+GH+AB=CD,FG=MH,再结合正方形的边长及周长的定义即可求出结论.本题考查了生活中的平移现象,通过平移将垫片的周长与正方形的周长联系起来是解题的关键.15.【答案】6【解析】【分析】此题主要考查了估计无理数,得出a,b的值是解题关键.首先得出√13的取值范围,进而得出a,b的值,即可代入求出即可.【解答】解:∵√9<√13<√16,∴3<√13<4,∴√13的整数部分为:a=3,小数部分为:b=√13−3,∴a2+b−√13=32+√13−3−√13=6.故答案为:6.16.【答案】①②④【解析】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB−∠2,∠3=∠EAD−∠2,∴∠1=∠3.∴①正确.②∵∠2=30°,∴∠1=90°−30°=60°,∵∠E =60°,∴∠1=∠E ,∴AC//DE .∴②正确.③∵∠2=30°,∴∠3=90°−30°=60°,∵∠B =45°,∴BC 不平行于AD .∴③错误.④∵∠2=30°.∴∠1=60°.∴∠CAD =∠EAD +∠1=90°+60°=150°.∴④正确.综上所述,正确的有①②④.故答案为:①②④.根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.17.【答案】(1)解:原式=2+2+(−3)−1=0;(2)解:{3x +4y =11①5x −y =3②, ②×4得:20x −4y =12③,①+③得23x =23,∴x =1,把x =1代入②中得,y =2,∴方程组的解:{x =1y =2.【解析】(1)先计算开方和幂的运算,再合并同类项即可;(2)利用加减消元法解方程即可得解.此题考查的是二元一次方程组的解法及实数的运算,掌握代入消元法和加减消元法解方程组是解决此题关键.18.【答案】(1)理由:∵∠ABC=134°+α,∠A=46°−α,∴∠A+∠ABC=46°−α+134°+α=180°,∴AD//BC.(2)∵BD⊥DC,EF⊥OC,∴∠BDC=∠EFC=90°,∴BD//EF,∴∠FEC=∠DBC,又∵AD//BC,∠ADB=45°,∴∠ADB=∠DBC=45°,∴∠FEC=∠DBC=45°.【解析】(1)利用同旁内角互补,两直线平行这一性质,结合∠ABC与∠A的度数,即可判断AD//BC;(2)由BD⊥DC,EF⊥OC可得BD//EF,从而得到∠FEC=∠DBC,再由(1)中的AD//BC,可得∠ADB=∠DBC,从而可求解.本题主要考查平行线的判定与性质,解答的关键是对平行线的判定与性质的掌握与运用.19.【答案】0 3 2 −1 4 0 平行相等【解析】解:(1)如图,△A1B1C1为所作;(2)A1(0,3),B1(2,−1),C1(4,0);故答案为0,3;2,−1;4,0;(3)AA′与CC′位置关系为平行,数量关系是相等.故答案为平行,相等.(1)(2)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(3)根据平移的性质进行判断.本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.【答案】80【解析】解:(1)根据题意可知:此次调查的学生的人数为16÷20%=80(人);故答案为:80;(2)因为80−4−36−16=24(人),所以“重视”的人数为24人,补全的条形统计图如下:=125(人).(3)2500×480答:该校视力保护“非常重视”约为125人.(1)根据扇形统计图和条形统计图的“不重视”数据即可求出此次调查的学生的人数;(2)结合(1)“重视”的人数为24人,进而可以补全条形统计图;(3)根据样本估计总体的方法即可求出该校视力保护“非常重视”的人数.本题考查了条形统计图,用样本估计总体,扇形统计图,解决本题的关键是掌握用样本估计总体的方法.21.【答案】√5−12【解析】解:(1)max{12,√5−12,12}=√5−12, 故答案为√5−12;(2)∵max{−1−a,2,2a −2}=2,∴{−1−a ≤22a −2≤2, 解得−3≤a ≤2,故答案为:−3≤a ≤2.(1)根据新定义可得答案;(2)根据题意,可以得到关于a 的不等式,然后即可求得a 的取值范围.本题考查的是解一元一次不等式组,正确求出每一个不等式解集、理解新定义列出不等式组是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:(1)设每次购买的N 95口罩x 个,一次性医用外科口罩y 个,依题意{12x +2y =320056×12x +12×2y =2500, 得:{x =225y =250. 答:每次购买的N 95口罩225个,一次性医用外科口罩250个;(2)设一次性口罩买a 个,则N 95口罩买2a 个,∵第二次购买的价格N 95口罩是每个10元,一次性医用外科口罩每个1元, 依题意:2a ⋅10+a ≤3000,解得:a ≤14267,∴最多购买一次性口罩142个.【解析】(1)设每次购买的N95口罩x个,一次性医用外科口罩y个,结合两次购买所花费用,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设一次性口罩买a个,则N95口罩买2a个,根据总价=单价×数量,结合现有购买资金3000元,即可得出关于a的一元一次不等式,解之取其中的最大整数值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【答案】65°【解析】(1)∵长方形纸条沿直线CD折上,点A落在A′处,点B落在B′处,B′C交AH 于点E,∴∠BCD=∠B′CD,∠BCD+∠B′CD+∠ECG=180°,∵∠ECG=50°,(180°−50°)=65°,∴∠BCD=12∵长方形纸条ABGH中,AH//BG,∴∠CDE=∠BCD=65°;故答案为:65°;(2)平行(即EF//CD).理由如下:∵对折,∠BCE,∴∠BCD=∠DCE=12∠CEH,同理:∠CEF=∠HEF=12∵AH//BG,∴∠BCE=∠CEH,∴∠DCE=∠CEF,∴DC//EF;(3)∠ECF+∠H′G′M=90°(互余).理由如下:过H′作H′Q//MN交FG′于Q,∴H′Q//BG ,∴∠BCH′=∠CH′Q ,∵H′Q//MN ,∴∠H′G′M =∠QH′G′,∵∠BCH′+∠H′G′M =∠CH′Q +∠QH′G′=∠CH′G′=90°,∵∠ECF =∠BCH′,∴∠ECF +∠H′G′M =90°.(1)根据题意,利用平行线性质,可得∠BCD =∠B′CD ,∠BCD +∠B′CD +∠ECG =180°,即可求得答案;(2)由对折的性质可得:∠BCD =∠DCE =12∠BCE ,∠CEF =∠HEF =12∠CEH ,再运用平行线性质和判定即可得出答案;(3)过H′作H′Q//MN 交FG′于Q ,由平行线的性质和判定即可得出答案.本题是四边形综合题,考查了矩形的性质,平行线的性质和判定,折叠的性质,灵活运用这些性质进行推理是本题的关键.24.【答案】解:(1)∵(3a −2b)2+√a −b +1=0,(3a −2b)2≥0,√a −b +1≥0, ∴{3a −2b =0a −b +1=0, 解得,:{a =2b =3, ∵|c −4|≤0,|c −4|≥0,∴c −4=0,解得:c =4,∴a =2,b =3,c =4;(2)设点M 的坐标为(t,0),由(1)可知:BC =4,BC ⊥x 轴,∴△AOB 的面积=12×3×4=6,由题意得:12×|t|×4=12×6,解得:t =±32,∴M 点坐标为:(−32,0)或(32,0);(3)∵点P(m −1,1)在第二象限,解得:m<1,∵点P的坐标为(m−1,1),×(1−m)×2=1−m,∴△AOP的面积=12由题意得:1−m≤6,解得:m≥−5,∴m的范围为:−5≤m<1,由题意得:当m=−5时,△AOP的面积最大,此时点P的坐标是(−6,1).【解析】(1)根据偶次方、算术平方根、绝对值的非负性求出a,b,c的值;(2)根据三角形的面积公式列出方程,解方程求出t,进而求出M点坐标;(3)根据点P的坐标和三角形的面积公式,用m表示出△AOP的面积,根据题意列出不等式,解不等式得到答案.本题考查的是三角形的面积计算、非负数的性质,点的坐标特征,根据非负数的性质分别求出a、b、c是解题的关键.。

2020-2021学年下学期七年级期末考试数学试卷含答案解析

2020-2021学年下学期七年级期末考试数学试卷含答案解析

第 1 页 共 19 页2020-2021学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分30分)1.(3分)下列采用的调查方式中,不合适的是( )A .了解澧水河的水质,采用抽样调查B .了解一批灯泡的使用寿命,采用全面调查C .了解临沂市中学生睡眠时间,采用抽样调查D .了解某班同学的数学成绩,采用全面调查2.(3分)已知x >y ,则下列不等式不成立的是( )A .x ﹣6>y ﹣6B .3x >3yC .﹣2x <﹣2yD .﹣3x +6>﹣3y +63.(3分)如图,P 是∠ABC 内一点,点Q 在BC 上,过点P 画直线a ∥BC ,过点Q 画直线b ∥AB ,若∠ABC =115°,则直线a 与b 相交所成的锐角的度数为( )A .25°B .45°C .65°D .85°4.(3分)已知方程组{x +2y =k 2x +y =2的解满足x +y =2,则k 的算术平方根为( ) A .4 B .﹣2 C .﹣4 D .25.(3分)若满足方程组{3x +y =m +32x −y =2m −1的x 与y 互为相反数,则m 的值为( ) A .1 B .﹣1 C .11 D .﹣116.(3分)在新型冠状病毒疫情期间,为阻断疫情向校园蔓延,确保师生生命安全和身体健康,全区坚持做到“停课不停学、学习不延期”,帮助学生制定科学的生活指南和学习指南,通过钉钉、微信、电子教材、在线课堂、网上批阅和答疑等现代信息技术手段帮助、指导学生在家有效复习和预习,确保学习成效.为最大限度地减轻延期开学对学生学业的影响,研究高效的在线课堂,某校数学教研组从全校1500名学生中随机抽取了部分学生对试行的某一课堂进行了“在线课堂学习效果”调查研究,把学习效果分成“优、良、中、差”四个等级,并进行统计,绘制了如图所示的两幅统计图,下列四个选项中错误的是( )。

2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【解答】解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.2.(3分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;②两直线平行,内错角相等,正确,是真命题,不符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,故选:A.3.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.4.(3分)下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽的数【解答】解:A 、相等的角不一定是对顶角,故此命题是假命题; B 、数轴上的点与实数一一对应,故此命题是真命题; C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π2是无理数,但不是开方开不尽的数,故此命题是假命题; 故选:B .5.(3分)若{x =1y =3是二元一次方程mx ﹣y =3的解,则m 为( )A .7B .6C .43D .0【解答】解:把{x =1y =3代入方程得:m ﹣3=3,解得:m =6, 故选:B .6.(3分)若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .{x ≥−2x <3B .{x ≤−2x ≥3C .{x ≥−2x ≤3D .{x >−2x ≤3【解答】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x <3, 则这个不等式组可以是{x ≥−2x <3.故选:A .7.(3分)如图,下列推理及所证明的理由都正确的是( )A .若AB ∥DG ,则∠BAC =∠DCA ,理由是内错角相等,两直线平行 B .若AB ∥DG ,则∠3=∠4,理由是两直线平行,内错角相等 C .若AE ∥CF ,则∠E =∠F ,理由是内错角相等,两直线平行D .若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等【解答】解:A 、若AB ∥DG ,则∠BAC =∠DCA ,理由是两直线平行,内错角相等;故选项A 错误;B 、若AB ∥DG ,则∠BAC =∠DCA ,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B 错误;C 、若AE ∥CF ,则∠E =∠F ,理由是两直线平行,内错角相等;故选项C 错误;D 、若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等;正确; 故选:D .8.(3分)如图,带箭头的两条直线互相平行,其中一条直线经过正八边形的一个顶点,若∠1=20°,则∠2的度数为( )A .55°B .60°C .70°D .110°【解答】解:如下图所示,∵正八边形的一个内角为180°×(8−2)8=135°,∴∠4=∠3+∠6=135°,∵∠1+∠4+∠5=180°,∠1=20°,∴∠5=180°﹣∠1﹣∠4=180°﹣20°﹣135°=25°, ∵带箭头的两条直线互相平行,∴∠6=∠5=25°(两直线平行,内错角相等), ∴∠3=135°﹣∠6=135°﹣25°=110°, ∴∠2=180°﹣∠3=180°﹣110°=70°, 故选:C .二.填空题(共8小题,满分32分,每小题4分)9.(4分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.10.(4分)已知a=240,b=332,c=424,试比较a,b,c的大小,用“>”将它们连接起来:b>c>a.【解答】解:a=240=(25)8=328,b=332=(34)8=818,c=424=(43)8=648,∵81>64>32,∴b>c>a,故答案为b>c>a.11.(4分)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则S△ABC1=S△AC1C2=S△AC2C.请回答,S△ABC1=S△AC1C2=S△AC2C成立的理由是:①平行线分线段成比例定理;②等底共高.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知S△ABC1=S△AC1C2=S△AC2C,故答案为:①平行线分线段成比例定理;②等底共高.12.(4分)如图,将边长为5个单位的等边△ABC沿边BC向右平移3个单位得到△A′B′C′,则四边形AA′C′C的周长为16.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC=5,∵等边△ABC沿边BC向右平移3个单位得到△A′B′C’,∴AC=A′C′=5,AA′=CC′=3,∴四边形AA′C′C的周长=3+3+5+5=16.故答案为16.13.(4分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠MBE+∠BEM+∠DEF+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.(4分)a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是2c.【解答】解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.15.(4分)已知a﹣b=2,则a2﹣2ab+b2=4.【解答】解:原式=(a﹣b)2,当a﹣b=2时,原式=4.16.(4分)不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.三.解答题(共9小题,满分84分)17.(10分)计算:(1)(﹣2a3)2+a8÷a2﹣2a2・a4;(2)(−12)﹣3+(﹣2)3+(−13)0+(14)﹣2.【解答】解:(1)原式=4a6+a6﹣2a6=3a6;(2)原式=1(−12)3−8+1+1(14)2=﹣8﹣8+1+16=1.18.(10分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.【解答】解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 19.(10分)(1){3x −2y =112x +3y =16(2){5x −1>3(x +1)12x −1≤7−32x【解答】解:(1){3x −2y =11①2x +3y =16②,①×3+②×2,得:13x =65, 解得x =5,将x =5代入①,得:15﹣2y =11, 解得y =2, ∴{x =5y =2;(2)解不等式5x ﹣1>3(x +1),得:x >2, 解不等式12x ﹣1≤7−32x ,得:x ≤4,则不等式组的解集为2<x ≤4.20.(8分)先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =12. 【解答】解:原式=a 2+6a +9﹣(a 2﹣1)﹣4a ﹣8 =2a +2, ∵a =12,∴原式=1+2=3.21.(6分)已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B (﹣2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点).①请画出三角形A1B1C1;②并判断线段AC与A1C1的位置与数量关系.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.22.(8分)如图,①AB∥CD,②BE平分∠ABD,③∠1+∠2=90°,④DE平分∠BDC.(1)请以其中三个为条件,第四个为结论,写出一个命题;(2)判断这个命题是否为真命题,并说明理由.【解答】解:(1)如果BE 平分∠ABD ,∠1+∠2=90°,DE 平分∠BDC ,那么AB ∥CD ; (2)这个命题是真命题, 理由如下:∵BE 平分∠ABD , ∴∠1=12∠ABD , ∵DE 平分∠BDC , ∴∠2=12∠BDC , ∵∠1+∠2=90°, ∴∠ABD +∠BDC =180°, ∴AB ∥CD .23.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元, 由题意,得{30x +20y =850040x +10y =8000.解得{x =150y =200.答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000. 解得 a ≤20.答:该校至多购进速滑冰鞋20双.24.(10分)已知关于x 的方程a ﹣3(x ﹣1)=7﹣x 的解为负分数,且关于x 的不等式组{−2(a −x)≤x +4,①3x−42<x −3,②的解集为x <﹣2,求符合条件的所有整数a 的积.【解答】解:{−2(a −x)≤x +4①3x−42<x −3②,由①得:x ≤2a +4, 由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,把a =﹣3代入方程得:﹣3﹣3(x ﹣1)=7﹣x ,即x =−72,符合题意; 把a =﹣2代入方程得:﹣2﹣3(x ﹣1)=7﹣x ,即x =﹣3,不合题意; 把a =﹣1代入方程得:﹣1﹣3(x ﹣1)=7﹣x ,即x =−52,符合题意; 把a =0代入方程得:﹣3(x ﹣1)=7﹣x ,即x =﹣2,不合题意; 把a =1代入方程得:1﹣3(x ﹣1)=7﹣x ,即x =−32,符合题意; 把a =2代入方程得:2﹣3(x ﹣1)=7﹣x ,即x =﹣1,不合题意; 把a =3代入方程得:3﹣3(x ﹣1)=7﹣x ,即x =−12,符合题意. 故符合条件的整数a 取值为﹣3,﹣1,1,3,积为9.25.(12分)如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,求证:3∠G =∠DFB .【解答】证明:∵AE 平分∠BAC ,BF 平分∠ABD , ∴∠CAE =∠BAE ,∠ABF =∠DBF ,设∠CAE =∠BAE =x , ∵∠ABC =3∠C ,∴可以假设∠C =y ,∠ABC =3y ,∴∠ABF =∠DBF =∠CBE =12(180°﹣3y )=90°−32y ,第 11 页 共 11 页 ∵AD ⊥CD ,∴∠D =90°,∴∠DFB =90°﹣∠DBF =32y ,设∠ABF =∠DBF =∠CBE =z ,则{z =x +∠G z +∠G =x +y, ∴∠G =12y ,∴∠DFB =3∠G .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷一、精心选择,一锤定音!(本题共10个小题,每小题3分,共30分)1.下列实数中,是无理数的是()A.B.3.14 C.6.D.2.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图3.点P(m+3,m+1)在x轴上,则点P的坐标为()A.(2,0) B.(0,﹣2) C.(4,0) D.(0,﹣4)4.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.2m+1<2n+1 D.﹣3m<﹣3n5.下列结论正确的是()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一直线的两条直线互相平行D.平行于同一直线的两条直线互相平行6.把不等式组的解集表示在数轴上,下列选项正确的是() A.B.C.D.7.下列方程中是二元一次方程的是()A. +y=4 B.xy=3 C.y=x2+1 D.2y+z=48.的算术平方根是()A.4 B.﹣4 C.2 D.±29.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为() A.m≤9 B.m<12 C.m≥9 D.9≤m<1210.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)11.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.若x、y为实数,且|x+3|+=0,则()2021的值为.13.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.16.请你观察、思考下列计算过程:因为112=121,所以=11;因为1112=12321,所以;11112=1234321,所以…,由此猜想=.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.计算(1)已知(x﹣1)2=4,求x的值;(2)|1﹣|+﹣.18.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.19.(1)解不等式≥,并把它的解集表示在数轴上;(2)解不等式组,并指出它的所有整数解.2021图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示.△ABC A(a,0)B(4,0)C(5,5)△A′B′C′A′(4,2)B′(8,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=,b=,c=;(2)在如图所示直角坐标系中画出△ABC和△A′B′C′;(3)连CC′、BB′,直接写出CC′与BB′的数量关系和位置关系:.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计表.组别成绩分组(单位:分)频数频率A50≤x<60400.08B60≤x<70700.14C70≤x<8090cD80≤x<90a0.40E90≤x≤1001000.20合计b1根据以上信息解答下列问题:(1)统计表中a=,b,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是(度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?23.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?24.如图,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,=12,点M从O出发,沿过点A向x轴作垂线,垂足为点B,连接OA,S△AOBy轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON时,请求出t的值.2020-2021学年湖北省孝感市孝南区七年级(下)期末数学试卷参考答案与试题解析一、精心选择,一锤定音!(本题共10个小题,每小题3分,共30分)1.下列实数中,是无理数的是()A.B.3.14 C.6.D.【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,3.14,6.是有理数,是无理数,故选:D.2.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图【考点】VE:统计图的选择;VD:折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:∵折线统计图表示的是事物的变化情况,∴要反映自贡市一周内每天的最高气温的变化情况,宜采用折线统计图.故选(B)3.点P(m+3,m+1)在x轴上,则点P的坐标为()A.(2,0) B.(0,﹣2) C.(4,0) D.(0,﹣4)【考点】D1:点的坐标.【分析】根据x轴上点的纵坐标为0列出方程求解得到m的值,然后解答即可.【解答】解:∵点P(m+3,m+1)在x轴上,∴m+1=0,∴m=﹣1,∴点P(m+3,m+1)的坐标为(2,0).故选:A.4.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.2m+1<2n+1 D.﹣3m<﹣3n【考点】C2:不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减4,不等号的方向不变,故A不符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边都乘以2,不等号的方向不变,两边都加1,不等号的方向不变,故C 符合题意;D、两边都乘以﹣3,不等号的方向改变,故D不符合题意;故选:C.5.下列结论正确的是()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一直线的两条直线互相平行D.平行于同一直线的两条直线互相平行【考点】J8:平行公理及推论;J7:平行线.【分析】根据平行公理及推论,可得答案.【解答】解:A、在同一平面内,不相交的两条直线叫做平行线,故A不符合题意;B、两直线平行,同位角相等,故B不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,故C不符合题意;D、平行于同一直线的两条直线互相平行,故D符合题意;故选:D.6.把不等式组的解集表示在数轴上,下列选项正确的是() A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【解答】解:解不等式2x+1>﹣1,得:x>﹣1,解不等式x+2≤3,得:x≤1,∴不等式组的解集为:﹣1<x≤1,故选:B.7.下列方程中是二元一次方程的是()A. +y=4 B.xy=3 C.y=x2+1 D.2y+z=4【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,即只含有2个未知数,且含有未知数的项的最高次数是1的整式方程作答.【解答】解:A. +y=4不是整式方程,故不合题意;B.xy=3是二元二次方程,故不合题意;C.y=x2+1是二元二次方程,故不合题意;D.2y+z=4是二元一次方程,符合题意;故选:D.8.的算术平方根是()A.4 B.﹣4 C.2 D.±2【考点】22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故选C.9.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为() A.m≤9 B.m<12 C.m≥9 D.9≤m<12【考点】C7:一元一次不等式的整数解.【分析】解不等式得出x≤,由不等式的正整数解为1、2、3知3≤<4,解之可得答案.【解答】解:解不等式3x﹣m≤0,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1【考点】JA:平行线的性质;J3:垂线.【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=2021则∠BOF=∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=2021则∠POE=∠BOF;根据∠POB=70°﹣∠POE=50°,∠DOF=2021可知④不正确.【解答】解:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠BOE=×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣70°=2021∴∠BOF=∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=2021∴∠POE=∠BOF,所以③正确;∴∠POB=70°﹣∠POE=50°,而∠DOF=2021所以④错误.综上所述,正确的结论为①②③.故选:B.二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)11.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;故答案为:垂线段最短.12.若x、y为实数,且|x+3|+=0,则()2021的值为﹣1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y﹣3=0,解得x=﹣3,y=3.则原式=(﹣1)2021=﹣1.故答案是:﹣1.13.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为,.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:,14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为0.4.【考点】V8:频数(率)分布直方图.【分析】根据频率的计算公式:频率=即可求解.【解答】解:学生仰卧起坐次数在25~30之间的频率是:=0.4.故答案是:0.4.15.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为540m2.【考点】Q1:生活中的平移现象.【分析】把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是矩形,根据矩形的面积公式即可求出结果.【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=2021=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.16.请你观察、思考下列计算过程:因为112=121,所以=11;因为1112=12321,所以;11112=1234321,所以…,由此猜想=111 111 111.【考点】22:算术平方根.【分析】被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.【解答】解:∵,…,∴=111 111 111.故答案为:111 111 111.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.计算(1)已知(x﹣1)2=4,求x的值;(2)|1﹣|+﹣.【考点】2C:实数的运算;21:平方根.【分析】(1)根据平方根的含义和求法,求出x的值是多少即可.(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x=3或﹣1.(2)|1﹣|+﹣=﹣1+2﹣(﹣2)=+318.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.【考点】97:二元一次方程组的解.【分析】(1)方程组利用加减消元法求出解即可;(2)把x与y的值代入方程计算得到2a﹣3b的值,原式变形后代入计算即可求出值.【解答】解:(1),②﹣①得:y=3,把y=3代入①得:x=﹣2,则方程组的解为;(2)把代入方程得:﹣2a+3b=2,即2a﹣3b=﹣2,则原式=﹣2(2a﹣3b)=4.19.(1)解不等式≥,并把它的解集表示在数轴上;(2)解不等式组,并指出它的所有整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母、去括号、移项、合并同类项、系数化成1,最后在数轴上把不等式的解集在数轴上表示出来即可.(2)分别求出不等式组中两不等式的解集,找出解集的公共部分,即可求得它的所有整数解.【解答】解:(1)去分母得:3(x﹣2)≥2(7﹣x),去括号得:3x﹣6≥14﹣2x移项、合并同类项得:5x≥2021系数化成1得:x>4,在数轴上表示不等式的解集为:.(2),由①得:x<2;由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<3,它的所有整数解:﹣1,0,1,2.2021图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.【考点】JB:平行线的判定与性质.【分析】(1)根据平行线的判定得出AB∥EF,根据平行线的性质得出∠ADE=∠3,求出∠ADE=∠B,根据平行线的判定得出即可;(2)根据平行线的性质得出∠C+∠DEC=180°,即可求出答案.【解答】解:(1)DE∥BC,理由是:∵∠1+∠2=180°,∴AB∥EF,∴∠ADE=∠3,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC;(2)∵DE∥BC,∴∠C+∠DEC=180°,∵∠C=65°,∴∠DEC=115°.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示.△ABC A(a,0)B(4,0)C(5,5)△A′B′C′A′(4,2)B′(8,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=0,b=2,c=9;(2)在如图所示直角坐标系中画出△ABC和△A′B′C′;(3)连CC′、BB′,直接写出CC′与BB′的数量关系和位置关系:平行且相等.【考点】Q4:作图﹣平移变换.【分析】(1)根据A、B、C三点横纵坐标的变化即可得出结论;(2)在坐标系内描出各点,再顺次连接即可;(3)根据图形平移的性质即可得出结论.【解答】解:(1)∵A(a,0),A′(4,2);B(4,0),B′(8,b),∴△A′B′C′由△ABC先向上平移2个单位,再向右平移4个单位得到,∴a=0,b=2,c=9.故答案为:0,2,9;(2)如图,△ABC与△A′B′C′即为所求;(3)∵△A′B′C′由△ABC平移而成,∴CC′与BB′的数量关系和位置关系是平行且相等.故答案为:平行且相等.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计表.组别成绩分组(单位:分)频数频率A50≤x<60400.08B60≤x<70700.14C70≤x<8090cD80≤x<90a0.40E90≤x≤1001000.20合计b1根据以上信息解答下列问题:(1)统计表中a=2021,b500,c=0.18;(2)扇形统计图中,m的值为14,“E”所对应的圆心角的度数是72(度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)由A组频数及其频率可得样本容量b,根据“频率=频数÷总数”可分别求得a、c的值;(2)根据B组的频率可得m的值,用360度乘以E组的百分比可得;(3)用样本中E组的百分比乘以总人数即可得出答案.【解答】解:(1)由频数分布表可知,b=40÷0.08=500,∴a=500×0.4=2021c=90÷500=0.18,故答案为:2021500,0.18;(2)∵B组的频率为0.14,∴m=14,“E”所对应的圆心角的度数是360°×202172°,故答案为:14,72;(3)∵4000×0.202100,∴估计成绩在90分及以上的学生大约有800人.23.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设一个足球、一个篮球分别为x、y元,根据:①1个足球费用+2个篮球费用=210元,②2个足球费用+6个篮球费用=580元,据此列方程组求解即可;(2)设可买训练用足球m个,则比赛用足球(96﹣m)个,根据购买训练用足球和比赛用足球的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设一个训练用足球x元、一个比赛用足球为y元,根据题意得,解得:,答:一个训练用足球60元、一个比赛用足球为160元;(2)设可买训练用足球m个,则比赛用足球(96﹣m)个,根据题意得:60m+160(96﹣m)≤6000,解得:m≥93.6,∵m为整数,∴m最大取94.则96﹣m=2.答:这所中学最多可以购买2个比赛用足球.24.如图,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,=12,点M从O出发,沿过点A向x轴作垂线,垂足为点B,连接OA,S△AOBy轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON 的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON 时,请求出t 的值.【考点】KY:三角形综合题.【分析】(1)根据△AOB 的面积列出方程即可解决问题;(2)当0<t <2时①∠ANM=∠OMN +∠BAN .如图2中,过N 点作NH ∥AB ,利用平行的性质证明即可.②根据S 四边形AMON =S 四绞刑ABOM ﹣S △ABN ,计算即可; (3)分两种情形列出方程即可解决问题; 【解答】解:(1)如图1中,∵S △AOB =12,A(3a ,2a), ∴×3a ×2a=12, ∴a 2=4, 又∵a >0, ∴a=2.(2)当0<t <2时①∠ANM=∠OMN +∠BAN ,原因如下: 如图2中,过N 点作NH ∥AB ,∵AB⊥X轴∴AB∥OM∴AB∥NH∥OM∴∠OMN=∠MNH∠BAN=∠ANH∴∠ANM=∠MNH+∠ANH=∠OMN+∠BAN.=12,理由如下:②S四边形AMON∵a=2∴A(6,4)∴OB=6,AB=4,OM=2t BN=3t ON=6﹣3t=S四绞刑ABOM﹣S△ABN,∴S四边形AMON=(AB+OM)×OB﹣×BN×AB =(4+2t)×6﹣×3t×4=12+6t﹣6t=12∴四边形AMON的面积不变(3)∵OM=ON∴2t=6﹣3t或2t=3t﹣6∴t=或6.。

相关文档
最新文档