Studies on the chemical constituents of loquat leaves (Eriobotrya japonica)
火炭母化学成分的研究
火炭母化学成分的研究任恒春;万定荣;谷婧;邹忠梅【摘要】本文对火炭母的化学成分进行研究,为选择控制其质量的指标性成分提供依据.运用硅胶、葡聚糖凝胶Sephadex LH-20等手段进行分离纯化得到9个化合物,并通过NMR、MS等波谱方法鉴定其结构分别为:正三十二烷醇(1)、β-谷甾醇(2)、没食子酸甲酯(3)、胡萝卜苷(4)、没食子酸(5)、槲皮素(6)、槲皮苷(7)、金丝桃苷(8)和3-甲氧基-4-鼠李糖鞣花酸(9),其中化合物1和9首次从该属植物中分得,4和8首次从该植物中分得.%To control the quality, the chemical constituents of the aerial part of Polygonum chinensis L. were studied. Nine compounds were isolated and purified by silica gel and Sephadex LH-20 chromatography, and their structures were identified as ra-heptacosanol(l) ,β-sitosterol(2) .methyl gallate (3) .daucosterol (4) .gallic acid (5) ,quercetin (6) ,quer-citrin (7) .hyperoside (8) and 3-O-methy-lellagic acid 4-O-rhamnopyranoside (9) by spectroscopicanalysis,respectively. Among them,compounds 1 and 9 were isolated from genus Polygonum for the first time,while 4 and 8 were isolated from this plant for the first time.【期刊名称】《天然产物研究与开发》【年(卷),期】2012(024)010【总页数】4页(P1387-1389,1411)【关键词】火炭母;蓼属;黄酮类;鞣花酸苷【作者】任恒春;万定荣;谷婧;邹忠梅【作者单位】中国医学科学院&北京协和医学院药用植物研究所,北京100193;中南民族大学,武汉430074;中国医学科学院&北京协和医学院药用植物研究所,北京100193;中国医学科学院&北京协和医学院药用植物研究所,北京100193【正文语种】中文【中图分类】R284.2火炭母,又名火炭毛,乌炭子等,为蓼科蓼属植物火炭母(Polygonum chinese L.)的地上部分,夏、秋间采收,鲜用或晒干。
山橙属植物化学成分与抗肿瘤活性研究进展
山橙属植物化学成分与抗肿瘤活性研究进展田善鸣;王晓;方磊【摘要】结合国内外文献综述了山橙属植物化学成分的研究进展,并对该属药用植物的抗肿瘤活性进行了总结.山橙属植物含有多种化学成分,主要有生物碱类以及少量三萜类、甾体类、木脂素类等.该属植物中的生物碱类成分具有显著的抗肿瘤活性.【期刊名称】《天然产物研究与开发》【年(卷),期】2014(026)008【总页数】6页(P1332-1337)【关键词】山橙属;化学成分;抗肿瘤活性【作者】田善鸣;王晓;方磊【作者单位】山东中医药大学药学院,济南250355;山东省科学院中药过程控制研究中心,山东省分析测试中心,济南250014;山东省科学院中药过程控制研究中心,山东省分析测试中心,济南250014;山东省科学院中药过程控制研究中心,山东省分析测试中心,济南250014;天然药物活性物质与功能国家重点实验室,中国医学科学院北京协和医学院药物研究所,北京100050【正文语种】中文【中图分类】R284山橙属为夹竹桃科植物,全世界约有53 种,分布于亚洲热带地区至大洋洲,我国有11 种,产自西南、华南及台湾等省区[1]。
目前国内外对该属植物的研究还不是全面,自1965 年以来,有研究报道的仅有薄叶山橙[2]、思茅山橙[3-5]、山橙[6]、尖山橙[7-9]、龙州山橙[10,11]、腋花山橙[12]、川山橙[13,14]和景东山橙[15]。
该属植物含有结构新颖的吲哚型生物碱[16,17],对肿瘤细胞具有显著的细胞毒活性,近年来受到人们广泛的关注,本文对近40 多年来国内外对山橙属植物的研究进展以及药理活性等内容进行了较系统的归纳总结,以期为该属植物的进一步研究提供参考。
1 化学成分山橙属植物发现的化学成分主要有生物碱,以及少量三萜、甾体、木脂素等化合物。
1.1 生物碱生物碱类是山橙属植物最主要的化学成分,主要为吲哚生物碱,此外还有少量的喹啉生物碱。
其中的吲哚生物碱又主要分为单萜吲哚生物碱和双吲哚生物碱,因其对肿瘤细胞具有显著的细胞毒活性,近年来受到研究者的广泛关注。
中药化学英语
中药化学英语English:Chinese herbal medicine chemistry is the study of the chemical constituents of natural substances used in traditional Chinese medicine. These chemical compounds can come from a variety of sources, including plant roots, stems, leaves, flowers, fruits, and minerals. The study of the chemical composition of these substances is important for understanding their therapeutic properties and potential interactions with other medications. Through advanced analytical techniques such as chromatography, spectrophotometry, and mass spectrometry, scientists are able to identify and quantify the active compounds in Chinese herbal medicines. This knowledge is invaluable in ensuring the safety, quality, and consistency of herbal medicine preparations, as well as providing insight into the biological mechanisms underlying their medicinal effects.中文翻译:中药化学是研究中草药化学成分的学科,这些成分是传统中药的组成部分。
瑞香狼毒地上部分化学成分的研究
瑞香狼毒地上部分化学成分的研究路利芹;崔海燕;张立春;刘权;秦波【摘要】采用多种色谱技术,对瑞香狼毒(Stellera chamaejasme L.)地上部分脂溶性部位的化学成分进行了研究,分离得到11种化合物,结合理化性质和波谱分析,其结构分别鉴定为:1-亚油酸-棕榈酸-甘油酯(1),亚麻酸(2),亚油酸(3),β-谷甾醇(4),亚麻酸乙酯(5),西瑞香素(6),异新狼毒素A(7),丙二酸单乙酯(8),伞形花内酯(9),新狼毒素B(10)和龙胆酸(11).其中,化合物1、8和11为首次从该植物中分离得到.【期刊名称】《天然产物研究与开发》【年(卷),期】2014(026)001【总页数】3页(P53-55)【关键词】瑞香狼毒;化学成分【作者】路利芹;崔海燕;张立春;刘权;秦波【作者单位】中国科学院兰州化学物理研究所中国科学院西北特色植物资源化学重点实验室/甘肃省天然药物重点实验室,兰州730000;中国科学院兰州化学物理研究所中国科学院西北特色植物资源化学重点实验室/甘肃省天然药物重点实验室,兰州730000;内蒙古通辽市气象局,通辽028000;中国科学院兰州化学物理研究所中国科学院西北特色植物资源化学重点实验室/甘肃省天然药物重点实验室,兰州730000;中国科学院兰州化学物理研究所中国科学院西北特色植物资源化学重点实验室/甘肃省天然药物重点实验室,兰州730000【正文语种】中文【中图分类】R284.2;Q946.91瑞香狼毒(Stellera chamaejasme L.)为瑞香科狼毒属多年生草本植物,广泛分布于中国东北、华北、西南及西北等地区的草地及高山向阳处。
近年来,瑞香狼毒在我国局部草原地区大面积蔓延,逐渐取代原有物种,形成优势种群,影响草地植物生态平衡。
瑞香狼毒全株有毒,早春时节,牲畜抢青误食造成中毒致死,危害草地畜牧业生产[1]。
瑞香狼毒根入药,能散结、逐水、止痛、杀虫,主治水气肿胀、淋巴结核、骨结核[2]。
【化学】蛇莓化学成分研究
【关键字】化学Studies on chemical constituents from Duchesnea indica (Andr.) FockeZHANG Lan-Tian1*, DUAN Hong-Quan2, LU Xin-Hua1, ZHENG Zhi-Hui1, ZHANG Hua1,HE Jian-Gong1(1. North China Pharmaceutical Group New Drug Research and Development Co., Ltd,Hebei ,Shijiazhuang 050015, China; 2. Basic Medical Research Center, School of Pharmaceutical Sciences,Tianjin Medical University,Tianjin 300070,China) [Abstract] Objective: To study the chemical constituents of Duchesnea indica (Andr.) Focke. Methods: Chemical constituents were isolated by repeated column chromatography (silica gel, Toyopearl HW-40C and preparative HPLC). The structures were elucidated on the basis of spectral data analysis. Results: ten compouds were isolated and their structures were identified as follow:2α-3α-dihydroxyurs-12,18-en-27-oic acid(1),2α-3α-dihydroxyurs-12,19-en-27-oic acid (2), Corosolic acid(3), Ursolic acid(4), Pomolic acid acetate(5), Pomolic acid(6), Euscaphic acid)(7), Doianoterpene D(8), 4-hydroxy-trans-cinnacic acid(9), 3-hydroxy-4-methoxy-trans-cinnacic acid(10).Conclusion: compound 1,2,5,6,8~10 were first isolated from Duchesnea indica (Andr.) Focke.[Key words] Duchesnea indica (Andr.) Focke; triterpene蛇莓化学成分的研究张兰天1*,段宏泉2,路新华1,郑智慧1,张华1,贺建功1(1.华北制药集团新药研究开发有限责任公司河北石家庄050015;2. 天津医科大学基础医学研究中心药学院,天津300070)[摘要] 目的:研究蛇莓Duchesnea indica (Andr.) Focke.中的化学成分。
制首乌化学成分的研究
制首乌化学成分的研究*陈万生 樊 伟△ 杨根金 乔传卓 陈海生 原 源摘要 目的:研究制首乌(Rad ix Poly gonum multif lor um Pr eparat a)的化学成分。
方法:应用硅胶柱层析对制首乌氯仿萃取部分中化学成分进行分离纯化,应用理化常数测定和光谱(IR,F AB-M S,EI-M S,1H-N M R,13C-N M R,HM Q C,HM BC)分析技术鉴定结构。
结果:得到12个单体化合物,确定了其中的7个,分别为大黄素(emo din,Ⅰ)、大黄素甲醚(physcion,Ⅱ)、大黄素-3-乙醚(emodin-3-ether,Ⅲ)、2,3,5,4′-四羟基二苯乙烯-2-O-B-D-葡萄糖甙(2,3,5,4′-tet rahy dr ox ystilbene-2-O-B-D-g luco-side,Ⅳ)、五味子素(schizandr in,Ⅴ)、B-谷甾醇(B-sito stero l,Ⅵ)、胡萝卜甙(B-sito ster o l-3-O-B-D-gluco pyr ano side,Ⅶ)。
结论:Ⅲ为新化合物,Ⅴ是首次从蓼属中药中分得。
关键词 制首乌;化学成分;大黄素-3-乙醚;五味子素中国图书资料分类法分类号 R282.71;R284.1Studies on the chemical constituents of Radix Polygoni multif lori PreparataChen Wansheng,Fan Wei,Yang Genjin,Qiao Chuanzhuo,Chen Haisheng,Yuan Yuan(De-part ment of Pharmacognosy,College of Pharmacy,Second M ilit ary M edical U niversit y, Shanghai,200433)ABSTRACT Obj ective:T o investig ate the chemical constituents o f Radix Poly goni multif lori Preparata. Methods:Compounds w er e iso lated fro m the CHCl3ex tr act w ith co lum n chromatog raphy of silica gel.T he co mpo unds w ere identified on the basis of spectral analy sis(IR,EI-MS,FAB-M S,1H-NM R,13C-NMR, HM QC,HM BC)and chemical pr operties.Results:T w elv e co mpo unds were isolated,and7of them were identified as emodin(Ⅰ),physcion(Ⅱ),em odin-3-ether(Ⅲ),2,3,5,4′-tetrahydr oxy stilbene-2-O-B-D-glucoside(Ⅳ),schizandrin(Ⅴ),B-sitosterol(Ⅵ),B-sitosterol-3-O-B-D-glucopyr anoside(Ⅶ).Conclu-sion:Ⅲis a new co mpo und and V is isolated from R adix Poly goni Multif lori Preparata for the first time. KEY WORDS Radix P oly goni multif lor i Preparata;chemical co nstituent;em odin-3-ether;schizandrin[Acad J Sec M il M ed U niv,1999,20(7):438~440] 何首乌为蓼科植物P oly gonum multif lorum Thunb.的块根,因炮制方法不同,有生首乌与制首乌之分。
苦玄参的化学成分研究
苦玄参的化学成分研究黄永林;陈月圆;文永新;李典鹏;陈文娟;刘金磊;卢凤来【摘要】对广西传统的抗菌消炎药用植物苦玄参进行了化学成分研究,采用柱色谱进行分离纯化,运用波谱法进行了结构解析,共鉴定得到7个化合物.它们分别为:芹菜素(1)、芹菜素-7-O-β-D-葡萄糖酸(2)、芹菜素-7-O-α-L-吡喃鼠李糖基(1→2)-β-D-吡喃葡萄糖酸(3)、迷迭香酸(4)、苦玄参苷Ⅳ(5)、苦玄参苷Ⅹ(6)、阿克替苷(7).其中化合物2、3、4为首次从该植物中分离得到.【期刊名称】《广西植物》【年(卷),期】2010(030)006【总页数】4页(P887-890)【关键词】苦玄参;化学成分;结构鉴定【作者】黄永林;陈月圆;文永新;李典鹏;陈文娟;刘金磊;卢凤来【作者单位】广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006;广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006;广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006;广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006;广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006;广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006;广西壮族自治区中国科学院,广西植物研究所,广西,桂林,541006【正文语种】中文【中图分类】Q946苦玄参为玄参科(Scrophulariaece)植物苦玄参(Picria f el-terrae)的干燥全草,又名苦草、熊胆草、四环素草,多年生草本植物,全草均可用药,民间用于治疗肺炎、感冒、咽喉炎、跌打损伤、淋巴结炎等炎症(广西壮族自治区卫生厅,1992)。
已有较多的学者(成桂仁等,1982,1984,1985;甘立宪等,1982,1982;金静兰等,1987;王力生等,2004;邹节明等,2005)对苦玄参的化合物成分进行了较为系统的研究,从中分离到了三萜类、黄酮类及苯乙醇苷类等不同类型的化合物;黄燕等(2008)对苦玄参的抗菌消炎活性进行了研究;同时,方宏等(2008)对苦玄参苷ⅠA和ⅠB的含量进行了分析;梁小燕等(2007)对苦玄参的指纹图谱进行了研究。
[生物医药论文精品]泽漆的化学成分研究
泽漆的化学成分研究摘要: 目的: 研究泽漆Euphorbia helioscopia L.的化学成分。
方法: 用Diaion HP-20, Toyopearl HW-40, 硅胶柱等柱色谱技术进行分离纯化, 根据化合物的理化性质和光谱数据鉴定结构。
结果: 分离并鉴定了8个化合物的结构:山奈酚(Ⅰ), 槲皮素(Ⅱ), 芦丁(Ⅲ), 杨梅素-3-O-(2′′-O-没食子酰基)-β-D-葡萄糖苷(Ⅳ),槲皮素-3- O-β-D-葡萄糖糖苷-2′′-没食子酸酯(Ⅴ),山奈酚-3-O-β-D-葡萄糖基-(1→2)-β-D-葡萄糖苷(Ⅵ), 4-(3-羟基苯基)- 2-丁酮(Ⅶ), 异秦皮啶(Ⅷ)。
结论:化合物Ⅲ-Ⅷ为首次从该植物中分离得到。
关键词:泽漆;化学成分Studies on the Chemical Constituents of Euphorbia helioscopia L.ABSTRACT: OBJECTIVE: To study the chemical constituents of Euphorbia helioscopia L.METHODS: The compounds were isolated and purified by Diaion HP-20, Toyopearl HW-40, silica gel column chromatography and the structures were identified on the basis of spectral data and physiochemical properties. RESUL TS: eight comp- ounds were isolated and identified as: kaempferol (Ⅰ), quercetin (Ⅱ), rutin (Ⅲ), myricetin-3-O-(2′′-O-galloyl)-β- D-glucopyranoside(Ⅳ), quercetin-3-O-β-D-glucoside-2′′-gallate (Ⅴ), kaempferol-3-O-β-D-glucopyranoyl-(1→2)-β-D-glucopyranoside (Ⅵ), 4-(3-hydroxyphenyl)-2-butanone(Ⅶ), isofraxidin (Ⅷ). CONCLUSION:Compounds Ⅲ~Ⅷ were isolated from this plant for the first time.KEY WORDS:Euphorbia helioscopia L.; chemical constituents泽漆系大戟属植物泽漆Euphorbia helioscopia L.的全草。
广西白背叶化学成分的研究
广东药学院硕士学位论文广西白背叶化学成分的研究姓名:康飞申请学位级别:硕士专业:药物化学指导教师:吕华冲20070601摘 要 本论文主要对大戟科药用植物白背叶(Mallotus apelta)的化学成分进行了系统的研究,同时对白背叶植物的化学成分及药理作用研究进展进行了综述。
白背叶(Mallotus apelta)为大戟科(Emphorbiaceae)野桐属植物,叶和根均可入药,具有多种生理活性,如抗菌、抗病毒、止血作用、保肝作用等。
临床报道白背叶的水煎剂对上消化道出血有很好的疗效,其作用与云南白药无显著差异,且无毒性。
药理研究表明其制剂对多种致病性球菌、杆菌有明显抑制作用及杀灭作用。
白背叶的全草中主要含有黄酮、三萜、二萜、香豆素、苯并吡喃、挥发油类化合物。
为了从中分离得到更多的活性化合物,我们对其进行了系统的化学成分研究。
从白背叶植物叶的水提物中分离得到10个化合物,经化学方法和波谱学方法(包括UV、IR、NMR、MS)鉴定了其中的9个化合物,依次为:大黄酚(Ⅰ), 洋芹素-7-O-β-D-葡萄糖苷(Ⅱ), 异东莨菪内酯(Ⅲ), β-谷甾醇(Ⅳ),芹菜素(Ⅴ),烟酸(Ⅵ),对甲氧基苯甲酸(Ⅶ), 胡萝卜苷(Ⅷ),东莨菪内酯(Ⅸ).其中化合物Ⅰ,Ⅲ,Ⅵ,Ⅶ为首次从该植物中分离得到。
关键词:白背叶 黄酮 香豆素 烟酸Studies on the Chemical Constituents ofMallotus apeltaKangFei(Medicinal chemistry)Supervisor: Hua-Chong lu(adjunct professor)AbstractThis thesis focused on the chemical studies on Mallotus apelta, and also reviewed the progress of Mallotus apelta.Mallotus apelta, belongs to Mallotus genera of Emphorbiaceae family,has many biological activities, such as antibacterial, antiviral, anthemorrhagic and hepatoprotective effect. Both its roots and leaves are used an traditional Chinese medicine. It is proved to be more effective for upper gastrointestinal hemorrhage than tagamet in c linics. Modern pharmacological investigation indicates that it has the function to inhibit and kill a variety of pathogenic microbes and bacillus.The whole herb of Mallotus apelta contains flavonoids, triterpenoids, diterpenoid, coumarin, benzopyran, volatile oil compounds and so on. In order to isolate more active compounds, we have systematically investigated the chenmical constituents of the leaves of Mallotus apelta.10 compounds were isolated and 9 compounds were elucidated by chemical and spectroscopic methods(UV、IR、NMR、MS)as chrysophanol (Ⅰ),apigenin-7-O-ß-D-glucoside(Ⅱ), isoscopletin(Ⅲ), ß-sitosterol(Ⅳ), apigenin (Ⅴ), nicotinicacid (Ⅵ), 4-methoxybenzoic acid (Ⅶ), ß-sitosterol-3-O-ß-D-glucopyranoside(Ⅷ), scopoletin (Ⅸ).Keywords: Mallotus apelta, flavone, coumarin, nicotinic acid广东药学院学位论文原创性声明本人郑重声明:本人所呈交的学位论文,系我个人在导师的指导下进行研究工作所取得的成果。
广西九里香化学成分研究
广西九里香化学成分研究谢凤指,明东升,陈若云,于德泉3(中国医学科学院、中国协和医科大学药物研究所,北京100050)摘要:目的 对广西九里香(M urraya kw angsiensis)的化学成分进行研究。
方法 利用硅胶柱色谱和薄层色谱方法对广西九里香的95%乙醇提取物进行分离;采用UV,IR,MS,1HNMR和13CNMR等技术对所得化合物进行结构研究。
结果 分离鉴定了7个化合物,其中5个为咔巴唑生物碱:murrayafoline2A,murrayanine,koenine,isomahanine 和广西九里香碱(kwangsine),两个非生物碱化合物:棕榈酸和β2谷甾醇。
结论 广西九里香碱(kwangsine)为新化合物,其他化合物均为首次从该植物中分离得到。
关键词:广西九里香;咔巴唑生物碱;广西九里香碱中图分类号:R284.1;R284.2 文献标识码:A 文章编号:0513-4870(2000)11-0826-03 广西九里香(M urraya kw angsiensis)主要分布于广西百色地区,果实有止痛通经的功能。
叶味苦、辛。
性微温。
用于麻疹、骨折。
根有健胃的功能。
现代药理学研究证明,根的水煎剂有明显的抗着床作用和中期引产的效果[1]。
为了寻找其生理活性成分,作者对其地上部分进行了化学成分研究,得到7个化合物,经理化常数测定和光谱分析鉴定其中6个成分为已知化合物:murrayafoline2A(1)、棕榈酸(2)、九里香碱(murrayanine)(3)、九里香酚碱(koenine)(4)、isomahanine(6)和β2谷甾醇(7);1个为新的生物碱,命名为广西九里香碱(kwangsine) (5)。
本文报道新生物碱的分离和结构研究。
化合物V 淡黄色结晶,mp263~273℃,[α]19D -3133°(c01101,CHCl3),HREIMS给出分子离子峰为m/z55612363(M+),确定其分子式为C36H32 O4N2(计算值:m/z55612362)。
布渣叶化学成分及功能活性研究进展
布渣叶化学成分及功能活性研究进展作者:张敏,李世涛,王婷婷,宫俊杰,梁晓辉,赵煜炜来源:《中国果菜》 2016年第12期张敏1,李世涛2,王婷婷3,宫俊杰1*,梁晓辉1,赵煜炜1(1. 龙大食品集团有限公司,山东烟台 265231;2. 烟台中瑞化工有限公司,山东烟台265299;3. 山东农业工程学院,山东济南 251100)摘要:布渣叶为常见中药,是南方凉茶的重要原料之一,具有清热去火的作用。
本文对布渣叶化学成分和生物活性等方面的研究现状进行了整理,以期为布渣叶的进一步开发利用提供科学依据。
关键词:布渣叶;化学成分;生物活性中图分类号:S789 文献标志码:A 文章编号:1008-1038(2016)12-0020-04Studies on the Chemical Constituents and Bioactivies of Microcos paniculataZHANG Min1, LI Shi-tao2, WANG Ting-ting3, GONG Jun-jie1*, LIANG Xiao-hui1, ZHAO Yu-wei1(1. Longda Foodstuff Group Co., Ltd, Yantai 265231, China; 2.Yantai Zhongrui Chemcial Co., Ltd, Yantai 265299, China;3. Shandong Agriculture and Engineering University, Jinan 251100, China)Abstract: Microcos paniculata L. is being recommended as a healthy raw material in the production of herbal tea. In this paper, the author reviewed the chemical constituents and pharmacological activities of Microcos paniculata, in order to provide the references for the future research and development.Key words: Microcos paniculata L.; chemical constituent; biological activity布渣叶为椴树科破布叶属破布树的叶,味甘淡,性微寒,具有清热去火、消食利滞的功效[1],多用于食品、药品及保健品,是“加多宝”“王老吉”“甘和茶”和“仙草爽凉茶”等的主要原料[2]。
A_review_of_research_on_the_chemical_constituents_
ReviewA review of research on the chemical constituents andpharmacological effects of Elephantopus tomentosus L.Shuai Shen, Ming Bai, Shaojiang Song*Department of Natural Products Chemistry, Key Laboratory of Structure-Based Drug Design andDiscovery, Ministry of Education, School of Traditional Chinese Materia Medica, ShenyangPharmaceutical University, Shenyang 110016, PR ChinaAbstractElephantopus tomentosus, belonging to the genus Elephantopus, is widely distributed in the coastal areas of southern China and tropical regions, used locally as traditional folk medicine. Previous phytochemistry studies on Elephantopus tomentosus led to the isolation of sesquiterpenoids, triterpenoids, flavonoids and other compounds. Research has shown that these compounds possess multiple biological activities, which have attracted great attention of researchers worldwide. This study reviews the chemical constituents and biological activities of the Elephantopus tomentosus in order to better explore and utilize Elephantopus tomentosus.Keywords:Elephantopus tomentosus; chemical composition; pharmacological activities; sesquiterpenoids1 IntroductionElephantopus tomentosus L., also known as Elephantopus mollis H.B.K., belongs to Elephantopus genus of the family Compositae. This plant is mainly distributed in the coastal areas of Fujian, Taiwan and Guangdong provinces in China and various tropical areas. E. tomentosus has the effects of clearing heat and detoxifying, cooling blood and diuresis, anti-bacterial and anti-inflammatory. It is used to treat cancer, fractures, * Author to whom correspondence should be addressed. Address: School of Traditional Chinese Materia Medica, ShenyangPharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China;Tel.:+86-24-23986510;E-mail:****************. Received: 2021-03-07 Accepted: 2021-04-09abdominal pain, dysentery and snake and insect bites as traditional folk medicine. Studies have shown that it contains many types of chemical components, such as sesquiterpenoids, triterpenoids, flavonoids, and caffeoylquinic acids [1].At present, the chemical constituents of E. tomentosus have been extensively studied in the world.Sesquiterpene lactones, as the main active component of E. tomentosus, have become a hot focus in modern anti-tumor research. In addition, the caffeoylquinic acids from E. tomentosus have specific activities of cytotoxicity, apoptosis and anti-α-glucosidase [2]. This study summarized the chemical components and main pharmacological activities of E. tomentosus in recent years.2 Chemical composition2.1 TerpenoidsSo far, eleven triterpenoids and twenty-six sesquiterpenoids have been identified from the E. tomentosus species under different conditions.2.1.1 E. tomentosus . Their structures were identified as epifriedelanol (1), epifriedelinol (2), ursolic acid (3) [3,4], and β-Amyrin (4) [5]. Two ursane- and five lupine- triterpenoids were isolated and identified as 3β-hydroxyolean-12-en-28-oic acid (5), α-Amyrin (6) [5], 30-hydroxylupeol (7), betulinic acid (8), lupeol (9) [3,4], lup-20(29)-en-3-one, lupenone (10) [5], and elephanmollen (11) [6]. The structures2.1.2SesquiterpenoidsTwenty-six germacrane-sesquiterpenoids were isolated from E. tomentosus. Their structures were identified as 8-O-methacryloylelephanpane (12), 2,4-bis-O-methyl-8-O-methacryloylelephanpane(13), 4-O-ethyl-8-O-methacryloylelephanpane(14), 8-O-methacryloylisoelephanpane (15), 2-O-demethyltomenphantopin C (16) [7], 2β2β8-O germacratrien-12,6α-olide (21) [6], 2,5-epoxy-2β-hydroxy-4α-methoxy-8α-[(E)-2-methylbut-2-enoyloxy]-4(15),10(14),11(13)-germacratrien-12,6α-olide (22) [9], 2,5-epoxy-2β-hydroxy-8α-[(E)-2-methylbut-2-enoyloxy]-4(15),10(14),11(13)-germacratrien-12,6α-olide (23), 2-deethoxy-2β-hydroxyphantomolin (24) [5], tomenphantadenine (25) [10],tomenphantopin E (26), elephantin (27), elephantopin (28) [11], molephantin A (29),[12],) [14],) [15],2.2 FlavonoidsSeven flavonoids were separated from E. tomentosus. Their structures were identified as isoquercitrin (38), quercetin-3-O-(6”-O-E-caffeoyl)-β-D-glucopyranoside (39), kaempherol-3-O-β-D-glucopyranoside (40), kaempherol-3-O-β-rhamnopyranosyl (1→6)-β-D-glucopyranoside (41) [16], tricin (42), luteolin (43), and quercetin (44) [3], as shown in Fig. 3.2.3 Caffeoylquinic acidsA number of caffeoylquinic acids were isolated from the E. tomentosus. Their structures were identified as 3,4-di-O-coffeoylquinic acid (45), 3,4-di-O-coffeoylquinic acid methyl ester (46), 3,5-di-O-coffeoylquininic acid (47), and 3,5-di-O-coffeoylquinic acid methyl ester (48) [16], as shown in Fig. 4.Fig. 3 Chemical structures of flavonoids in E. tomentosus2.4 Lipid compoundsSo far, a number of lipid compounds have been isolated from E.tomototous. They were (Z )-2-heptenal (49), 1-(5-ethenyltetrahydro-5-methyl-2-furanyl)-(2R -cis )-ethanone (50), 1-(5-ethenyltetrahydro-5-methyl-2-furanyl)-(2R -trans)-ethanone (51), methyloctanate (52), (E )-2-decenal (53), hedytriol (E ,E )-2,4-decadienal (54), (E ,Z )-2,4-Decadienal (55), methyl-9-oxononanoate (56), nerolidoloxide (57), neophytadiene (58), 6,10,14-t r i m e t h y l -2-p e n t a d e c a n o n e (59), methylpalmitate (60), ethylpalmitate (61), methyl-14-methylhexadecanoate (62), (E )-5-eicosene (63), ethyllinoleate (64), methyl-9,12,15-octadecatrienoate(65), phytol (66), methylarachate (67), linoleic acid (68), and methylstearate (69) [5].2.5 Other compoundsLee et al. have extracted and isolated a steroid compound stigmasterol (70) from E. tomentosus [13]. There are also some other compounds derived from E. tomentosus . They are hedytriol (71) [17], byzantionoside B (72), xylogranatinin (73), ethyl-3-(3,4-dihydroxyphenyl) acrylate (74), 2-hydroxycinnamaldehyde (75) [3], ferulic acid (76), 2-methyl-1H -indole-3-carbaldehyde (77), pinellic acid (78) [4], magnolol (79), honokiol (80) [1], and syringaresinol (81) [3], as shown in Fig. 5.Fig. 5 Chemical structures of other compounds in E. tomentosusFig. 4 Chemical structures of caffeoylquinic acids in E. tomentosus(to be continued)Continued fig. 53 Pharmacological activities3.1 Antioxidant activitiesOoi et al. isolated an active anti-radical phenolic compound 46 from the methanol extract of E. tomentosus [2]. The antioxidant activity of the compound and the methanol extract were compared using DPPH, FRAP and β-carotene bleaching tests. They found that this compound acted as a greater primary antioxidant than its methanol extract, with higher ferric reducing activity (EC50 2.18 ± 0.05 μg/mL), β-carotene bleaching activity (EC50 23.8 ± 0.65 μg/mL) and DPPH scavenging activity (EC50 68.91 ± 5.44 μg/mL). The assays indicated 3,4-di-O-caffeoyl quinic acid played an important role in the antioxidant capacities of E. tomentosus extracts. 3.2Anti-tumor activitiesSesquiterpene lactones, as the main active component of E. tomentosus, have become the focusof antitumor research. More and more investigations have been done to elucidate the anti-tumor activity of these compounds.Ooi et al. evaluated the cytotoxic activity of compound 46 using methylene blue and DeadEnd TM assay [2]. Cytotoxicity screening of this compound exhibited a remarkable dose-dependent inhibitory effect on NCI-H23 (human lung adenocarcinoma) cell lines (EC 50 = 3.26 ± 0.35 μg/mL), which was found to be apoptotic in nature based on a clear indication of DNA fragmentation. The compound exerted apoptosis-mediated cytotoxicity and might be a promising non-toxic agent in treating cancer.Li et al. isolated an active compound EM-3, namely compound 29, from E. tomentosus [18]. They found that compound 29 inhibited CNE2 cell proliferation in concentration- and time- dependent manners through MTT cell activity experiment. At the same time, the effect of compound 29 on CNE2-S18 cells was also significantly inhibited at the concentration of 15 μmol/L and 30 μmol/L for 48 h, while the activity of normal human liver cells was not significantly inhibited. Furthermore, they also found that compound 29 induced apoptosis of nasopharyngeal carcinoma cells by inhibiting the Stat3 pathway and induced G2/M-phase block. In addition, compound 29 inhibited nasopharyngeal carcinoma cell migration through the MMPs pathway, and effectively reduced cNE2-S18 tumor stem cell-like SP cell dryness.Huang et al. did similar work to investigate the activity and mechanism of the compound 34 [19]. The MTT assay was used to detect the cytotoxicity of this compound on ovarian cancer cell line 2774-C10, and the results showed that compound 34 had significant cytotoxic effects on 2774-C10 cells and much lower cytotoxic effect on normal human hepatocyte LO 2 cells. They reached a conclusion that this compound induced G1/S arrest in ovarian cancer cells and induced apoptosis through death receptor pathway by western blotting experiment.3.3 Antibacterial activitiesWang et al. measured the antibacterial activity of lipid-soluble ingredients with filter paper agar diffusion method [4]. The antibacterial activity results were 15.0 mm (2.5 mg/dis), 18.5 mm (5 mg/dis) for MRSA, 14.3 mm (2.5 mg/dis), 17.9 mm (5 mg/dis) for S. aureus , respectively. The results showed that the lipid-soluble components of E. tomentosus had an effect on both S. aureus and MRSA.Ling et al. measured the minimum inhibitory concentration (MIC) of the water extracts and ethonal extracts of E. tomentosus against three kinds of bacteria through the two-fold dilution method in the test tube [20]. They discovered that decoction of E. tomentosus had effects on Escherichia coli , Bacillus subtilis and Golden yellow . The MIC for staphylococci was 1/16, 1/8 and 1/32 g/mL, respectively, and the MIC of the ethanol extracts for the above bacteria was 1/4, 1/4 and 1/16 g/mL, respectively. The MIC of the two extracts for Staphylococcus aureus was smaller than that for Escherichia coli and Bacillus subtilis , and for the same bacteria. The MIC of the decoction liquid was lower than the MIC of the ethanol extract.At present, sesquiterpene lactones have been reported to have the significant ability to inhibit the growth of bacteria. Compound 37 was assessed in vitro for antibacterial activities against Staphylococcus aureus and Ralstonia solanacearum . It exhibited potent antibacterial activity against the gram-positive S. aureus with MIC of 9.6 μg/mL, as compared to the positive control kanamycin sulfate with the MIC of 4.2 μg/mL [10].3.4 Anti-inflammatory activities and Analgesic activitiesInflammation is a defensive response of the body to stimuli, manifested as redness,swelling, heat, pain and dysfunction. Pain is a complex physiological and psychological activity. Elephantopus tomentosus is widely used in treatment of pain and inflammation. In the anti-inflammation study, 1000 mg/kg of ethanol extracts of E. tomentosus significantly reduced carrageenan-induced hind paw edema of rats (P < 0.05) and inhibited abdominal permeability compared with the control (P < 0.01). The analgesic activities were evaluated in several experimental models in mice, including hot plate, tailflick, writhing test and carrageenan-induced hyperalgesia pain threshold test. E. tomentosus ethanol extracts at 1000 mg/kg significantly (P < 0.05) increased hyperalgesia pain threshold and inhibited writhing activity [21].Wu et al. isolated seven sesquiterpene lactones from E. tomentosus, and evaluated their anti-inflammatory activities on LPS-stimulated RAW 264.7 cells [9]. Compounds 19-26, 28-35 all exhibited anti-inflammatory effects with IC50 values ranging from 0.57 ± 0.17 to 14.34 ± 1.61 μM, while compound 26 exhibited moderate anti-inflammatory activity with IC50 value of 59.97 ± 1.53 μM.3.5 Other activitiesNgueguim et al. found that ethanolic extracts of E. tomentosus accelerated fracture repair in rats via stimulatory effects on osteoblast differentiation and mineralization, thereby justifying their efficacy in fracture repair and bone regeneration [22].Yam et al. used CCl4-induced liver toxicity in rats to investigate hepatoprotective activity of E. tomentosus [23]. Finally, they drew a conclusion that oral administration of ethanol extract E. tomentosus (500 mg/kg) significantly reduced CCl4-induced hepatotoxicity in rats, as observed from the serum level of the liver enzyme aspartate aminotransferase (AST), alanine aminotransferase (ALT), and also from the histopathologic study. The authors speculated that the hepatoprotective effect of E. tomentosus might be attributed to its antioxidant and free radical scavenging properties.Gachet et al. found that the extract of E. tomentosus had the ability to inhibit the growth of Leishmania protozoons through experiments [24].4 ConclusionIn traditional folk medicines, E. tomentosus is universally considered as important sources with potential therapeutic effects. A wide spectrum of chemical constituents have been isolated from E.t o m e n t o s u s,i n c l u d i n g t r i t e r p e n n o i d s, sesquiterpene lactones, caffeoylquinic acids, flavonoids, lipid compounds and other compounds. At present, the investigations of activities are not confined to the extracts of E. tomentosus, but cover the activity of individual compounds. These investigations indicate its potential as anti-oxidant, anti-inflammatory, anti-tumor and anti-bacterial agents. In this paper, existing compounds and pharmacological effects of the E. tomentosus are summarized. These attempts aim to provide crucial material for their further development and research. References[1] Liang N, Yang XX, Wang GC, et al. Study on thechemical constituents of Elephantopus mollis. J Chin Med Mater, 2012, 35: 1775-1778.[2] Ooi KL, Muhammad TST, Tan ML, et al. Cytotoxic,apoptotic and anti-α-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth.J Ethnopharmacol, 2011, 135: 685-695.[3] Li Y, Zhang CY, Li T, et al. Study on the chemicalconstituents of Elephantopus tomentosus. Chin J Chin Mater Med, 2018, 38: 1751-1756.[4] Wang B, Mei WL, Zuo WJ, et al. Study on theAntibacterial Active Components of Elephantopus tomentosus. J Trop Subtrop Bot, 2012, 20: 413-417.[5] Wang B, Mei WL, Zuo WJ, et al. Analysis ofLiposoluble Components from Elephantopus scaber and Elephantopus tomentosus by GC-MS and Studies on Antibacterial Function. Nat Prod Res Dev, 2012, 24: 23-27.[6] Tabopda T, Liu J, Ngadjui B, et al. Cytotoxic triterpeneand sesquiterpene lactones from Elephantopus mollis and induction of apoptosis in neuroblastoma cells. Planta Med, 2007, 73: 376-380.[7] Wu ZN, Zhang YB, Chen NH, et al. Sesquiterpenelactones from Elephantopus mollis and their anti-inflammatory activities. Phytochemistry, 2017, 137: 81-86.[8] Wa n g B , M e i W L , Z u o W J , e t a l. Tw o N e wSesquiterpene Lactones from Elephantopus tomentosus . Chin J Chem, 2012, 30: 1320-1322.[9] Tabopda TK, Ngoupayo J, Liu J, et al. Further cytotoxicsesquiterpene lactones from Elephantopus mollis Kunth. Cheminform, 2010, 39: 231-233.[10] Guo ZK, Wang B, Cai CH, et al. Tomenphantadenine,an unprecedented germacranolide-adenine hybrid heterodimer from the medicinal plant Elephantopus tomentosus L. Fitoterapia, 2018, 125: 217-220.[11] Liang QL, Min ZD. The chemical constituents andpharmacological activities of the genus Elephantopus . Foreign Med Bot Med, 2002, 17: 8-10.[12] But PP, Hon PM, Cao H, et al. A new sesquiterpenelactone from Elephantopus mollis . Planta Med, 1996, 62: 474-476.[13] Lee KH, Ibuka T, Furukawa H, et al. Antitumor agentsXXXVIII: Isolation and structural elucidation of novel germacranolides and triterpenes from Elephantopus mollis . J Pharm Sci, 1980, 69: 1050-1056.[14] But PPH, Hon PM, Cao H, et al. Sesquiterpene lactonesfrom Elephantopus scaber . Phytochemistry, 1996, 44: 113-116.[15] Hayashi T, Koyama J, Mcphail AT, et al. Structureand absoultely stereochemistry of Tomenphantopin-A and -B, two Cytotoxic sesquiterpene lactones from Elephantopus tomentosus . Phytochemistry, 1987, 26: 1065-1068.[16] Yang XX, Wang GC, Wu C, et al. The phenoliccompounds of Elephantopus mollis . J Jinan Univ (Nat Sci), 2011, 32: 489-492.[17] M e i W L , Wa n g B , Z u o W J , e t a l. Tw o n e wgermacranolides from Elephantopus tomentosus . Phytochem Lett, 2012, 5: 800-803.[18] Li ZH, Li CP, Zhang XQ, et al. EM-3 inducesnasopharyngeal carcinoma cellapoptosis and G2/M phase arrest through Stat3 pathway and reduces the proportion of SP cells. Chin Biotechnol, 2016, 36: 1-10.[19] Huang X, Yang J, He YP, et al. Study on the molecularmechanism of EM-12 in 2774-C10 cell G1/S phase arrest and cell apoptosis. Chin Biotechnol, 2018, 38: 17-23.[20] Lin YW. Study on the Antibacterial Effect ofElephantopus tomentosus to common bacteria. Hub Agricultural ences, 2011, 50: 955-957.[21] Yam MF, Ang LF, Ameer OZ, et al. Anti-inflammatoryand Analgesic Effects of Elephantopus tomentosus Ethanolic Extract. J Acupunct Meridian Stud, 2009, 2: 280-287.[22] Ngueguim FT, Khan MP, Donfack JH, et al. Evaluationof Cameroonian plants towards experimental bone regeneration. J Ethnopharmacol, 2012, 141: 331-337.[23] Yam MF, Basir R, Asmawi MZ, et al. Antioxidant andhepatoprotective activities of Elephantopus tomentosus. Ethanol Extract. Pharm Biol, 2008, 46: 199-206.[24] Gachet MS, Lecaro JS, Kaiser M, et al. Assessmentof anti-protozoal activity of plants traditionally used in Ecuador in the treatment of leishmaniasis . J Ethnopharmacol, 2010, 128: 184-197.。
杜仲化学成分和药理作用研究进展
杜仲化学成分和药理作用研究进展栾庆祥【摘要】综述了杜仲的化学成分、质量控制、工艺研究、药理作用、药代动力学的研究进展,为杜仲活性成分的药理研究及开发利用提供理论依据.杜仲中所含化学成分多达138种,其他部位的药用有效成分与其皮相似,均含木脂素类、环烯醚萜类、苯丙素类、黄酮类、糖类、甾萜类、杜仲胶、酚苷类、微量元素及氨基酸等.杜仲主要药理作用有降压、降血脂、抗菌抗病毒、抗氧化、抗疲劳、抗肿瘤及免疫功能、补肾、强筋健骨及安胎、镇静催眠、降血糖等.杜仲的质量控制研究主要包括薄层鉴别、含量测定(分光光度法、液相法、气质或液质联用、原子吸收光谱法、毛细管电泳法)及指纹图谱等.【期刊名称】《安徽农业科学》【年(卷),期】2016(000)009【总页数】4页(P153-156)【关键词】杜仲;化学成分;质量控制;工艺研究;药理作用;药代动力学【作者】栾庆祥【作者单位】贵州省兽药饲料监察所,贵州贵阳550003【正文语种】中文【中图分类】S567.1+9杜仲(Eucommia ulmoides Oliv.)是杜仲科杜仲属多年生落叶乔木,杜仲药材为杜仲树的干燥树皮,是我国珍贵滋补药材,具有补肝强肾、强筋健骨、降低血压、防止流产等功效,《神农本草经》列为上品,谓其“主治腰膝痛,补中,益精气,坚筋骨,除阴下痒湿,小便余沥。
久服,轻身耐老[1]。
”杜仲是我国独有药材,其药用历史可追溯到几千年前,现在也广泛地应用在临床上。
杜仲的经济、社会和生态价值均很高,整棵树均有利用价值,是名副其实的“植物黄金”[2]。
《中国药典》规定它的树皮作为药材入药。
近年来,世界各地的学者对杜仲的化学成分、药理活性与临床应用研究不断深入,从中分离出化学成分有一百多种,为进一步开发及利用杜仲药材提供了理论支撑。
笔者综述了杜仲的化学成分、质量控制、工艺研究、药理作用、药代动力学的研究进展。
有研究表明,杜仲其他部位的药用有效成分与其皮相似,均含木脂素类、环烯醚萜类、苯丙素类、黄酮类、糖类、甾萜类、杜仲胶、酚苷类、微量元素及氨基酸等[3]。
中国药科大学本科毕业论文
中国药科大学本科毕业论文中国药科大学本科毕业论文论文题目云南黄果冷杉化学成分研究英文题目Studies on the chemical constituents ofAbies ernestii. var.salouenensis专业中药学院部中药学院学号0844822姓名余舒乐指导教师殷志琦副教授课题完成场所中药学院天然药化教研室论文工作时间:2012年03月至2012年06月云南黄果冷杉的活性成分研究目录中文摘要 (2)Abstract (2)前言 (3)第一章冷杉化学成分和药理作用研究进展 (5)1.1 化学成分 (5)1.2 药理作用 (10)第二章实验部分 (13)2.2 仪器与实验材料 (13)2.3 提取分离 (13)第三章化合物的结构鉴定 (14)参考文献 (16)致谢 (18)附录 (19)云南黄果冷杉的活性成分研究0844822 余舒乐摘要:目的:对松科植物冷杉Abies ernestii. var. salouenensis中的化学成分进行系统的研究,为了解冷杉药理作用的物质基础,寻找新的活性成分以及进一步开发提供理论依据。
方法:采用高浓度的乙醇提取,提取液浓缩加水混悬后,依次用石油醚、氯仿、乙酸乙酯萃取。
采用硅胶、反相、凝胶、大孔树脂、MCI等现代色谱方法对其中的氯仿、乙酸乙酯部位进行系统的化学成分研究。
通过UV, MS, NMR等光谱方法确定其化学结构。
结果:从中分离得到3个化合物,经确定分别为(+)-儿茶素、山柰酚、槲皮素。
关键词:云南黄果冷杉;松科;黄酮类;抗肿瘤Studies on the chemical constituents of Abies ernestii. var.salouenensisAbstract:Objective: To carry out systematically the chemical constituents from Abies ernestii. var. Salouenensis, provide the theoretical basis for the material foundation of itspharmacological activities and search for the new active ingredients. Methods: The compounds were separated and purified by column chromatography on silica gel and Sephadex LH-20, and identified on the basis of physico-chemical properties and spectroscopic methods. Results: Three compounds were isolated and identified as(+)-catechin, kaempferol and quercetin.Keywords:Abies ernestii. var. salouenensis; Pinaceae; flavonoid; anti-tumor前言冷杉属(Abies)是松科(Pinaceae)的一个重要属,大约有50种,分布于亚洲、北美、欧洲、中美及非洲北部的高山地带,中国有19种及3个变种。
银翘散提取工艺及指纹图谱初步研究_王文丽
管、 Agilent 1100 高效液相色谱仪四元泵及可变波 长紫外检测器、 3010 紫外分光光度计、 十万分之一 AGBP210S 电 子 天 平、 KQ5200DB 型 数 控 超 声 波 清 洗 器 (加热时间 40min, 功率 70%, 加热温度 25℃) 。
提取方法 水 30% � 醇 出膏量 38.44 34.80 出膏率 (�� %� ) 18.32 16.61
50% � 醇 80.80 39.59
70% � 醇 81.77 36.86
95% � 醇 84.79 24.77
2.3 银翘散提取物指纹图谱检测方法
2.1.1 银翘散主要药物提取物的制备 准确称取银 翘 散 210g(金 银 花 60g, 连 翘 60g, 荆 芥 穗 20g, 牛蒡 子 40g, 甘草 30) 置于圆底烧瓶中, 加入一定量的提 取溶剂回流提取, 合并每次提取液, 滤过, 减压蒸去 乙醇, 备用。 2.1.2 出膏量测定 将上述各浸提液过滤, 合并于 恒重蒸发皿中, 水浴蒸干, 置减压干燥箱中干燥, 至 恒重, 称重即得。 2.1.3 正交试验设计 研究选用以 30% 乙醇提取 银翘散为基础, 通过正交表 L9(3)4 进行正交试验, 考 察溶剂用量、 提取时间和提取次数, 以出膏量为指标 优化、 筛选银翘散及单味药最佳提取工艺, 见表 1~ 表 4。
第11卷 第7期 2009 年 7 月
辽宁中医药大学学报
JOURNAL OF LIAONING UNIVERSITY OF TCM
Vol. 11 No. 7 Jul .,2009
银翘散提取工艺及指纹图谱初步研究
王文丽 1, 王雪峰 2, 郝欧美 3, 英锡相 4
(1. 辽宁中医药大学 2006 级博士研究生, 辽宁 沈阳 110032 ; 辽宁 沈阳 110032 ; 2. 辽宁中医药大学附属医院儿科, 辽宁 沈阳 110032 ; 辽宁 大连 116600) 3. 辽宁中医药大学 2007 级硕士研究生, 4. 辽宁中医药大学药学院, 摘 要: 目的 : 筛选与优化银翘散提取工艺, 为银翘散复方制剂谱效关系研究奠定基础。 方法 : 采用正交实验 筛选银翘散最佳提取条件, 分别以水、 30%、 50%、 70% 及 95% 乙醇回流提取银翘散, 以高效液相色谱法测定银翘散指 纹图谱, 以连翘苷、 绿原酸、 牛蒡苷、 橙皮苷等物质的含量作为工艺评价指标, 筛选与优化银翘散提取工艺。 结果 : 提取溶剂量及提取次数是影响出银翘散膏量重要因素, 其次为提取时间 ; 高效液相色谱法测定不同银翘散提取物均 含有 27 个峰所属化合物。结论 : 方法简便, 重现性好, 用于银翘散提取物的鉴别, 具有良好的专属性 ; 银翘散各成分 之间色谱峰形良好, 基本达基线分离, 各提取方法的银翘散提取物的某些化学成分及含量有差异, 可作为银翘散抗 病毒谱效关系研究基础。 关键词 : 银翘散 ; 提取工艺 ; 高效液相色谱 ; 测定 中图分类号 : R284.2 文献标识码 : A 文章编号 : 1673-842X (2009)07- 0174- 03
马莲鞍化学成分研究
马莲鞍化学成分研究席鹏洲;秦亚丽;王跃虎;晏永明;张跃进【摘要】【目的】研究药用植物马莲鞍(Streptocaulon griffithiiHook)全草的化学成分,以探明其药用成分。
【方法】运用硅胶柱色谱、反相硅胶(RP-18)柱色谱、葡聚糖凝胶柱色谱(Sephadex LH-20)等多种方法,对萝藦科(As-clepiadaceae)马莲鞍属(Streptocaulon)马莲鞍全草中提取的化学成分进行分离纯化,并对其结构进行了分析。
【结果】从马莲鞍全草中共分离得到7种化合物,经分析和鉴定,可知化合物17分别为(24S)-24-ethylcholesta-3β,5α%【Objective】 The study explored the bioactive chemical constituents in the whole Streptocaulon griffithii Hook.【Method】 The chemical constituents of the whole S.griffithii Hook were studied with various materials isolation and identification technologies such as silica gel,RP-18,Sephadex LH-20.【Result】 The results were as follows:7 compounds were isolated from the whole S.griffithii Hook.Their structure identifications were:(24S)-24-ethylcholesta-3β,5α,6β-triol,7α-hydroxysitosterol-3-O-β-glucoside,daucosterol,β-stiosterol,isovanillin,4-hydroxy-3,5-dimethoxybenzaldehyde and arturmeron on the basis of analysis and verification.【Conclusion】 The compounds 1,2,5,6 and 7 were firstly isolated from the whole S.griffithii Hook in the 7 compounds.【期刊名称】《西北农林科技大学学报(自然科学版)》【年(卷),期】2011(039)008【总页数】5页(P185-189)【关键词】马莲鞍;甾体;化学成分【作者】席鹏洲;秦亚丽;王跃虎;晏永明;张跃进【作者单位】西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;中国科学院昆明植物研究所,云南昆明650204;中国科学院昆明植物研究所,云南昆明650204;西北农林科技大学生命科学学院,陕西杨凌712100【正文语种】中文【中图分类】R284.1马莲鞍(Streptocaulon griffithii Hook)为萝藦科(Asclepiadaceae)马莲鞍属(Streptocaulon)植物,又名老鸦嘴、南苦参、红马莲鞍、古羊藤、藤苦参等,木质藤本,为传统的傣药之一,主要分布在我国广东、广西、云南、贵州等地。
北大考研-化学与分子工程学院研究生导师简介-张奇涵
爱考机构中国高端考研第一品牌(保过保录限额)爱考机构-北大考研-化学与分子工程学院研究生导师简介-张奇涵张奇涵有机化学,副教授电话:62751497传真:62751708电子信箱:zqh@1983-1987,北京大学理学学士;1987-1990,北京大学硕士主讲课程:天然产物化学,综合化学实验研究领域和兴趣:1.有机合成。
手性药物及中间体的合成。
2.手性拆分。
手性化合物化学拆分及拆分方法研究代表性论文和专著:QihanZhang,MingzheZhang,StudiesontheChemicalConstituentsoftheParasiteofRhododendronDela vayiFranchActaScientiarumNaturaliumUniversitatisPekingensis1996,32(6)703-706. QihanZhang,MingzheZhang,StudiesontheChemicalConstituentsoftheParasiteofRhododendronDela vayiFranchActaScientiarumNaturaliumUniversitatisPekingensis1996,32(6)703-706Zhang,Qi-HanXu,Jia-XiANovelConversionof2,4-Diaryl-2,3-dihydro-1H-1,5-benzodiazepinesinto 2,4-Diaryl-3H-1,5-benzodiazepinesCHINESEJOURNALOFCHEMISTRY2001,19(4)378-380 JiaxiXu,QihanZhang,LiangbiChenandHuiChenChemoselectivityinreactionsofana–diazo-b-diketonewithsomeconjugativedouble-bondsystemsJ.Chem.Soc.,PerkinTrans.1,2001,2266-2268.JiaxiXu,ChenboWang,QihanZhang.Synthesisof1,3,3a,5-tetraaryl-3a,4,5,6-tetrahydro-3H-1,2,4-tria zolo[4,3-a][1,5]benzodiazepinesHeteroatomChem.,2001,12(6),557-579Su,X.B.;Zhang,Q.H.;Wu,Y.Q.;Xu,J.X.PreparationofHighOpticallyPureLinearSecondaryAlcoholsth .Chem.2002,7,496-500.. Jiao,P.;Xu,J.X.;Zhang,Q.H.;Choi,M.C.K.;Chan,A.S.C."SynthesisofnovelC2-symmetricandenantio mericallypurebisbenzoxazoleandbisbenzothiazoleligandsderivedfromL-andD-tartaricacids",Tetrah edron:Asymmetry,2001,12,3081-3088.。
Research review on the chemical constituents and p
ReviewResearch review on the chemical constituents andpharmacological effects of Viburnum opulusDefeng Liu, Ming Bai, Peng Zhao, Xiaoxiao Huang*Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research &Development, Liaoning Province, School of Traditional Chinese Materia Medica, ShenyangPharmaceutical University, Shenyang 110016, ChinaAbstractViburnum opulus, belonging to Viburnum of Caprifoliaceae family, is commonly used as a Chinese herbal medicine. Many chemical constituents have been isolated from V. opulus, including flavonoids, flavone glycosides, volatile oils and terpenoids. It has antioxidant, antibacterial, antispasmodic, and anticancer effects. V. opulus, with a variety of chemical constituents and remarkable activities, has attracted wide attention. Hence, this report is presented as a review centered on the chemical constituents and pharmacological activities of V. opulus, in order to provide reference for further research and development of Viburnum opulus.Keywords:Viburnum opulus; chemical constituents; pharmacological effects1 IntroductionViburnum opulus L. belongs to the Caprifoliaceae family, commonly known as European cranberrybush or snowball tree. This plant is widely distributed, especially in Eastern European countries and Turkey, and is generally used as an ornamental plant [1]. Fruit of V. opulus (Viburnum) is often made into juice or jam, and used as a traditional medicine to treat pulmonary, stomach, kidney diseases, hypertension and heart diseases.Research on the chemical constituents of * Author to whom correspondence should be addressed. Address: School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China;Tel.:+86-24-23986510;E-mail:*******************. Received: 2020-09-07 Accepted: 2021-02-03V. opulus has shown that it contains flavonoids, flavone glycosides, volatile oils, phenolic acids and terpenoids. Modern pharmacological studies have shown that V. opulus has antioxidant, antibacterial, and antispasmodic effects. In this study, the chemical constituents and their pharmacological activities were summarized, and the detailed investigations would help for further study on V. opulus.2 Research progress of chemical constituents 2.1 FlavonoidsFlavonoids isolated from V. opulus, consist of simple anthocyanins, flavonoids and flavone glycosides. Monica Jordheim reported the identification of a new type of disaccharide linkedto an anthocyanidin, and identified three qualitative anthocyanins from V. opulus, 3-O-glucoside (1), 3-O-(6″-O-arabinosylglucoside) (2),3-O-(2″-O- xylosyl-6″-O-rhamno- sylglucoside) (3) [2](Fig. 1).Flavonoids are procyanidin B1 (4) [3], procyanidin B2 (5)[3], procyanidin C1 (6) [4], catechin (7)[3], epicatechin (8) [4], (+)gallocatechin (9) [5], (-)gallocatechin (10) [5], epigallocatechin (11) [5], epicatechin gallate (12) [5], amentoflavone (13)[6], luteolin (14)[5], and quercetin (15) [5], Additionally, flavone glycosides identified from V. opulus are rutin (16)[5], quercetin-3-O-α-L-arabinopyranosyl-(1→6)-β-D-glucoside (17) [7], quercetin-3-O-β-D-xylopyranosyl-(1→2)-β-D-glucopyranoside (18) [7], quercetin-3-O-L-rhamnoside (19) [7], isorhamnetin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucopyranoside (20) [7], and hyperoside (21) [5] (Fig. 2).Fig. 1 Chemical structures of anthocyanins in the Viburnum opulusFig. 2 Chemical structures of flavonoids and flavone glycosides from Viburnum opulus(to be continued)Continued fig. 22.2 Volatile oilsThe presence of linalool, lilac aldehyde, and lilac alcohol stereoisomers in V. opulus were confirmed in Fig. 3, including S-linalool (22), R-linalool (23), (2S,2′S,5′S)-lilac aldehydes (24), (2R,2′S,5′S)-lilac aldehydes (25), (2S,2′R,5′S)-lilac aldehydes (26), (2R,2′R,5′S)-lilac aldehydes (27), (2R,2′S,5′S)-lilac alcohol (28), (2S,2′S,5′S)-lilac alcohol (29), (2R,2′R,5′S)-lilac alcohol (30), and (2S,2′R,5′S)-lilac alcohol (31) [8].Fig. 3 Chemical structures of volatile oils from Viburnum opulusFig. 4 Chemical structures of terpenoids from Viburnum opulus2.3 TerpenoidsV. opulus contains ursolic acid (32) [3], opulosides I (33), II (34), III (35), IV (36) and X (37) [7]. Opulose X was isolated from V . opulus for the first time (Fig. 4).2.4 OthersOther compounds were also identified from the plant, as shown in Table 1, including chlorogenicacid (38) [6], quinic acid (39) [4], citric acid(40) [7], gallic acid (41) [3], caffeic acid (42) [5], ferulic acid (43) [5], caryophyllene (44) [9], (+)-δ-cadinene (45) [9], germaciene D (46) [9], diethyl phthalate (47) [9], neophytadiene (48) [9], palmitic acid (49) [9], hexadecanoic acid (50) [9], phytol (51) [9], ethyl linolate (52) [9], ethyl linolenate (53) [9], octadecanoic acid ethyl ester (54) [9], squalene (55) [9], eicosanoic acid ethyl ester (56) [9], docosanoic acid ethyl ester (57) [9], and neochlorogenic acid (58) [4].Table 1Aliphatic compounds from Viburnum opulus3 Research progress of pharmacological effects3.1 Antioxidant activityRan Yu determined the contents of total phenol and volatile organic compounds (VOCs) in V. opulus berries grown in Northeastern China [10]. The antioxidant capacities of V. opulus were assessed using DPPH assays. They found that the total phenolic from V. opulus had moderate antioxidant capacities. Sabina Lachowicz measured the antioxidant activity of tested juice by ABTS and FRAP methods, and found that cranberrybush (V. opulus) juice had strong effects [11]. The high antioxidant activity of the ethyl acetate fraction of a dry cranberry (V. opulus) tree bark extract was determined by cathodic voltammetry for the first time [12]. Qualitative analysis showed that the ethyl acetate fraction containing chlorogenic, caffeic, phydroxybenzoic and gallic acids, had antioxidant activity.Some researchers have discovered that V. opulus var. sargentii possesses the highest antioxidant potential among all genotypes investigated by the in vitro methods [4]. Dominika Polka found that the bark of V. opulus had the highest activity against free radicals, due to its high content of phenolic compounds, especially proanthocyanidins and flavanol monomers [13].3.2 Antibacterial activityThe inhibitory effects of ten berries for Chinese juice on Aspergillus niger, Staphylococcus aureus, Proteus and Escherichia coli were investigated, and the results showed that V. opulus had stronger activities against Staphylococcus aureus [10]. Laima Česonienė confirmed that V. opulus juice strongly inhibited the growth of a wide range of human pathogenic bacteria, including Gram-negative (Salmonella typhimurium and S. agona) and Gram-positive (Staphylococcus aureus, Lysteria monocytogenes, and Enterococcus faecalis) organisms [14]. By contrast, the yeasts, Debaryomyces hansenii and Torulas-pora delbrueckii, showed complete resistance to the fruit juice, while Tri-chosporon cutaneum, Kluyveromyces marxianus var. lactis, Saccharomyces cerevisiae, S. cerevisiae 12R, and Candida parapsilosis showed low sensitivity.3.3 Antispasmodic activityJarboe demonstrated that alcoholic and aqueous bark extracts of V. opulus were capable of relaxing the in vitro barium stimulated rat uterus [15]. It was also reported that scopoletin of Viburnum could be38 39 40 41 42 43 44 45 46 47 48chlorogenic acidquinic acidcitric acidgallic acidcaffeic acidferulic acidcaryophyllene(+)-δ-cadinenegermaciene Ddiethyl phthalateneophytadiene6473559999949505152535455565758palmitic acidhexadecanoic acidphytolethyl linolateethyl linolenateoctadecanoic acid ethyl estersqualeneeicosanoic acid ethyl esterdocosanoic acid ethyl esterneochlorogenic acid9999999994responsible for the smooth muscle antispasmodic activity [16]. Researchers also indicated that viopudial’s(V. opulus) mechanism of action was partly due to its effects on cholinesterase [17]. Compared with physostigmine, viopudial showed relatively weak in vitro inhibitory effect on both acetylcholinesterase and butyrylcholinesterase. Additional mechanistic effects, such as a direct musculotrophic action, may also be responsible for the overall activity.Cramp bark of Viburnum is often used as uterine relaxant and antispasmodic. Animal studies have suggested that it has antispasmodic effects on uterus and experiments on human uterine tissue have also indicated that it has a relaxing effect [18].3.4 Anticancer activitiesIt has been reported that the active constituents (naturally occurring lipid aldehydes were isolated from the fruits of V. opulus) can inhibit the growth of H. pylori and induce apoptosis in a gastric cancer cell line (CRL-5971) in vitro [19].Liviu chirigiu used LC-MS analysis of ultrasonicated tinctures of V. opulus and revealed that polyphenols had outstanding antineoplazic curative properties even at extremely low concentrations [20].3.5 Other activitiesIt was reported that the phenolic-rich fraction obtained from the fruit juice of V. opulus possessed cytoprotective activities against t-BOOH-induced insulinoma MIN6 cells intracellular relevant oxidative stress [21].Galip Erdem evaluated the effects of V. opulus (guelder rose) fruit on nephrolithiasis in an animal model and found that guelder rose increased the urine volume and urine citrate levels, decreased urine cystine and oxalate levels, and lowered the crystal deposits in kidney tissue [22]. Avocado and guelder rose also prevented oxidant damage and crystal formation in kidney tissue samples.4 ConclusionAs a traditional medicine, V. opulus is generally considered to be an important source with potential therapeutic effects. This review highlighted the chemical constituents of V. opulus and its important pharmacological activities. In order to provide some reference for further phytochemical investigation of V. opulus.References[1] Moldovan B, Ghic O, David L, et al. The Influence ofStorage on the Total Phenols Content and Antioxidant Activity of the Cranberrybush (Viburnum opulus L.) Fruits Extract. Rev Chim, 2012, 63: 463-464.[2] Jordheim M, Giske NH, Øyvind M. A. Anthocyanins inCaprifoliaceae. Biochem Syst Ecol, 2007, 35: 153-159.[3] Małgorzata ZS, Pawlik N, Polka D, et al. Viburnumopulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by Caco-2 Cells. Antioxidants-Basel, 2019, 8: 262.[4] Kraujalyte V, Venskutonis PR, Pukalskas A, et al.Antioxidant properties and polyphenolic compositions of fruits from different European cranberrybush (Viburnum opulus L.) genotypes. Food Chemistry, 2013, 141: 3695-3702.[5] Yurkiv K, Grytsyk A. HPLC-analysis of phenoliccompounds of European cranberry bush fruits (Viburnum opulus L.). J Pharma Innov, 2017, 6: 526-529.[6] Erdoganorhan I, Altun ML, Severyilmaz B, et al. Anti-Acetylcholinesterase and antioxidant assets of the major components (salicin, amentoflavone, and chlorogenic acid) and the extracts of Viburnum opulus and Viburnum lantana and their total phenol and flavonoid contents. J Med Food, 2011, 14: 434-440.[7] Perova IB, Zhogova AA, Cherkashin AV, et al.Biologically active substances from European guelder berry fruits. Pharm Chem J, 2014, 48: 332-339.[8] Dotterl S, Burkhardt D, Weisbecker B, et al.Linalool and lilac aldehyde/alcohol in flower scents: Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J Chromatogr A, 2006, 1113: 231-238.[9] A d e b a y o A H,B a l a d e A,Ya k u b u O F.G a sChromatography-mass spectrometry analysis of Viburnum opulus (L) extract and its toxicity studies in rats. Asian J Pharm Clin Res, 2017, 10: 383.[10] Yu R, Chen L, Xin X, et al. Comparative assessment ofchemical compositions, antioxidant and antimicrobial activity in ten berries grown in China. Flavour Frag J, 2020, 35: 197-208.[11] Lachowicz S, Oszmianski J. The influence of additionof cranberrybush juice to pear juice on chemical composition and antioxidant properties. J Food Sci Technol, 2018, 55: 3399-3407.[12] Andreeva TI, Komarova EN, Yusubov MS, et al.Antioxidant activity of cranberry tree (Viburnum Opulus L.) bark extract. Pharm Chem J, 2004, 38: 548-550. [13] Polka D, Podsedek A, Koziolkiewicz M, et al.Comparison of chemical composition and antioxidant capacity of fruit, flower and bark of Viburnum opulus.Plant Food Hum Nutr, 2019, 74: 436-442.[14] C e s o n i e nėL,D a u b a r a s R,Vi s k e l i s P,e t a l.Determination of the total phenolic and anthocyanin contents and antimicrobial activity of Viburnum opulus fruit juice. Plant Food Human Nutr, 2012, 67: 256-261.[15] Jarboe CH, Schmidt CM, Nicholson JA, et al. Uterinerelaxant properties of Viburnum. Nature, 1966, 212: 837.[16] Jarboe CH, Zirvi KA, Nicholson JA, et al. Scopoletin,an antispasmodic component of Viburnum opulus and prunifolium. J Med Chem, 1967, 10: 488-489.[17] Nicholson JA, Darby TD, Jarboe CH, et al. Viopudial,a hypotensive and smooth muscle antispasmodic fromViburnum opulus. Exp Biol Med, 1972, 140: 457-461. [18] Dietz BM, Hajirahimkhan A, Dunlap TL, et al.Botanicals and their bioactive phytochemicals for women’s health. Pharmacol Rev, 2016, 68: 1026-1073.[19] Laux MT, Aregullin M, Rodriguez E, et al. Inhibitionof helicobacter pylori and gastric Cancer Cells by lipid aldehydes from Viburnum opulus (Adoxaceae). Nat Prod Commun, 2007, 2: 1015-1018.[20] Chirigiu L, Bubulica MV, Averis LME. Investigations ofthree phytopharmaceutical products from Caprifoliaceae family using GC-MS and LC-MS. Rev Chim-Bucharest, 2012, 63: 764-767.[21] Zakos-Szyda M, Kowalska-Baron A, Pietrzyk N, etal. Evaluation of Viburnum opulus L. Fruit phenolics cytoprotective potential on insulinoma MIN6 Cells relevant for diabetes mellitus and obesity. Antioxidants-Basel, 2020, 9: 433.[22] Erdem G, Kesik V, Honca T, et al. Antinephrolithiaticactivity of Persea americana (avocado) and Viburnum opulus (guelder rose) against ethylene glycol-induced nephrolithiasis in rats. Afr J Tradit Complem, 2016, 13: 110-119.。
葛花化学成分的研究
葛花化学成分的研究裴香萍;裴妙荣;丁海琪【摘要】从葛花中分离得到2个化合物,经理化和光谱鉴定分析为:尼泊尔鸢尾苷元(1)、7-甲氧基香豆素(2),其中7-甲氧基香豆素为首次从葛花药材中分离得到.【期刊名称】《山西大学学报(自然科学版)》【年(卷),期】2010(033)003【总页数】2页(P423-424)【关键词】葛花;化学成分;尼泊尔鸢尾苷元;7-甲氧基香豆素【作者】裴香萍;裴妙荣;丁海琪【作者单位】山西中医学院,中药系,山西,太原,030024;山西中医学院,中药系,山西,太原,030024;山西中医学院,中药系,山西,太原,030024【正文语种】中文【中图分类】R284.1葛花为豆科植物葛(Pueraria lobata(Willd.)Ohwi)的花,异名葛条花,性味甘凉,其功用为解酒醒脾,治伤酒发热烦渴,不思饮食,呕逆吐酸,吐血,肠风下血[1],是临床用于解酒的常用药.日本科学家最近揭示了葛花的解酒机制,他们认为是葛花中含有的皂角苷和异黄酮分别对免疫系统和内分泌系统起到了协调作用,改善了酒精引起的新陈代谢异常症状.Kim和Park、周艳晖等、张淑萍等均曾从葛(Pueraria thunbergiana)花、峨嵋葛(Pueraria omeiensis)花、野葛花中分离出鸢尾苷等异黄酮[2-5].作者采用聚酰胺柱色谱法从葛花中分离得到2个化合物并进行了结构鉴定,它们分别为:尼泊尔鸢尾苷元、7-甲氧基香豆素.其中7-甲氧基香豆素为首次从葛花中分离得到.Equinox 55 FT-IR红外光谱仪KBr压片;Bruker-AM-500超导核磁共振仪(瑞士Bruke公司);CQ-250超声波清洗仪(工作频率:(33±2)kHz,320 W);X4型熔点测定仪(未校正);ZF-90型暗箱式紫外透射仪(上海顾村电光仪器厂);薄层层析聚酰胺薄膜(浙江省台州市路桥四甲生化塑料厂);色谱用硅胶为青岛海洋化工厂产品;所用试剂一般均为分析纯.葛花采自河南省伏牛山,晾干,去柄.药材经山西省药检所高天爱老师鉴定.将1.4 kg葛花分成7份,每份200 g,用体积分数95%乙醇加热回流两次,每次1 h,第一次用95%乙醇2 000 mL,第二次用95%乙醇1 600 mL回收乙醇,合并浸膏,水浴加热干燥,挥发至无醇味,干燥,得干膏312 g.将所得干膏分成三份,分别以50 mL 水溶解,用乙酸乙酯萃取三次,每次200 mL合并提取液,回收乙酸乙酯,得浸膏60 g.所得浸膏用少量乙酸乙酯溶解,加入聚酰胺粉(60~90目)约30 g拌匀,装柱,用不同浓度的乙醇梯度洗脱(5%~95%),逐份收集,将收集部分浓缩至小体积,放置,析出结晶后,检测,25%的乙醇洗脱液中得化合物(1),35%的乙醇洗脱液中得化合物(2).化合物(1) 淡黄色针状晶体,m.p.236~237℃,UVλMeOHmaxnm265,212.IR(KBr,cm-1)ν:3478,1640, 1609,1512,1466;ESI-MS:m/z301[M+H]+. 1H NMR(500M,DMSO-d6)δ(ppm)8.32 (1H,s,H-2),7.36(2H,d,J=8.5 Hz,H-2’,6’),6.81(2H,d,J=8.5 Hz,H-3’,5’),6.49(1H,s, H-8),3,76(3H,s,6-OCH3),9.57(1H,brs,4-OH),10.74(1H,brs,7-OH),13.04(1H,s,5-OH).13C NMR(125 M,DMSO-d6)δ(ppm)154.1 (C-2),121.8(C-3),180.5(C-4),153.2(C-5),131.4(C-6),157.4(C-7),93.8(C-8),152.7(C-9), 104.8(C-10),121.2(C-1’),130.1(C-2’,6’),115.0(C-3’,5’),157.5(C-4’),59.9(6-OCH3).化合物(1)的实测值与文献[6]一致,故此化合物为尼泊尔鸢尾苷元.化合物(2) 乳白色片状结晶,UVλMeOH nm:320.6,203.2.I R(KBr,cm-1)ν::1705,1612,1505; ESI-MS(m/z):177[M+1]+.1H NMR(500M,DMSO-d6)δ(ppm)6.23 (1H,d,J=9.6 Hz,H-3)和7.43(1H,d,J=9.6 Hz,H-4)为内酯环上的两个质子,6.93(2H)和7.07(1H)为芳环上的三个质子,3.79(3H,s)为甲氧基;13C NMR(125M,DMSO-d6)δ(ppm)167.9 (C-2),149.6(C-7),146.3(C-9),144.1(C-4),127.0(C-5),120.9(C-6),116.2(C-3),114.2(C-8), 112.1(C-10),58.4(C-11).化合物(2)的实测值与文献[7]一致,经数据分析,确定该晶体为7-甲氧基香豆素.致谢:本课题在完成过程中得到了中国药品生物制品鉴定所鲁静、何轶、张聿梅老师及山西中医学院原红霞老师的帮助,在此一并致谢.【相关文献】[1] 江苏新医学院.中药大辞典[S].上海:上海科学技术出版社,1986:2307-2308.[2] CHUNG SOOK K,SUNMI S,HYEKYUNG H,et al.Study of Substance Changes in Flowers ofPueraria Thunbergiana [J].A rch Pharm Res,2003,26:210-213.[3] PARK H J,MOON J O,L EE K T,et al.Isoflavone Glycosides from the Flowers ofPueraria Thunbergiana[J].Phytochemistry,1999,51:147-151.[4] ZHOU Y-H(周艳晖),CEN Y-Z(岑颖洲),XU S-Y(许少玉),et al.Stuay of Compounds of Isoflavone in theFlowersof Pueraria omeiensis[J].A nalysis laboratory(分析实验室),2003,22(Suppl):34-35.[5] ZHANG S-P,ZHANG Z-T.Studies on the Chemical Constituents of Isoflavone from the Flowers ofPueraria Lobata[J]. N atural Product Research A nd Development(天然产物研究与开发),2005,17(5)595-597.[6] WAGNER H,CHARI V M,SONNENBICHL ER J.13C NMR Spektren Naturlich Vorkom-menker Flavoncide[J].Tetrahedron Lett,1976,21:1799-1800.[7] WANG Qian,WANG Feng,XUE Song,YU Zhi-guo,et al.Separation and Quantitative Determination of the 7-methoxycoumarin inA rtemisia capillarisThunb(茵陈中7-甲氧基香豆素的分离与含量测定)[J].Journal of S henyang Pharmaceutical Universit(沈阳药科大学学报),2003,20(1):12-14.。
甘草黄酮的研究进展
甘草黄酮的研究进展赵明春1,2贾绍华3(1. 国家教育部抗肿瘤天然药物工程研究中心,哈尔滨 150076;2. 哈尔滨商业大学生命科学与环境科学研究中心,哈尔滨150076;3. 哈尔滨商业大学药学院,150076)摘要:本文主要介绍了中药甘草中黄酮类成分的结构、提取工艺、化学成分、药理作用、应用前景及可能存在的毒副作用。
旨在为甘草黄酮的进一步研究开阔新的思路,将其潜在的药用价值开发出来奠定坚实的基础。
关键词:甘草;黄酮;研究进展甘草是豆科植物乌拉尔甘草Glycyrrhiza uralensis Fisch.、胀果甘草G. inflata Bat. 或光果甘草G.glabra. L. 的干燥根和根茎,是临床上最常用的中草药品种[1]。
其主要有效成分有甘草酸和甘草黄酮。
据有关报道,甘草黄酮是一类生物活性较强的物质,有抗溃疡、抗菌、抗炎、解痉、镇痛、降血脂等作用[2],傅乃武等[3]证实甘草中的黄酮类成分有明显的抗氧化作用,近年来的研究还发现甘草黄酮具有防治艾滋病的功效。
因此,对甘草黄酮的研究越来越引起了人们的重视。
1 甘草黄酮的化学结构及成分1.1 化学结构甘草黄酮类物质主要是指具有C6-C3-C6基本母核的一类天然产物,其中C3部分可是脂链,也可与C6部分生成6元或5元杂环,迄今为止,已从甘草中分离出150多个黄酮类化合物,大致包括黄酮类、黄酮醇类、查尔酮类、双氢查尔酮类、双氢黄酮类等成分[4]。
1.2 化学成分1.2.1 黄酮类主要含有夏佛托苷(schaftoside)、佛来心苷(violanthin)、异夏佛托苷(isoschaftoside)、异佛来心苷( isoviolanthin)、甘草黄酮A(licoflavone A)、芒柄花素(formononetin)[5]、芒柄花苷(ononin)、4'7-二羟基黄酮(4',7-dihydroxyflavone)等成分。
1.2.2 异黄酮类主要含有异芒柄花苷(isoononin)、黄甘草苷(glycyroside)、甘草异黄酮A(licoisoflavone A)、黄甘草异黄酮B(eurycarpin B)、黄甘草异黄酮A(eurycarpin A)、毛蕊异黄酮(calycosin)等成分[5]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In Oriental Foods and Herbs; Ho, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2003.
Materials and Methods
Plant and Material Leaves of Eriobotrya japonica (Thunb.) Lindle. (Rosaceace) were collected from Anhui province, China, in Sept. 1994. Voucher specimens are deposited in
2 3 1 1 1 2
New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Cook College, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, People's Republic of China Department of Food Science, Cook College, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901
Downloaded by PENNSYLVANIA STATE UNIV on July 18, 2012 | Publication Date: August 5, 2003 | doi: 10.1021/bk-2003-0859.ch022
Loquat (Chinese name: Pi Pa), Eriobotrya japonica (Thunb.) Lindle is a subtropical tree belonging to the rose family. It is indigenous to southeastern China and the southern end of Japan. Now it is widely cultivated all over the world. The tree is evergreen, with distinctly ribbed leaves, and grows to 5 to 10 meters high. Thefruitis small (3 to 4 cm long), pale tangerine-colored, and pearshaped, sometimes with a single almost spherical stone in the center. The taste is quite delicate, but distinctive, with a pleasant tartness. The leaves are glossy, dark green above and whitish or rusty-hairy beneath. These characteristics of the tree have made the loquat an excellent specimen in the home landscape. The fruits, kernel and leaves of loquat are all used for medicinal purpose. The leaf of loquat is a well known Traditional Chinese Medicine used as anti tussive and anti-inflammatory agent for acute and chronic bronchitis. Phytochemical studies (7-5) with this species have led to the isolation of many natural products including flavonoids, triterpenes and sesquiterpene glycoside. Some of the components have been found to have antioxidant (2), antiviral (4), cytotoxic (7) and hypoglycemic (5) properties. In the course of ongoing search for anti-tussive and anti-inflammatory components from this plant, an ethanolic extract of the leaves of E. japonica was examined. We report here the isolation and structural determination of three new components as well as seventeen known compounds.
2 3
1
Chemical study of Eriobotrya japonica leaves led to the isolation of three new compounds, linguersinol 9'-O-β-D -xylopyranoside, eriobotrin and isoeriobotrin, and together with seventeen known compounds, including three lignans, linguersinol, 2,6-dimethoxy-4-(2-propenyl)phenol and 2,6dimethoxy-4-(2-propenyl)phenol 1-Ο-β-D-glucopyranoside, eight megastigmane derivatives, and (6R,7E,9R)-9-hydroxy4,7-megastigmadien-3-one 9-O-β-D-apiofuranosyl-(1-->6)-βD-glucopyranoside, (6R,7E,9R)-9-hydroxy-4,7-megastigma -dien-3-one 9-O-β-D-xylopyranosyl-(1-->6)-β-D-glucopyrano -side, (6R,7E,9R)-9-hydroxy-4,7-megastigmadien-3-one 9-O-α -L-arabinopyranosy-(1-->6)-β-D-glucopyranoside, (6R,JE,9R)9-hydroxy-4,7-megastigmadien-3-one, (6R,7E,9R)-9-hydroxy4,7-megastigmadien-3-one 9-O-β-D-glucopyranoside, (6R,7E, 9S)-9-hydroxy-4,7-megastigmadien-3-one 9-O-β-D-gluco -pyranoside, (6S,7E,9R)-6,9-dihydroxy-4,7-megastigmadien-3one and (6S,7E,9R)-6,9-dihydroxy-4,7-megastigmadien-3-one
Chapter 22
Downloaded by PENNSYLVANIA STATE UNIV on July 18, 2012 | Publication Date: August 5, 2003 | doi: 10.1021/bk-2003-0859.ch022
Studies on the Chemical Constituents of Loquat Leaves(Eriobotryajaponica)
Qing-Li Wu , Mingfu Wang , James E. Simon , Shi-Chun Yu , Pei-Gen Xiao , and Chi-Tang Ho
293
9-O-β-D-glucopyranoside, two flavonol glycosides, quercetin3-OP-D-glucoside and quercetin-7-ct-L-rhamnoside and four triterpenes, 2α,3α, 19a-trihydroxy-12-oleanen-28-oic acid, euscaphic acid, 2a-hydroxyoleanolic acid and oleanolic acid. Their structures were elucidated on the basis of spectral and chemical evidences.
Downloaded by PENNSYLVANIA STATE UNIV on July 18, 2012 | Publication Date: August 5, 2003 | doi: 10.1021/bk-2003-0859.ch022
Extraction and Isolation Air-dried leaves (9.5 Kg) were extracted with 95% EtOH for three times. The ethanolic extract (1.33 Kg) was dissolved in water, and then extracted with petrol, CH C1 , EtOAc and H - B U O H . The w-BuOH soluble fraction was concentrated under reduced pressure to get 47 g extract. The H - B U O H extract was chromatographed on silica gel column using a step-gradient CHCl -MeOHH 0 and 1000 mL fraction was collected. Those fractions containing similar components as checked by TLC were combined and total 11 fractions were combined. Fr. 1 was further purified on Sephadex LH-20 (MeOH) to give compound 5 (15 mg). Fr. 2 was repeatedly re-chromatographed on Sephadex LH-20 (MeOH) and silica H to get compounds 2 (40 mg) and 10 (15 mg). Fr. 3 was repeatedly chromatographed on silica H and Sephadex LH-20 (MeOH) to get compound 14 (20 mg). Fr. 4 was further purified on Sephadex LH-20 (MeOH) to give pure compound 13 (230 mg). Fr. 5 was rechromatographed on Silica Gel (CHCl -AcOEt-MeOH-H 0) and followed by gel filtration column chromatography on Sephadex LH-20 (MeOH) to give compounds 6 (40 mg), mixture of 3 and 4 (60 mg), 11 (70 mg) and 12 (30 mg). Re-separation offr.6 on Silica Gel (CHCl -MeOH) and Sephadex LH-20 (MeOH) gave compound 1 (20 mg). Re-purification of fr. 9 on silica gel (CHCl -EtOAc-MeOH) and Sephadex LH-20 (MeOH) gave compounds 9 (15 mg), 15 (700 mg) and 16 (10 mg). Fr. 10 was rechromatographed on silica gel and Sephadex LH-20 (MeOH) to afford compounds 7 (330 mg) and of 8 (620 mg). The EtOAc extract (155 g) was chromatographed on silica gel column using step-gradient (CHCl -methanol) and totally 13 fractions were obtained. Rechromatography of fr. 4 on silica gel (petrol-CHCl ) gave compound 20 (30 mg). Fr. 6 was further purified on silica H (petrol: EtOAc) and Sephadex LH-20 (MeOH) to afford compounds 17 (35 mg) 18, (240 mg) and 19 (360 mg). The structures of compounds 1-14 are shown in Figure 1.