三阶行列式

合集下载

三阶矩阵的行列式

三阶矩阵的行列式

三阶矩阵的行列式一、下面介绍三阶行列式概念. 设已知9个数排成正方形表111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭,则数112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a ++---称为对应于这个表的三阶行列式,用记号111213212223313233a a a a a a a a a 表示,因此111213212223112233122331132132132231122133112332313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---.(5)关于三阶行列式的元素、行、列等概念,与二阶行列式的相应概念类似,不再重复.●例12124312351122(4)32321(4)5213235-=⨯⨯+⨯⨯+⨯-⨯-⨯⨯-⨯-⨯-⨯⨯ 302241220610=+--+-=.利用交换律和结合律,可把(5)式改写如下:111213212223112233233212213323311321322231313233()()()a a a a a a a a a a a a a a a a a a a a a a a a =---+-. 把上式右端3个括号中的式子表示为二阶行列式,则有111213222321232122212223111213323331333132313233a a a aa a a a aa a a a a a a a a a a a a a a =-+.上式称为三阶行列式按第一行的展开式.●例2 将例2中的行列式按第一行展开并计算它的值. 解21231414343122352523235---=-+212(22)2(18)24223610=⨯--+⨯-=+-=.二、三阶方程组的行列式 设三阶方程组的系数矩阵为111213212223313233a a a a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 则只用第三类初等变换的高斯消元法求得其上三角矩阵如下:()()11121311221221112313211111223312233113213213223112213311233211221221a a a 0a a -a a /a a -a a /a 00(a a a +a a a +a a a -a a a -a a a -a a a )/a a -a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦U要求三个对角元素的连乘积不为零。

三阶行列式

三阶行列式
a3 b3 c3
表示成含有几个二阶行列式运算的式子 吗?
.
3、余子式与代数余子式
a1 b1 c1
a2 b2 c2 a1b2c3 a2b3c1 a3b1c2
a3 b3 c3 a3b2c1 a2b1c3 a1b3c2,
a1 b2c3 b3c2 b1 a3c2 a2c3
一般地,把三阶行列式中某个元素所在 的行和列划去,将剩下的元素按原来的 位置关系组成的二阶行列式叫该元素的 余子式.
把余子式添上相应的符号(正号省略) 叫做该元素的代数余子式.
A1

b2 b3
c2 c3
B1
.


a2 a3
c2 c3
代数余子式符号的确定:
一个元素 aij 的代数余子式的符号:
由下标i+j的奇偶性决定:如果i+j为偶数, 那么代数余子式取正号;如果i+j为奇数, 那么代数余子式取负号;
1 3
3
32 1 0 2
3 2 2
1
2
1 3
.
.
3 4 1 4 1 3
例3:试将 2 5
5 22
3 22
5
2 53 1 3 4 写成三阶行列式的形式是 2 5 2 __________.来自例3.计算:a2
b2 b3
c2 c3
b2
a2 a3
c2 c3
c2
a2 a3
.
a b c 注意: 红线上三元素的
1
1
1 乘积冠以正号,蓝线上
a b c 三元素的乘积冠以负号.
2
2
2
a3 b3 c3
a1b2c3a2b3c1a3b1c2

三阶行列式与矩阵迹

三阶行列式与矩阵迹

三阶行列式与矩阵迹在线性代数中,三阶行列式与矩阵迹是两个重要的概念。

它们在矩阵运算和矩阵性质研究中具有重要作用。

下面我们将详细介绍三阶行列式与矩阵迹的计算方法及其应用。

一、简介三阶行列式与矩阵迹的概念1.三阶行列式:一个三阶行列式是由一个三阶方阵的元素按照一定规则组成的。

它表示的是这个三阶方阵所描述的线性变换对任意一组输入的输出结果。

三阶行列式的定义为:$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$2.矩阵迹:矩阵迹是一个矩阵所有元素的和的奇数倍,即矩阵迹等于矩阵的主对角线元素之和乘以奇数。

对于一个三阶矩阵A,其矩阵迹表示为:$$trace(A) = a_{11} + a_{22} + a_{33}$$二、计算三阶行列式的方法1.递推法:通过递推的方式计算三阶行列式,首先计算二阶行列式,然后将结果与第三个元素相乘,最后将所有结果相加。

2.拉普拉斯展开式:根据行列式的定义,可以将三阶行列式表示为三个二阶行列式的乘积减去中间元素的乘积。

通过拉普拉斯展开式,可以快速计算三阶行列式。

三、矩阵迹的计算方法1.直接计算法:直接将矩阵的主对角线元素相加,再乘以奇数。

2.高斯消元法:通过高斯消元法计算矩阵的秩,然后将秩乘以矩阵主对角线元素之和得到矩阵迹。

四、三阶行列式与矩阵迹的关系1.对于一个三阶方阵A,其行列式与矩阵迹有如下关系:$$|A| = a_{11}a_{22}a_{33} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} + a_{11}a_{23}a_{32} - a_{12}a_{23}a_{31}$$2.矩阵迹是行列式的一条对角线元素之和,即:$$trace(A) = a_{11} + a_{22} + a_{33}$$五、举例说明三阶行列式和矩阵迹的计算与应用1.计算三阶行列式:$$|A| = begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix} = 1times5times9 + 2times6times7 - 3times4times8 = 37$$2.计算矩阵迹:$$trace(A) = 1 + 5 + 9 = 15$$3.应用:在机器学习领域,矩阵迹常用于计算代价函数的梯度。

三阶行列式向量

三阶行列式向量

三阶行列式向量一、什么是行列式向量在线性代数中,矩阵是一个有限个数的数按一定规律排列成的矩形阵列。

在矩阵的基础上,行列式向量是一种重要的概念。

它是通过将数按一定规则排列形成的一种新的数学结构。

行列式向量不仅可以用于解线性方程组,还在计算机科学、统计学等领域有着广泛的应用。

二、三阶行列式向量的定义三阶行列式向量是由3x3矩阵中元素按一定规则排列形成的。

具体而言,三阶行列式向量由三行三列的矩阵形成,如下所示:[a b c d e f g ℎi] 其中,a 、b 、c 、d 、e 、f 、g 、h 、i 是矩阵中的元素。

三阶行列式向量可用记法表示为:∣∣∣∣∣∣a b c d e f g ℎi ∣∣∣∣∣∣ 三、计算三阶行列式向量的方法计算三阶行列式向量的方法有多种,其中常用的方法是按代数余子式和拉普拉斯展开定理进行计算。

下面将分别介绍这两种计算方法。

3.1 按代数余子式计算按代数余子式计算三阶行列式向量的方法主要包括以下几个步骤:1. 将原始矩阵按第一行展开,得到:a ∣∣∣e f ℎi ∣∣∣−b ∣∣∣d f g i ∣∣∣+c ∣∣∣de g ℎ∣∣∣2. 计算各个代数余子式的值,其中代数余子式的计算方法为:(−1)i+j M ij,其中M ij表示将第i 行第j 列的元素划去后所形成的2x2矩阵的行列式向量。

3. 将步骤1中的各个代数余子式的值带入,计算得出最终的行列式向量的值。

3.2 拉普拉斯展开定理计算拉普拉斯展开定理是计算行列式向量的常用方法之一,其步骤如下:1. 选择矩阵中的任意一行或一列,假设选择第一行。

2. 以选择的行或列为基准,将行列式向量展开成若干个二阶行列式向量。

3. 计算每个二阶行列式向量的值,并根据相应的符号将它们加和得到最终的行列式向量的值。

3.3 计算示例假设有以下的三阶行列式向量:∣∣∣∣∣∣123456789∣∣∣∣∣∣ 按代数余子式的方法,展开计算如下:1∣∣∣5689∣∣∣−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣ 计算代数余子式的值:1(5×9−6×8)−2(4×9−6×7)+3(4×8−5×7)计算得出最终的行列式向量的值。

三阶行列式的计算

三阶行列式的计算

三阶行列式称左式的左边为三阶行列式,右边的式子为三阶行列式的展开式。

目录1 基本概念2 计算方法1 基本概念2 计算方法1 基本概念对于三元线性方程组,如上图利用加减消元法,为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。

记称上式的左边为三阶行列式,右边的式子为三阶行列式的展开式。

2 计算方法标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。

我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。

这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。

例如a1 a2 a3b1 b2 b3c1 c2 c3结果为a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)这里一共是六项相加减,整理下可以这么记:a1(b2·c3-b3·c2) + a2(b3·c1-b1·c3) + a3(b1·c2-b2·c1)此时可以记住为:a1*a1的代数余子式+a2*a2的代数余子式+a3*+a3的代数余子式某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。

行列式的每一项要求:不同行不同列的数字相乘如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在b2 b3 中找)c2 c3而a1(b2·c3-b3·c2)+a2(b1·c3-b3·c1)+a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它每行的每一个数乘以它的代数余子式之和某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。

三阶矩阵行列式计算公式

三阶矩阵行列式计算公式

三阶矩阵行列式计算公式
三阶矩阵行列式计算公式:
1、矩阵行列式:当一个矩阵中元素按行(列)排列时,这个矩阵的行(列)式就是由这个矩阵中各元素的多元一次积组成的式子。

2、三阶矩阵行列式计算公式:
当一个矩阵的阶数为3时,其行列式的计算公式为:
△=a11·a22·a33+a12·a23·a31+a13·a21·a32 -
(a13·a22·a31+a11·a23·a32+a12·a21·a33)
其中aij表示矩阵的第i行第j列的元素的值。

3、三阶矩阵行列式的展开计算方法:
当一个矩阵的阶数为3时,其行列式一般用展开的方法来计算。

展开是把一元二次方程表达式分解成多个定义同等的一元二次式。

三阶矩阵行列式计算步骤如下:
(1)选取矩阵中一行或一列,并写出矩阵行列式的展开式;
(2)把选出的行或列换成与其他行(列)不同的其他行(列);
(3)根据求行列式的性质,把展开式中系数的符号颠倒;(4)重新组合,用得到的新式子计算矩阵行列式的值;(5)经过几次混合计算,最终可以求得矩阵的行列式的值。

_三阶行列式

_三阶行列式

0 1 3 按第1列和第2行分别 1
例1.将行列式 D 2 1 2 3
展开并求值. 1 3 0 1 0 1 解: D 3 2 (2) 32 3 1 3 1 1 3
0 1 3 1 3 0 D 2 1 3 32 3 1 2 1 2 3
若 a1 A 1 a2 A 2 a3 A 3 0
d1 A1 d 2 A2 d3 A3 则:x a1 A1 a2 A2 a3 A3
b 2 b1 A1 b2 A2 b3 A3 0 改写为: c1 A1 c2 A2 c3 A3 0 c 2
一般选择0较多的行或列进行展开求值.
例2.证明下列恒等式:
a1 a2 a3 0 c1 a1 b1 b2 b3 b1 a1 c1 c2 c3 b1 a1 b1 b2 b3 c1 c2 c1 c2 c3 0 0 c2 0, a2 0 c3 a3 a1 0 c1 a3 a1 a2 a3 b1 b2 b3 b2 0, a2 b3 a3 b2 a2 b3 a3 c1 a1 0 c3 a2
D a1 A1 b1B1 c1C1 a2 A2 b2 B2 c2C2 a3 A3 b3 B3 c3C3
一、三阶行列式的展开II(续) 定理1:三阶行列式等于其任意列(或行)的所有元 素分别和它们的代数余子式的乘积的和.
a1 D a2 a3 b1 b2 b3
2 1
(b1c3 b3c1 ) b1c2 b2c1 b2c3 b3c2 b1 b2 b2 b3
b1
c1
b3 c3 c1 c2
c2 c3
不妨令:
A1 b2 b3 c2 c3 A2 b1 b3 c1 c3 b1 A3 b2 c1 c2

三阶行列式求法

三阶行列式求法

求解三阶行列式的方法可以使用Sarrus法则或展开法。

1. Sarrus法则:三阶行列式的Sarrus法则是一种通过计算交叉相乘的方式求解行列式的方法。

具体步骤如下:假设有一个三阶行列式:| a b c || d e f || g h i |(1) 从左上角的元素开始,将每个元素与其右下方的元素相乘,连乘三次,并将乘积相加:a * e * i +b * f * g +c *d * h(2) 从右上角的元素开始,将每个元素与其左下方的元素相乘,连乘三次,并将乘积相减:c * e * g + a * f * h + b *d * i(3) 将上述两个结果相减,即可得到行列式的值。

2. 展开法:三阶行列式的展开法是一种将行列式按照某一行(或列)展开成若干个二阶行列式的方法。

具体步骤如下:假设有一个三阶行列式:| a b c || d e f || g h i |(1) 选择一行(或列)进行展开,例如选择第一行展开。

(2) 将展开的行(或列)的元素与其对应的代数余子式相乘,然后交替相加或相减:a * A11 -b * A12 +c * A13其中A11,A12,A13 分别是对应元素的代数余子式。

代数余子式的计算方法为,将包含对应元素的行和列划去,然后计算剩下的二阶行列式的值。

例如,A11 是划去第一行和第一列后剩余二阶行列式的值。

(3) 将上述结果相加或相减,即可得到行列式的值。

通过Sarrus法则或展开法,可以求解任意三阶行列式的值。

请注意,这些方法可以扩展到更高阶的行列式。

3阶行列式计算方法

3阶行列式计算方法

3阶行列式计算方法行列式是线性代数中的一个重要概念,由一系列数的排列所组成,常用于描述线性方程组的解以及计算面积、体积等。

其中,3阶行列式是比较常见的一种,其计算方法如下:1. 先列出行列式的表达式。

一个3阶行列式通常的表示方式是:$$\begin{vmatrix}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$其中,a11~a33为3x3矩阵的各元素。

2. 保留第1行的各元素,将第1列剩下的元素构成2阶矩阵,并求出其行列式的值。

例如:将上述行列式中的第1行保留,去掉第1列,得到2阶矩阵:$$\begin{vmatrix}a_{22} & a_{23}\\ a_{32} & a_{33} \end{vmatrix}$$求出该矩阵的行列式值记作A1,即:$$A1= a_{22}a_{33}-a_{23}a_{32}$$3. 保留第2行的各元素,将第1列和第3列剩下的元素构成2阶矩阵,并求出其行列式的值。

例如:将上述行列式中的第2行保留,去掉第1列和第3列,得到2阶矩阵:$$\begin{vmatrix}a_{12} & a_{13}\\ a_{32} & a_{33} \end{vmatrix}$$求出该矩阵的行列式值记作A2,即:$$A2= a_{12}a_{33}-a_{13}a_{32}$$4. 保留第3行的各元素,将第2列剩下的元素构成2阶矩阵,并求出其行列式的值。

例如:将上述行列式中的第3行保留,去掉第2列,得到2阶矩阵:$$\begin{vmatrix}a_{12} & a_{13}\\ a_{22} & a_{23} \end{vmatrix}$$求出该矩阵的行列式值记作A3,即:$$A3= a_{12}a_{23}-a_{13}a_{22}$$5. 最后,将上述三个值按照一定顺序代入以下公式求行列式的值:$$\begin{vmatrix}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}A1-a_{21}A2+a_{31}A3$$其中,一定要记住加减号的顺序。

三阶行列式计算

三阶行列式计算

三阶行列式计算
三阶行列式性质性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面
利用对角线法则。

在已给的行列式的右边添加已给行列式的第一列和第二列,把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线成为次对角线。

这时候行列式的值就等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。

利用对角线法则进行计算时,将实线上的三个元素的乘积冠正号,虚线上的三个元素乘积冠名负号,利用余子式。

将矩阵划去第i行和第j列所产生的的n-1阶行列式叫做矩阵a的元素aij的余子式,记为mij。

然后利用改写余子式的方法,将行列式的第二行和第三行也同样改写展开,最后按照+-+-+-的规律给每一项添加符号即可。

提出了一种计算三阶行列式的新方法,把三阶行列式的计算转化为两阶行列式的计算,并且与行列式按行(列)展开有很大的区别.1预备知识通过文献我们知道三阶矩阵的行列式的基本算法.现在我们看一看如何计算一个三阶矩阵的行列式。

三阶行列式

三阶行列式

三阶行列式
三阶行列式是由三行三列构成的,其中角标有两个,第一个表示行序数,第二个表示列序数。

三阶行列式是除了二阶以外最好记的行列式。

三阶行列式计算公式:是行列式结果=a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1。

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

无论是在线性代数、多项式理论,还是在微积分学中,行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

三阶行列式公式

三阶行列式公式

三阶行列式公式【实用版】目录1.三阶行列式的定义2.三阶行列式的展开式3.三阶行列式的性质4.三阶行列式的应用正文1.三阶行列式的定义三阶行列式是一个 3x3 矩阵所对应的行列式,即由三个 3x3 矩阵的元素组成,用一个竖线符号将矩阵分隔开。

三阶行列式的表示形式为:D = | a11 a12 a13 || a21 a22 a23 || a31 a32 a33 |2.三阶行列式的展开式三阶行列式的展开式是将第一行的元素分别乘以与其对应的 2 阶子行列式,然后求和。

2 阶子行列式是指从 3x3 矩阵中选取 2 行和 1 列所组成的 2x2 矩阵的行列式。

三阶行列式的展开式为:D = a11 * (a22 * a33 - a23 * a32) - a12 * (a21 * a33 - a23 * a31) + a13 * (a21 * a32 - a22 * a31)3.三阶行列式的性质三阶行列式具有以下性质:(1) 行列式的值与它的转置行列式相等,即 D = det(A") = a22 * a33- a23 * a32 - a12 * a31 + a13 * a31 - a11 * a23 + a13 * a21。

(2) 三阶行列式的值等于它任意两行的乘积之和,再乘以 -1,即 D = -a11 * (a22 * a33 - a23 * a32) - a12 * (a21 * a33 - a23 * a31) - a13 * (a21 * a32 - a22 * a31)。

(3) 三阶行列式的值等于它任意两列的乘积之和,再乘以 -1,即 D = -a11 * (a22 * a33 - a23 * a32) - a12 * (a21 * a33 - a23 * a31) - a13 * (a21 * a32 - a22 * a31)。

4.三阶行列式的应用三阶行列式在数学和物理学中有广泛应用,例如求解线性方程组、计算矩阵的逆和行列式为 0 时判断矩阵是否可逆等。

三阶行列式的逆序数

三阶行列式的逆序数

三阶行列式的逆序数
摘要:
一、三阶行列式的概念
二、三阶行列式的计算方法
三、三阶行列式的逆序数
四、逆序数的计算与应用
正文:
一、三阶行列式的概念
三阶行列式是一种特殊的矩阵,它由三个矩阵元素构成,通常表示为一个竖线符号。

三阶行列式在数学、物理等领域具有广泛的应用,它不仅可以用于解线性方程组,还可以用于计算矩阵的逆矩阵、行列式的值等。

二、三阶行列式的计算方法
计算三阶行列式的方法有多种,最常见的有以下两种:
1.行列式线法:根据行列式的定义,通过展开式计算行列式的值。

2.矩阵分解法:将三阶行列式转化为两个二阶行列式的乘积,进而计算行列式的值。

三、三阶行列式的逆序数
三阶行列式的逆序数是指,将行列式的元素按照某种顺序排列后,得到的数的顺序与原行列式元素的顺序相反。

逆序数在排列组合、组合数学等领域具有重要应用。

四、逆序数的计算与应用
1.计算方法:对于一个三阶行列式,其逆序数可以通过以下公式计算:
逆序数= (-1)^(n+1) * 行列式的值
其中,n为行列式的阶数,行列式的值为a11*a22*a33 +
a12*a23*a31 + a13*a21*a32 - a13*a22*a31 - a12*a23*a32 -
a11*a23*a32
2.应用场景:
(1)在排列组合中,逆序数用于计算排列的逆序数,从而判断排列的稳定性。

(2)在组合数学中,逆序数可用于计算组合数,进而求解组合问题。

(3)在图论中,逆序数可用于判断图的顶点的稳定性,以及计算图的顶点指标等。

综上所述,三阶行列式的逆序数在数学等领域具有重要应用。

三阶矩阵行列式计算公式

三阶矩阵行列式计算公式

三阶矩阵行列式计算公式三阶矩阵行列式计算公式是一个用于计算3x3矩阵行列式的公式。

行列式是一个矩阵的一个特征值,它可以用来描述矩阵的一些重要性质,比如是否可逆、正交等。

在计算行列式时,我们需要使用一定的规则和方法,而三阶矩阵行列式计算公式就是其中一个重要的方法。

3x3矩阵的行列式计算公式是:det(A) = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) +a13(a21a32 - a22a31)其中,a11,a12,a13分别表示矩阵A的第一行元素的值,a21,a22,a23表示矩阵A的第二行元素的值,a31,a32,a33表示矩阵A的第三行元素的值。

这个公式的计算过程可以简化为以下几步:1.计算第一部分:a11(a22a33-a23a32)这一部分的计算是将a11与(a22a33-a23a32)相乘得到的结果。

2.计算第二部分:-a12(a21a33-a23a31)这一部分的计算是将-a12与(a21a33-a23a31)相乘得到的结果。

注意符号为负号。

3.计算第三部分:a13(a21a32-a22a31)这一部分的计算是将a13与(a21a32-a22a31)相乘得到的结果。

4.将计算得到的三部分相加,即可得到最终的行列式值。

上述公式的计算过程虽然看起来有些复杂,但是在实际计算中,我们可以利用前面学过的一些规则和技巧来简化计算,比如可以利用矩阵的对称性和交换性来减少计算量。

这样,就可以更快、更准确地计算三阶矩阵的行列式了。

总结起来,三阶矩阵行列式计算公式是一个用于计算3x3矩阵行列式的公式,它可以帮助我们了解矩阵的一些重要性质,并使用具体的数值来计算行列式的值。

计算过程虽然有些繁琐,但是通过运用规则和技巧,我们可以简化计算,提高计算效率。

三阶行列式(课堂PPT)

三阶行列式(课堂PPT)

D x Dx
D
y
D
y
D z D z
①若 Dx,Dy,Dz 至少一个不为0,则方程组无解 ②若 DxDyDz0,则方程组有无穷多解
例题讲解
x y z 6 例4 用行列式解三元一次方程组: 3 x y 2 z 7
5 x 2 y 2 z 1 5
例题讲解
例6 求关于x,y,z的方程组
2 3 1
(2)按第一列展开
巩固练习 练习9.4(2) P99
例题讲解
3 0 2 例1 用对角线法则计算行列式: 2 1 3
2 3 1
例题讲解
例2 在平面直角坐标系中,A x 1 ,y 1 ,B x 2 ,y 2 ,C x 3 ,y 3
求△ABC的面积公式
1 x1 SVABC 2 x2
x3
a3x b3 y c3z d3
x

D0时,方程组有唯一解
y
z
Dx
D Dy
D Dz
D
D D
x y
D D
x y
D z D z
知识讲解
四、利用三阶行列式解三元一次方程组
aa12xx
b1y c1z d1 b2 y c2z d2
a3x b3 y c3z d3
当 D0时,
例题讲解
(2)对角线法则 a1 b1 c1 a2 b2 c2 a3 b3 c3
注意:①红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. ②对角线法则只适用于二阶与三阶行列式.
知识讲解
(3)按行(列)展开
a1 b1 c1 a2 b2 c2a1b2c3a2b3c1a3b1c2a3b2c1a2b1c3a1b3c2 a3 b3 c3

三阶行列式

三阶行列式

aaaaaaaaaaaaaaaaaaaaaaaaaaa332112322311312213322113312312332211333231232221131211---++=称为三阶行列式.事实上行列式是所有不同行不同列元素乘积的代数和,所以对于二阶行列式和三阶行列式计算公式可以用对角展开来记,如图2.8,其中实线连接的无素乘积前用负号.三阶行列式的计算也可以用降阶的方法来计算;aaaaaaaaaaaaaaaaaaaaaaaa323122211333312321123332232211333231232221131211+-=利用三阶行列式,我们可以把向量积写成行列式形式,如果)(aaaa zyx,,=,)(aaab zyx,,=,则bbbaaazyxzyxkjiba=⨯在上述行列式中,将i,j,k看成是一般的参数,按行列式计算方法计算即可.直接计算(或者通过4.2节的行列式性质4.2.1,性质4.2.2,可以得到向量积的如下性质:性质4.2.3 设a ,b ,c ,是空间的任意向量,λ是实数,则c ;b c a c b a ;b a b a b a a ;b b a i j k i k k ,,j i ⨯+⨯=⨯+⨯=⨯=⨯⨯-=⨯=⨯=⨯=⨯)()4()()()()3()2()1(λλλ;,例2.2.11 设)123()211(--=-=,,,,,b a ,求同时垂直于a ,b 的单位量. 解 由向量积的定义知k j i kj ib a ++=--=⨯53123211同时垂直于a ,b ,所以351)(0=⨯b a (3,5,1)就是要求的单位向量.例2.2.12 已知△ABC 的顶点A (1,2,3),B (3,4,5,),C (2,4,7,),求△ABC 的面积和角A 的正弦.解.264123211),4,2,1(222k j i kj iAC ),,,(AB +-=--=⨯==S △ABC=,1421=.32sin sin =>=⨯<=A 例2.2.13 证明恒等式.)·()·()(a c b b c a c b a -=⨯⨯证明 设,,,,,,,,,)()()(321321321c c c b b b a a a a b b ===则 ),,,)(232223131113332323121112331313211212(c b a c b a c b a c b a c b a c b a c b a c b a c b a c b a c b a c b ac b a +-+--++--+-=⨯⨯).()(),()(),()((.)·()·(332211333221133322112332211233221113322111c b c b c b a c a c a c a b c b c b c b a c a c a c a b c b c b c b a c a c a c a b a c b b c a ++++-++-+++-++=- 所以.)·()·()(a c b b c a c b a -=⨯⨯注意:上面的公式通常称为二重向量积展开式,我们也可以不用向量的坐标,而直接用向量的积来证明(请看补充题2.2).从这个公式可以看出,向量积不满足结合律,就是说,一般).()(c b a c b a ⨯⨯≠⨯⨯向量的混合积 定义 2.2.14 设aa a 321,,为三个向量,定义混合积[a a a 321,,]=)21(a a ⨯·a 3.如果),,,1111(z y x a =),,,2222(z y x a =),,,3333(z y x a =则可以得到(2)零向量0的公解式是唯一的;(3)把,,21v v …,v r 任意公成两组,,2v v i il …,v jt 与,,2v v j jl v jt (s+t=r ),则有(++v v i il 2…v is ) (++v v i il 2…v jt )={0};(4)设v i 的一个基为},,,{ααij il ⋯(1≤i ≤r ),则 是v v v r +⋯+21的一个基;(5).dim dim dim )dim(2121v v v v v v r r +⋯+=+⋯+这个定理的证明与r=2的情形基本一样,这里就不再重复了.习题6.5习题6.5.1 设M (R )是全体实函数所成的实数域上的线性空间,W 1是全体偶函数所成的子集,W 2是全体厅函数所成的子集,证明:W 1与W 2是M (R )的子空间,且M (R )= W 1 ○+W 2. 习题 6.5.2 设W 1与W 2分别是齐次线性方程组021=⋯++x x x n 与x x x n =⋯==21的解空间.证明R n= W 1 ○+W 2,这里R 是实数域. 习题6.5.3 如果v v v 21⊕=,而v v v 12111⊕=,证明:v v v v 21211⊕⊕=. 习题6.5.4 试用几何空间的例子来说明:若U ,V ,Y 是子空间,且满足条件U ○+V=X ,X U ⊂,是否必有?)()(V Y U Y Y ⊕= 6.6 线性空间的同构定义6.6.1 数域F 上两个线性空间V 与V '称为同构,如果存在一个由V 到V /的又射W V −→−:ϕ,它具有性质: (1);,),()()(V ∈∀+=+βαβϕαϕβαϕ (2)F k V k ∈∈∀=,),()(αακααϕ.这样的映射ϕ称为线性空间V 与V '的同构映射,记作V V '≅. 由定义可以看出同构映射有如下性质:);()()()(2);()(,0)0(122112211αϕαϕαϕαααϕϕϕϕr r r r k k k k k k a a +⋯++=+⋯++-=-=、、3、V 中向量α1,ααr ,,⋯2线性相关的充分必在条件是V '中的对应量)()()(21αααϕϕϕr ,,,⋯线性相关;4、如果ϕ是线性空间V 到线性空间V '的同构映射,则V V '=dim dim ;5、同构映射的逆映射以及两个同构映射的乘积仍是同构映射. 这5条很容易证明的,作为习题留给读者自己来做.定理6.6.2 数域F 上的两个有限维线性空间同构的充分必要条件是它们的维数相同.证明 必要性上面已有,现证充分性。

3行列式(递归定义)

3行列式(递归定义)
三阶行列式的对角线法则前三项全为正号三阶行列式的对角线法则后三项全为负号4行列式简单性质1项
方阵的行列式
方阵A的行列式是按某种规则运算后得到的数值。
1、方阵行列式的记法
把矩阵的方 括号改成两 条竖线!
其中 为行列式的第 行 列元素。
2、代数余子式 划去 的第 行 列元素,剩下元素按原来相对位置
排成的
(3)不同的项总共有n!个。 (4)正负项各占一半!
例3 求在5阶行列式中
这一项前面的符号?
将这一项中元素 原样放置,其它 位置为0,计算这 个行列式!
5、对角矩阵的行列式
按行列式的定义怎样证? 单位阵的行列式?
6、下三角形矩阵的行列式
按行列式的定义怎样证? 上三角形矩阵的行列式?
7、行列式的性质
(6)可以从一行中提取公因数: (7)可以从一列中提取公因数:
124 114 2 6 9 22 3 9 345 325
从第2列中提取 一个数2!
124 12 4 2 6 9 2 1 3 4.5 345 34 5
从第2行中提取 一个数2!
(8) 两行(列)对应成比例,则行列式为0。
4 8 12 2 6 9 ? 5 10 15
于是得递推公式: ,
利用递推公式,得
11、行列式计算:用数学归纳法 例6 证明范德蒙行列式
课后写出这个边 乘积的表达式?
证明: Step1:当n=2时
故对2阶范德蒙行列式公式成立。 Step2:假设命题对于n-1阶范德蒙行列式成立。
对于 从最后 一行起依次减去上一行的 倍,
按第1列展 开!
(2)行列式D的任一行的每个元素与另一行 相应元素的代数余子式的乘积之和为零。
例8 设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

》的教学设计
谈数学课堂教学设计
数学课堂教学是一个师生双方参与的动态的活动过程,学生是活动的主体,教师是这个过程的设计者和活动的指导者及合作者。

在一堂课中,如何体现学生学习的主体作用,激发学生学习的积极性,使学生在学习活动的过程中,在知识、能力、情感等诸方面得到发展,需要我们进行科学的设计。

下面就本人在06年9月执教的《三阶行列式》的教学设计过程为例,谈谈如何进行数学课堂教学设计。

一、了解学生现状和班级实际水平。

在教学设计时,应该了解所教学生的现状和班级的实际水平,只有了解了学生对本课时有关的基本知识和技能、数学方法和数学思想的掌握程度,所需的知识、能力与以往经验之间的差异等。

才能通过恰当的处理教材内容,让学生顺利完成本节课的学习要求,同时使40分钟的教学效率较高。

我执教的高二(2)的学生对已有知识和能力的现状是:三阶行列式是学生学习了二阶行列式后紧接着学习的内容,他们对二阶行列式的学习是比较成功的,他们初步知道了二阶行列式的有关知识,知道如何利用二阶行列式解二元一次方程组和讨论二元一次方程组解的情况。

学生在能力和情感的现状是:对数学有一定的兴趣,有一定的类比推广能力,对化归的数学思想有所体会,也有部分学生具有初步的数学审美情趣。

二、了解所教内容的地位,确定教学目标。

了解所教内容在本章节、在高中数学乃至在整个数学中的地位,了解本节课内容在数学结构和学生知识结构中所处的地位和作用。

教材作为一个载体,分析是否具有在能力、情感态度价值观等方面有挖掘的方面。

以确定较全面、科学的教学目标。

课程标准对《三阶行列式》的学习要求是:掌握三阶行列式的对角线展开法则,以及三阶行列式按某一行(列)展开的方法;会用三阶行列式表示相应的特殊算式。

结合课程标准的学习要求,如果我们在设计时,重知识、轻能力,重结果、轻过程,重记忆、轻概念的形成过程,那么这节课的设计很可能显得平淡,学生可能会在大量的模仿、记忆和练习中,达到课程标准的学习要求,但长期这样下去,学生的能力得不到培养,学生可能会失去对数学的兴趣甚至厌学,更不要说对情感态度价值观的培养了。

我认为,尽管三阶行列式作为一个非高考内容,但它却是一个不可多得的让学生体验类比推广过程,体会化归思想,培养学生数学审美情趣的好教材。

基于以上原因,我把这节课的教学目标确定为:
1。

让学生掌握三阶行列式的对角线展开法则,能把三阶行列式按某一行(列)化为二阶行列式;知道余子式和代数余子式的概念,并能把三阶行列式按某一行(列)化成二阶行列式,并求值。

2。

在学习过程中,让学生体验类比推广的过程,体会化归思想。

让学生体会数学的思维方式。

3。

进一步让学生体会数学之美(高度的和谐、化归等),激发学生学习数学的积极性。

三、教学过程
数学学习的意义在于通过数学学习而学习一种思维方式,进而培养学生的思维能力。

所以在教学过程的设计中,应该留出时间与空间,引导学生独立思考,自主探索,合作交流,重视概念、方法等的形成过程,使学生在理解和掌握数学知识的同时,既获得数学活动的经验,又得到美的熏陶。

对每一步的推导和变形,必须严密,以培养学生的理性精神。

在本节课的教学设计过程中,我通过学生类比二阶行列式的有关知识,让学生猜想三阶行列式的定义、对角线法则等内容,一方面是培养学生的类比能力,另一方面也让学生体会到这样定义三阶行列式的定义与对角线法则是合理的,进一步让学生体会到数学内部高度的和诣。

在引入余子式和代数余子式时,通过学生把式子改写为二阶行列式,探求二阶行列式中的元
素在原行列式中位置,从而很自然地引进了余子式和代数余子式的概念,这样可让学生一方面体会到引入这些概念的必要性与过程(数学概念并不是凭空想象出来的,而是为数学本身的发展或社会发展服务的),也暗示学生数学内部无处不存在美。

本节课的教学过程简述如下:
(一)概念的形成:
(教师)我们学习了二阶行列式的概念、对角线展开法则和它的应用,请同学们思考:组成二阶行列式需要四个数(式),那么如果要组成一个三阶行列式,需要几个数(式)?他们应该如何排列?你能模仿二阶行列式的定义,给出三阶行列的定义吗?
二阶行列式有对角线展开法则,请你注意主对角线和副对角线的方向,及主对角线和副对角上都是两个元素之积这个事实,你觉得三阶行列式是否有主、副对角线呢?如有,它们的方向是怎样的呢?应该是几个元素之积呢?你能给出三阶行列式的对角线展开法则吗?(二)按某一行(列)展开
在这个过程中,对学生给出的各种形式的二阶行列式,与这些元素在原行列式中的位置对照,得出一个合理的行列式。

但中间的行列式,其元素与原位置不同,如何处理,才能使其位置与原位置一致,以达到高度的和谐?学生通过思考,有学生说:提出一个负号,这样元素与原位置一致了。

(让理想与现实产生冲突,激发学生的思维积极性)
至此,学生受到了数学高度和谐美的冲击,有学生情不自禁地说:数学真美!
师:如果对其它行(列)进行整理,结果又会如何呢?
由此可以很自然地引进余子式和代数余子式的概念了。

(三)范例与练习
例1.用对角线法则计算三阶行列式的值:。

学生练习:课本12页。

例2.按下列要求,对行列式进行展开,并化简。

(1)对角线法则。

(2)按第一行展开。

(3)按第一列展开。

学生练习:
以上是本人对数学课堂教学设计的粗浅体会,以上管见,如有不当,恳请同行,不吝赐教。

相关文档
最新文档