第一章 集合测试
中职数学第1章《集合》题库
中职数学第一章《集合》题库(2021年10月30日完成,11月01日修改)一、单项选择题数学1.1.1集合元素特性1.下列集合与{2,5,8,10}表示同一集合的是( ).A. {2,8,5,1,0}B. {8,5,0,2}C. {2,5,8,1}D. {8,2,10,5}2.下列选项,不符合集合表示要求的有( ).A. {1,0,0}B. {10,1,0}C. {0}D. {1}3、下列选项所指对象中,能构成集合的是( ).A. 很大的数B. 中国的直辖市C. 漂亮的衣服D. 力气大的人数学1.1.3数集4、下列说法正确的是( ).A. 0 ∈ NB. 0 ∉ NC. 0 ∈ N+D. 0 ∈Φ5、下列说法错误的是( ).A. 1.5 ∉ ZB. -5 ∈ ZC. 3 ∈ ZD. 0 ∉ Z6、下列有关数集的说法错误的是( ).A.所有分数都是有理数B. 偶数与奇数组成整数C. Z+与N+等价D. 最小自然数是1数学1.2.1列举法7、用列举法表示小于10的所有自然数组成的集合正确的是( ).A. {1,2,3,4,5,6,7,8,9}B. {1,3,5,7,9}C. {2,4,6,8,10}D. {0,1,2,3,4,5,6,7,8,9}8、用列举法表示大于-4且小于12的所有偶数组成的集合( ).A. {-2,0,2,4,6,8,10}B. {-2,-1,0,1,2,3,4,5,6,7,8,9,10}C. {2,4,6,8,10}D. {-2,2,4,6,8,10}9、下列集合不是用列举法表示的是( ).A. {甲,乙,丙}B. { x| x是亚洲国家}C. {上海,广州 }D. {美国,日本}数学1.2.2描述法10、用描述法表示在直角坐标系中,由第一象限所有的点组成的集合( ).A. {x|x>0}B. {(x,y)|x>0,y>0}C. {(x,y)|x<0,y<0}D. {(x,y)|x>0,y<0}11、用描述法表示在直角坐标系中,由第二象限所有的点组成的集合( ).A. {(x,y)|x<0,y>0}B. {(x,y)|x>0,y>0}C. {(x,y)|x<0,Y<0}D. {(x,y)|x>0,y<0}12、下列集合是用描述法表示的是( ).A. {鼠,牛,虎,…}B. {1972,1973,1974,…}C. {亚洲,美洲 }D. {x|x是十二生肖}数学1.3.1各种关系13、已知集合A={2,4,5,7},B={2,5},则集合A与集合B之间的关系是( ).A. A ⊆ BB. B ⊆ AC. B ⊇ AD. A =B14、设集合M={a},则下列说法正确的是( ).A. a = MB. a ∈ MC. a ⊆ MD. a ⫋M15、如果集合A={x|x≤1},则( ).A. 0 ⊆ AB. {0} ∈ AC.Φ∈ AD. {0} ⊆ A16、下列关于集合A={x∈N| 4<x<8}与集合B={5,6,7}的关系正确的是( ).A. A ∈ BB. A ⫋ BC. A ⫌ BD. A = B17、下列关于集合A={x| 2≤x≤6}与集合B={2,3,4,5,6}的关系正确的是( ).A. A = BB. A ⊆ BC. A ⊇ BD. A ∉ B数学1.3.2求子集18、已知集合A={c,d},则集合A的所有子集是( ).A. {c},{d}B.{c}C.{c},{d},{c,d}D. Φ,{c},{d},{c,d}19、集合{0,1}的全部子集为( ).A.{0}B.{1}C.Φ,{0},{1},{0,1}D.Φ,{0},{1}20、设集合M={0,1,2},则集合M的子集有多少个( ).A. 7个B. 8个C. 9个D. 10个21、设集合A={c,d},则不是它的真子集有( ).A. ΦB.{c}C. {d}D. {c,d}数学1.4.1并集22、集合A={1,2,3,4},B={0,2,4,6},则A∪B=( ).A.{0,1,2,3,4,6}B.{1,3,6}C.{0,1,2,2,3,4,6}D.{2,4}23、集合A={x|-1<x≤3},集合B={x|1<x<5},则A∪B=( ).A. {x|-1<x<5}B. {x|3<x<5}C. {x|-1<x<1}D. {x|1<x<3}24、设集合A={1,3},集合B={x∈Z|5<x≤9},则A∪B=( ).A. {1,3,5,7,9}B. {1,3,6,7,8,9}C.{1,3,5,6,7,8,9}D.{6,7,8,9}25、集合A={1,3,5,6},B={2,3,4,6},集合C=A∪B,则集合C中元素的个数为( ).A.5B.6C.7D.826、某校举办学生运动会,设R为参加跳高的运动员组成的集合,S为参加跳远的运动员组成的集合,则参加这两项的运动员组成的集合T可以表示为( ).(注:参加任意一项都可以,同一个人参加两项时只计算一人)A. R ∪ SB. R ∩ SC.∁s RD. R – S27、集合A={x|x<-2},集合B={x|x>5},集合C=A∪B,则下列选项属于集合C的元素有( ).A. -1B. 0C. 3D. 628、集合A={x∈N* |x<2},集合B={x∈Z|-3<x<0},集合C=A∪B,则下列选项不属于集合C的元素有( ).A. -2B. -1C. 0D. 1数学1.4.2交集29、已知A={x|x≥-2},B={x|x<4},则A∩B=( ).A. {x|-2≤x<4}B. {x|x≥-2 或x<4}C. {x|x≥-2}D. {x|x<4}30、集合A={2,3,4,5,6},集合B={2,4,5,8,9},则A∩B=( ).A. {2,3,4,5,6,8,9}B. {2,4,5}C. {5,6}D.{2,3,4,5,6}31、设集合A={2,3,5},集合B={-1,0,1,2},则A∩B=( ).A. {2}B. {-1,0,1,2,3,5}C.{-1,0,1,3,5}D.{0,1}32、设集合A={x|- 2<x<3},集合B={x|x>1},则A∩B=( ).A. {x|1<x<3}B. {x|-2<x<3}C. {x|x>1}D.{x|x<3}33、某校举办学生运动会,设R为参加1000米长跑的运动员组成的集合,S为参加跳远的运动员组成的集合,则同时参加这两项的运动员组成的集合T可以表示为( ).A. R ∪ SB. R ∩ SC.∁s RD. R + S34、集合A={x|x<-1},集合B={x|x>1},则A∩B=( ).A. {x|-1<x<1}B. {x|x<-1或x>1}C.{x|-1≤x≤1}D.Φ35、集合A={x∈N*|x<4},集合B={x∈Z|-3<x<3},集合C=A∩B,则集合C中元素的个数为( ).A. 1B. 2C. 3D. 4数学1.4.3补集36、设A={3,5,6},∁S A={1,2},则全集S=( ).A.{1,2,3,5}B.{1,2,3,5,6}C.{1,2,5}D.{1,2,6}37、设全集为U=R,集合A={x|-1<x≤5},则∁U A=( ).A. {x|x≤-1}B. {x|x>5}C. {x|x<-1或x>5}D. {x|x≤-1或x>5}38、设全集U={0,1,2,3,4,5,6},集合A={2,3,4,5,6},则∁U A=( ).A.{0,2,3,4,5,6}B.{2,3,4,5,6}C.{0,1}D.{0,1,5,6}39、设全集U={0,1,2,3,4,5,6,7,8,9},集合A={1,3,4,5},则∁U A( ).A. {0,2}B. {1,3,4,5}C.{0,2,6,7,8,9}D. {6,7,8,9}A=( ).40、设全集U=R,A={x|x≤1},则∁UA. {x|x<1}B. {x|x≤1}C. {x|x>1}D.{x|x≥1}数学1.5.1充分条件41、下列各选项中正确的是( ).A. x>3 ⇒x>0B. xy=0⇒x=0C. x>3 ⇐x>0D. xy=0⇒y=042、“a=0”是“a·b=0”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件43、A=Φ是A∩B=Φ的( ).A.充分条件 B. 必要条件 C. 充要条件 D.既不充分也不必要条件数学1.5.2必要条件44、“x<2”是“x<0”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件45、“x>3”是“x>5”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件46、“|a|=1”是“a=1”的( ).A.充分条件 B. 必要条件 C. 充要条件 D.既不充分也不必要条件数学1.5.3充要条件47、“|a|=0”是“a=0”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件48、A∩B=A是A ⊆ B的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件49、A∪B=A是A⊇B的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件50、“x>0”是“x为正数”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件二、多项选择题。
必修1 第一章 集合测试xinti
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5 9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
第一章 集合测试题及答案
第一章 集合测试题及答案一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , M N A M N B N M C M ND6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.集合测试题参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ; 13|{<≤-=⋃x x N M 或}32≤≤x . 三、17 .{0.-1,1};18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。
高中数学第一章集合测试题
绝密★启用前高中数学第一章集合测试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 , )1. 定义集合运算:A ∗B ={z ∣z =xy,x ∈A,y ∈B},设A ={1,2},B ={1,2,3},则集合A ∗B 的所有元素之和为( ) A.16 B.18 C.14 D.82. 若集合A 具有以下性质:①集合中至少有两个元素;②若{x,y }⊆A ,则xy ,x +y ∈A ,且当x ≠0时,y x∈A ,则称集合A 是“紧密集合”.现有以下说法:①整数集是“紧密集合”;②实数集是“紧密集合”;③“紧密集合”可以是有限集;④若集合A 是“紧密集合”,且x ,y ∈A ,则x −y ∈A . 其中正确的个数为( ) A.1 B.2 C.3 D.43. 某班共有学生60名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项.没有人三项均会.若该班32人不会打乒乓球,28人不会打篮球,24人不会打排球,则该班会其中两项运动的学生人数是( ) A.32 B.33 C.35 D.364. 方程组{x +y =1,x 2−y 2=9的解(x,y)构成的集合是( )A.(5,4)B.{5,−4}C.{(−5,4)}D.{(5,−4)}5. 下面关于集合的表示正确的个数是( )①{2, 3}≠{3, 2}; ②{(x, y)|x +y =1}={y|x +y =1}; ③{x|x >1}={y|y >1}; ④{x|x +y =1}={y|x +y =1}. A.0 B.1 C.2 D.36. 已知R 是实数集,集合A ={x|1<x <2},B ={{x|0<x <32},则阴影部分表示的集合是( )A.[0, 1]B.(0, 1]C.[0, 1)D.(0, 1)7. 下列关于集合的命题正确的有( ) ①很小的整数可以构成集合;②集合{y|y =2x 2+1}与集合{(x, y)|y =2x 2+1}是同一个集合; ③1,2,|−12|,0.5,12这些数组成的集合有5个元素; ④空集是任何集合的子集. A.0个 B.1个 C.2个 D.3个8. 从集合M ={1,3,5,7}中任取两个不同的数作为x 和y ,其中log 2(x +y )为整数的概率为( ) A.12B.13C.23D.569. 已知函数f(x)=x 2−12ln x +32在其定义域的一个子区间(a −1,a +1)内不是单调函数,则实数a 的取值范围是( ) A.(−12,32)B.[1,54)C.(1,32)D.[1,32)10. 设集合A ={x ∈N |x <2},B ={1,2,3} ,定义A ⊗B ={(x,y,z)|x ∈A,y ∈B,z ∈A ∩B},则A ⊗B 中元素的个数是( )A.6B.10C.25D.5211. 已知集合A ={x ∈Z|−2≤x <4},B ={x ∈N|x+13−x ≥0},则A ∩B 的子集个数为( ) A.4 B.8C.16D.3212. 设M,P 是两个非空集合,定义M 与P 的差集为M −P ={x|x ∈M 且x ∉P},则M −(M −P)等于( ) A.PB.M ∩PC.M ∪PD.M卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分,)13. 已知f(x)=x2+ax+b,集合{x|f(x)=x}={4},将集合M={x|f(x)=4}用列举法表示________14. 若有限集合A={a1,a2,a3…a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N∗}中的元素个数为集合A的“容量”,记为L(A).现已知A={x∈N∗|1≤x≤m},且L(A)=4039,则正整数m的值是________.15. 已知集合A={x|ax2−3x+2=0}至多有一个元素,则a的取值范围是________.16. 已知集合A={(x, y)|x2+y2≤1, x, y∈Z},B={(x, y)||x|≤2, |y|≤2, x, y∈Z},定义集合A⊕B= {(x1+x2, y1+y2)|(x1, y1)∈A, (x2, y2)∈B},则A⊕B中元素的个数为________ .三、解答题(本题共计 7 小题,每题 10 分,共计70分,)17. 用列举法表示集合{x∈Z|0<x2−x−2≤4}.18. 已知全集U=R,函数f(x)=√1−x的定义域为集合A,函数g(x)=lg(3x−1)的定义域为集合B. (1)求集合A,B;(2)求∁U(A∩B).19. 设集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.(1)用列举法表示集合A;(2)若B⊆A,求实数m的值.20. 已知集合A={x|2xx−2<1},集合B={x|x2−(2m+1)x+m2+m<0}.(1)求集合A,B;(2)若B⊆A,求m的取值范围.21. 设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10−x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;否则请说明理由.22. 已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2−1=0, a∈R}.(1)用列举法表示集合A;(2)若B∩A=B,求实数a的取值范围.23. 已知集合A={x|ax2−3x+2=0},其中a为常数,且a∈R.(1)若A是单元素集合,求a的取值范围;(2)若A中至少有一个元素,求a的取值范围;(3)若A中至多有一个元素,求a的取值范围.参考答案与试题解析高中数学第一章集合测试题一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【答案】A【考点】元素与集合关系的判断集合的含义与表示【解析】直接列出所有情况,确定元素即可.【解答】解:∵A={1,2},B={1,2,3},又A∗B={z∣z=xy,x∈A,y∈B},∴当x=1,y=1时,z=1;当x=1,y=2时,z=2;当x=1,y=3时,z=3;当x=2,y=1时,z=2;当x=2,y=2时,z=4;当x=2,y=3时,z=6,∴A∗B={1,2,3,4,6},∴所有元素之和为1+2+3+4+6=16.故选A.2.【答案】B【考点】集合新定义问题集合的含义与表示【解析】此题暂无解析【解答】解:若x=2,y=1,而12∉Z,则整数集不是“紧密集合”,故①错误;根据“紧密集合”的性质,实数集是“紧密集合”,故②正确;集合{−1,0,1}是“紧密集合”,则“紧密集合”可以是有限集,故③正确;集合A={−1,0,1}是“紧密集合”,当x=1,y=−1时,x−y=2∉A,故④错误.故选B.3.【答案】D【考点】集合的含义与表示【解析】【解答】解:设只会打乒乓球、篮球、排球的学生分别有x1,x2,x3人,同时会打乒乓球和篮球、排球和篮球、乒乓球和排球的学生分别为y1,y2,y3,由题意知,x1+x2+x3+y1+y2+y3=60,①x2+x3+y2=32,②x1+x3+y3=28,③x1+x2+y1=24,④①×2−(②+③+④)得y1+y2+y3=120−(32+28+24)=36(人),故该班会其中两项运动的学生人数是36人.故选D.4.【答案】D【考点】集合的含义与表示【解析】求出方程组{x+y=1x2−y2=9得解{x=5y=−4,即可得解方程组的解(x,y)构成的集合是{(5,−4)}.【解答】解:方程组{x+y=1,x2−y2=9,由x+y=1得y=1−x,代入x2−y2=9得x2−(1−x)2=9,解得x=5,把x=5代入x+y=1得y=−4,∴方程组的解为{x=5,y=−4,∴方程组{x+y=1,x2−y2=9的解(x,y)构成的集合是{(5,−4)}.故选D.5.【答案】C【考点】集合的确定性、互异性、无序性集合的含义与表示【解析】集合中的元素具有无序性,故①不成立;{(x, y)|x+y=1}是点集,而{y|x+y=1}不是点集,故②不成立;③④正确.【解答】解:∵集合中的元素具有无序性,∴ ①{2, 3}={3, 2},故①不成立;{(x, y)|x+y=1}是点集,而{y|x+y=1}不是点集,故②不成立;由集合的性质知③④正确.故选C.6.【答案】B【考点】集合的含义与表示【解析】由图观察利用集合的表示法中的描述法表达阴影部分即可;【解答】已知R是实数集,集合A={x|1<x<2},B={x|0<x<32},阴影部分表示的集合是:(∁R A)∩B={x|0<x≤1};即:(0, 1]7.【答案】B【考点】集合的含义与表示【解析】(1)(3)中由集合元素的性质:确定性、互异性可知错误;(2)中注意集合中的元素是什么;(4)中注意x=0或y=0的情况.【解答】解:①中很小的整数没有确定的标准,不满足集合元素的确定性;②中集合{y|y=2x2+1}的元素为实数,而集合{(x, y)|y=2x2+1}的元素是点;③由集合元素的互异性可知这些数组成的集合有3个元素;④空集是任何集合的子集,正确.故选B.8.【答案】A【考点】集合的含义与表示对数的运算性质列举法计算基本事件数及事件发生的概率【解析】无【解答】解:不妨设x<y,则从集合M={1,3,5,7}中任取两个不同的数作为x和y,有(1,3),(1,5),(1,7),(3,5),(3,7),(5,7)共6种可能,其中使log2(x+y)为整数的有3种可能,所以概率为12.故选A.9. 【答案】D【考点】集合的含义与表示复合函数的单调性【解析】此题暂无解析【解答】解:由题意,知f′(x)=2x−12x=4x2−12x在区间(a−1,a+1)内有零点,由f′(x)=0,得x=12,则{a−1≥0,a−1<12<a+1.得1≤a<32.故选D.10.【答案】A【考点】交集及其运算元素与集合关系的判断集合的含义与表示【解析】此题暂无解析【解答】解:因为A={x∈N|x<2}={0,1},B={1,2,3},所以A∩B={1}.由列举法可知,A⊗B={(0,1,1),(0,2,1),(0,3,1),(1,1,1),(1,2,1),(1,3,1)} , 共有6个元素.故选A.11.【答案】B【考点】交集及其运算集合的包含关系判断及应用集合的含义与表示【解析】此题暂无解析【解答】解:由题得,A={−2,−1,0,1,2,3},B={x∈N|−1≤x<3}={0,1,2},所以A∩B={0,1,2}.故该集合的子集个数为23=8.故选B.12.【答案】B【考点】集合的含义与表示【解析】本题考查集合的运算.【解答】解:由题意得M−P=∁M(M∩P),所以M−(M−P)=∁M[∁M(M∩P)]=M∩P.故选B.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】{3, 4}【考点】集合的含义与表示【解析】根据已知集合{x|f(x)=x}={4},利用方程的△,可计算方程的系数a,b,在带入集合M={x|f(x)=4}求解即可.【解答】已知f(x)=x2+ax+b,集合{x|f(x)=x}={4},即方程x2+ax+b=x,x2+(a−1)x+b=0由两个相等的实数根为4,所以△=(a−1)2−4b=0,即x2+(a−1)x+b=(x−4)2,所以b=16,a=−7,所以f(x)=x2+ax+b=x2−7x+16,所以集合M={x|f(x)=4}即x2−7x+16=4,x2−7x+12=0,用列举法表示为{3, 4},14.【答案】2021【考点】集合的含义与表示集合中元素的个数【解析】集合与新定义结合题目,关键是读懂题意.【解答】解:由题意得,集合A包括1, 2, ⋯, m−1, m,则1+2≤a i+a j≤m+m−1,即3≤a i+a j≤2m−1.因为从1到2m−1共(2m−1)个数,所以从3到2m−1共(2m−3)个数,故集合B共(2m−3)个元素,即2m−3=4039,所以m=2021.故答案为:2021.15.【答案】a≥98或a=0.【考点】集合关系中的参数取值问题集合的含义与表示【解析】此题暂无解析【解答】解:a=0时,ax2−3x+2=0,即x=23,A={23},符合要求;a≠0时,ax2−3x+2=0至多有一个解,Δ=9−8a≤0,a≥98,综上,a的取值范围为a≥98或a=0.故答案为:a≥98或a=0.16.【答案】45【考点】集合新定义问题集合中元素的个数集合的含义与表示【解析】此题暂无解析【解答】解:由题得A={(−1, 0), (0, 0), (1, 0), (0, 1), (0, −1)},如下图所示:因为B={(x, y)||x|≤2, |y|≤2, x, y∈Z},由A⊕B的定义可得,A⊕B相当于将A集合中各点上下平移或左右平移0,1,2个单位,如下图所示:所以A⊕B中的元素个数为7×7−4=45.故答案为:45.三、解答题(本题共计 7 小题,每题 10 分,共计70分)17.【答案】{−2, 3}【考点】集合的含义与表示【解析】先解出不等式,再结合x∈Z,即可写出结果.【解答】不等式x2−x−2≤4⇒(x−3)(x+2)≤0,得:−2≤x≤3,0<x2−x−2⇒(x−2)(x+1)>0⇒x>2或x<−1;∴用列举法表示集合{x∈Z|0<x2−x−2≤4}={−2, 3},18.【答案】解:(1)∵函数f(x)=√1−x的定义域为集合A,1−x≥0,即x≤1,∴集合A为(−∞,1];∵函数g(x)=lg(3x−1)的定义域为集合B,3x−1>0,即x>13,∴集合B为(13,+∞).(2)∵A=(−∞,1],B=(13,+∞),∴A∩B=(13,1].∴∁U(A∩B)=(−∞,13]∪(1,+∞).【考点】函数的定义域及其求法交、并、补集的混合运算集合的含义与表示【解析】此题暂无解析【解答】解:(1)∵函数f(x)=√1−x的定义域为集合A,1−x≥0,即x≤1,∴集合A为(−∞,1];∵函数g(x)=lg(3x−1)的定义域为集合B,3x−1>0,即x>13,∴集合B为(13,+∞).(2)∵A=(−∞,1],B=(13,+∞),∴A∩B=(13,1].∴∁U(A∩B)=(−∞,13]∪(1,+∞).19.【答案】解:(1)集合A={x|x2+3x+2=0},∵x2+3x+2=0,解得:x1=−1,x2=−2,∴集合A={x|x2+3x+2=0}={−1, −2}.(2)B={x|x2+(m+1)x+m=0},∵B⊆A,①若B=⌀,则Δ=(m +1)2−4m<0,解得:m无解,∴B≠⌀.②若集合B只有一个元素{−1},即方程只有一个解:x=−1,此时Δ=(m+1)2−4m=0且1−(m+1)+m=0,解得:m=1;③若集合B只有一个元素{−2},即方程只有一个解:x=−2,此时判别式Δ=(m+1)2−4m=0且4−2(m+1)+m=0,解得:m无解;④若集合B有两个元素{−1,−2},即方程有两个解:x1=−1,x2=−2,解得:m=2,经检验,m=1或m=2符合条件.故实数m的值为m=1或m=2.【考点】集合关系中的参数取值问题集合的含义与表示【解析】(1)化简集合A,列举元素表示集合.(2)根据B⊆A,建立条件关系,讨论集合B的元素,即可求实数m的取值.【解答】解:(1)集合A={x|x2+3x+2=0},∵x2+3x+2=0,解得:x1=−1,x2=−2,∴集合A={x|x2+3x+2=0}={−1, −2}.(2)B={x|x2+(m+1)x+m=0},∵B⊆A,①若B=⌀,则Δ=(m+1)2−4m<0,解得:m无解,∴B≠⌀.②若集合B只有一个元素{−1},即方程只有一个解:x=−1,此时Δ=(m+1)2−4m=0且1−(m+1)+m=0,解得:m=1;③若集合B只有一个元素{−2},即方程只有一个解:x=−2,此时判别式Δ=(m+1)2−4m=0且4−2(m+1)+m=0,解得:m无解;④若集合B有两个元素{−1,−2},即方程有两个解:x1=−1,x2=−2,解得:m=2,经检验,m=1或m=2符合条件.故实数m的值为m=1或m=2.20.【答案】解:(1)∵2xx−2<1⇔x+2x−2<0,解得−2<x<2,∴A={x|−2<x<2},∵x2−(2m+1)x+m2+m<0,整理得(x−m)[x−(m+1)]<0,解得m<x<m+1,∴B={x|m<x<m+1}.(2)∵A={x|−2<x<2},B={x|m<x<m+1},B⊆A,∴{m≥−2,m+1≤2,解得−2≤m≤1,∴m的取值范围是[−2, 1].【考点】一元二次不等式的解法其他不等式的解法集合的含义与表示集合的包含关系判断及应用【解析】(1)解分式不等式能求出集合A;解一元二次不等式能求出集合B.(2)由A={x|−2<x<2},B={x|m<x<m+1},B⊆A,列出不等式组,能求出m的取值范围.【解答】解:(1)∵2xx−2<1⇔x+2x−2<0,解得−2<x<2,∴A={x|−2<x<2},∵x2−(2m+1)x+m2+m<0,整理得(x−m)[x−(m+1)]<0,解得m<x<m+1,∴B={x|m<x<m+1}.(2)∵A={x|−2<x<2},B={x|m<x<m+1},B⊆A,∴{m≥−2,m+1≤2,解得−2≤m≤1,∴m的取值范围是[−2, 1].21.【答案】解:(1)含有一个元素的集合S:{5};含有二个元素的集合S:{1,9}或{2,8}或{3,7}或{4,6};含有三个元素的集合S:{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}.(2)存在,一共有四个.S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}.【考点】元素与集合关系的判断集合的含义与表示【解析】(1)根据设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10−x∈S.知:元素只有一个时,即x=10−x,即x=5;元素有二个时,即两个正数的和为10;元素有三个时,必有一个元素5,另外两个正数的和为10(2)6个元素的集合S,元素必须要是1,9;2,8;3,7;4,6;中任意选三对(3))①S⊆{1, 2, 3, 4, 5, 6, 7, 8, 9};②若5∈S,则s中的元素个数为奇数个,若5∉S,则s中的元素个数为偶数个;③符合题意的S共有31个【解答】解:(1)含有一个元素的集合S:{5};含有二个元素的集合S:{1,9}或{2,8}或{3,7}或{4,6};含有三个元素的集合S:{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}.(2)存在,一共有四个.S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}.22.【答案】解:(1)x 2+4x =0, 解得x 1=0,x 2=−4, 所以A ={0, −4}.(2)因为A ∩B =B ,所以B ⊆A ,①B =⌀时,则Δ=[2(a +1)]2−4(a 2−1)=8a +8<0,得a <−1; ②B ={0},方程有两相等实根,所以有{8a +8=0,a 2−1=0, 得a =−1;③B ={−4},方程有两相等实根,所以有{8a +8=0,a 2−8a +7=0, a 无解;④B ={0, −4},方程有两不等实根,所以有{8a +8>0,−2(a +1)=−4,a 2−1=0, 得a =1,综上,a 的取值范围为(−∞, −1]∪{1}. 【考点】集合的含义与表示集合的包含关系判断及应用【解析】(Ⅰ)容易得出A ={0, −4};(Ⅱ)根据B ∩A =B 可得出B ⊆A ,从而讨论B =⌀,B ={0},B ={−4},或B ={0, −4},根据一元二次方程的根和判别式的关系及韦达定理分别求出a 的范围即可. 【解答】解:(1)x 2+4x =0, 解得x 1=0,x 2=−4, 所以A ={0, −4}.(2)因为A ∩B =B ,所以B ⊆A ,①B =⌀时,则Δ=[2(a +1)]2−4(a 2−1)=8a +8<0,得a <−1; ②B ={0},方程有两相等实根,所以有{8a +8=0,a 2−1=0, 得a =−1;③B ={−4},方程有两相等实根,所以有{8a +8=0,a 2−8a +7=0, a 无解;④B ={0, −4},方程有两不等实根,所以有{8a +8>0,−2(a +1)=−4,a 2−1=0, 得a =1,综上,a 的取值范围为(−∞, −1]∪{1}. 23. 【答案】当a =0时,A ={x|−3x +2=0}={23},符合题意;当a ≠0时,要使A 是单元素集合,则△=(−3)2−8a =0,解得a =98,∴ A ={43}. 综上,当a =0时,A ={23}, 当a ≠0时,A ={43};当a =0时,A ={23},符合题意;当a ≠0时,要使A 中至少有一个元素,则△=(−3)2−8a ≥0,解得a ≤98. ∴ a 的取值范围是(−∞, 98].A 中有两个元素时,需满足a ≠0且△=(−3)2−8a >0, 即a <98且a ≠0;故A 中至多有一个元素时,a 的取值范围是:[98, +∞)∪{0}.【考点】集合的含义与表示 【解析】(1)分二次项系数为0和不为0求解方程ax 2−3x +2=0,得到单元素集合A ;(2)二次项系数为0满足题意,二次项系数不为0时,由判别式大于等于0求得a 的取值范围. (3)可考虑研究有两个元素的情况,求其补集即可. 【解答】当a =0时,A ={x|−3x +2=0}={23},符合题意;当a ≠0时,要使A 是单元素集合,则△=(−3)2−8a =0,解得a =98,∴ A ={43}. 综上,当a =0时,A ={23}, 当a ≠0时,A ={43};当a =0时,A ={23},符合题意;当a ≠0时,要使A 中至少有一个元素,则△=(−3)2−8a ≥0,解得a ≤98. ∴ a 的取值范围是(−∞, 98].A 中有两个元素时,需满足a ≠0且△=(−3)2−8a >0, 即a <98且a ≠0;故A 中至多有一个元素时,a 的取值范围是:[98, +∞)∪{0}.。
第一章 集合与常用逻辑用语 单元测验(含答案)
第一章 集合与常用逻辑用语 单元测验时间:100分钟 分值:100分一、选择题(本大题共10小题,每题3分,共30分)1、已知全集R U =,集合}{Z x x x A ∈≤=,1,{}022=-=x x x B ,则图中的阴影部分表示的集合为( )A. {}1-B. {}2C.{}2,1 D. {}2,02、设集合{}2430A x x x =-+<,{}230x x ->,则A B = ( )A.33,2⎛⎫--⎪⎝⎭ B.33,2⎛⎫- ⎪⎝⎭ C.31,2⎛⎫ ⎪⎝⎭D.3,32⎛⎫⎪⎝⎭3、下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .},01|{2R x x x x ∈=+-4、已知集合{}Z s t s t A ∈+=,22,且x ∈A ,y ∈A ,则下列结论正确的是( ) A .A y x ∈+ B .A y x ∈- C .A xy ∈ D .A yx∈ 5、设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .M N =∅6、用()C A 表示非空集合A 中的元素的个数,定义()()A B C A C B *=-,若{}1,1A =-,()(){}22320B x ax x x ax =+++=,若1A B *=,设实数a 的所有可能取值构成集合S . 则()C S =( )A .1B .2C .3D .57、已知集合{}2|20,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( ) A .1 B .1- C .0,1 D .1-,0,18、已知集合{}2|1,M y y x x R ==-∈,集合2{|3}N x y x ==-,则MN =( )A .{(2,1),(2,1)}-B .{2,2,1}-C .[1,3]-D .∅9、已知集合}{10,3,2,1 =M ,A 是M 的子集,且A 中各元素和为8,则满足条件的子集A 共有( )A .6个B .7个C .8个D .9个10、设S 是整数集Z 的非空子集,如果,a b S ∀∈,有S ab ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,T V Z =,且,,a b c T ∀∈,有,,,abc T x y z V ∈∀∈有V xyz ∈,则下列结论恒成立的是( )A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的二、填空题(本大题共5小题,每小题4分,共20分)11、若{}A x x a =>,{}6B x x =>,且A B ⊆,则实数a 的取值范围是______.12、50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为 。
___版必修一第一章集合测试题及答案
___版必修一第一章集合测试题及答案高一年级数学学科第一单元质量检测试题参赛试卷命题意图】:本试卷主要考察必修一第一章集合部分内容,以概念为基础,注意数学语言符号的认识和应用,主要对相等的集合、子集、真子集关系进行考察,重点放在集合的交、并、补运算上。
旨在使学生理解和掌握集合重要的数学语言。
命题结构】:考试时间为90分钟,满分150分。
题型包括选择题、填空题、解答题。
难度系数约为0.6.一.选择题(每小题5分,满分40分。
将答案填在答题卷上相应的表格中)1.若$A=\{x|0<x<2\}$,$B=\{x|1\leq x<2\}$,则$A\cupB=$()A。
$\{x|x\leq 2\}$ B。
$\{x|x\geq 1\}$ C。
$1\leq x\leq 2$ D。
$\{x|0<x<2\}$2.集合$M=\{x|x=3k-2,k\in Z\}$,$P=\{y|y=3n+1,n\in Z\}$,$S=\{z|z=6m+1,m\in Z\}$,则它们之间的关系是()___3.如果集合$A=\{x|ax^2+2x+1=0\}$中只有一个元素,则$a$的值是()A。
$0$ B。
$1$ C。
$-1$ D。
不能确定4.设集合$S=\{a,b,c,d,e\}$,则包含$\{a,b\}$的$S$的子集共有()A。
$2$ B。
$3$ C。
$5$ D。
$8$5.如图,阴影部分所表示的集合为()A。
$A\cap (B\cap C)$ B。
$(C\cap A)\cap (B\cap C)$ C。
$(C\cap A)\cup (B\cap C)$ D。
$(C\cap A)\cup (B\cup C)$6.下列命题中错误的是()A。
若$A\subset B$,则$A\cap B=A$ B。
若$A\cup B=B$,则$A\subset B$ C。
$(A\cap B)\subset (A\cup B)$ D。
高中数学必修一 第一章测试题(含答案)
必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
2019_2020学年高中数学第1章集合测评(含解析)北师大版必修1
第一章集合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下面给出的四类对象中,能构成集合的是()A.速度特别快的汽车B.聪明的人C. 的近似值的全体D.倒数等于它本身的实数解析:A,B,C中所指的对象都不确定,故不能构成集合;而D中倒数等于它本身的实数为±1是确定的,故能构成集合.答案:D2.(2017·全国高考)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}解析:因为A={1,2,3},B={2,3,4},所以A∪B={1,2,3,4},故选A.答案:A3.以下命题中正确的是()A.所有正数组成的集合可表示为{x|x2>0}B.大于2 016小于2 018的整数组成的集合为{x|2 016<x<2 018}C.全部三角形组成的集合可以写成{全部三角形}D.N中的元素比N+中的元素只多一个元素0,它们都是无限集解析:所有正数的集合应表示为{x|x>0},大于2016小于2018的整数的集合应表示为{x|2016<x<2018,x∈Z}或{2017};全部三角形组成的集合应表示为{三角形}或{x|x是三角形}.答案:D4.若A={1,2},B={(x,y)|x∈A,y∈A},则集合B中元素的个数为()A.1B.2C.3D.4解析:因为B={(1,1),(1,2),(2,1),(2,2)},所以有4个元素,故选D.5.设集合M={x|x≤2},a=,其中0<b<1,则下列关系中正确的是()A.a⫋MB.a∉MC.{a}∈MD.{a}⫋M解析:由题意可知 2,且2 2,显然D正确;由集合与集合及元素与集合之间的关系知,A,C显然不对;a∈M,故B也不对.答案:D6.(2017·全国高考)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}解析:由A∩B={1},可知1∈B,所以m=3,即B={1,3},故选C.答案:C,N={x|x≤-3},则集合{x|x≥ }等于()7.已知集合M=-A.M∩NB.M∪NC.∁R(M∩N)D.∁R(M∪N)解析:∵M={x|-3<x<1},N={x|x≤-3},∴M∪N={x|x<1}.∴∁R(M∪N)={x|x≥ }.答案:D8.已知全集为实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N=()A.{x|x<-2}B.{x|-2<x<1}C.{x|x<1}D.{x|-2≤x<1}解析:∵M={x|-2≤x≤2},∴∁R M={x|x<-2,或x>2}.又∵N={x|x<1},∴(∁R M)∩N={x|x<-2}.故选A.答案:A9.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1B.2C.3D.4解析:集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或{a1,a2,a4}.10.设全集U是实数集R,M={x|x>2或x<-2},N={x|x≥ 或x<1}都是U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}解析:∵图中阴影部分表示:x∈N且x∉M,∴x∈N∩∁U M.∴∁U M={x|-2≤x≤2},∴N∩∁U M={x|-2≤x<1}.故选A.答案:A11.设集合A={x|a-1<x<a+1,x∈R},B={x|1<x<5,x∈R}.若A∩B=⌀,则实数a的取值范围是()A.{a| ≤a≤6}B.{a|a≤2或a≥4}C.{a|a≤ 或a≥6}D.{a|2≤a≤4}解析:∵A={x|a-1<x<a+1,x∈R},∴A≠⌀.又A∩B=⌀,如图可知a+ ≤ 或a- ≥5.故a≤ 或a≥6.答案:C12.已知集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A,且y∈B},则集合C中的元素个数为()A.3B.11C.8D.12解析:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A,且y∈B}.当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9;当x=4时,z=4或8或12;当x=5时,z=5或10或15.所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.集合A={(x,y)|y=6-x2,x∈N,y∈N},用列举法表示A为.解析:根据题意x可能取的值为0,1,2.当x=0时,y=6,符合题意;当x=1时,y=5,符合题意;当x=2时,y=2,符合题意.故A={(0,6),(1,5),(2,2)}.答案:{(0,6),(1,5),(2,2)}14.设全集I={1,3,5,7,9},集合A={1,|a-5|,9},∁I A={5,7},则a的值为.解析:∵∁I A={5,7},∴A={1,3,9}.∴|a-5|=3,解得a=2或8.答案:2或815.集合A={x|x2+ax-2≥ ,a∈Z},若-4∈A,2∈A,则满足条件的a组成的集合为.解析:由题意知 6-4-2 ,42-2 ,解得- ≤a≤2.又∵a∈Z,∴满足条件的a组成的集合为{-1,0,1,2,3}.答案:{-1,0,1,2,3}16.导学号85104021某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.由Venn图可知,喜爱篮球运动但不喜爱乒乓球运动的人数为12.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合A={x|- ≤x≤6},B={x|x<4},C={x|m-5<x<2m+3}.(1)求A∩B;(2)若A⊆C,求实数m的取值范围.解:(1)A∩B={x|- ≤x≤6}∩{x|x<4}={x|- ≤x<4}.(2)因为A={x|- ≤x<6},C={x|m-5<x<2m+3},所以当A⊆C时,有-5- ,26,解得2<m<2,所以实数m的取值范围是2<m<2.18.(12分)已知全集U为R,集合A={x|0<x≤2},B={x|x<-3或x>1}.求:(1)A∩B;(2)(∁U A)∩(∁U B);(3)∁U(A∪B).解:结合数轴可得,∁U A={x|x≤ 或x>2},∁U B={x|- ≤x≤ },A∪B={x|x<-3,或x>0}.∴(1)A∩B={x|1<x≤2};(2)(∁U A)∩(∁U B)={x|- ≤x≤ };(3)∁U(A∪B)={x|- ≤x≤ }.19.(12分)已知全集U={x|x<10,x∈N+}且(∁U A)∩B={1,9},(∁U A)∩(∁U B)={6,8},A∩B={2,4},求集合A和B.解:依题意U={1,2,3,4,5,6,7,8,9},作出韦恩图,如图所示,易知A={2,3,4,5,7},B={1,2,4,9}.20.(12分)已知集合A={x|x2-5x+6=0},B={x|mx+1=0},且A∪B=A,求由实数m的值组成的集合.解:A={x|x2-5x+6=0}={2,3},A∪B=A,∴B⊆A.①m=0时,B=⌀,B⊆A;②m≠0时,由mx+1=0,得x=-.∵B⊆A,∴-∈A.∴-=2或-=3,得m=-2或m=-.∴满足题意的m的集合为 ,-2,-.21.(12分)设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.(1)求a的值及A,B;(2)设全集I=A∪B,求(∁I A)∪(∁I B);(3)写出(∁I A)∪(∁I B)的所有子集.解:(1)∵A∩B={2},∴8+2a+2=0,∴a=-5, ∴A=2,2,B={-5,2}.(2)∵I=-5,2,2,∴(∁I A)∪(∁I B)=-5,2.(3)由(2)知(∁I A)∪(∁I B)的所有子集有⌀,2,{-5},-5,2.22.导学号85104022(12分)已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的取值范围.解:集合A是方程ax2-3x+2=0在实数范围内的解组成的集合.(1)A是空集,即方程ax2-3x+2=0无解,得 ,-2-,∴a>,即实数a的取值范围是,.(2)当a=0时,方程只有一解,方程的解为x=2;当a≠0且Δ=0,即a=时,方程有两个相等的实数根,A中只有一个元素4,∴当a=0或a=时,A中只有一个元素,分别是2和4.(3)A中至多有一个元素,包括A是空集和A中只有一个元素两种情况,根据(1),(2)的结果,得a=0或a≥,即a的取值范围是或.。
第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册
第一章集合与常用逻辑用语(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( )A.{0}=∅B.{(1,2)}={1,2}C.{∅}=∅D.0∈N2.已知集合A={1,2},B={1},则下列关系正确的是( )A.B AB.B∈AC.B⊆AD.A⊆B3.已知集合A={a-2,2a2+5a,12},且-3∈A,则a=( )A.-1B.-23C.-32D.-134.集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}5.“x为整数”是“2x+1为整数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( )A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P7.已知a,b为实数,M:a<b ,N:a<b,则M是N的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若命题“p:∀x∈R,x2-2x+m≠0”是真命题,则实数m的取值范围是( )A.{m|m≥1}B.{m|m>1}C.{m|m<1}D.{m|m≤1}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.下列关系正确的有( )A.12∈R B.2∉R C.|-3|∈N D.|-3|∈Q10.方程组Error!的解集可表示为( )A.Error!B.Error!C.(1,2)D.{(2,1)}11.已知A ={x|x +1>0},B ={-2,-1,0,1},则(A)∩B 中的元素有( )A.-2B.-1C.0D.1三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.若a ,b ∈R ,且a ≠0,b ≠0,则|a|a +|b|b的可能取值所组成的集合中元素的个数为________13.已知命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p 为________14.已知集合A ={-2,1},B ={x|ax =2},若A ∪B =A ,则实数a 值集合为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U =R ,集合A ={x|-1≤x ≤2},B ={x|-3≤x ≤1}.(1)求A ;(2)求B ∪(A).16.(14分)命题p 是“对任意实数x ,有x -a >0或x -b ≤0”,其中a ,b 是常数.(1)写出命题p 的否定;(2)当a ,b 满足什么条件时,命题p 的否定为真?R ð R ðR ð17.(15分)已知集合A ={x|2≤x <7},B ={x|5<2x -1<17}.(1)求A ∩B ,(B)∪A ;(2)已知C ={x|m +2<x ≤2m},若C ∩B =C ,求实数m 的取值范围.18.(16分)已知P ={x|1≤x ≤2},S ={x|1-m ≤x ≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在,请说明理由.19.(18分)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a -1)x +(a 2-5)=0}.(1)若A∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.R ð参考答案及解析:一、选择题1.D 解析:由集合的性质可知,∅表示没有任何元素的集合,而{0}表示有一个元素0,故A 错误;{(1,2)}表示有一个元素,是点的集合,而{1,2}表示有2个元素的集合,是数集,故B 错误;∅表示没有任何元素的集合,而{∅}表示有一个元素∅,故C 错误.故选D .2.C 解析:因两个集合之间不能用“∈或”,首先排除选项A ,B .因为集合A ={1,2},B ={1},所以集合B 中的元素都是集合A 中的元素,由子集的定义知B ⊆A .故选C .3.C 解析:因为-3∈A ,所以-3=a -2或-3=2a 2+5a ,所以a =-1或a =-32.所以当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去;当a =-32时,a -2=-72,2a 2+5a =-3,满足,所以a =-32.故选C .4.D 解析:∵A ={1,2},B ={2,4,6},∴A ∪B ={1,2,4,6}.故选D .5.A 解析:x 为整数时,2x +1也是整数,充分性成立;2x +1为整数时,x 不一定是整数,如2x +1=2时,x =12,所以必要性不成立,是充分不必要条件.故选A .6.B 解析:正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形.故选B .7.A 解析:因为a ,b 为实数,所以由a <b ,能够得到a <b ,反之,由a <b ,不一定有a <b ,如-3<-2,而-3无意义,所以M 是N 的充分不必要条件.故选A .8.B 解析:命题p :∀x ∈R ,x 2-2x +m ≠0是真命题,则Δ<0,即m >1.二、选择题9.AC 解析:AC 正确,BD 错误.10.ABD 解析:方程组Error!只有一个解,解为Error!所以方程组Error!的解集中只有一个元素,且此元素是有序数对,所以A ,B ,D 都符合题意.11.AB 解析:∵A ={x|x +1>0}={x|x >-1},∴A ={x|x≤-1}.又∵B ={-2,-1,0,1},∴(A)∩B ={-2,-1}.∴(A)∩B 中的元素有-2,-1.三、填空题12.答案:3解析:当a ,b 同正时,|a|a +|b|b =a a +b b=1+1=2.当a ,b 同负时,|a|a +|b|b =-a a +-b b =-1-1=-2.当a ,b 异号时,|a|a +|b|b=0. R ðR ðR ð∴|a|a +|b|b的可能取值所组成的集合中元素共有3个.13.答案:x ∈R ,x 2-3x +3>0 解析:命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p :x ∈R ,x 2-3x +3>0.14.答案:{0,-1,2} 解析:因为A ∪B =A ,所以B ⊆A ,当B =∅时,a =0;当B ≠∅时,B ={2a },则2a =-2或2a=1,解得a =-1或a =2,所以实数a 值集合为{0,-1,2}.四、解答题15.解:(1)∵A ={x|-1≤x ≤2},∴A ={x|x <-1或x >2}.(2)B ∪(A)={x|-3≤x ≤1}∪{x|x <-1或x >2}={x|x ≤1或x >2}.16.解:(1)命题p 的否定:存在实数x ,有x -a ≤0且x -b >0.(2)要使命题p 的否定为真,则需要使不等式组Error!的解集不为空集,通过画数轴(画数轴略)可看出,a ,b 应满足的条件是b <a .17.解:(1)因为B ={x|5<2x -1<17}={x|3<x <9},所以A ∩B ={x|3<x <7},B ={x|x ≤3或x ≥9},所以(B)∪A ={x|x <7或x ≥9}.(2)因为C ∩B =C ,所以C ⊆B .当C =∅时,m +2≥2m ,解得m ≤2;当C ≠∅时,{m +2<2m ,m +2≥3,2m <9,解得2<m <92.综上可得,实数m 的取值范围为Error!.18.解:(1)要使x ∈P 是x ∈S 的充要条件,需使P =S ,即Error!此方程组无解,故不存在实数m ,使x ∈P 是x ∈S 的充要条件.(2)要使x ∈P 是x ∈S 的必要条件,需使S ⊆P .当S =∅时,1-m >1+m ,解得m <0,满足题意;当S ≠∅时,1-m ≤1+m ,解得m ≥0,要使S ⊆P ,则有Error!解得m ≤0,所以m =0.综上可得,当实数m ≤0时,x ∈P 是x ∈S 的必要条件.∀∃∀R ðR ðR ðR ð19.解:(1)由题可知A ={x|x 2-3x +2=0}={1,2}.因为A∩B ={2},所以2∈B ,将2代入集合B 中,得4+4(a -1)+(a 2-5)=0,解得a =-5或a =1.当a =-5时,集合B ={2,10}符合题意;当a =1时,集合B ={2,-2},符合题意.综上所述,a =-5或a =1.(2)若A ∪B =A ,则B ⊆A .因为A ={1,2},所以B =∅或B ={1}或{2}或{1,2}.若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3;若B ={1},则{Δ=24-8a =0,x =-2(a -1)2=1-a =1,不存在满足式子同时成立的a 值;若B ={2},则{Δ=24-8a =0,x =-2(a -1)2=1-a =2,不存在满足式子同时成立的a 值;若B ={1,2},则{Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,不存在满足式子同时成立的a 值.综上所述,a >3.。
4 第一章 集合与常用逻辑用语 章节综合检测卷(新高考题型)(解析版).
4第一章集合与常用逻辑用语章节综合检测(新高考版综合卷)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2022·全国·高一课时练习)下列关系中错误的是()A .∅{}0B .{}1,2ZC .(){}{},,a b a b ⊆D .{}{}0,11,0⊆【答案】C【详解】对于A ,因为空集是任何非空集合的真子集,所以∅{}0,所以A 正确,对于B ,因为Z 表示的是整数集,所以{}1,2Z ,所以B 正确,对于C ,因为(){},a b 表示此集合中只有一个元素(),a b ,而集合{},a b 表示集合中有2个数,a b ,所以两集合间不存在包含关系,所以C 错误,对于D ,{}0,1和{}1,0是两个相等的集合,所以{}{}0,11,0⊆,所以D 正确,故选:C2.(2022·湖南益阳·模拟预测)命题“()0x ∃∈+∞,,使20x ax c ++≥”的否定是()A .()0x ∀∈+∞,,都有20x ax c ++≥B .()0x ∀∈+∞,,都有20x ax c ++<C .()0x ∃∈+∞,,使20x ax c ++≥D .()0x ∃∈+∞,,使20x ax c ++<【答案】B【详解】命题“()0x ∃∈+∞,,使20x ax c ++≥”的否定为()0x ∀∈+∞,,都有20x ax c ++<.故选:B3.(2022·全国·高一单元测试)用图形直观表示集合的运算关系,最早是由瑞士数学家欧拉所创,故将表示集合运算关系的图形称为“欧拉图”.后来,英国逻辑学家约翰•韦恩在欧拉图的基础上创建了世人所熟知的“韦恩图”.则图中的阴影部分表示的集合为()A .ABC ⋂⋂B .()U A B CðC .()U A B C⋂⋂ðD .()UABC ð故答案为:{32}xx -≤<-∣14.(2022·全国·高一专题练习)若对任意的x A ∈,有1A x∈,则称A 是“则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为。
高中数学必修一第一章集合分节练习和章末测试题含答案
高中数学必修1 第一章 集合 分节练习和章末综合测试题含答案§1 集合的含义与表示1、下列各组对象能否组成一个集合?(1)接近于0的数的全体; (2)2的近似值的全体; (3)平面上到点O 的距离等于1的点的全体; (4)正三角形的全体; (5)美丽的小鸟; (6)直角坐标系中第一象限内的点;(7)某学校的所有高个子男同学; (8)方程092=-x 在实数范围内的解.2、已知∈2x {1,0,x },求实数x 的值.3、下列四个集合中,空集是哪一个?(A ){0} (B ){x │x >8,且x <5} (C ){x ∈N │2x -1=0} (D ){x │x >4}4、用符号∉∈或填空: (1)设集合A 是正整数的集合,则0___A ,2___A ;(2)设集合B 是小于11的所有实数组成的集合,则32___B , 1+2___B.5、用列举法表示下列集合:(1)方程2x -9=0的解的集合; (2)由大于3小于10的整数组成的集合;(3){x ∈R │21)-(x (x +1)=0}; (4){x ∈N │∈x-66N }; (5){y ∈N │y =-2x +6,x ∈N }; (6){(x ,y)│y =-2x +6,x ∈N ,y ∈N }.6、用描述法表示下列集合:(1)小于10的所有有理数组成的集合; (2)所有偶数组成的集合;(3){2,4,6,8}; (4){1,21,31,41}; (5)直角坐标平面内第四象限内的点集;(6)抛物线y =2x -2x +2上的点组成的集合.7、对于集合A ={2,4,6,8},若A a ∈,则A a ∈-8,则由a 的值组成的集合为_________§2 集合的基本关系1、设A ={正方形},B ={矩形},C ={平行四边形},D ={梯形},则下列包含关系不正确的是( ) (A )A ⊆B (B )B ⊆C(C )C ⊆D (D )A ⊆C2、在下列集合中,只有一个子集的集合是 ( )A. {02≤x x 丨}B. {03≤x x 丨}C. {02<丨x x }D. {03<丨x x }3、已知集合A ={12=丨x x },B ={1=丨ay y ,a 为常数},若B ⊆A ,则由实数a 的取值构成的集合是 ( )A. {-1}B. {1}C. {-1,1}D. {-1,0,1}4、集合M ={丨=丨丨x y R y ∈},N ={2m x R x =丨∈,R m ∈},则下列关系正确的是 ( )A. N M ≠⊃B. N M =C. N M ≠D. M N ≠⊃5、 设集合A ={1,3, a },B ={1, 12+-a a },且A ⊇B ,则a 的值为_______.6、 已知M ={1>丨x x },N ={a x x >丨},且N M ⊆,则a 的取值范围是_______. 7、若{1,a ,ab }={0,2a ,b a +},则20132014b a +=_______.8、计算下列集合的子集的个数并写出其所有子集:(1) (2){0}; (3){丨x ()()()03212=--+x x x }.9、集合A ={23<<丨-x x },B ={121+<<-丨m x m x }且B ⊆A ,求实数m 的取值范围.§3 集合的基本运算1、已知集合=A {1,3,5,7,9},=B {0,3,6,9,12},则B A ⋂等于 ( )A.{3,5}B.{3,6}C.{3,7}D.{3,9}2、设全集=U {1,2,3,4,5},=A {1,3,5},=B {2,4,5}则(A C u )⋂(B C u )等于 ( )A. B. {4} C. {1,5} D. {2,5}3、下列命题正确的是A. )(P C C u u ={P }B. 若=M { 1,,{2} },则{2}≠⊂MC. Q C R =QD. 若=N {1,2,3},=S {1,3,4,2,5},则N ≠⊂S4、若集合=A {2≤x x 丨},=B {a x x ≥丨}满足B A ⋂={2},则实数a =_______.5、设=A {31≤x x <丨-},=B {42<丨x x ≤},则)(B A C R ⋃=_______. 6、已知关于x 的方程052=+-px x 与052=+-q x x 的解的集合分别为M 、S ,且=S M ⋂{3},则=qp _______. 7、设=A {33≤≤x x 丨-},=B {t x y y +=-丨2},若B A ⋂=, 则实数t 的取值范围是_______.8、设全集是实数集R ,=A {03722≤+-丨x x x },=B {02<+丨a x x }.(1)当a =-4时,求B A ⋂和B A ⋃;(2)若(A C R ) B B =,求实数a 的取值范围.9、集合A ={11<<丨-x x },B ={a x x <丨}. (1)若=B A ⋂,求实数a 的取值范围;(2)若=B A ⋃{1<丨x x },求实数a 的取值范围;本章综合测试题一、选择题1.下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素;(4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。
第一章 集合与常用逻辑用语单元测试(基础卷)(原卷版)
第一册第一章集合与常用逻辑用语单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列描述中不能够成集合的是( )A .中国的直辖市B .我国的小河流C .大于3小于11的奇数D .方程2320x x +-=的所有实数根 2.已知集合{}1,2,3A =,{}29B x x =<,则A B =( )A .{}2,1,0,1,2,3--B .{}2,1,0,1,2--C .{}1,2,3D .{}1,2 3.若集合{}1,2,3,4,5A =,集合{}04B x x =<<,则图中阴影部分表示( )A .{}1,2,3,4B .{}1,2,3C .{}4,5D .{}1,44.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤ C .{}2a a ≥ D .{}2a a > 5.命题“[1,2]x ∀∈,220x a -≥”为真命题的一个充分不必要条件是( )A .1a ≤B .2a ≤C .3a ≤D .4a ≤6.下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{2,3}M =,{3,2}N =C .{(,)1}M x y x y =+=∣,{1}N y x y =+=∣ D .{2,3}M =,{(2,3)}N =7.对于集合A ,B ,定义{|,}A B x x A x B -=∈∉,()()⊕=--A B A B B A .设{}1,2,3,4,5,6M =,{}4,5,6,7,8,9,10N =,则M N ⊕中元素的个数为( ).A .5B .6C .7D .88.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41二、多选题 9.下列说法中正确的是( )A .“AB B =”是“B =∅”的必要不充分条件B .“3x =”的必要不充分条件是“2230x x --=”C .“m 是实数”的充分不必要条件是“m 是有理数”D .“1x =”是“1x =”的充分条件10.下列命题正确的有() A .A ⋃∅=∅B .()()()U U UC A B C A C B ⋃=⋃ C .A B B A ⋂=⋂D .()U U C C A A = 11.(多选)已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( ) A .{}1,8 B .{}2,3 C .{}1 D .{}212.定义集合运算:()(){},,A B z z x y x y x A y B ⊗==+⨯-∈∈,设{}{}2,3,2,A B ==则( )A .当2,2x y ==1z = B .x 可取两个值,y 可取两个值,()()z x y x y =+⨯-对应4个式子C .A B ⊗中有4个元素D .A B ⊗的真子集有7个 E.A B ⊗中所有元素之和为4三、填空题13.命题 “2,(1)0x R x ∀∈->”的否定是_____.14.设全集为U ,有下面四个命题:①M N M ⋂=;②U U N M ⊆;③U N M ⋂=∅;④U M N ⋂=∅.其中是命题M N ⊆的充要条件的命题序号是________.15.设a ,b ∈R ,若集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则20202020a b +=_______. 16.若命题“p :x R ∀∈,2210ax x ++>”是假命题,则实数a 的取值范围是______.四、解答题17.设集合{}{}2|8150,|10A x x x B x ax =-+==-=. (1)若15a =,判断集合A 与B 的关系; (2)若AB B =,求实数a 组成的集合C .18.设全集为R ,集合{3A x x =≤或}6x ≥{}29B x x =-<<.(1)求A B ,()U A B ⋂;(2)已知{}1C x a x a =<<+,若C B ⊆,求实数a 的取值范围.19.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥.(1)当3a =时,求A B ;(2)若>0a ,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.20.求证:ABC ∆是等边三角形的充要条件是222a b c ab ac bc ++=++.这里,,a b c 是ABC ∆的三条边.21.向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人.问对A ,B 都赞成的学生和都不赞成的学生各有多少人?22.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤,(1)求A B 、()()U U A B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围.。
高中数学新教材必修第一册第一章《集合》综合测试题(附答案)
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合测试
一、填空题:
1、用集合符号填空:0 {0,1};{a ,b } {b ,a };0 φ
2、用列举法表示{y |y =x 2-1,|x |≤2,
x ∈Z}= .
{(x ,y )|y =x 2-1,|x |≤2,x ∈Z}= . 3、用列举法表示集合A=},512
|
{**N x N x
x ∈∈-=_______________. 4、已知集合A ={x |x 2-p x +15=0},B ={x |x 2-5x +q =0},如果A ∩
B ={3},那么p +q = .
5、已知集合A ={x |-1≤x ≤2},B ={x |x <a },如果A ∩B =A ,那么a 的取值范围是 .
6、已知集合A ={x |x ≤2},B ={x |x >a },如果A ∪B =R ,那么a 的取值范围是 .
7、集合元素具有的三大特征是: 、 、 ; 集合的表示方法: 、 、 ; 元素与集合只有两种关系: 、 ;
8、设U={x|x<10,x ∈N *},A ∩B={2},(C u A)∩(C u B)={1},(C u A)∩B={4,6,8},
则A =___________________B =_________________________. 9、A ={x |x =a 2+1,a ∈Z},B ={y |y =b 2-4b +5,b ∈Z},则A 、B 的关系是 .
10、满足{0,1}⊂M ⊆{0,1,3,5,6}的集合M 的个数为 .
11、设集合A ={x |10+3x -x 2≥0},B ={x |x 2+a <0},如果B ⊆A ,那
么实数a 的取值范围是 .
12、已知集合A={x │a+1<x <2a —1},B={x │-1<x <4},若A ≠∅,
且A B ⊆,则a 的取值范围是_________________________
二、选择题: 1、方程组⎪⎩⎪⎨
⎧=-=+9
12
2
y x y x 的解(x,y )的集合是:
( )
A .(5,-4)
B .{5,-4}
C .{(-5,4)}
D .{(5,-4)}
2、若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有 ( ) (A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A
3、设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则N M 等于( )
(A ){|}x x <-2 (B ){|}x x -<<21 (C ){|}x x <1 (D ){|}x x -≤<21 4、含有三个实数的集合可表示为}1,,{a
b a ,也可表示为{a 2,a+b,0},则
a 2003+
b 2003的值为 ( )
A .0
B .1
C .-1
D .±1
5、设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是( )
(A )(C I A ) B =I (B )(C I A ) (C I B )=I (C )A (C I B )=∅ (D )(C I A ) (C I B )=C I B 6、设M ={x |x ∈Z},N ={x |x =2n
,n ∈Z },P ={x |x =n +2
1},则下列关系正确的是( )
(A )N ⊂M (B ) N ⊂P (C )N =M ∪P (D ) N =M ∩P 7、M ={x |x 2+2x -a =0,x ∈R}≠φ,则实数a 的取值范围是( ) (A )a ≤-1 (B ) a ≤1 (C ) a ≥-1 (D ) a ≥1. 三、解答
13、设集合A={x|-3<x<-2}∪{x|x>2},B={x|a ≤x ≤b}.(a,b 是常数),且A ∩B={x|2<x ≤4}, A ∪B={x| x >-3},求a,b 的值.
14、1)若集合A=24k x x k Z ππ⎧
⎫=
+∈⎨⎬⎩⎭,B=42k x x k Z ππ⎧⎫=+∈⎨⎬⎩⎭
,问A 、B 是什么关系。
2)若集合M={}31,x x m m Z =+∈ P={}32,y y n n Z =+∈,x 0∈M ,y 0∈P ,求x 0y 0与集合M 、P 的关系。
15、}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。