第一章__三角形的证明2

合集下载

最新北师大版八年级数学下册《直角三角形》精品教学课件

最新北师大版八年级数学下册《直角三角形》精品教学课件

∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?

北师大版八年级数学(下) 第一章 三角形的证明 第2节 等边三角形的性质

北师大版八年级数学(下) 第一章  三角形的证明  第2节  等边三角形的性质

北师大版八年级数学(下)第一章三角形的证明第2课时等边三角形的性质例1:如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为()A.25°B.60°C.85°D.95°解:∠ADB=∠DBC+∠C=35°+60°=95°.故选:D.练习:等边三角形的两个内角平分线所成的锐角是()A.30°B.50°C.60°D.90°解:如图:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30°,在△OBC中,∠DOC=∠OBC+∠OCB=30°+30°=60°.故选:C.作业:1.如图,在等边三角形ABC中,D是AC边上的点,延长BC到点E,使CE=CD,则∠E的度数为()A.15°B.20°C.30°D.40°解:∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE=2∠E=60°,∴∠E=30°,故选:C.例2:如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.练习:如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.作业:2. 如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.解:∵△ABC是等边三角形,∴∠C=∠A=60°,∵CG=CD,∴∠GDC=30°,∵DF=DE,∴∠E=15°.故答案为:15.例3:三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为()A.90°B.60°C.45°D.30°解:如图,∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°﹣180°,∴∠3=180°﹣(∠1+∠2)=60°,故选:B.练习:如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BC=BD,∴AB=BD,∠BAD=∠ADB=20°,∴∠ABD=140°,∴∠CBD=80°,又∵BC=BD,∴∠BCD=50°=∠BDC,故选:A.作业:3. 如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为()A.50°B.45°C.40°D.35°解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵BC⊥CD,∴∠BCD=90°,∴∠ACD=60°+90°=150°,∵AC=CD,∴∠DAC==15°,∴∠BAD=60°﹣15°=45°.故选:B.例4:如图,在等边△ABC中,DA=DC,DM⊥BC,垂足为M,E是BC延长线上的一点,CE=CD.求证:MB=ME.证明:连接BD.∵△ABC是等边三角形,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴MB=ME.练习:如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F 为BC中点,连接AF.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵EA=EC,∠AEC=120°,∴∠EAC=∠ECA=30°,∴∠BAE=∠BAC+∠CAE=90°.故答案为90°.(2)结论:AF∥EC.理由:∵AB=AC,BF=CF,∴AF⊥BC,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴EC⊥BC,∴AF∥EC.作业:4.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.例5:已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.(1)求证:AD=BE;(2)求:∠BFD的度数.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,AB=CA,在△ABE和△CAD中,∴△ABE≌△CAD(SAS),∴AD=BE(全等三角形对应边相等);(2)解:∵△ABE≌△CAD(已证),∴∠ABE=∠CAD(全等三角形对应角相等),又∵∠BFD=∠BAD+∠ABE,∴∠BFD=∠BAD+∠CAD=∠BAC,又∠BAC=60°,∴∠BFD=60°.练习:已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF =60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.作业:5.已知△ABC为等腰三角形,AC=BC,△ACE为等边三角形.(1)如图①,若∠ABC=70°,则∠CAB的大小=(度),∠EAB的大小=(度);(2)如图②,△BDC为等边三角形,AE与BD相交于点F,求证:FA=FB.解:(1)∵AC=CB,∴∠ABC=∠CAB=70°,∵△ACE为等边三角形,∴∠CAE=60°,∴∠EAB=∠CAB﹣∠CAE=70°﹣60°=10°;故答案为:70,10.(2)证明:∵AC=BC,∴∠CAB=∠CBA,∵△ACE,△BDC都为等边三角形,∴∠CAE=∠CBD=60°,∴∠CAB﹣∠CAE=∠CBA﹣∠CBD,即∠FAB=∠FBA,∴FA=FB.备用:在同一平面内,将两块正三角形的纸板的两个顶点重合在一起.(1)如图1重叠部分∠AOD=30°,求∠COB的大小;(2)如图2重叠部分∠AOD=15°,求∠COB的大小;(3)如图3,若两图形除O外没有重叠,∠AOD=10°,求∠COB的大小;(4)求∠AOD和∠COB的数量关系.解:(1)∵△COD和△AOB为正三角形,∠AOD=30°,∴∠COB=∠COD+∠AOB﹣∠AOD=60°+60°﹣30°=90°;(2)∵△COD和△AOB为正三角形,∠AOD=15°,∴∠COB=∠COD+∠AOB﹣∠AOD =60°+60°﹣15°=105°;(3)∵△COD和△AOB为正三角形,∠AOD=10°,∴∠COB=∠COD+∠AOB+∠AOD=60°+60°+10°=130°;(4)当∠AOD是两个角的重叠的角,则∠COB=120°﹣∠AOD;当∠AOD是两个角的相离时的角,且∠AOD≤60°,则∠COB=120°+∠AOD;当∠AOD是两个角的相离时的角,且∠AOD>60°,则∠COB=360°﹣(120°+∠AOD)=240°﹣∠AOD.。

北师大版八年级数学下册第一章三角形的证明测试题 (2)

北师大版八年级数学下册第一章三角形的证明测试题 (2)

1.1等腰三角形一、选择题1.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A. 3cmB. 6cmC. 9cmD. 3cm或6cm2.下列能判定△ABC为等腰三角形的是()A. ∠A=50°,∠B=40°B. ∠A=70°,∠B=40°C. AB=AC=4,BC=8D. AB=3,BC=8,周长为163.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A. 50°B. 80°C. 65°或50°D. 50°或80°4.在平面直角坐标中,已知点A(2,1),O为坐标原点,在y轴上确定点P,使得△AOP 为等腰三角形,则符合条件的点P的个数为()A. 3B. 4C. 5D. 65.把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 任意三角形6.如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE=()A. 10°B. 15°C. 20°D. 30°7.如图,在△ABC中,∠B=45°,∠D=64°,AC=BC,则∠E的度数是()A. 45°B. 26°C. 36°D. 64°8.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是()A. 72°B. 36°或90°C. 36°D. 45°9.若等腰三角形的两边长分别为6和8,则周长为()A. 20或22B. 20C. 22D. 无法确定10.等腰三角形中有一内角等于80°,那么这个三角形的最小内角的度数为()A. 50B. 20C. 40或50D. 20或5011.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A. 45°B. 55°C. 60°D. 75°二、填空题12.已知等腰三角形的一边长等于4cm,另一边长等于9cm,则此三角形的周长为 ________cm.13.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:________.14.如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠PBC=∠PCA,则∠BPC=________15.△ABC中,AB=AC,∠A=36°,BC=6,则角平分线BD=________.16.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为________.17.若△ABC为等腰三角形,顶角∠B=100°,则底角∠A=________.18.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是________.19.如图,在△ABC中,点D是BC上一点,∠BAD=84°,AB=AD=DC,则∠CAD=________三、解答题20.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.21.如图,点D在AC上,点E在AB上,且AB=AC,BD=BC,AD=DE=BE.求∠A的度数.22.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.23.如图,已知△ABC中,AB=AC,BD,CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.参考答案1.A2.B3.D4.B5.B6.A7.B8.B9.A 10.D 11.C 12.22 13.50°或130°14.115°15.6 16.1或3 17.40°18.6个19.24°20.解:设三角形的腰AB=AC=x若AB+AD=24cm,∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.21.解:设∠A=x°,∵AD=DE=BE,∴∠ABD=∠BDE,∠A=∠AED,由三角形的外角性质得,∠AED=∠ABD+∠BDE=2∠ABD,∵BD=BC,∴C=∠BDC,∵AB=AC,∴∠C=∠ABC,在△ABC中,由三角形内角和定理得,x+解得x=45,所以,∠A=45°.22.证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°-∠ABC,∠DBC=90°-∠ACB.∴∠ECB=∠DBC (等量代换). ∴FB=FC (等角对等边), 在△ABF 和△ACF 中,∴△ABF ≌△ACF (SSS ),∴∠BAF=∠CAF (全等三角形对应角相等), ∴AF 平分∠BAC .23.(1)证明:∵AB=AC , ∴∠ABC=∠ACB ,∵BD 、CE 是△ABC 的两条高线, ∴∠BEC=∠BDC=90° ∴△BEC ≌△CDB ∴∠DBC=∠ECB , ∴OB=OC ;(2)∵∠ABC=50°,AB=AC , ∴∠A=180°-2×50°=80°, ∴∠ABD=90°-80°=10°, ∴∠OBC=50°-10°=40°,∴∠BOC=180°-40°-40°=100°.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方2C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。

教案 《HL定理的证明》临猗县崇相西初中 曹红艳

教案 《HL定理的证明》临猗县崇相西初中  曹红艳

第一章三角形的证明2.直角三角形(二)一、学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。

二、教学任务分析本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。

在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。

因此本节课的教学目标定位为:1.知识目标:①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性②利用“HL’’定理解决实际问题2.能力目标:①进一步掌握推理证明的方法,发展演绎推理能力三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。

1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。

想一想,怎么画?同学们相互交流。

3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。

(小组互相交流,画图得出结论)从而引入新课。

2:引入新课(1)已知一条直角边和斜边,求作一个直角三角形(2).“HL”定理.由师生共析完成已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt △ABC ≌Rt △A′B′C′证明:在Rt △ABC 中,AC=AB 2一BC 2(勾股定理).又∵在Rt △ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股定理).AB=A'B',BC=B'C',AC=A'C'.∴Rt △ABC ≌Rt △A'B'C' (SSS).教师用多媒体演示:定理 斜边和一条直角边对应相等的两个直角三角形全等. 这一定理可以简单地用“斜边、直角边”或“HL”表示. 多媒体演示符号语言的表示 例:有两个长度相等的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,两个滑梯的倾斜角∠B 和∠F 的大小关系?通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

1.1 等腰三角形第2课时(课件)八年级数学下册(北师大版)

1.1 等腰三角形第2课时(课件)八年级数学下册(北师大版)

D
B
E
C
五、当堂达标检测
5.如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,求∠EDA的度数.
解:
∵ △ABC是等边三角形,
B
∴∠CBA=60°.
∵BD是AC边上的中线,
∴∠BDA=90°, ∠DBA=30°.
C
∵ BD=BE,
∴ ∠BDE=(180 °-∠DBA) ÷2 = (180°-30°)÷2=75°.
两条腰上的中线相等;两条腰上的高线相等.
你能证明你
的猜想吗?
二、自主合作,探究新知
探究一:等腰三角形的重要线段的性质
猜想证明
1.证明:等腰三角形两底角的平分线相等.
A
已知:如图, 在△ABC中, AB=AC, BD和CE是
△ABC的角平分线.
D
E
求证:BD=CE.
B
1 2
C
二、自主合作,探究新知
D
C
二、自主合作,探究新知


(4)如果AD= AC,AE= AB,那么BD=CE吗?


A
为什么?
E
解:(4)BD=CE.


证明:∵AB=AC,AD= AC,AE= AB,


∴AD=AE.
在△ABD和△ACE中
∵AD=AE,∠A=∠A,AB=AC,
∴△ABD≌△ACE(SAS).
∴BD=CE(全等三角形的对应边相等).
6.已知:如图所示,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,点M,
N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.

证明: ∵AM=2MB,∴AM= AB.

三角形的证明

三角形的证明

第一章三角形的证明第一讲:1.等腰三角形(1)——等腰三角形的性质(知识回顾)知识点一三角形全等的证明方法:1、 2、 3、 4、例1如图所示,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E,F.求证:BF=CE1.如图,AC与BD交于点O,AB∥CD,若用“ASA”或“AAS”判定△AOB≌△COD,还需要添加的一个条件是.2、两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点.求证:OF=OC.知识点二等腰三角形的性质定理定理:等腰三角形的两底角相等.这个定理简称为等边对等角.例2如图所示,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC,求∠B的度数3、若等腰三角形底边上的高与底边的比为1∶2,则它的顶角等于()A.90°B.60°C.120°D.150°4.已知等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数是( )A.50°B.80C.50°或80°D.40°或65°知识点三等腰三角形性质定理的推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.这条性质通常称为等腰三角形的“三线合一”.是证明那三条线证明: 等腰三角形两底角的平分线相等,高线相等已知:如图,在△ABC中, AB=AC, BD、CE是△ABC的角平分线.求证:BD=CE.拓展点一等腰三角形特殊性质的证明例1求证:等腰三角形两腰上的高的交点到底边两端的距离相等.已知:如图,在△ABC中,AB=AC,CE⊥AB于点E,BD⊥AC于点D,CE,BD交于点O,求证:OB=OC.知识点四等边三角形的性质定理定理:等边三角形的三个内角都相等,并且每个角都等于60°.例4 如图,点P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.拓展点二等边三角形与三角形全等的综合题5、如图,已知△ABC和△ADE都是等边三角形,连接CD,BE.求证:CD=BE习题1、下列各组几何图形中,一定全等的是()A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.3、如果等腰三角形的一个内角等于50°,则其余两角的度数为。

资中县八中八年级数学下册第一章三角形的证明2直角三角形第2课时直角三角形全等的判定教案新版北师大版6

资中县八中八年级数学下册第一章三角形的证明2直角三角形第2课时直角三角形全等的判定教案新版北师大版6

第2课时直角三角形全等的判定1.掌握并利用“HL”定理解决实际问题.2.能用尺规完成已知一条直角边和斜边作直角三角形.3.进一步掌握推理证明的方法,发展演绎推理的能力,培养学生思维的灵活性与开放性.重点直角三角形“HL”判定定理的理解及运用.难点证明“HL”定理的思路的探究和分析.一、复习导入1.前面我们学习了判断两个三角形全等的方法,你还记得有哪几种吗?2.通过以上方法我们可以看出判断两个三角形全等,已知条件中至少有一条边对应相等.如果在两个三角形中已知两边对应相等时,附加一个什么条件可以说这两个三角形全等?3.如果附加的条件是其中一边的对角对应相等,那么这两个三角形还全等吗?你能画图举例说明吗?师:如果其中一边所对的角是直角,那么这两个三角形全等吗?让我们带着这个问题来继续学习直角三角形.二、探究新知1.猜想师:如果在两个直角三角形中,已知斜边和一条直角边分别对应相等,那么这两个直角三角形全等吗?处理方式:引导学生思考讨论,教师点拨.学生意见会不统一,有的认为全等,有的认为不一定全等.2.探究课件出示教材第18页“做一做”.已知一条直角边和斜边,求作一个直角三角形.已知:如图,线段a,c(a<c),直角α.求作:Rt△ABC,使∠C=∠α,BC=a,AB=c.画图过程展示:(1)作∠MCN=∠α=90°;(2)在射线CM截取CB=a;(3)以点B为圆心,线段c的长为半径作弧,交射线CN于点A;(4)连接AB,得到Rt△ABC.思考:通过刚才的画图,你有什么发现?3.总结师:你们所画的三角形都有哪些已知的相等量?你能得出什么结论?板书:斜边和一条直角边分别对应相等的两个直角三角形全等.4.证明师:你能证明这个命题是真命题吗?处理方式:学生先在小组内交流,然后独立写出已知、求证,并证明.完成后教师用多媒体展示学生的证明过程,并及时地评价,同时规范解题过程.证明过程展示:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC =A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC中,∵∠C=90°,∴BC2=AB2-AC2(勾股定理).同理,B′C′2=A′B′2-A′C′2(勾股定理).∵AB=A′B′,AC=A′C′,∴BC=B′C′.∴△ABC≌△A′B′C′ (SSS).师:通过以上证明,我们可以得出命题“斜边和一条直角边分别相等的两个直角三角形全等”是一个真命题.我们把这一定理简述为“斜边、直角边”或“HL”.三、举例分析例(课件出示教材第20页例题)处理方式:引导学生分析,并能用数学语言清楚地表达自己的想法,教师对学生的回答进行点评,示范解题过程.分析:本题主要利用“斜边、直角边”定理解决实际问题.依据已知条件,只需证明Rt△ABC≌Rt△DEF,再利用直角三角形的性质即可得出∠B和∠F的大小关系.解:根据题意,可知∠BAC=∠EDF=90°,BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL).∴∠B=∠DEF.∵∠DEF+∠F=90°,∴∠B+∠F=90°.四、练习巩固1.如图,已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来.2.如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF.求证:△ABC是等腰三角形.五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第20页“随堂练习”第1、2题.2.教材第21页习题1.6第1~5题.本节课讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——“HL”定理,并用此定理安排了一系列具体的、开放性的问题,不仅使学生进一步掌握了推理证明的方法,而且发展了他们演绎推理的能力二次根式的除法说课稿一、教材分析本节内容是在积的二次根式性质的基础上学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.二、重点难点分析:本节课是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.三、教法运用:1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.2. 本节内容可以分为两阶段,第一阶段讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二阶段讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现分式或分数的情况。

北师大版数学八年级下册数学课件:第一章2直角三角形第二课时

北师大版数学八年级下册数学课件:第一章2直角三角形第二课时

AC=DB,则下列结论不正确的是
A. ∠A=∠D
( C)
B. ∠ABC=∠DCB
C. OB=OD
D. OA=OD
课后作业
4. 如图1-2-21,∠A=∠B=90°,E是AB上的一点,且AE=BC, ∠1=∠2. (1)Rt△ADE与Rt△BEC全等吗?并说明理由; (2)△CDE是否为直角三角形?并说明理由.
∴Rt△BDE≌Rt△CDF(HL). ∴∠B=∠C. ∴AB=AC.
课堂讲练
模拟演练
1. 如图1-2-13,AC⊥BC,AD⊥DB,要使△ABC≌△BAD, 还需添加条件__A_C_=_B__D_(__答__案_不__唯__一__)_. (只需写出符合条件 的一种情况)
课堂讲练
2. 如图1-2-15,已知∠A=∠D=90°,E,F在线段BC上, DE与AF交于点O,且AB=DC,BE=CF. 求证:Rt△ABF≌Rt△DCE. 证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE. ∵∠A=∠D=90°, ∴△ABF与△DCE都为直角三角形.
( D) A. AE=DF B. ∠A=∠D C. ∠B=∠C D. AB=DC
课后作业
2.如图1-2-19,O是∠BAC内一点,且点O到AB,AC的 距离OE=OF,则△AEO≌△AFO的根据是
(A ) A. HL B. AAS C. SSS D. ASA
课后作业
3. 如图1-2-20,AB⊥AC于点A,BD⊥CD于点D,若
∴△ACE≌△BDF(AAS). ∴CE=DF.
在Rt△ABF和Rt△DCE中,
∴Rt△ABF≌Rt△DCE(HL).
课堂讲练
3. 如图1-2-17,已知在△ABC中,∠C=90°,AD平分 ∠BAC交BC于点D,DE⊥AB于点E,点F在AC上,且BD=FD, 求证:AE-BE=AF. 证明:∵AD平分∠BAC,DE⊥AB,∠C=90°, ∴Rt△ADC≌Rt△ADE(AAS). ∴DC=DE.

8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明

8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明

浙教版-8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明【知识点-部分】一、三角形的内角和定理及推论:1、三角形的内角和定理:三角形三个内角的和等于180°;推论:由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论;推论可以当做定理使用。

2、三角形内角和定理的推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和;推论2:三角形的一个外角大于任何一个和它不相邻的内角。

二、辅助线:1、当问题的条件不够用、不够集中时,需添加辅助线,构造新图形,形成新关系,找到已知与未知的联系,把问题转化成已经会解的情况,我们把在原图上添加的线叫做辅助线。

注:(1)辅助线通常画为虚线;(2)添加辅助线往往结合学习过的定理或概念。

【典型例题-精选部分】【例1】如图所示,∠A,∠1,∠2的从大到小关系是。

【例2】如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为。

【例3】如图,在△ABC中,外角∠CBD和∠BCE的平分线交于点O,且∠BOC=40°,则∠A的度数为。

【例4】将一把直尺与一块三角尺如图放置,若∠1=45°,则∠2的度数为。

【例5】将一副三角尺如图叠放,则图中∠α=°。

【例6】如图,将一张三角形纸片ABC的一角折叠,使点A落在外的处,折痕为DE。

如果,,,那么下列式子中正确的是()A、B、C、D、【例7】已知:如图,∠ADE=∠A+∠B,求证:DE∥BC。

【例8】如图,已知四边形ABDC,求证:∠BDC=∠A+∠B+∠C。

【例9】如图,∠B=36∘,∠D=50∘,AM,CM分别平分∠BAD和∠BCD,AM交BC于点R,CM交AD于点Q,BC与AD交于点P,求∠M的度数。

【例10】如图,在△ABC中,点E在AC上,∠AEB=∠ABC。

(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?【例11】已知:如图一:△ABC 中,BO 平分∠ABC,CO 平分外角∠ACD。

八下数学第一章三角形的证明知识点归纳

八下数学第一章三角形的证明知识点归纳

八下数学第一章三角形的证明知识点归纳主要内容:本章分四节第一节:等腰三角形。

主要学习了等腰三角形(含等边三角形)的性质定理和判定定理的证明,以及运用反证法证明命题的方法第二节:直角三角形。

介绍了直角三角形全等、性质和判定方法,引出了互逆定理、逆定理概念第三节:线段的垂直平分线。

通过对具体事例的观察与探索,学习了线段垂直平分线的性质定理及其逆定理第四节:角平分线。

在已经学习的角平分线的概念及三角形知识基础上进一步证明了角平分线的性质定理及其逆定理第一节:等腰三角形等腰三角形的性质及判定定理性质:1.定义:两边相等的三角形是等边三角形2.定理:等腰三角形的两个底角相等(等边对等角).3.推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”).判定:1.定义:两边相等的三角形是等腰三角形2.定理:两个角相等的三角形是等腰三角形(等角对等边)等边三角形的性质及判定定理1.性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.2.判定定理:(1)有一个角是60°的等腰三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形第二节:直角三角形全等判定1.定义:能够完全重合的两个三角形称为全等三角形.(注:全等三角形是相似三角形中的特殊情况)2.全等判定:SSS,SAS,ASA,AAS,HL直角三角形的性质及判定性质1.定义:有一个角等于90°的三角形是直角三角形2.推论:直角三角形如果有一个角等于30°,那么它所对直角边等于斜边的一半3.定理:直角三角形两条直角边平方和等于斜边平方判定定理:1.定义:有一个角等于90度的三角形2.定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形第三节:线段的垂直平分线1.定理:线段垂直平分线上的点到这条线段两个端点的距离相等2.逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上3.三角形垂直平分线定理:三角形三边垂直平分线交于一点,并且这一点到三角形的三边距离相等第四节:角平分线1.定理:角平分线上的点到这个角的两边距离相等2.逆定理:到一个角两边距离相等的点在这个角的平分线上3.三角形角平分线定理:三角形的三条角平分线交于一点,并且这一点到三条边的距离相等三角形的证明几何语言汇总性质定理推理符号语言几何语言等腰三角形定理:等腰三角形的两底角相等(等边对等角)∵AB=AC ∴∠B=∠C推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(即“三线合一”).∵AB=AC ,点D 在BC 上∵AD 平分∠BAC∴AD ⊥BC ,AD 平分BC ∵AD ⊥BC∴AD 平分∠BAC ,AD 平分BC ∵AD 平分BC∴AD ⊥BC ,AD 平分∠BAC 定理:有两个角相等的三角形是等腰三角形(等角对等边)∵∠B=∠C ∴AB=AC∴△ABC 是等腰三角形等边三角形三条边相等的三角形是等边三角形∵△ABC 是等边三角形∴AB=AC=BC定理:三个角都相等的三角形是等边三角形∵∠A=∠B=∠C∴△ABC 是等边三角形定理:等边三角形的三个内角都相等,并且每个角都等于60°∵AB=AC=BC∴∠A=∠B=∠C=60°定理:有一个角是60°的等腰三角形是等边三角形在△ABC 中∵∠A=60°,AB=AB ∴△ABC 是等边三角形直角三角形有一个角是90°的三角形是直角三角形∵∠B=90°∴△ABC 是直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对直角边等于斜边的一半在RT △ABC 中,∠B=90°,∠A=30°∴BC=½AC定理:直角三角形的两个锐角互余∠B=90∴∠A+∠C=90°定理:有两个角互余的三角形是直角三角形在△ABC 中∵∠A+∠C=90°∴△ABC 是直角三角形,∠B=90°勾股定理:直角三角形两条直角边平方和等于斜边平方在RT △ABC 中,∠B=90°∴AB 2+BC 2=AC 2定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形在△ABC 中∵AB 2+BC 2=AC 2∴△ABC 是直角三角形,∠B=90°直角三角形全等判定:斜边和一条直角边分别相等的两个直角三角形全等(HL )在RT △ABC 和RT △A`B`C`中∵AC=A`C`,AB=A`B`∴RT △ABC ≌RT △A`B`C`线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等∵CD 垂直平分AB ∴CA=CB定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上∵CA=CB∴点C 在AB 的垂直平分线上三角形垂直平分线定理:三角形三边垂直平分线交于一点,并且这一点到三个顶点的距离相等∵点P 是△ABC 的三边垂直平分线的交点∴PA=PB=PC角平分线定理:角平分线上的点到这个角的两边的距离相等∵OP 平分∠AOB ,PD ⊥OA ,PE ⊥OB ∴PD=PE定理:在一个角的内部,到角两的边距离相等的点在这个角的平分线上∵PD=PE ,PD ⊥OA ,PE ⊥OB ∴OP 平分∠AOB三角形三条角平分线相交于一点,并且这一点到三条边的距离相等∵点P 是△ABC 三个内角平分线的交点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,垂足分别为D ,E ,F ∴PD=PE=PF。

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定
A
B
C
画图方法视频(点击文字
播放)
画图思路
N
A
B
C
M
C′
(1)先画∠M C′ N=90°
画图思路
N
A
B
C
M
B′
C′
(2)在射线C′M上截取B′C′=BC
画图思路
N
A
A′
B
C
M B′
C′
(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′
画图思路
N
A
A′
B
C
M B′
C′
(4)连接A′B′
思考:通过上面的探究,你能得出什么结论?
(2)当P运动到与C点重合时,AP=AC. 在Rt△ABC与Rt△QPA中, ∵PQ=AB,AP=AC, ∴Rt△QAP≌Rt△BCA(HL), ∴AP=AC=10cm, ∴当AP=5cm或10cm时,△ABC才能和△APQ全等.
【方法总结】判定三角形全等的关键是找对应边和对应角,由于本 题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏 解.
B
A
C
如图,Rt△ABC中,∠C =90°,直角边是_____、_____,A斜C边是
__B__C__.
AB
前面学过的四种判定三角形全等的方法,对直角三角形是否适用?
口答:
A
A′
1.两个直角三角形中,斜边和一个锐 角对应相等,这两个直角三角形全等 吗?为什么?
B
C B′
C′
2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′个直角三角形是否全等,不全等的画“×”,

第一章 证明(二)复习课

第一章 证明(二)复习课

A.4 B.3 C.2 D.5 13.等腰三角形的顶角是 n°,那么它的一腰上的高与底边的夹角等于( A.

90 n 2 n 2
B.90-
n 2
C.
D.90°-n°
14.下列由线段 a、b、c 组成的三角形,不是直角三角形的是( A.a=3,b=4,c=5 C.a=9,b=12,c=15 B.a=1,b=
10、
角平分线定理
三、准确掌握有关判定方法、性质进行证明 1、 要清晰、准确、有层次地掌握本章的判定及性质,注意在证明中合理、准确、灵活地运用定理 2、 在证明三角形全等和直角三角形全等时要注意包含关系,在应用线段垂直平分线、角的平分线定理及逆定理 时,要注意命题的题设和结论,要与解决问题相吻合,不要用错 四、本章证明题的类型 1、 三角形全等的判定 2、 直角三角形全等的判定 3、 等腰三角形的判定及性质 4、 利用勾股定理、线段垂直平分线、角平分线定理及逆定理解决问题 5、 本章知识的综合应用 五、方法总结 1、 证明线段相等的方法 1) 可证明它们所在的两个三角形全等; 2) 角平分线的性质定理:角平分线上的点到角两边的距离相等; 3) 等角对等边; 4) 等腰三角形三线合一的性质; 5) 中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等 2、 证明两角相等的方法 1) 同角的余角相等; 2) 平行线性质; 3) 对顶角相等; 4) 全等三角形对应角相等; 5) 等边对等角; 6) 角平分线的性质定理和逆定理 3、 证明垂直的方法 1) 证邻补角相等; 2) 证和已知直角三角形全等; 3) 利用等腰三角形的三线合一性质; 4) 勾股定理的逆定理
C
学习了本章后,大家要灵活运用所学知识,解决一些证明题。
……

数学北师大版八年级下册直角三角形全等的“HL”的判定定理

数学北师大版八年级下册直角三角形全等的“HL”的判定定理

第一章三角形的证明2.直角三角形全等的“HL”的判定定理希望学校吕淑霞一、学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。

二、教学任务分析本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。

在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。

因此本节课的教学目标定位为:1.知识目标:①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性②利用“HL’’定理解决实际问题2.能力目标:①进一步掌握推理证明的方法,发展演绎推理能力三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。

1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。

想一想,怎么画?同学们相互交流。

3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。

我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。

那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:已知:在△ABC 中, AB=AC .求证:∠B=∠C .证明:过A 作AD ⊥BC ,垂足为C ,∴∠ADB=∠ADC=90°又∵AB=AC ,AD=AD ,∴△ABD ≌△ACD .∴∠B =∠C (全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。

质疑点在于“在证明△ABD ≌△ACD 时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD 和△ABC 中,AB=AB ,∠B=∠B ,AC=AD ,但△ABD 与△ABC 不全等)” .也有学生认同上述的证明。

八年级数学下册 第一章 三角形的证明 2 直角三角形第2课时 直角三角形全等的判定教案北师大版

八年级数学下册 第一章 三角形的证明 2 直角三角形第2课时 直角三角形全等的判定教案北师大版

八年级数学下册第一章三角形的证明2 直角三角形第2课时直角三角形全等的判定教案北师大版年级:姓名:第2课时直角三角形全等的判定【知识与技能】能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性【过程与方法】进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感【情感态度】进一步掌握推理证明的方法,发展演绎推理能力【教学重点】能够证明直角三角形全等的“HL”的判定定理【教学难点】进一步理解证明的必要性.一.情景导入,初步认知1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形.想一想,怎么画?同学们相互交流.3.有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论.【教学说明】教师顺水推舟,询问能否证明:“斜边和一条直角边分别相等的两个直角三角形全等”,从而引入新课.二.思考探究,获取新知探究:“HL”定理.已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt△ABC≌Rt△A′B′C′.证明:在Rt△ABC中,AC2=AB2一BC2(勾股定理).又∵在Rt△ A' B' C'中,A' C' 2=A'B'2一B'C'2 (勾股定理).∴AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C' (SSS).【归纳结论】斜边和一条直角边对应相等的两个直角三角形全等.(这一定理可以简单地用“斜边、直角边”或“HL”表示.)【教学说明】讲解学生的板演,借此进一步规范学生的书写和表达.分析命题的条件,既然其中一边和它所对的直角对应相等,那么可以把这两个因素总结为直角三角形的斜边对应相等,于是直角三角形有自己的全等判定定理.三.运用新知,深化理解1.见教材P20例题2.填空:如下图,Rt△ABC和Rt△DEF,∠C=∠F=90°.(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是AAS.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是ASA.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是AAS.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是HL.(5)若AC=DF,CB=FE,则Rt△ABC≌Rt△DEF的依据是SAS.3.已知:Rt△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线,且BD=B'D'. 求证:Rt△ABC≌Rt△A'B'C'.证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C' (HL定理).∴CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C',∴Rt△ABC≌Rt△A'B'C(SAS).4.如图,已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来,并证明.解:AC=DB.∵AC=DB,AB=BA,∴△ACB≌△BDA(HL)其他条件:CB=DA或四边形ACBD是平行四边形等.证明略.【教学说明】这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.5.如图,在△ABC与△A'B'C'中,CD、C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.求证:△ABC≌△A'B'C'.分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求∠B=∠B',这样就可用AAS;还可寻求BC=B'C',那么就可根据SAS……注意到题目中有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证得Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A' 就可行.证明:∵CD、C'D'分别是△ABC、△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°.在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D' (已知),∴Rt△ADC≌Rt△A'D'C' (HL).∠A=∠A',(全等三角形的对应角相等).在△ABC和△A'B'C'中,∠A=∠A' (已证),AC=A'C' (已知),∠ACB=∠A'C'B' (已知),∴△ABC≌△A'B'C' (ASA).【教学说明】通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结.四.师生互动,课堂小结直角三角形的判定方法有五种,注意“HL”仅适用于直角三角形.五.教学板书布置作业:教材“习题1.6”中第3、4、5 题.本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现很值得夸赞.。

1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册

1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册
(1)如图1,若∠BAC=∠DAE=60°,则△BEF是___等__边__三
角形;
(2)若∠BAC=∠DAE≠60° ①如图2,当点D在线段BC上移动,判断△BEF的形状并证明; ②当点D在线段BC的延长线上移动,△BEF是什么三角形?请 直接写出结论并画出相应的图形.
解:(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴△AED和△ABC为等边三角形, ∴∠C=∠ABC=60°,∠EAB=∠DAC, ∴△EAB≌△DAC, ∴∠EBA=∠C=60°, ∵EF∥BC, ∴∠EFB=∠ABC=60°, ∵在△EFB中,∠EFB=∠EBA=60°,
B
30°
的正北方向,此时它与灯塔的距离是
_2_0___3_海里(结果保留根号).
A
C

小结(2分钟)
(考点)
1、等腰三角形的性质与判定: 等边对等角、三线合一
2、等边三角形的性质定理及其判定定理 3、直角三角形的性质定理及其判定定理 4、反证法的证明步骤,互逆命题、互逆定理的概念
(易错点) 1.做没有图形的几何问题求边长或角度时应注意:
是否进行分类讨论
2.做互逆命题的问题应注意:
注意互逆命题的语言的准确性
当堂训练(15分钟) 1、如图,长方形纸片ABCD,AD∥BC,将长方
形纸片折叠,使点D与点B重合,点C落在点C’ 处,折痕为EF,则 △BEF为 等腰 三角形.
2.如图,已知∠AOB=60°,点P在边OA上,OP=8, 点M,N在边OB上,PM=PN,若MN=2,则ON=( B )
②AB=AC,点D为射线BC上一个动点(不与B、C重合),
以AD为一边向AD的左侧作△ADE,使AD=AE,
∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连 接BE.

2023八年级下期中复习第一章《三角形的证明》2

2023八年级下期中复习第一章《三角形的证明》2

考点一三角形的内角和定理1.(20212022成都彭州中学实验学校八下期中·8)(3分)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=25°,则∠ADC的度数是()A.45°B.60°C.75°D.70°2.(20212022成都锦江区嘉祥外国语八下期中·16)(4分)△ABC中,AD是BC边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=.3.(20212022成都锦江区教科院附中八下期中·24)(8分)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.考点二中位线定理1.(20212022成都十八中八下期中·8)(3分)如图,在平行四边形ABCD中,点E,F,G分别为AB,BD,AD的中点,则△AEG与▱ABCD的面积之比为()A.1:2B.1:4C.1:8D.1:162.(20212022成都十八中八下期中·9)(3分)如图,DE是△ABC的中位线,∠ABC的角平分线交DE 于点F,AB=8,BC=12,则EF的长为()A.1B.1.5C.2D.2.53.(20212022成都石室中学北湖校区八下期中·8)(3分)如图,为测量池塘边A,B两点的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点C、点D且CD=12米.则A,B间的距离是()A.24米B.26米C.28米D.30米4.(20212022成都锦江区嘉祥外国语八下期中·18)(4分)在Rt△ABC中,∠BAC=52°,D在线段AB的中垂线上,连接CD,且CD⊥AD,则∠DAC=.考点三等腰三角形的性质题型一、直接计算1.(20212022成都金牛区铁路中学八下期中·11)(4分)在△ABC中,AB=AC,∠A=80°,则∠C =°.2.(20212022成都青羊区石室联中八下期中·4)(4分)如图,直线m∥n,点A在直线m上,点B、C 在直线n上,AB=CB,∠2=42°,则∠1等于()A.42°B.58°C.69°D.71°3.(20212022成都双流实验中学八下期中·12)(4分)一个等腰三角形的一个底角为40°,则它的顶角的度数是度.题型二、方程思想1.(20212022成都金牛区铁路中学八下期中·8)(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是()A.36°B.45°C.54°D.72°题型三、分类讨论1.(20212022成都都江堰八下期中·6)(3分)若一个等腰三角形的两边长分别为4,5,则这个等腰三角形的周长为()A.13B.14C.13或14D.8或102.(20212022成都简阳八下期中·5)(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或223.(20212022成都金牛中学八下期中·4)(4分)已知等腰三角形的两边长分别为2和5,则该等腰三角形的周长为()A.7B.9C.9或12D.124.(20212022成都锦江区教科院附中八下期中·5)(3分)若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18B.15C.18或15D.无法确定5.(20212022成都锦江区教科院附中八下期中·6)(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或176.(20212022成都外国语学校八下期中·5)已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.147.(20212022成都青羊区实验中学八下期中·12)(4分)等腰三角形的一个角为45°,则它的底角为.8.(20212022成都双流实验中学八下期中·6)(3分)若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9B.12C.9或12D.10考点四等腰三角形的判定及性质1.(20212022成都都江堰八下期中·7)(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是()A.9B.10C.12D.14考点五直角三角形题型一、直角三角形的判定(勾股逆定理)1.(20212022成都都江堰八下期中·8)(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=5:12:13B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.b2=a2﹣c2题型二、勾股定理应用1.(20212022成都彭州中学实验学校八下期中·26)(8分)森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?题型三、含30度角的直角三角形1.(20212022成都简阳八下期中·11)(4分)在Rt△ABC中,∠C=90°,∠B=30°,b=10,则c=,a=.题型四、直角三角形斜边中线定理1.(20212022成都锦江区嘉祥外国语八下期中·18)(4分)在Rt△ABC中,∠BAC=52°,D在线段AB的中垂线上,连接CD,且CD⊥AD,则∠DAC=.考点六等边三角形题型一等边三角形的性质1.(20212022成都简阳八下期中·10)(3分)如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.62.(20212022成都金牛中学八下期中·12)(4分)如图,已知等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′、EB′分别交边AC于点F、G,若∠ADF=80°,则∠GEC的度数为.3.(20212022成都锦江区嘉祥外国语八下期中·12)(4分)如图,已知等边△ABC中,点D为线段BC 上一点,将△ACD沿DA翻折得到△ADE,点C与E重合,连接BE,若∠ADC=m°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣180)°D.(120﹣m)°4.(20212022成都彭州中学实验学校八下期中·17)(4分)如图,在等边△ABC中,点E为AC的中点,延长BC到点D,使得CD=CE,延长DE交AB于点F,则=.考点七命题1.(20212022成都简阳八下期中·4)(3分)下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形B.斜边和一条直角边分别对应相等的两个直角三角形全等C.三角形的中线将三角形分成面积相等的两部分D.等腰三角形的角平分线、中线、高线互相重合2.(20212022成都金牛区铁路中学八下期中·6)(3分)下列命题是假命题的是()A.三角形的内角和为180°B.两个锐角分别相等的两个直角三角形全等C.内错角相等,两直线平行D.平行四边形对角线互相平分3.(20212022成都锦江区嘉祥外国语八下期中·4)(4分)下列命题中的真命题是()A.内错角相等B.三角形内角和是180°C.√6是有理数D.若|a|=1,则a=14.(20212022成都青羊区实验中学八下期中·7)(3分)下列命题的逆命题为假命题的是()A.直角三角形两条直角边的平方和等于斜边的平方B.若一个三角形的三边相等,则它的三个角也相等C.若c=d,则(a﹣b)c=(a﹣b)dD.两直线平行,同位角相等5.(20212022成都树德实验学校八下期中·8)(4分)下列命题是假命题的是()A.到线段两端点距离相等的点在该线段的垂直平分线上B.一个锐角和一条边分别相等的两个直角三角形全等C.有一个角等于60°的等腰三角形是等边三角形D.三角形三条角平分线交于一点,并且这一点到三条边的距离相等考点八反证法1.(20212022成都简阳八下期中·7)(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.每一个内角都大于90°C.有一个内角小于或等于90°D.每一个内角都小于90°考点九角平分线题型一、角平分线的性质(一)选填题1.(20212022成都彭州中学实验学校八下期中·7)(3分)如图,△ABC中,∠C=90°,∠CAB的角平分线AD交BC于D,DE⊥AB于E,DE=2cm,且DB=4cm,则BC的长是()A.6cm B.4cm C.10cm D.以上都不对2.(20212022成都青羊区实验中学八下期中·10)(3分)如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=52,S△AED=38,则△DEF的面积为()A.7B.12C.8D.143.(20212022成都都江堰八下期中·13)(4分)如图,△ABC中,∠C=90°,AC=BC,AD是∠CAB 的平分线,DE⊥AB于点E,已知AC=8cm,则BD+DE=cm.4.(20212022成都彭州中学实验学校八下期中·12)(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BD=2CD,点D到AB的距离为5.6,则BC=cm.5.(20212022成都武侯区西川中学八下期中·11)(4分)已知,△ABC中,AB=9,BC=7,AC=8,点O是△ABC的三个内角的角平分线的交点,S△AOB、S△BOC、S△AOC分别表示△AOB、△BOC、△AOC的面积,则S△AOB:S△BOC:S△AOC=.6.(20212022成都外国语学校八下期中·7)如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:57.(20212022成都金牛区铁路中学八下期中·23)(4分)如图,△ABC的周长是12,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.(二)尺规作图——角平分线1.(20212022成都锦江区盐道街中学八下期中·8)(3分)如图,在Rt△ABC中,∠B=90°,以顶点C 为圆心,适当长为半径画弧,分别交AC、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=2,QC=6,则△QCD的面积为()A.12B.6C.16D.82.(20212022成都十八中八下期中·14)(4分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,以适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=8,则△ABD的面积是.3.(20212022成都青羊区实验中学八下期中·13)(4分)如图,在Rt△ACB中,∠C=90°,AB=5,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF 的长为半径画弧,两弧相交于点P,作射线BP交AC于点D.若CD=2,则△ABD的面积为.4.(20212022成都武侯区西川中学八下期中·8)(4分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )A .(√5−1,2)B .(√5,2)C .(3−√5,2)D .(√5−2,2)(三)解答题1.(20212022成都青羊区实验中学八下期中·18)(8分)如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =2,∠DAC =30°,求AC 的长.题型二、角平分线的判定题型三、角平分线定理1.(20212022成都简阳八下期中·12)(4分)已知:如图,AD 是△ABC 的角平分线,且AB :AC =3:2,则△ABD 与△ACD 的面积之比为 .考点四 中垂线的性质题型一、中垂线的性质1.(20212022成都简阳八下期中·9)(3分)如图,DE 是△ABC 中AC 边的垂直平分线,若BC =6cm ,AB =8cm ,则△EBC 的周长为( )A.14cm B.18cm C.20cm D.22cm2.(20212022成都青羊区实验中学八下期中·8)(3分)如图,在△ABC中,AB的垂直平分线DE与边AB,AC分别交于点D,E.已知△ABC与△BCE的周长分别为22cm和14cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm3.(20212022成都树德实验学校八下期中·6)(4分)如图,在Rt△ABC中,已知∠B=30°,BC的垂直平分线交AB于点E,垂足为D,连接CE.若BE=2,则AC的长为()A.1B.2C.√2D.√34.(20212022成都武侯区西川中学八下期中·4)(4分)如图,在△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,则BE的长为()A.5B.10C.12D.135.(20212022成都简阳八下期中·23)(4分)在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=.6.(20212022成都彭州中学实验学校八下期中·16)(4分)如图,△ABC中,边AC的垂直平分线与边BC交于点D.将△ADC沿AD折叠后,使点C与点E重合,且DE⊥AB,若∠B=50°,则∠BAE=度.7.(20212022成都青羊区石室联中八下期中·16)(8分)在△ABC中,∠C=90°,∠A=30°,E为AC边上一点,过点E作ED⊥AB于点D.(1)如图1,当CE=2√3,DE=√3时,求S△ABC的面积.(2)如图2,若DE垂直平分AB,求证:AE=2CE.8.(20212022成都外国语学校八下期中·18)已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与AB,AC分别交于点D、G.求:(1)直接写出∠B与∠C的角度之和.(2)求∠EAF的度数.(3)求△AEF的周长.题型二、尺规作图——中垂线1.(20212022成都石室中学北湖校区八下期中·14)(4分)如图,在△ABC 中,AC =3,BC =5,观察图中尺规作图的痕迹,则△ADC 的周长为 .2.(20212022成都简阳八下期中·14)(4分)如图,Rt △ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,若AC =3,BC =4,则DE 等于 .3.(20212022成都金牛中学八下期中·13)(4分)如图,在等腰Rt △ABC 中,∠C =90°,按以下步骤作图:①分别以点B 和点C 为圆心,以大于12BC 的长为半径作圆,相交于点M 和点N ;②作直线MN 交AB 于点D .若AC =6,则BD = .4.(20212022成都锦江区嘉祥外国语八下期中·7)(4分)如图,在已知的△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,大于12BC 为半径画弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD ;若CD =AC ,∠A =52°,则∠ACB 的度数为( )A .90°B .95°C .102°D .108°5.(20212022成都彭州中学实验学校八下期中·9)(3分)如图,在△ABC 中,AB =AC ,∠A =36°,分别以A ,C 为圆心,大于的同样长为半径作弧,两弧分别交于点M ,N ,作直线MN ,分别交AB ,AC 于点D ,E ,连接CD .有以下四个结论:①∠BCD =∠ACD =36°;②AD =CD =CB ;③△BCD 的周长等于AC +BC ;④点D 是线段AB 的中点.其中正确的结论是( )A .①②B .③④C .①②③D .①②③④6.(20212022成都青羊区石室联中八下期中·13)(4分)如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心;以大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =52°,则∠B 的度数为 .7.(20212022成都双流实验中学八下期中·13)(4分)如图,在等腰Rt △ABC 中,∠C =90°,按以下步骤作图:①分别以点B 和点C 为圆心,以大于12BC 的长为半径作圆,相交于点M 和点N ;②作直线MN 交AB 于点D .若AC =6,则BD = .8.(20212022成都外国语学校八下期中·14)如图,在等腰Rt △ABC 中,∠C =90°,按以下步骤作图: ①分别以点B 和点C 为圆心,以大于BC 的长为半径作圆,相交于点M 和点N ;②作直线MN 交AB 于点D .若AC =8,则BD = .考点十一 角平分线与中垂线综合1.(20212022成都锦江区嘉祥外国语八下期中·20)(4分)如图,AE 是∠CAM 的角平分线,点B 在射线AM 上,DE 是线段BC 的中垂线交AE 于E ,EF ⊥AM .若∠ACB =26°,∠CBE =25°,则∠AED = .1.(20212022成都简阳八下期中·17)(8分)已知,如图,P 是∠AOB 平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为C ,D .求证:(1)OC =OD ;(2)OP是CD的垂直平分线.2.(20212022成都金牛区铁路中学八下期中·18)(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 三角形的证明 §1.1 等腰三角形(1)教学目标1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式2.经历“探索—发现—猜想—证明”的过程,能够用综合法证明等腰三角形的有关性质定理3.运用等腰三角形的性质定理及其推论证明与等腰三角形有关的角相等或线段相等 教学重点、难点:1.了解作为证明基础的几条公理的内容2.掌握证明的基本步骤和书写格式教学过程一、预习反馈 明确目标1.等腰三角形知识回顾1) 如图1,在△ABC 中,AB = AC ,则顶角为 ,底角为 ,腰为 ,底边为 。

2) AD 是△ABC 的中线,则 ;AD 是△ABC 的角平分线,则 ;AD 是△ABC 的垂线,则 ;3) 如图,在△ABC 中,AB = AC ,点D 在AC 上,且BD = BC = AD 。

找出所有的等腰三角形 。

2.说出学过的公理及推论3.已知∠D =∠C ,∠A =∠B ,且AE = BF 。

求证:AD = BC 。

二、创设情境 自主探究1. 议一议 等腰三角形的性质 等腰三角形的两个底角相等 (等边对等角) 我们如何验证这个命题成立呢?我们以前是用度量、折纸的方法得到的,但要说明一个结论成立,仅仅依靠观察或度量是不够的,证明是必要的。

那么,我们应该如何证明呢?2.讲解例题 已知,如图,在△ABC 中,AB = AC 。

求证:∠B =∠C 。

分析:要想证明∠B=∠C ,根据以前所学的证明方法,只需证明分别包括∠B 和∠C 的两个三角形全等。

但图中只有一个三角形。

我们应该如何作辅助线呢?引导学生作出辅导线,得出证明过程。

发散学生思维,让学生找出其它的证明方法。

除了作顶角的平分线还可以怎样作辅助线?顶角的平分线 底边上的中线 底边上的高ABDDCBA A BCA A A ABCA BC D E三、展示交流 点拨提高如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。

分析:这是对等腰三角形性质的应用,由让学生从问题出发,逐步得出解题过程。

四、师生互动 拓展延伸如图,AB = AD ,BD 平分∠ABC 。

求证:A D ∥BC 。

分析:此例可先让学生独立完成,再适当点拨 五、达标测试 巩固提高1.三角形的顶角为50°,则它的底角为 。

2.三角形的一个角为40°,则另两个角为 。

3.三角形的三个角都相等,并且每个角都等于 °。

4. △ABC 中,AB = AC ,D 是BC 边上的中点,且DE ⊥AB , DF ⊥AC 。

求证:∠1 =∠2。

◆ 作业布置1.在等腰三角形中顶角为40°时底角等于____,一个底角为50°,则顶角等于_________.2.等腰三角形的两边分别是7 cm 和3 cm ,则周长为_________.3、如图5,在△ABC 中,AB =AC ,D 是AB 上一点,DE ⊥BC ,E 是垂足,ED 的延长线交CA 的延长线于点F ,求证:AD =AF .C (探究题)如图,在AB =AC 的△ABC 中,D 点在AC 边上,使BD =BC ,E 点在AB 边上,使AD =DE =EB ,求∠EDB.学后反思DCB ACBAF E 12321ABCD§1.1 等腰三角形(2)教学目标1.经历“探索—发现—猜想—证明”的过程,证明等腰三角形的一些线段相等2.借助等腰三角形的三线合一推论解决实际问题 教学重点、难点1.证明等腰三角形的判定定理2.借助等腰三角形的判定定理解决实际问题教学过程一、预习反馈 明确目标 等腰三角形知识回顾1.AD 是△ABC 的中线,则 ;AD 是△ABC 的角平分线, 则 ;AD 是△ABC 的垂线,则 ;2.如图,在△ABC 中,AB = AC ,点D 在AC 上, 且BD = BC = AD 。

则∠A 是多少度。

二、创设情境 自主探究 等腰三角形的性质二☆ 想一想 书本P 4 想一想应让学生回顾前面的证明过程,思考线段AD 具有的性质和特征,从而得到结论。

这一结论通常简述为“三线合一”。

等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合 强调这三线具体指的是哪三条 1、 等腰三角形性质的应用先自己试试作出等腰三角形两底角的平分线,再度量它们是否相等,再证明。

找准两个要证明全等的三角形,并把它们拉开,这样对我们的解题很有帮助 三、展示交流 点拨提高 例1如图,在△ABC 中,AB = AC ,AD ⊥AC ∠BAC = 100°。

求∠1、∠3、∠B 的度数。

ABDDCBA321ABC例2 证明:等腰三角形两底角的平分线相等。

四、师生互动 拓展延伸如图,E 是△ABC 内的一点,AB = AC ,连接AE 、BE 、CE , 且BE = CE ,延长AE ,交BC 边于点D 。

求证:AD ⊥BC 。

五、达标测试 巩固提高1. 等腰三角形的一边长为23,周长为43+7,则此等腰三角形的腰长为_________.2.等边三角形两条中线相交所成的锐角的度数为_________.3. 随堂练习 ◆ 作业布置A (必做题)1.如图1,D 在AC 上,且AB =BD =DC ,∠C =40°,则∠A 等于多少度?∠ABD 等于多少度?图1图22. 证明:等腰三角形两腰上的中线相等。

B (选做题)1.证明:等腰三角形两腰上的高相等。

C (探究题)2.如图2,Rt △ABC 中,∠ACB =90°,点D 在AB 上,且AD =AC , (1)若∠A =40°,则 ∠ACD 等于多少度?∠DCB 等于多少度?(2)若∠A =α,则∠BCD 等于多少度? 由此我们可得出∠BCD 与∠A 的关系是 ∠BCD 等于多少度?学后反思:E ABCD§1.1 等腰三角形(3)教学目标1.能够用综合法证明等腰三角形的判定定理2.借助等腰三角形的判定定理解决实际问题3.结合实例体会反证法的含义 教学重点和难点重点:等腰三角形的判定定理 难点:体会反证法的含义 教学过程一、预习反馈 明确目标1.如图,∠A =∠B ,CE ∥DA ,CE 交AB 于E 。

求证:CE = CB 。

2.如图,在△ABC 中,AB = AC ,DE ∥BC , 求证:△ADE 是等腰三角形二、创设情境 自主探究1.议一议 书本P 7这里应引导学生养成“反过来”思考问题的意识,即思考一个命题的逆命题的真假。

这也是获得数学结论的一条途径。

2.等腰三角形的判定定理有两个角相等的三角形是等腰三角形。

等角对等边 ∵ ∠A =∠B , ∴ AB = AC要判定一个三角形是等腰三角形,除用定义外,还可以用判定定理判定。

只要发现一个三角形有两个角相等,则马上断定,这个三角形为等腰三角形。

三、展示交流 点拨提高如图,ABC ∆中,BD ⊥AC 于D ,CE ⊥AB 于E ,BD = CE 。

求证:ABC ∆是等腰三角形。

分析:此例题是等角对等边的具体应用,引导学生写出解题步骤。

四、师生互动 拓展延伸反证法 《李子不好吃》古时候有个人叫王戍,7岁那年的某一天和小朋友在路边玩,看见一棵李子树上的果实多得E ABCD EABCDDCBA EDCBAE把树枝都快压断了,小朋友们都跑去摘,只有王戍站着没动。

小朋友问他为何不去摘,他说:“树长在路边,若李子好吃,早就没了!但现在李子还有那么多,肯定李子是苦的,不好吃的。

”小朋友摘来一尝,李子果然苦的没法吃。

王戍在说明李子不好吃时,先假设命题的结论不成立,然后推导出与定义,公理、已证定理或已知条件相矛盾的结果,从而证明便是的结论一定成立.这种证明方法称为反证法。

反证法步骤:1) 假设:假设命题的结论不成立2) 归谬:从这个假设出发,应用正确的推论方法,得出与定义、公理、已证定理或已知条件相矛盾的结果3) 结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确 讲解例题 一个三角形中不能有两个直角。

五、达标测试 巩固提高把下列命题用反证法证明时的第一步写出来。

1) 我每天工作不超过24小时;2) 我们班有62人,今天出席人数为61,有同学缺席; 3) 初三级有730人,有12个班,平均每个班都超过60人; 4) 三角形中必有一个内角不少于60度; 5) 一个三角形中不能有两个角是钝角; 6) 垂直于同一条直线的两条直线平行。

◆ 作业布置A (必做题)如图,在ABC 中,∠ABC 的平分线交AC 于点D ,DE ∥BC 。

求证:△EBD 是等腰三角形。

B (选做题)求证:一个三角形中不能有两个角是钝角;C (探究题)如下图,在△ABC 中,∠B =90°,M 是AC 上任意一点(M 与A 不重合)MD ⊥BC ,交∠ABC 的平分线于点D ,求证:MD =MA .学后反思§1.1 等腰三角形(4)教学目标1.能够用综合法证明等边三角形的判定定理2.运用等边三角形证明直角三角形的有关性质 教学重点和难点重点:等边三角形的判定定理和直角三角形的有关性质难点:运用等边三角形的判定定理和直角三角形的有关性质解决实际问题 教学过程一、预习反馈 明确目标1.如图(1),BC = AC ,若 ,则△ABC 是等边三角形。

2.如图(2),AB = AC ,BC ⊥AD ,BD = 4,若AB = ,则△ABC 是等边三角形。

3.如图(3),AB = AC ,AD 是△ABC 的一条中线,AB = 5,若BD = ,则△ABC 是等边三角形。

(1) (2) (3) (4)二、创设情境 自主探究1. 已知:如图(4),△ABC 是等边三角形,DE ∥BC ,交AB 、AC 于D 、E 。

求证:△ADE 是等边三角形2. 如图(5),△ABC 是等边三角形,BD = CE ,∠1 =∠2。

求证:△ADE 是等边三角形。

(5)三、展示交流 点拨提高 1.直角三角形的特殊性质直角三角形有什么性质?有什么特殊性质? ☆ 做一做 书本P 10 做一做让学生通过活动发现结论,引导学生意识到,通过实际操作探索出来的结论还需要给予证明。

在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半。

条件有两个:其一,必须是直角三角形;其二,有一个锐角等于30︒。

2如图,在Rt ABC ∆中,∠B = 30°,BD = AD ,BD = 12,求DC 的长。

四、师生互动 拓展延伸等腰三角形的底角为15︒,腰长为a 2,求腰上的高。

C BA A BC DA BC DE A BCD21EABCDDCAD 30¡ã五、达标测试 巩固提高1.下列说法不正确的是 A.等边三角形只有一条对称轴 B.线段AB 只有一条对称轴C.等腰三角形的对称轴是底边上的中线所在的直线D.等腰三角形的对称轴是底边上的高所在的直线 2.下列命题不正确的是 A.等腰三角形的底角不能是钝角 B.等腰三角形不能是直角三角形C.若一个三角形有三条对称轴,那么它一定是等边三角形D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形3.如图,在Rt ABC ∆中,(∠B = 30°),AC = 6cm ,则AB = ;若AB = 7,则AC = 。

相关文档
最新文档