2020福建近三年中考试题分类汇编,几何压轴题典型题目试题真题及答案解析

合集下载

2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30= .12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P 在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M (1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2020•长春)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2020•福建)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2020•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2020•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2020•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2020•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2020•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2020•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2020•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2020•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)计算|﹣2|﹣30= 1 .【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2020•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于 6 .【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2020•福建)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2020•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7 .【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2020•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2020•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2020•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2020•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠B AC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2020•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2020•福建)如图,四边形ABCD内接于⊙O,AB是⊙O 的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2020•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2020•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15 (Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的 100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的 100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的 100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2020•福建)如图,矩形ABCD中,AB=6,AD=8,P,E 分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2020•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN=S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣52.如图所示的六角螺母,其俯视图是( )A .B .C .D .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( ) A .1B .12C .13D .14第3题 第5题 第6题4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A.10B.5C.4D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|=.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x≤6−x,①3x+1>2(x−1).②18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE =∠DAF.19.(8分)先化简,再求值:(1−1x+2)÷x2−1x+2,其中x=√2+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣5【解答】解:−15的相反数是15,故选:B .2.如图所示的六角螺母,其俯视图是( )A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆. 故选:B .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是AB ,BC ,CA 的中点, ∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC=EF AB=DE AC=12,∴△DEF ∽△ABC , ∴S △DEF S △ABC=(DE AC)2=(12)2=14,∵等边三角形ABC 的面积为1, ∴△DEF 的面积是14,故选:D .4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形; B .平行四边形不是轴对称图形,是中心对称图形; C .圆既是轴对称图形又是中心对称图形; D .扇形是轴对称图形,不是中心对称图形. 故选:C .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a⋅1a=1,故本选项符合题意;故选:D.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=3【解答】解:依题意,得:3(x﹣1)=6210 x.故选:A.9.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A .40°B .50°C .60°D .70°【解答】解:∵A 为BD ̂中点,∴AB ̂═AD ̂,∵AB =CD ,∴AB ̂=CD ̂,∴AB ̂=AD ̂=CD ̂,∵圆周角∠BDC =60°,∴∠BDC 对的BC ̂的度数是2×60°=120°,∴AB ̂的度数是13×(360°﹣120°)=80°,∴AB ̂对的圆周角∠ADB 的度数是12×80°=40°,故选:A .10.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2﹣2ax 上的点,下列命题正确的是()A .若|x 1﹣1|>|x 2﹣1|,则y 1>y 2B .若|x 1﹣1|>|x 2﹣1|,则y 1<y 2C .若|x 1﹣1|=|x 2﹣1|,则y 1=y 2D .若y 1=y 2,则x 1=x 2【解答】解:∵抛物线y =ax 2﹣2ax =a (x ﹣1)2﹣a ,∴该抛物线的对称轴是直线x =1,当a >0时,若|x 1﹣1|>|x 2﹣1|,则y 1>y 2,故选项B 错误;当a <0时,若|x 1﹣1|>|x 2﹣1|,则y 1<y 2,故选项A 错误;若|x 1﹣1|=|x 2﹣1|,则y 1=y 2,故选项C 正确;若y 1=y 2,则|x 1﹣1|=|x 2﹣1|,故选项D 错误;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|= 8 .【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 13 .【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13, 故答案为:13. 13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π, 故答案为4π.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 ﹣10907 米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC = 30 度.【解答】解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC =120°﹣90°=30°,故答案为:30. 16.设A ,B ,C ,D 是反比例函数y =k x图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【解答】解:如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②【解答】解:解不等式①,得:x ≤2,解不等式②,得:x >﹣3,则不等式组的解集为﹣3<x ≤2.18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE=∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .19.(8分)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=1x−1,当x =√2+1时,原式=1√2+1−1=√22. 20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.【解答】解:(1)连接OB ,如图1,∵AB 与⊙O 相切于点B ,∴∠ABO =90°,∵sinA =12,∴∠A =30°,∴∠BOD =∠ABO +∠A =120°,∴∠BED =12∠BOD =60°;(2)连接OF ,OB ,如图2,∵AB 是切线,∴∠OBF =90°,∵BF =3√3,OB =3,∴tan ∠BOF =BF OB =√3, ∴∠BOF =60°,∵∠BOD =120°,∴∠BOF =∠DOF =60°,在△BOF 和△DOF 中,{OB =OD ∠BOF =∠DOF OF =OF,∴△BOF ≌△DOF (SAS ),∴∠OBF =∠ODF =90°,∴DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.【解答】解:(1)如图,四边形ABCD 即为所求;(2)如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP ,∴△ABP ∽△CDP ,∴AB CD =AP PC ,∵AB ,CD 的中点分别为M ,N ,∴AB =2AM ,CD =2CN ,∴AM CN =AP PC ,连接MP ,NP ,∵∠BAP =∠DCP ,∴△APM ∽△CPN ,∴∠APM =∠CPN ,∵点P 在AC 上,∴∠APM +∠CPM =180°,∴∠CPN +∠CPM =180°,∴M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:EP PF =PC CF .【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF , ∴EP PF =PC CF .25.(14分)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.(1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t=10t+80t−40=10(√t√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。

精品解析:2024年福建省中考真题数学试题(解析版)

精品解析:2024年福建省中考真题数学试题(解析版)

数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是()A.3-B.0C.23D.【答案】D 【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2ππ等;开方开不尽的数;以及像0.1010010001....,等数.故选:D .2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为()A.696110⨯B.2696.110⨯ C.46.96110⨯ D.50.696110⨯【答案】C 【解析】【分析】根据科学记数法的定义解答,科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<∣∣为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.本题考查了科学记数法,熟悉科学记数法概念是解题的关键.【详解】469610 6.96110=⨯故选:C .3.如图是由长方体和圆柱组成的几何体,其俯视图是()A. B.C. D.【答案】C 【解析】【分析】本题考查了简单组合体的三视图,根据从上边看得到的图形是俯视图,可得答案.【详解】解:这个立体图形的俯视图是一个圆形,圆形内部中间是一个矩形.故选:C .4.在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为()A.30︒B.45︒C.60︒D.75︒【答案】A 【解析】【分析】本题考查了平行线的性质,由AB CD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD ,∴60CDB ∠=︒,∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒-∠-∠=︒,故选:A .5.下列运算正确的是()A.339a a a ⋅=B.422a a a ÷= C.()235a a = D.2222a a -=【答案】B 【解析】【分析】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,解题的关键是掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项运算法则.利用同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项计算后判断正误.【详解】解:336a a a ⋅=,A 选项错误;422a a a ÷=,B 选项正确;()236a a =,C 选项错误;2222a a a -=,D 选项错误;故选:B .6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】此题考查了树状图或列表法求概率,根据题意画出树状图,求和后利用概率公式计算即可.【详解】解:画树状图如下:由树状图可知,共有6种不同情况,和是偶数的共有2种情况,故和是偶数的概率是2163=,故选:B7.如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB 的中点,则ACM ∠等于()A.18︒B.30︒C.36︒D.72︒【答案】A 【解析】【分析】本题考查了切线的性质,三角形内角和以及等腰三角形的性质,根据C 为AB的中点,三角形内角和可求出1(18036)722OCA ∠=⨯︒-︒=︒,再根据切线的性质即可求解.【详解】∵72AOB ∠=︒,C 为 AB 的中点,∴36AOC ∠=︒∵OA OC =∴1(18036)722OCA ∠=⨯︒-︒=︒∵直线MN 与O 相切,∴90OCM ∠=︒,∴18ACM OCM OCA ∠=∠-∠=︒故选:A .8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是()A.()1 4.7%120327x += B.()1 4.7%120327x -=C.1203271 4.7%x=+ D.1203271 4.7%x=-【答案】A 【解析】【分析】本题主要考查了列一元一次方程,解题的关键是理解题意,找出等量关系,根据今年第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,列出方程即可.【详解】解:将去年第一季度社会消费品零售总额设为x 亿元,根据题意得:()1 4.7%120327x +=,故选:A .9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是()A.OB OD ⊥B.BOC AOB ∠=∠C.OE OF =D.180BOC AOD ∠+∠=︒【答案】B 【解析】【分析】本题考查了对称的性质,等腰三角形的性质等;A.由对称的性质得AOB DOC ∠=∠,由等腰三角形的性质得12BOE AOB ∠=∠,12DOF DOC ∠=∠,即可判断;B.BOC ∠不一定等于AOB ∠,即可判断;C.由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;D.过O 作GM OH ⊥,可得GOD BOH ∠=∠,由对称性质得BOH COH ∠∠=同理可证AOM AOH ∠=∠,即可判断;掌握性质是解题的关键.【详解】解:A. OE OF ⊥,90BOE BOF ∴∠+∠=︒,由对称得AOB DOC ∠=∠,点E ,F 分别是底边AB ,CD 的中点,OAB 与ODC 都是等腰三角形,12BOE AOB ∴∠=∠,12DOF DOC ∠=∠,90BOF DOF ∴∠+∠=︒,OB OD ∴⊥,结论正确,故不符合题意;B.BOC ∠不一定等于AOB ∠,结论错误,故符合题意;C.由对称得OAB ODC ≌,OE OF ∴=,结论正确,故不符合题意;D.过O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒ ,GOD BOH ∴∠=∠,由对称得BOH COH ∠∠=,GOD COH ∴∠=∠,同理可证AOM AOH ∴∠=∠,AOD BOC ∠∠∴+AOD AOM DOG =∠+∠+∠180=︒,结论正确,故不符合题意;故选:B .10.已知二次函数()220y x ax a a =-+≠的图象经过1,2a A y ⎛⎫⎪⎝⎭,()23,B a y 两点,则下列判断正确的是()A.可以找到一个实数a ,使得1y a >B.无论实数a 取什么值,都有1y a >C.可以找到一个实数a ,使得20y <D.无论实数a 取什么值,都有20y <【答案】C 【解析】【分析】本题考查二次函数的图象和性质,根据题意得到二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a-,再分情况讨论,当0a >时,当a<0时,1y ,2y 的大小情况,即可解题.【详解】解: 二次函数解析式为()220y x ax a a =-+≠,∴二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a -,当0a >时,02aa <<,∴21a y a a >>-,当a<0时,02aa <<,∴21a a y a -<<,故A 、B 错误,不符合题意;当0a >时,023a a a <<<,由二次函数对称性可知,20y a >>,当a<0时,320a a a <<<,由二次函数对称性可知,2y a >,不一定大于0,故C 正确符合题意;D 错误,不符合题意;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x =_____.【答案】()1x x +【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+12.不等式321x -<的解集是______.【答案】1x <【解析】【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解.【详解】解:321x -<,33x <,1x <,故答案为:1x <.13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是______.(单位:分)【答案】90【解析】【分析】本题考查了中位数的知识,解题的关键是了解中位数的求法,难度不大.根据中位数的定义(数据个数为偶数时,排序后,位于中间位置的数为中位数),结合图中的数据进行计算即可;【详解】解:∵共有12个数,∴中位数是第6和7个数的平均数,∴中位数是(9090)290+÷=;故答案为:90.14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为______.【答案】2【解析】【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到1HD DG ==,进而得到 DGH S ,同理可得12AHE EFB CGF S S S === ,最后利用四边形EFGH 的面积=正方形ABCD 的面积4-个小三角形面积求解,即可解题.【详解】解: 正方形ABCD 的面积为4,2AB BC CD AD ∴====,90D Ð=°, 点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,1HD DG ∴==,111122DGH S ∴=⨯⨯= ,同理可得12AHE EFB CGF S S S === ,∴四边形EFGH 的面积为1111422222----=.故答案为:2.15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为______.【答案】()2,1【解析】【分析】本题考查了反比例函数的性质以及勾股定理,完全平方公式的应用,先根据()1,2A 得出2k =,设()B n m ,,则2nm k ==,结合完全平方公式的变形与应用得出()()22332120m m m m m m+=-+=--=,,结合()1,2A ,则()21B ,,即可作答.【详解】解:如图:连接OA OB,∵反比例函数ky x=的图象与O 交于,A B 两点,且()1,2A ∴221kk ==,设()B n m ,,则2nm k ==∵OB OA ==∴2225m n +==则()2222549m n m n mn +=++=+=∵点B 在第一象限∴3m n +=把2nm k ==代入得()()22332120m m m m m m+=-+=--=,∴1212m m ==,经检验:1212m m ==,都是原方程的解∵()1,2A ∴()21B ,故答案为:()21,16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD ==______.(单位:N )(参考数据:sin400.64,cos400.77︒=︒=)【答案】128【解析】【分析】此题考查了解直角三角形的应用,求出40ADQ ∠=︒,130PDQ ∠=∠=︒,由AB QD ∥得到40BAD ADQ ∠=∠=︒,求出2sin 256F BD AD BAD ==⋅∠=,求出90160BDC ∠=︒-∠=︒在Rt BCD 中,根据2cos f CD BD BDC ==⋅∠即可求出答案.【详解】解:如图,∵帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,∴703040ADQ PDA PDQ ∠=∠-∠=︒-︒=︒,130PDQ ∠=∠=︒,∵AB QD ∥,∴40BAD ADQ ∠=∠=︒,在Rt △ABD 中,400F AD ==,90ABD Ð=°,∴2sin 400sin 404000.64256F BD AD BAD ==⋅∠=⨯︒=⨯=,由题意可知,BD DQ ⊥,∴190BDC ∠+∠=︒,∴90160BDC ∠=︒-∠=︒在Rt BCD 中,256,90BD BCD =∠=︒,∴21cos 256cos 602561282f CD BD BDC ==⋅∠=⨯︒=⨯=,故答案为:128三、解答题:本题共9小题,共86分。

2020福建省中考数学试题及答案解析

2020福建省中考数学试题及答案解析

福建省2020年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.有理数15-的相反数为()A. 5B. 15C.15- D. 5-【答案】B【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数即得.【详解】A选项与15-的符号和符号后的数值均不相同,不符合题意;B选项与15-只有符号不同,符合题意,B选项正确;C选项与15-完全相同,不符合题意;D选项与15-符号相同,不符合题意.故选:B.【点睛】本题考查相反数的定义,解题关键是熟知相反数的定义:只有符号不同的两个数互为相反数.2.如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图依次为.左视图为:俯视图为:故选:B .【点睛】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.3.如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF 的面积是()A. 1B. 12C. 13 D. 14 【答案】D【解析】【分析】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14.【详解】∵,,D E F 分别是AB ,BC ,CA 的中点,且△ABC 是等边三角形,∴△ADF ≌△DBE ≌△FEC ≌△DFE,∴△DEF 的面积是14.故选D .【点睛】本题考查等边三角形的性质及全等,关键在于熟练掌握等边三角形的特殊性质.4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.BD=,则CD等于()5.如图,AD是等腰三角形ABC的顶角平分线,5A. 10B. 5C. 4D. 3【答案】B【解析】【分析】根据等腰三角形三线合一的性质即可判断CD的长.【详解】∵AD是等腰三角形ABC的顶角平分线∴CD=BD=5.故选:B.【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.M N所对应的实数分别为,m n,则m n-的结果可能是()6.如图,数轴上两点,A. 1-B. 1C. 2D. 3【答案】C【解析】分析】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3故选:C【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确m 和n 的范围,然后再确定m n -的范围即可.7.下列运算正确的是( )A. 2233a a -=B. 222()a b a b +=+C. ()222436-=-ab a bD. 11(0)-⋅=≠a a a 【答案】D【解析】【分析】 根据整式的加减乘除、完全平方公式、1(0)p p a a a-=≠逐个分析即可求解. 【详解】解:选项A :22232a a a -=,故选项A 错误;选项B :222()2a b a ab b +=++,故选项B 错误;选项C :()222439-=ab a b ,故选项C 错误; 选项D :111(0)-⋅=⋅=≠a aa a a ,故选项D 正确. 故选:D .【点睛】本题考查整式的加减乘除及完全平方公式、负整数指数幂等运算公式,熟练掌握公式及运算法则是解决此类题的关键.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A. 62103(1)-=x x B. 621031=-x C. 621031-=x x D. 62103=x【答案】A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答. 【详解】解:由题意得:62103(1)-=x x , 故选A.【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A. 40︒B. 50︒C. 60︒D. 70︒【答案】A【解析】【分析】 根据AB CD =,A 为BD 中点求出∠CBD=∠ADB=∠ABD ,再根据圆内接四边形的性质得到∠ABC+∠ADC=180°,即可求出答案.【详解】∵A 为BD 中点,∴AB AD =,∴∠ADB=∠ABD ,AB=AD ,∵AB CD =,∴∠CBD=∠ADB=∠ABD ,∵四边形ABCD 内接于O ,∴∠ABC+∠ADC=180°,∴3∠ADB+60°=180°,∴ADB ∠=40°,故选:A .【点睛】此题考查圆周角定理:在同圆中等弧所对的圆周角相等、相等的弦所对的圆周角相等,圆内接四边形的性质:对角互补.10.已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A. 若12|1||1|->-x x ,则12y y >B. 若12|1||1|->-x x ,则12y y <C. 若12|1||1|-=-x x ,则12y y =D. 若12y y =,则12x x =【答案】C【解析】【分析】 分别讨论a >0和a <0的情况,画出图象根据图象的增减性分析x 与y 的关系.【详解】根据题意画出大致图象:当a >0时,x =1为对称轴,|x -1|表示为x 到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y 值也相同,当抛物线上的点到x=1的距离越大时,对应的y 值也越大,由此可知A 、C 正确.当a<0时,x=1为对称轴,|x-1|表示为x到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y值也相同,当抛物线上的点到x=1的距离越大时,对应的y值也越小,由此可知B、C正确.综上所述只有C正确.故选C.【点睛】本题考查二次函数图象的性质,关键在于画出图象,结合图象增减性分类讨论.第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.计算:8-=__________.【答案】8【解析】【分析】根据绝对值的性质解答即可.【详解】|﹣8|=8.故答案为8.【点睛】本题考查了绝对值的性质,掌握绝对值的性质是解答本题的关键.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.【答案】1 3【解析】【分析】利用概率公式即可求得答案.【详解】解:从甲、乙、丙3位同学中随机选取1人进行在线辅导功课共有3种等可能结果,其中甲被选中的只有1种可能,故答案为:13.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.一个扇形的圆心角是90︒,半径为4,则这个扇形的面积为______.(结果保留π)【答案】4π【解析】【分析】根据扇形的面积公式2360n r Sπ=进行计算即可求解.【详解】解:∵扇形的半径为4,圆心角为90°,∴扇形的面积是:29044360ππ⨯⨯==S.故答案为:4π.【点睛】本题考查了扇形面积的计算.熟记扇形的面积公式是解题的关键.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米.【答案】10907-【解析】【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30【解析】【分析】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB 的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC ,BC=AF ,∴CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.【点睛】本题考查正多边形的证明、多边形的内角和以及三角形的内角和,熟练掌握多边形内角和的计算是解题的关键.16.设,,,A B C D 是反比例函数k y x=图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)【答案】①④【解析】【分析】利用反比例函数的对称性,画好图形,结合平行四边形,矩形,菱形,正方形的判定可以得到结论,特别是对②的判断可以利用反证法.【详解】解:如图,反比例函数kyx=的图象关于原点成中心对称,,,OA OC OB OD∴==∴四边形ABCD是平行四边形,故①正确,如图,若四边形ABCD是菱形,则,AC BD⊥90,COD∴∠=︒显然:COD∠<90,︒所以四边形ABCD不可能是菱形,故②错误,如图,反比例函数kyx=的图象关于直线y x=成轴对称,当CD垂直于对称轴时,,, OC OD OA OB ∴==,OA OC=, OA OB OC OD ∴===,AC BD ∴=∴ 四边形ABCD 是矩形,故③错误,四边形ABCD 不可能是菱形,∴四边形ABCD 不可能是正方形,故④正确,故答案:①④.【点睛】本题考查的是平行四边形,矩形,菱形,正方形的判定,反比例函数的对称性,掌握以上知识是解题的关键.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解不等式组:26312(1)x x x x ≤-⎧⎨+>-⎩①②【答案】32x -<≤. 【解析】 【分析】分别求出各不等式的解集,再找到其公共解集即可求解. 【详解】解:由①得26+≤x x ,36x ≤, 2x ≤.由②得3122+>-x x ,3221->--x x , 3x >-.∴原不等式组的解集是32x -<≤.【点睛】本小题考查一元一次不等式组的解法等基础知识,解题的关键是熟知不等式的性质. 18.如图,点,E F 分别在菱形ABCD 的边BC ,CD 上,且BE DF =.求证:BAE DAF ∠=∠. 【答案】详见解析 【解析】 【分析】根据菱形的性质可知AB=AD ,∠B=∠D ,再结合已知条件BE=DF 即可证明ABE ADF ∆∆≌后即可求解. 【详解】解:证明:∵四边形ABCD 是菱形, ∴B D ∠=∠,AB AD =.在ABE ∆和ADF ∆中,ABAD B D BEDF∴()≌∆∆ABE ADF SAS , ∴BAE DAF ∠=∠.【点睛】本题考查菱形的性质、全等三角形的判定与性质等基础知识,熟练掌握其性质是解决此类题的关键.19.先化简,再求值:211(1)22x x x --÷++,其中21x =. 【答案】11x -,22【解析】 【分析】根据分式运算法则即可求出答案. 【详解】原式()()212211x x x x x +-+=⋅++-11x =-; 当21x =时,原式222==【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润. 【答案】(1)甲特产15吨,乙特产85吨;(2)26万元. 【解析】 【分析】(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨,根据题意列方程解答;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m ,根据题意列函数关系式(10.510)(1.21)(100)0.320=-+--=+w m m m ,再根据函数的性质解答.【详解】解:(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨, 依题意,得()10100235+-=x x , 解得15x =,则10085-=x , 经检验15x =符合题意,所以,这个月该公司销售甲特产15吨,乙特产85吨;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m , 公司获得的总利润(10.510)(1.21)(100)0.320=-+--=+w m m m , 因为0.30>,所以w 随着m 的增大而增大, 又因为020≤≤m ,所以当20m =时,公司获得的总利润的最大值为26万元, 故该公司一个月销售这两种特产能获得的最大总利润为26万元.【点睛】此题考查一元一次方程的实际应用、一次函数的性质等基础知识,考查运算能力、应用意识,考查函数与方程思想,正确理解题意,根据问题列方程或是函数关系式解答问题. 21.如图,AB 与O 相切于点B ,AO 交O 于点C ,AO 的延长线交O 于点D ,E 是BCD 上不与,B D重合的点,1sin 2A =.(1)求BED ∠的大小; (2)若O 的半径为3,点F 在AB 的延长线上,且33BF =,求证:DF 与O 相切.【答案】(1)60°;(2)详见解析 【解析】 【分析】(1)连接OB ,在Rt △AOB 中由1sin 2A =求出∠A =30°,进而求出∠AOB=60°,∠BOD=120°,再由同弧所对的圆周角等于圆心角的一半可以求出∠BED 的值; (2)连接OF ,在Rt △OBF 中,由tan 3∠==BFBOF OB可以求出∠BOF=60°,进而得到∠FOD=60°,再证明△FOB ≌△FOD ,得到∠ODF=∠OBF=90°. 【详解】解:(1)连接OB ,∵AB 与O 相切于点B ,∴OB AB ⊥, ∵1sin 2A =,∴30A ∠=︒, ∴60AOB ∠=︒,则120BOD ∠=︒. 由同弧所对的圆周角等于圆心角的一半可知:1602︒∠=∠=BED BOD .故答案为:60︒. (2)连接OF ,由(1)得OB AB ⊥,120BOD ∠=︒, ∵3OB =,33BF=,∴tan 3∠==BFBOF OB, ∴60BOF ∠=︒,∴60DOF ∠=︒.在BOF ∆与DOF ∆中,OB OD BOF DOF OF OF =⎧⎪∠=∠⎨⎪=⎩∴()≌∆∆BOF DOF SAS , ∴90ODF OBF ∠=∠=︒. 又点D 在O 上,故DF 与O 相切.【点睛】本题考查圆的有关性质、直线与圆的位置关系、特殊角的三角函数值、解直角三角形、全等三角形的判定和性质,熟练掌握其性质是解决此类题的关键.22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【答案】(1)120;(2)2.4千元;(3)可以预测该地区所有贫困家庭能在今年实现全面脱贫,理由详见解析 【解析】 【分析】(1)用2000乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可; (2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为6100012050⨯=. (2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为()1.56 2.08 2.210 2.512 3.09 3.25 2.4150⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元). (3)依题意,2020年该地区农民家庭人均月纯收入的最低值如下: 月份12 3 4 5 6 人均月纯收入(元) 500 300 150 200 300 450 月份78 9 10 11 12 人均月纯收入(元) 620 790960113013001470由上表可知当地农民2020年家庭人均年纯收入不低于500300150200300450620790960113013001470+++++++++++9601130130014704000>+++>.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.【点睛】本小题考查频数和频数分布的意义、加权平均数、条形图、折线图等基础知识,考查运算能力、推理能力、数据分析观念、应用意识,考查统计与概率思想. 23.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析 【解析】 【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上. 【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠, ∴ABP CDP ∆∆∽,∴ABAP CD CP. ∵,M N 分别为AB ,CD 的中点, ∴2AB AM =,2CD CN =,∴=AM APCN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.24.如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:=EP PCPF CF. 【答案】(1)90°;(2)①=DF PF ,证明详见解析;②详见解析 【解析】 【分析】(1)根据旋转的性质,得出ABC ADE ∆∆≌,进而得出=B ADE ADB ∠=∠∠,求出结果;(2)①由旋转的性质得出AC AE =,90CAE ∠=︒,进而得出45∠=∠=︒ACE AEC ,再根据已知条件得出∠+∠=∠+∠ADB CDF ACE CAD ,最后得出结论即可;②过点P 作//PH ED 交DF 于点H ,得出≌∆∆HPF CDF ,由全等得出HF CF =,=DH PC ,最后得出结果.【详解】解:(1)由旋转的性质可知,AB AD =,90BAD ∠=︒,ABC ADE ∆∆≌, ∴B ADE ∠=∠,在Rt ABD ∆中,45∠=∠=︒B ADB , ∴45∠=∠=︒ADE B ,∴90∠=∠+∠=︒BDE ADB ADE . (2)①=DF PF .证明:由旋转的性质可知,AC AE =,90CAE ∠=︒, 在Rt ACE ∆中,45∠=∠=︒ACE AEC , ∵CDF CAD ∠=∠,45∠=∠=︒ACE ADB , ∴∠+∠=∠+∠ADB CDF ACE CAD , 即∠=∠FPD FDP , ∴=DF PF .②过点P 作//PH ED 交DF 于点H , ∴∠=∠HPF DEP ,=EP DHPF HF, ∵45∠=∠+∠=︒+∠DPF ADE DEP DEP ,45∠=∠+∠=︒+∠DPF ACE DAC DAC , ∴∠=∠DEP DAC , 又∵∠=∠CDF DAC , ∴∠=∠DEP CDF , ∴=∠∠HPF CDF . 又∵FD FP =,F F ∠=∠ ∴≌∆∆HPF CDF , ∴HF CF =, ∴=DH PC ,又∵=EP DHPF HF , ∴=EP PCPF CF.【点睛】本题考查了旋转的性质、三角形内角与外角的关系、等腰三角形的判定、全等三角形的判定与性质、平行线的性质、平行线分线段成比例等基础知识,解题的关键是熟练运用这些性质.25.已知直线1:210=-+l y x 交y 轴于点A ,交x 轴于点B ,二次函数的图象过,A B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点()111,P x y ,()222,P x y ,当125>≥x x 时,总有12y y >. (1)求二次函数的表达式;(2)若直线2:(10)=+≠l y mx n n ,求证:当2m =-时,21//l l ;(3)E 为线段BC 上不与端点重合的点,直线3:2=-+l y x q 过点C 且交直线AE 于点F ,求ABE ∆与CEF ∆面积之和的最小值.【答案】(1)221210y x x =-+;(2)详见解析;(3)∆∆+ABE FCE S S 的最小值为40. 【解析】 【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,B 两点的坐标,再根据BC=4,得出点C 的坐标,最后利用待定系数法可求二次函数的表达式; (2)利用反证法证明即可;(3)先求出q 的值,利用//CF AB ,得出∽∆∆FCE ABE ,设()04=<<BE t t ,然后用含t 的式子表示出∆∆+ABE FCE S S 的面积,再利用二次函数的性质求解即可. 【详解】解:(1)对于1:210=-+l y x , 当0x =时,10y =,所以()0,10A ;当0y =时,2100x -+=,5x =,所以()5,0B , 又因为4BC =,所以()9,0C 或()1,0C ,若抛物线过()9,0C ,则当57x <<时,y 随x 的增大而减少,不符合题意,舍去. 若抛物线过()1,0C ,则当3x >时,必有y 随x 的增大而增大,符合题意. 故可设二次函数的表达式为210=++y ax bx , 依题意,二次函数的图象过()5,0B ,()1,0C 两点,所以255100100a b a b ++=⎧⎨++=⎩,解得212a b =⎧⎨=-⎩所求二次函数的表达式为221210y x x =-+.(2)当2m =-时,直线2:2(10)=-+≠l y x n n 与直线1:210=-+l y x 不重合,假设1l 和2l 不平行,则1l 和2l 必相交,设交点为()00,P x y ,由00002102y x y x n=-+⎧⎨=-+⎩得002102-+=-+x x n , 解得10n =,与已知10n ≠矛盾,所以1l 与2l 不相交,所以21//l l .(3)如图,因为直线3:2=-+l y x q 过()1,0C ,所以2q ,又因为直线1:210=-+l y x ,所以31//l l ,即//CF AB ,所以∠=∠FCE ABE ,∠=∠CFE BAE ,所以∽∆∆FCE ABE ,所以2∆∆⎛⎫= ⎪⎝⎭FCE ABE S CE S BE , 设()04=<<BE t t ,则4CE t =-, 1110522∆=⋅=⨯⨯=ABE S BE OA t t , 所以2222(4)5(4)5∆∆--⎛⎫=⨯=⨯= ⎪⎝⎭FCE ABE CE t t S S t BE t t , 所以25(4)5∆∆-+=+ABE FCEt S S t t 801040=+-t t 2221040240=+t t 所以当22t =∆∆+ABE FCE S S 的最小值为40240.【点睛】本题考查了一次函数和二次函数的图象与性质、相似三角形的性质与判定、三角形面积等基础知识,注意函数与方程思想、数形结合思想、化归与转化思想及分类与整合思想的运用.。

2020福建福州中考数学试题及答案(含答案)

2020福建福州中考数学试题及答案(含答案)

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)﹣的相反数是()A.5B.C.﹣D.﹣52.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=39.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|﹣8|=.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sin A=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.2020年福建省中考数学试卷试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.解:﹣的相反数是,故选:B.2.解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.3.解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.4.解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.5.解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;故选:D.8.解:依题意,得:3(x﹣1)=.故选:A.9.解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°﹣120°)=80°,∴对的圆周角∠ADB的度数是,故选:A.10.解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为,故答案为:.13.解:S扇形==4π,故答案为4π.14.解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.解:正六边形的每个内角的度数为:=120°,所以∠ABC=120°﹣90°=30°,故答案为:30.16.解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.18.证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.19.解:原式=•=,当时,原式==.20.解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sin A=,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3,OB=3,∴,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD∥AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴=,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴=,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.24.解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.25.解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,假设l1与l2不平行,则l1与l2必相交,设交点为P(x P,y P),∴解得:n=10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴=()2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=×t×10=5t,∴S△CEF=()2×S△ABE=()2×5t=,∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.。

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•福建)计算:﹣20+|﹣1|.2.(2021•福建)计算:.二.分式的化简求值(共2小题)3.(2023•福建)先化简,再求值:(1﹣)÷,其中x=﹣1.4.(2022•福建)先化简,再求值:(1+)÷,其中a=+1.三.零指数幂(共1小题)5.(2022•福建)计算:+|﹣1|﹣20220.四.二元一次方程组的应用(共1小题)6.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.五.解一元一次不等式组(共2小题)7.(2023•福建)解不等式组:.8.(2021•福建)解不等式组:.六.一次函数的应用(共1小题)9.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?七.全等三角形的判定与性质(共3小题)10.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.11.(2021•福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.12.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.八.切线的性质(共1小题)13.(2023•福建)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.九.弧长的计算(共1小题)14.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).一十.作图—复杂作图(共1小题)15.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.一十一.解直角三角形(共1小题)16.(2022•福建)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A 相切于点G,求tan∠ADB的值.一十二.列表法与树状图法(共1小题)17.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A 马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•福建)计算:﹣20+|﹣1|.【答案】3.【解答】解:原式=3﹣1+1=2+1=3.2.(2021•福建)计算:.【答案】.【解答】解:原式=2+3﹣﹣3=.二.分式的化简求值(共2小题)3.(2023•福建)先化简,再求值:(1﹣)÷,其中x=﹣1.【答案】.【解答】解:原式=•=﹣•=﹣,当时,原式==.4.(2022•福建)先化简,再求值:(1+)÷,其中a=+1.【答案】,.【解答】解:原式=÷=•=,当a=+1时,原式==.三.零指数幂(共1小题)5.(2022•福建)计算:+|﹣1|﹣20220.【答案】.【解答】解:原式=2+﹣1﹣1=.四.二元一次方程组的应用(共1小题)6.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】见试题解答内容【解答】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:,解得:.∵8×2=16,16<38,∴符合题意.答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,依题意得:m≥2(46﹣m),解得:m≥.设购买两种绿植的总费用为w元,则w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的增大而增大,又∵m≥,且m为整数,∴当m=31时,w取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.五.解一元一次不等式组(共2小题)7.(2023•福建)解不等式组:.【答案】﹣3≤x<1.【解答】解:解不等式①,得x<1.解不等式②,得x≥﹣3.所以原不等式组的解集为﹣3≤x<1.8.(2021•福建)解不等式组:.【答案】1≤x<3.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<3,则不等式组的解集为1≤x<3.六.一次函数的应用(共1小题)9.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?【答案】(1)该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.【解答】解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100﹣x)箱,依题意得70x+40(100﹣x)=4600,解得:x=20,100﹣20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m箱,则批发这种农产品(1000﹣m)箱,依题意得0<m≤1000×30%,解得0<m≤300,设该公司获得利润为y元,依题意得y=70m+40(1000﹣m),即y=30m+40000,∵30>0,y随着m的增大而增大,∴当m=300时,y取最大值,此时y=30×300+40000=49000(元),∴批发这种农产品的数量为1000﹣m=700(箱),答:该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.七.全等三角形的判定与性质(共3小题)10.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.【答案】证明见解答过程.【解答】证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.11.(2021•福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.【答案】见试题解答内容【解答】证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠B=∠C.12.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.【答案】见解析.【解答】证明:∵∠AOD=∠COB,∴∠AOD﹣∠BOD=∠COB﹣∠BOD,即∠AOB=∠COD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD.八.切线的性质(共1小题)13.(2023•福建)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.【答案】(1)见解析;(2)见解析.【解答】证明:(1)∵AF是⊙O的切线,∴AF⊥OA,即∠OAF=90°,∵CE是⊙O的直径,∴∠CBE=90°,∴∠OAF=∠CBE,∵AF∥BC,∴∠BAF=∠ABC,∴∠OAF﹣∠BAF=∠CBE﹣∠ABC,即∠OAB=∠ABE,∴AO∥BE;(2)∵∠ABE与∠ACE都是所对的圆周角,∴∠ABE=∠ACE,∵OA=OC,∴∠ACE=∠OAC,∴∠ABE=∠OAC,由(1)知,∠OAB=∠ABE,∴∠OAB=∠OAC,∴AO平分∠BAC.九.弧长的计算(共1小题)14.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).【答案】(1)证明过程见解析;(2).【解答】证明:(1)∵AD∥BC,DF∥AB,∴四边形ABED为平行四边形,∴∠B=∠D,∵∠AFC=∠B,∠ACF=∠D,∴∠AFC=∠ACF,∴AC=AF.(2)连接AO,CO,如图,由(1)得∠AFC=∠ACF,∵∠AFC==75°,∴∠AOC=2∠AFC=150°,∴的长l==.一十.作图—复杂作图(共1小题)15.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.【答案】见解答.【解答】(1)解:如图,四边形ABCD为所作;(2)证明:设PQ交AD于G,BC交AD于G′,∵DQ∥AP,∴=,∵DC∥AB,∴=,∵P,Q分别为边AB,CD的中点,∴DC=2DQ,AB=2AP,∴===,∴=,∴点G与点G′重合,∴直线AD,BC,PQ相交于同一点.一十一.解直角三角形(共1小题)16.(2022•福建)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A 相切于点G,求tan∠ADB的值.【答案】(1)作图见解答过程;(2).【解答】解:(1)根据题意作图如下:(2)设∠ADB=α,⊙A的半径为r,∵BD与⊙A相切于点E,CF与⊙A相切于点G,∴AE⊥BD,AG⊥CG,即∠AEF=∠AGF=90°,∵CF⊥BD,∴∠EFG=90°,∴四边形AEFG是矩形,又AE=AG=r,∴四边形AEFG是正方形,∴EF=AE=r,在Rt△AEB和Rt△DAB中,∠BAE+∠ABD=90°,∠ADB+∠ABD=90°,∴∠BAE=∠ADB=α,在Rt△ABE中,tan∠BAE=,∴BE=r•tanα,∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,又∠AEB=∠CFD=90°,∴△ABE≌△CDF,∴BE=DF=r•tanα,∴DE=DF+EF=r•tanα+r,在Rt△ADE中,tan∠ADE=,即DE•tanα=AE,∴(r•tanα+r)•tanα=r,即tan2α+tanα﹣1=0,∵tanα>0,∴tanα=,即tan∠ADB的值为.一十二.列表法与树状图法(共1小题)17.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A 马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.【答案】(1)田忌首局出“下马”才可能获得胜利,概率P=.(2)见上述解题过程.P=.【解答】解:(1)田忌首局应出“下马”才可能获胜,此时,比赛所有可能的对阵为:(A1C2,B1A2,C1B2),(A1C2,C1B2,B1A2),(A1C2,B1B2,C1A2),(A1C2,C1A2,B1B2),共四种,其中获胜的有两场,故此田忌获胜的概率为P=.(2)不是.当齐王的出马顺序为A1,B1,C1时,田忌获胜的对阵是:(A1C2,B1A2,C1B2),当齐王的出马顺序为A1,C1,B1时,田忌获胜的对阵是:(A1C2,C1B2,B1A2),当齐王的出马顺序为B1,A1,C1时,田忌获胜的对阵是:(B1A2,A1C2,C1B2),当齐王的出马顺序为B1,C1,A1时,田忌获胜的对阵是:(B1A2,C1B2,A1C2),当齐王的出马顺序为C1,A1,B1时,田忌获胜的对阵是:(C1B2,A1C2,B1A2),当齐王的出马顺序为C1,B1,A1时,田忌获胜的对阵是:(C1B2,B1A2,A1C2),综上所述,田忌获胜的对阵有6种,不论齐王的出马顺序如何,也都有相应的6种可能对阵,所以田忌获胜的概率为P=.。

2020年福建省中考数学试卷含答案

2020年福建省中考数学试卷含答案

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)(2020•福建)-15的相反数是()A .5B .15C .-15D .﹣52.(4分)(2020•福建)如图所示的六角螺母,其俯视图是()A .B .C .D .3.(4分)(2020•福建)如图,面积为1的等边三角形A B C 中,D ,E ,F 分别是A B ,B C ,C A 的中点,则△DEF 的面积是()A .1B .12C .13D .144.(4分)(2020•福建)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5.(4分)(2020•福建)如图,A D 是等腰三角形A B C 的顶角平分线,B D =5,则C D 等于()A .10B .5C .4D .36.(4分)(2020•福建)如图,数轴上两点M ,N 所对应的实数分别为m ,n ,则m ﹣n 的结果可能是()A .﹣1B .1C .2D .37.(4分)(2020•福建)下列运算正确的是()A .3a 2﹣a 2=3B .(a +b )2=a 2+b2C .(﹣3a b 2)2=﹣6a 2b4D .a •a ﹣1=1(a ≠0)8.(4分)(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A .3(x ﹣1)=6210x B .6210x -1=3C .3x ﹣1=6210x D .6210x=39.(4分)(2020•福建)如图,四边形A B C D内接于⊙O,A B=C D,A为̂B D中点,∠B D C=60°,则∠A D B等于()A.40°B.50°C.60°D.70°10.(4分)(2020•福建)已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2﹣2a x上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)|﹣8|=.12.(4分)(2020•福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)(2020•福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠A B C=度.16.(4分)(2020•福建)设A ,B ,C ,D 是反比例函数y =kx图象上的任意四点,现有以下结论:①四边形A B C D 可以是平行四边形;②四边形A B C D 可以是菱形;③四边形A B C D 不可能是矩形;④四边形A B C D 不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)解不等式组:{2x ≤6-x ,①3x +1>2(x -1).②18.(8分)(2020•福建)如图,点E ,F 分别在菱形A B C D 的边B C ,C D 上,且B E =D F .求证:∠B A E =∠D A F .19.(8分)(2020•福建)先化简,再求值:(1-1x +2)÷x 2-1x +2,其中x =2+1.20.(8分)(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)(2020•福建)如图,A B 与⊙O 相切于点B ,A O 交⊙O 于点C ,A O 的延长线交⊙O 于点D ,E 是̂B C D上不与B ,D 重合的点,s i n A =12.(1)求∠B E D 的大小;(2)若⊙O 的半径为3,点F 在A B 的延长线上,且B F =33,求证:D F 与⊙O 相切.22.(10分)(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)(2020•福建)如图,C为线段A B外一点.(1)求作四边形A B C D,使得C D∥A B,且C D=2A B;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形A B C D中,A C,B D相交于点P,A B,C D的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)(2020•福建)如图,△A D E由△A B C绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在B C的延长线上,A D,E C相交于点P.(1)求∠B D E的度数;(2)F是E C延长线上的点,且∠C D F=∠D A C.①判断D F和P F的数量关系,并证明;②求证:E PP F=P CC F.25.(14分)(2020•福建)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,B C=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段B C上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线A E于点F,求△A B E与△C E F面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)(2020•福建)-15的相反数是()A .5B .15C .-15D .﹣5【解答】解:-15的相反数是15,故选:B .2.(4分)(2020•福建)如图所示的六角螺母,其俯视图是()A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B .3.(4分)(2020•福建)如图,面积为1的等边三角形A B C 中,D ,E ,F 分别是A B ,B C ,C A 的中点,则△DEF 的面积是()A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是A B ,B C ,C A 的中点,∴D E =12A C ,D F =12B C ,E F =12A B ,∴D F B C =E F A B =D E A C =12,∴△D E F ∽△A B C ,∴S △D E F S △A B C=(D E A C )2=(12)2=14,∵等边三角形A B C 的面积为1,∴△D E F 的面积是14,故选:D .4.(4分)(2020•福建)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形;B .平行四边形不是轴对称图形,是中心对称图形;C .圆既是轴对称图形又是中心对称图形;D .扇形是轴对称图形,不是中心对称图形.故选:C .5.(4分)(2020•福建)如图,A D 是等腰三角形A B C 的顶角平分线,B D =5,则C D 等于()A .10B .5C .4D .3【解答】解:∵A D 是等腰三角形A B C 的顶角平分线,B D =5,∴C D =5.故选:B .6.(4分)(2020•福建)如图,数轴上两点M ,N 所对应的实数分别为m ,n ,则m ﹣n 的结果可能是()A .﹣1B .1C .2D .3【解答】解:∵M ,N 所对应的实数分别为m ,n ,∴﹣2<n <﹣1<0<m <1,∴m ﹣n 的结果可能是2.故选:C .7.(4分)(2020•福建)下列运算正确的是()A .3a 2﹣a 2=3B .(a +b )2=a 2+b2C .(﹣3a b 2)2=﹣6a 2b4D .a •a ﹣1=1(a ≠0)【解答】解:A 、原式=2a 2,故本选项不符合题意;B 、原式=a 2+2a b +b 2,故本选项不符合题意;C 、原式=9a 2b 4,故本选项不符合题意;D 、原式=a ⋅1a=1,故本选项符合题意;故选:D .8.(4分)(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A .3(x ﹣1)=6210x B .6210x -1=3C .3x ﹣1=6210xD .6210x=3【解答】解:依题意,得:3(x ﹣1)=6210x.故选:A .9.(4分)(2020•福建)如图,四边形A B C D 内接于⊙O ,A B =C D ,A 为̂B D 中点,∠B DC =60°,则∠AD B 等于()A .40°B .50°C .60°D .70°【解答】解:∵A 为̂B D 中点,∴̂A B ═̂A D ,∵A B =C D ,∴̂A B=̂C D ,∴̂A B=̂A D=̂C D ,∵圆周角∠B D C =60°,∴∠B D C 对的̂B C的度数是2×60°=120°,∴̂A B的度数是13×(360°﹣120°)=80°,∴̂A B对的圆周角∠A D B的度数是12×80°=40°,故选:A.10.(4分)(2020•福建)已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2﹣2a x上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2【解答】解:∵抛物线y=a x2﹣2a x=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)|﹣8|=8.【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.(4分)(2020•福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为1 3.【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为1 3,故答案为:1 3.13.(4分)(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为4π.(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π,故答案为4π.14.(4分)(2020•福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为﹣10907米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.(4分)(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠A B C =30度.【解答】解:正六边形的每个内角的度数为:(6-2)⋅180°6=120°,所以∠A B C =120°﹣90°=30°,故答案为:30.16.(4分)(2020•福建)设A ,B ,C ,D 是反比例函数y =k x图象上的任意四点,现有以下结论:①四边形A B C D可以是平行四边形;②四边形A B C D可以是菱形;③四边形A B C D不可能是矩形;④四边形A B C D不可能是正方形.其中正确的是①④.(写出所有正确结论的序号)【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形A B C D.由对称性可知,O A=O C,O B=O D,∴四边形A B C D是平行四边形,当O A=O C=O B=O D时,四边形A B C D是矩形.∵反比例函数的图象在一,三象限,∴直线A C与直线B D不可能垂直,∴四边形A B C D不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)解不等式组:{2x≤6-x,①3x+1>2(x-1).②【解答】解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.18.(8分)(2020•福建)如图,点E,F分别在菱形A B C D的边B C,C D上,且B E=D F.求证:∠B A E=∠D A F.【解答】证明:四边形A B C D 是菱形,∴∠B =∠D ,A B =A D ,在△A B E 和△A D F 中,{A B =A D ∠B =∠D B E =D F,∴△A B E ≌△A D F (S A S ),∴∠B A E =∠D A F .19.(8分)(2020•福建)先化简,再求值:(1-1x +2)÷x 2-1x +2,其中x =2+1.【解答】解:原式=x +2-1x +2•x +2(x +1)(x -1)=1x -1,当x =2+1时,原式=12+1-1=22.20.(8分)(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)(2020•福建)如图,A B 与⊙O 相切于点B ,A O 交⊙O 于点C ,A O 的延长线交⊙O 于点D ,E 是̂B C D 上不与B ,D 重合的点,s i n A =12.(1)求∠B E D 的大小;(2)若⊙O 的半径为3,点F 在A B 的延长线上,且B F =33,求证:D F 与⊙O 相切.【解答】解:(1)连接O B ,如图1,∵A B 与⊙O 相切于点B ,∴∠A B O =90°,∵s i n A =12,∴∠A =30°,∴∠B O D =∠A B O +∠A =120°,∴∠B E D =12∠B O D =60°;(2)连接O F,O B,如图2,∵A B是切线,∴∠O B F=90°,∵B F=33,O B=3,∴t a n∠B O F=B FO B=3,∴∠B O F=60°,∵∠B O D=120°,∴∠B O F=∠D O F=60°,在△B O F和△D O F中,{O B=O D∠B O F=∠D O FO F=O F,∴△B O F≌△D O F(S A S),∴∠O B F=∠O D F=90°,∴D F与⊙O相切.22.(10分)(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)(2020•福建)如图,C为线段A B外一点.(1)求作四边形A B C D,使得C D∥A B,且C D=2A B;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形A B C D中,A C,B D相交于点P,A B,C D的中点分别为M,N,求证:M,P,N三点在同一条直线上.【解答】解:(1)如图,四边形A B C D即为所求;(2)如图,∵C D∥A B,∴∠A B P=∠C D P,∠B A P=∠D C P,∴△A B P∽△C D P,∴A BC D=A PP C,∵A B,C D的中点分别为M,N,∴A B=2A M,C D=2C N,∴A MC N=A PP C,连接M P,N P,∵∠B A P=∠D C P,∴△A P M∽△C P N,∴∠A P M=∠C P N,∵点P在A C上,∴∠A P M+∠C P M=180°,∴∠C P N+∠C P M=180°,∴M,P,N三点在同一条直线上.24.(12分)(2020•福建)如图,△A D E由△A B C绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在B C的延长线上,A D,E C相交于点P.(1)求∠B D E的度数;(2)F是E C延长线上的点,且∠C D F=∠D A C.①判断D F和P F的数量关系,并证明;②求证:E PP F=P CC F.【解答】解:(1)∵△A D E由△A B C绕点A按逆时针方向旋转90°得到,∴A B=A D,∠B A D=90°,△A B C≌△A D E,在R t△A B D中,∠B=∠A D B=45°,∴∠A D E=∠B=45°,∴∠B D E=∠A D B+∠A D E=90°.(2)①D F=P F.证明:由旋转的性质可知,A C=A E,∠C A E=90°,在R t△A C E中,∠A C E=∠A E C=45°,∵∠C D F=∠C A D,∠A C E=∠A D B=45°,∴∠A D B+∠C D F=∠A C E+∠C A D,即∠F P D=∠F D P,∴D F=P F.②证明:过点P作P H∥E D交D F于点H,∴∠H P F=∠D E P,E PP F=D HH F,∵∠D P F=∠A D E+∠D E P=45°+∠D E P,∠D P F=∠A C E+∠D A C=45°+∠D A C,∴∠D E P=∠D A C,又∵∠C D F=∠D A C,∴∠D E P=∠C D F,∴∠H P F=∠C D F,又∵F D=F P,∠F=∠F,∴△H P F≌△C D F(A S A),∴H F=C F,∴D H=P C,又∵E PP F=D HH F,∴E PP F=P CC F.25.(14分)(2020•福建)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,B C=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段B C上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线A E于点F,求△A B E与△C E F面积之和的最小值.【解答】解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵B C=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P =-2x P +ny P =-2x P +10解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l 3:y =﹣2x +q 过点C ,∴0=﹣2×1+q ,∴q =2,∴直线l 3,解析式为L :y =﹣2x +2,∴l 3∥l 1,∴C F ∥A B ,∴∠E C F =∠A B E ,∠C F E =∠B A E ,∴△C E F ∽△B E A ,∴S △C E F S △A B E=(C E B E )2,设B E =t (0<t <4),则C E =4﹣t ,∴S △A B E =12×t ×10=5t ,∴S △C E F =(C E B E )2×S △A B E =(4-t t )2×5t =5(4-t )2t,∴S △A B E +S △C E F =5t +5(4-t )2t =10t +80t-40=10(t -22t )2+402-40,∴当t =22时,S △A B E +S △C E F的最小值为402-40.。

2020年福建省中考数学试卷(附答案与解析)

2020年福建省中考数学试卷(附答案与解析)

绝密★启用前2020年福建省初中学业水平考试数学第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.15-的相反数为()A.5B.15C.15-D.5-2.如图所示的六角螺母,其俯视图是()A B C D3.如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则DEF△的面积是()A.1B.12C.13D.144.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A B C D5.如图,AD是等腰三角形ABC的顶角平分线,5BD=,则CD等于()A.10B.5C.4D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m n-的结果可能是()A.1-B.1C.2D.37.下列运算正确的是()A.2233a a-=B.()222a b a b+=+C.()222436ab a b-=-D.()110a a a-=≠8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6 210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6 210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.()621031xx-=B.621031x=-毕业学校_____________姓名________________考生号_____________________________________________ -------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------C .621031x x-=D .62103x= 9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=,则ADB ∠等于( )A .40°B .50°C .60°D .70°10.已知()111P x y ,,()222P x y ,是抛物线22y ax ax =-上的点,下列命题正确的是( )A .若1211x x -->,则12y y >B .若1211x x -->,则12y y <C .若1211x x -=-,则12y y =D .若12y y =,则12x x =第Ⅰ卷二、填空题:本题共6小题,每小题4分,共24分. 11.计算:8-=________.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为________.(结果保留π) 14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为________米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于________度.16.设A ,B ,C ,D 是反比例函数ky x=图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是________.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组:()321261x x x x -⎧⎪⎨⎪-⎩+①>.②≤,18.(本小题满分8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE DF =.求证:BAE DAF ∠=∠.19.(本小题满分8分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中1x . 20.(本小题满分8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨. (1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润. 21.(本小题满分8分)如图,AB 与O 相切于点B ,AO 交O 于点C ,AO 的延长线交O 于点D ,E 是BCD 上不与B ,D 重合的点,1sin 2A =.(1)求BED ∠的大小;(2)若O 的半径为3,点F 在AB的延长线上,且BF =DF 与O相切.22.(本小题满分10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3 218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1 000户,试估计其中家庭人均年纯收入低于2 000元(不含2 000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4 000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此-------------------卷------------------上------------------答-------------------题------------------无-------------------效----------------23.(本小题满分10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得∥CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(本小题满分12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且CDF DAC ∠=∠.①判断DF 和PF 的数量关系,并证明;②求证:EP PCPF CF=. 25.(本小题满分14分)已知直线1210:l y x =-+交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点()111,P x y ,()222,P x y ,当125>≥x x 时,总有12>y y . (1)求二次函数的表达式;(2)若直线()210:l y mx n n =+≠,求证:当2m =-时,21∥l l ;(3)E 为线段BC 上不与端点重合的点,直线32:l y x q =-+过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.2020年福建省初中学业水平考试数学答案解析一、1.【答案】B【解析】根据相反数的定义:只有符号不同的两个数互为相反数即得.A选项与15-的符号和符号后的数值均不相同,不符合题意;B选项与15-只有符号不同,符合题意,B选项正确;C选项与15-完全相同,不符合题意;D选项与15-符号相同,不符合题意.故选:B.【考点】相反数的定义2.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:故选:B..D,【解析】根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【考点】中心对称图形与轴对称图形的概念5.【答案】B【解析】根据等腰三角形三线合一的性质即可判断CD的长.AD是等腰三角形ABC 的顶角平分线,5CD BD∴==.故选:B.【考点】等腰三角形的三线合一6.【答案】C【解析】根据数轴确定m和n的范围,再根据有理数的加减法即可做出选择.解:根据数轴可得01m<<,21n-<<-,则13m n-<<.故选:C.【考点】数轴7.【答案】D【解析】根据整式的加减乘除、完全平方公式、()1ppa aa-=≠逐个分析即可求解.解:选项A:22232a a a-=,故选项A错误;选项B:()2222a b a ab b+=++,故选项B错误;选项C:()222439ab a b-=,故选项C错误;选项D:()1110a a a aa-==≠,故选项D正确.故选:D.【考点】整式的加减乘除及完全平方公式,负整数指数幂8.【答案】A【解析】根据“这批椽的价钱为6 210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.解:由题意得:()621031xx-=,故选A.【考点】分式方程的应用9.【答案】A【解析】根据AB CD=,A为BD中点求出CBD ADB ABD∠=∠=∠,再根据圆内接四边形的性质得到180ABC ADC ∠+∠=,即可求出答案.A 为BD 中点,AB AD ∴=,ADB ABD ∴∠=∠,AB AD =,AB CD =,CBD ADB ABD ∴∠=∠=∠,四边形ABCD 内接于O ,180ABC ADC ∴∠+∠=, 360180ADB ∴∠+=,40ADB ∴∠=,故选:A .【考点】圆周角定理 10.【答案】C【解析】分别讨论0a >和0a <的情况,画出图象根据图象的增减性分析x 与y 的关系. 根据题意画出大致图象:当0a >时,1x =为对称轴,1x -表示为x 到1的距离,由图象可知抛物线上任意两点到1x =的距离相同时,对应的y 值也相同, 当抛物线上的点到1x =的距离越大时,对应的y 值也越大,由此可知A 、C 正确.当0a <时,1x =为对称轴,1x -表示为x 到1的距离,由图象可知抛物线上任意两点到1x =的距离相同时,对应的y 值也相同, 当抛物线上的点到1x =的距离越大时,对应的y 值也越小,由此可知B 、C 正确. 综上所述只有C 正确. 故选C .【考点】二次函数图象的性质 二、 11.【答案】8【解析】根据绝对值的性质解答即可.88-=.故答案为8. 【解析】利用概率公式即可求得答案.解:从甲、乙、丙3位同学中随机选取1人进行在线辅导功课共有3种等可能结果,其中甲被选中的只有1种可能,故答案为:13. 【考点】概率公式 13.【答案】4π【解析】根据扇形的面积公式2360n r S π=进行计算即可求解.解:扇形的半径为4,圆心角为90,∴扇形的面积是:29044360S ππ⨯⨯==.故答案为:4π. 【考点】扇形面积的计算 14.【答案】10907-【解析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案. 解:高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,∴“海斗一号”下潜至最大深度10907米处,可记为10907-,故答案为:10907-. 【考点】正数,负数的意义及其应用 15.【答案】30【解析】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到ACB∠的度数,根据直角三角形的两个锐角互余即可求解. 解:由题意六边形花环是用六个全等的直角三角形拼成, 可得BD AC =,BC AF =,CD CF ∴=,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,()11621801206∴∠=-⨯=, 218012060∴∠=-=, 30ABC ∴∠=,故答案为:30.【考点】正多边形的证明,多边形的内角和,三角形的内角和 16.【答案】①④【解析】利用反比例函数的对称性,画好图形,结合平行四边形,矩形,菱形,正方形的判定可以得到结论,特别是对②的判断可以利用反证法. 解:如图,反比例函数ky x=的图象关于原点成中心对称, OA OC ∴=,OB OD =,∴四边形ABCD 是平行四边形,故①正确,如图,若四边形ABCD 是菱形, 则AC BD ⊥,90COD ∴∠=,显然:90COD ∠<,所以四边形ABCD 不可能是菱形,故②错误,如图,反比例函数ky x=的图象关于直线y x =成轴对称, 当CD 垂直于对称轴时,OC OD ∴=,OA OB = OA OC =,OA OB OC OD ∴===,AC BD ∴=,∴四边形ABCD 是矩形,故③错误,四边形ABCD 不可能是菱形,∴四边形ABCD 不可能是正方形,故④正确,故答案为:①④.【考点】平行四边形,矩形,菱形,正方形的判定,反比例函数的对称性 三、17.【答案】解:由①得23x x x x +≤6,≤6,≤2., 由②得312232213.x x x x x +----->,>,>,∴原不等式组的解集是32x -<≤.【解析】分别求出各不等式的解集,再找到其公共解集即可求解.具体解题过程参照答案. 【考点】一元一次不等式组的解法 【考查能力】运算18.【答案】解:证明:四边形ABCD 是菱形,B D ∴∠=∠,AB AD =.在ABE △和ADF △中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩ABE ADF ∴△≌△,BAE DAF ∴∠=∠.【解析】根据菱形的性质可知AB AD =,B D ∠=∠,再结合已知条件BE DF =即可证明ABE ADF △≌△后即可求解.解题过程参考答案。

2020年福建省中考数学试卷和答案解析

2020年福建省中考数学试卷和答案解析

2020年福建省中考数学试卷和答案解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)﹣的相反数是()A.5B.C.﹣D.﹣5解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.参考答案:解:﹣的相反数是,故选:B.点拨:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.解析:根据俯视图是从上面看得到的图形,可得答案.参考答案:解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.点拨:本题考查了简单组合体的三视图,利用三视图的意义是解题关键.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.解析:根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.参考答案:解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.点拨:本题考查了三角形中位线定理,等边三角形的性质,相似三角形的判定和性质,熟练掌握三角形的中位线定理是解题的关键.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.点拨:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3解析:根据等腰三角形三线合一的性质即可求解.参考答案:解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.点拨:考查了等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.6.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3解析:根据在数轴上表示的两个实数,右边的总比左边的大可得﹣2<n<﹣1<0<m<1,m﹣n的结果可能是2.参考答案:解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.点拨:本题考查了实数与数轴,利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.7.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)解析:根据合并同类项法则,完全平方公式,幂的乘方和积的乘方,负整数指数幂分别求出每个式子的值,再判断即可.参考答案:解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;故选:D.点拨:本题考查了合并同类项法则,完全平方公式,幂的乘方和积的乘方,负整数指数幂等知识点,能正确求出每个式子的值是解此题的关键.8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=3解析:根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.参考答案:解:依题意,得:3(x﹣1)=.故选:A.点拨:本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°解析:求出==,根据圆周角∠BDC的度数求出它所对的的度数,求出的度数,再求出答案即可.参考答案:解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°﹣120°)=80°,∴对的圆周角∠ADB的度数是,故选:A.点拨:本题考查了圆周角定理,圆心角、弧、弦之间的关系等知识点,能根据定理求出==是解此题的关键.10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2解析:根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.参考答案:解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.点拨:本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|﹣8|=8.解析:负数的绝对值是其相反数.参考答案:解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.点拨:本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.解析:直接利用概率公式求解可得.参考答案:解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为,故答案为:.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为4π.(结果保留π)解析:利用扇形的面积公式计算即可.参考答案:解:S扇形==4π,故答案为4π.点拨:本题考查扇形的面积,解题的关键是记住扇形的面积==lr(r是扇形的半径,l是扇形的弧长).14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为﹣10907米.解析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答.参考答案:解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.点拨:本题考查了正数和负数.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=30度.解析:由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.参考答案:解:正六边形的每个内角的度数为:=120°,所以∠ABC=120°﹣90°=30°,故答案为:30.点拨:本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是①④.(写出所有正确结论的序号)解析:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.参考答案:解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,点拨:本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.解析:根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.参考答案:证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.点拨:本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.解析:先把括号内通分,再计算括号内的减法运算和把除法运算化为乘法运算,然后把分母因式分解后进行约分得到原式=,再把x的值代入计算即可.参考答案:解:原式=•=,当时,原式==.点拨:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解析:(1)根据题意,可以列出相应的一元一次方程,从而可以求得这个月该公司销售甲、乙两种特产分别为多少吨;(2)根据题意,可以得到利润与甲种特产数量的函数关系式,再根据甲种特产的取值范围和一次函数的性质,可以得到利润的最大值.参考答案:解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.点拨:本题考查一次函数的应用、一元一次方程的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO 的延长线交⊙O于点D,E是上不与B,D重合的点,sinA=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.解析:(1)连接OB,由切线求出∠ABO的度数,再由三角函数求出∠A,由三角形的外角性质求得∠BOD,最后由圆周解与圆心角的关系求得结果;(2)连接OF,OB,证明△BOF≌△DOF,得∠ODF=∠OBF=90°,便可得结论.参考答案:解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sinA=,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3,OB=3,∴,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.点拨:本题主要考查了圆的切线的性质与判定,解直角三角形,圆周角定理,全等三角形的性质与判定,第(2)题关键是证明三角形全等.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.解析:(1)用2000乘以样本中家庭人均纯收入低于2000元(不含2000元)的频率即可;(2)利用加权平均数进行计算即可;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.参考答案:解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.点拨:本题考查了折线统计图、用样本估计总体、条形统计图、加权平均数,考查运算能力、推理能力、考查统计思想.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD 的中点分别为M,N,求证:M,P,N三点在同一条直线上.解析:(1)利用尺规作图作CD∥AB,且CD=2AB,即可作出四边形ABCD;(2)在(1)的四边形ABCD中,根据相似三角形的判定与性质即可证明M,P,N三点在同一条直线上.参考答案:解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD∥AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴=,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴=,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.点拨:本题考查了作图﹣复杂作图、相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.解析:(1)由旋转的性质得出AB=AD,∠BAD=90°,△ABC≌△ADE,得出∠ADE=∠B=45°,可求出∠BDE的度数;(2)①由旋转的性质得出AC=AE,∠CAE=90°,证得∠FPD=∠FDP,由等腰三角形的判定得出结论;②过点P作PH∥ED交DF于点H,得出∠HPF=∠DEP,,证明△HPF≌△CDF(ASA),由全等三角形的性质得出HF=CF,则可得出结论.参考答案:解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.点拨:本题是相似形综合题,考查了旋转的性质,三角形内角与外角的关系,等腰三角形的判定,全等三角形的判定与性质,平行线的性质,平行线分线段成比例定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.解析:(1)先求出点A,点B,点C坐标,利用待定系数法可求解析式;(2)利用反证法可得结论;(3)通过证明△CEF∽△BEA,可得=()2,BE=t(0<t <4),则CE=4﹣t,可求S△ABE=×t×10=5t,S△CEF=,利用二次函数的性质可求解.参考答案:解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,假设l1与l2不平行,则l1与l2必相交,设交点为P(x P,y P),∴解得:n=10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴=()2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=×t×10=5t,∴S△CEF=()2×S△ABE=()2×5t=,∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.点拨:本题是二次函数综合题,考查了一次函数和二次函数的图象和性质,利用待定系数法可求解析式,相似三角形的判定和性质,三角形的面积等知识,利用数形结合思想和函数和方程的思想解决问题是本题的关键.。

专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(福建专用)(原卷版)

专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(福建专用)(原卷版)

专题04 几何压轴题1.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证://DE A F';(2)求GA B∠'的大小;(3)求证:2'='.AC A B2.(2020•福建)如图,ADE∆由ABC∆绕点A按逆时针方向旋转90︒得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求BDE∠的度数;(2)F是EC延长线上的点,且CDF DAC∠=∠.①判断DF和PF的数量关系,并证明;②求证:EP PC PF CF=.3.(2021•泉州模拟)如图,四边形ABCD中,4AB AD==,3CB CD==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q . (1)求sin MCN ∠的值;(2)当DN DC =时,求CNM ∠的度数; (3)试问:在点M 、N 的运动过程中,线段比PQMN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相应的位置.4.(2021•宁德模拟)如图,点E ,F 在正方形ABCD 的对角线AC 上,45EBF ∠=︒. (1)当BE BF =时,求证:AE CF =;(2)若4AB=,求AF CE⋅的值;(3)延长BF交CD于点G,连接EG.判断线段BE与EG的数量关系,并说明理由.5.(2021•龙岩模拟)如图,Rt ABCBC=,3∆AC=,点D在Rt ABC∠=︒,2ACB∆中,90的边AC上,DC m==,过E =,以BD为直角边在AC同侧作等腰Rt BDE∆,使BD DE n作EF AC⊥于点F,连接AE.(1)求证:EDF DBC∆≅∆;(2)求AE的最小值;(3)若52AEBCSn=四边形,求AEBCS四边形的值.6.(2021•莆田模拟)如图1,矩形ABCD中,4AB=,8BC=,点E为BC边上的动点,连接DE.过点E作于点,点为的中点,连接,,.(1)求证:;(2)设,的面积为,EF BD⊥F G DE CF CG GF2FGC BDC∠=∠BE x=GFC∆S①求与的函数关系式;②如图2,点,分别在,上,且,,连接,,当取最小值时,求的值.7.(2021•三明模拟)在和中,,,,点在上,点在上,.(1)如图①,若是中点,延长线交于点,求证:; (2)如图②,若不是中点,S x M N AD CD 92DM =1DN =GM GN GM GN +S ABC ∆ADE ∆AC BC =AD AE =90ACB DAE ∠=∠=︒E AB F EB BCF BDE ∠=∠E AB CE BD G CEF BEG ∆≅∆E AB①求证:; ②求证:.8.(2021•泗水县一模)(1)如图1,正方形和正方形(其中,连接,交于点,请直接写出线段与的数量关系 ,位置关系 ;(2)如图2,矩形和矩形,,,,将矩形绕点逆时针旋转,连接,交于点,(1)中线段关系还成立吗?12CF BD =EF BF =ABCD DEFG )AB DE >CE AG H AG CE ABCD DEFG 2AD DG =2AB DE =AD DE =DEFG D (0360)αα︒<<︒AG CE H若成立,请写出理由;若不成立,请写出线段,的数量关系和位置关系,并说明理由;(3)矩形和矩形,,,将矩形绕点逆时针旋转,直线,交于点,当点与点重合时,请直接写出线段的长.9.(2021•漳州模拟)如图,在矩形中,,点、分别在、上,将矩形沿折叠,使点落在边上的点处,点落在点处,交于点,连接交于点. (1)求证:; (2)求证:;AG CE ABCD DEFG 26AD DG ==28AB DE ==DEFG D (0360)αα︒<<︒AG CE H E HAE ABCD 2AB BC =P Q AB CD ABCD PQ B AD E C F EF CD G BE PQ H APE GQF ∠=∠PQ BH =(3)若,的长.10.(2021•南平模拟)如图,在矩形中,,,点在的延长线上,点在上,且. (1)已知. ①求的度数; ②当时,求的值; 3sin 5GQF ∠=PQ =FG ABCD AB a =BC b =E CB F DE EAB FAB ∠=∠EB FB =AFD ∠AED DEC ∠=∠ab(2)求证:直线一定平分边.11.(2021•福建模拟)在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.(1)观察猜想 如图1,当时,的值是 ,直线与直线相交所成的较小角的度数是 .BF AD ABC ∆CA CB =ACB α∠=P A C AP AP P αDP AD BD CP 60α=︒BDCPBD CP(2)类比探究如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值.12.(2021•启东市模拟)定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形与四边形都是正方形,,求证:四边形是“等垂四边形”;(2)如图②,四边形是“等垂四边形”,,连接,点,,分别是,,的中点,连接,,.试判定的形状,并证明;(3)如图③,四边形是“等垂四边形”,,,试求边长的最小值.90α=︒BDCPBD CP90α=︒E F CA CB P EF CP DADCPABCD AEEG135180AEB︒<∠<︒BEGDABCD AD BC≠BD E F G AD BC BD EG FG EF EFG∆ABCD4AD=6BC=AB13.(2021•福州模拟)在中,,,.将绕点顺时针旋转得到,直线,交于点. (1)如图1,当时,连接. ①求的面积; ②求的值;(2)如图2,连接,若为中点,求证:,,三点共线.Rt ABC ∆90ACB ∠=︒3AC =4BC =Rt ABC ∆B (060)αα︒<<︒Rt DEB ∆DE AC P BD BC ⊥BP BDP ∆tan CBP ∠AD F AD C E F14.(2021•启东市模拟)如图,在矩形中,,、分别为、边上的动点,连接,沿将四边形翻折至四边形,点落在上,交于点,连接交于点.(1)写出与之间的位置关系是: ; (2)求证:; (3)连接,若,的长. ABCD 2AB BC =F G AB DC GF GF AFGD EFGP E BC EP CD H AE GF O GF AE 2AE GF =CP 3sin 5CGP ∠=10GF CE15.(2018•益阳)如图1,在矩形中,是的中点,以点为直角顶点的直角三角形的两边,分别过点,,. (1)求证:;(2)将绕点按顺时针方向旋转,当旋转到与重合时停止转动,若,分别与,相交于点,(如图. ①求证:;②若,求面积的最大值;ABCD E AD E EFG EF EG B C 30F ∠=︒BE CE =EFG ∆E EF AD EF EG AB BC M N 2)BEM CEN ∆≅∆2AB =BMN ∆③当旋转停止时,点恰好在上(如图,求的值.16.(2020•厦门模拟)在平行四边形中,是锐角,过、两点以为半径作.(1)如图,对角线、交于点,若,且过点,求的值; (2)与边的延长线交于点,的延长线交于于点,连接、、,若,的长为,当时,求的度数.(提示:可再备用图上补全示意图)B FG 3)sin EBG∠ABCD ABC ∠A B r O AC BD M 2AB BC ==M r O BC E DO O F DE EF AC 45CAD ∠=︒AE 2r π2CE AB DEF ∠17.(2020•福建模拟)在正方形中,,为对角线、的交点. (1)如图1,延长,使,作正方形,使点落在的延长线上,连接、.求证:;(2)如图2,将问题(1)中的正方形绕点逆时针旋转,得到正方形,连接、. ①当时,求点到的距离;②在旋转过程中,求△面积的最小值,并求此时的旋转角.ABCD 4AB =O AC BD OC CE OC =OEFG G OD DE AG DE AG =OEFG O (0180)αα<<︒OE F G '''AE 'E G ''30α=︒A E G ''AE G ''α18.(2020•仓山区模拟)问题提出:(1)如图1,点为线段外一动点,且,,填空:当时,线段的长取得最大值,且最大值为 (用含,的式子表示). 问题探究:(2)点为线段外一动点,且,,如图2所示,分别以,为边,作等边三角形和等边三角形,连接,,找出图中与相等的线段,请说明理由,并直接写出线段长的最大值. 问题解决:A BC BC a =AB b =ABC ∠=AC a b A BC 6BC =3AB =AB AC ABD ACE CD BE BE BE(3)如图3,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,,求线段长的最大值及此时点的坐标.19.(2020•福州模拟)已知,,,是边上一点,连接,是上一点,且.(1)如图1,若, ①求证:平分;②求的值; (2)如图2,连接,若,求的值.A (2,0)B (5,0)P AB 2PA =PM PB =90BPM ∠=︒AM P ABC ∆AB AC =90BAC ∠=︒D AB CDE CD 45AED ∠=︒AE DE =CD ACB ∠ADDBBE AE BE ⊥tan ABE ∠20.(2020•龙岩一模)如图,已知中,,平分,与交于点,,过作于,交于,与的延长线相交于点. (1)求证:点是的外心; (2)若,,求的长.Rt ABC ∆90ACB ∠=︒BD ABC ∠BD AC E AD BD ⊥D DF AB ⊥F AC G FD BC H G ADE ∆2FG =5DH =EG21.(2020•泰兴市模拟)我们把有一组邻边相等,一组对边平行但不相等的四边形称作“准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明)已知:求证:证明:(2)已知,在中,,,.若点,分别在边,上,且四边形为“准菱形”.请在下列给出的中,作出满足条件的所有“准菱形”,并写出相应的长.(所给不一定都用,不够可添)22.(2020•泉港区一模)如图,矩形中,,,点在边上,与点、不重合,过点作的垂线与的延长线相交于点,连接,交于点. (Ⅰ)当为的中点时,求的长;(Ⅱ)当是以为腰的等腰三角形时,求.ABC ∆90A ∠=︒3AB =4AC =D E BC AC ABDE ABC ∆ABDE DE ABC∆DE =34DE =DE =DE=ABCD 8AD =16AB =E AB A B D DE BC F EF CD G G EF AE DEG ∆DE tan ADE ∠23.(2020•三明二模)如图,在中,,,,点是斜边上一点,且.(Ⅰ)求的值;(Ⅱ)过点的与边相切,切点为的中点,与直线的另一个交点为.ABC ∆90ACB ∠=︒3AC =1BC =D 4AD BD =tan BCD ∠B O AC AC E O BC F(ⅰ)求的半径;(ⅱ)连接,试探究与的位置关系,并说明理由.24.(2020•鼓楼区校级模拟)如图,在矩形中,,、分别为、边上的动点,连接,沿将四边形翻折至四边形,点落在上,交于点,连接交于点.(1)与之间的位置关系是: ,的值是: ,请证明你的结论; O AF AF CD ABCD 12BC AB F G AB DC GF GF AFGD EFGP E BC EP CD H AE GF O GF AE GF AE(2)连接,若,,求的长.25.(2021•福建模拟)如图,在矩形中,,,是边上的一个动点,点在射线上,点在边上,四边形是正方形,过作射线于点,连接,.(1)求证:;(2)设,的面积为,求与的函数关系式,并写出的取值范围. CP 3tan 4CGP ∠=GF =CP ABCD 10AB =6AD =E AB F EC H AD EFGH G GM ⊥AD M CG DG AH GM =AE x =CDG ∆S S x x26.(2020•思明区校级二模)如图,已知,点在正方形的边上(不与点,重合),是对角线,过点作的垂线,垂足为,连接,.把线段绕着点顺时针旋转,使点的对应点点刚好落在延长线上,根据题意补全图形.(1)证明;(2)连接,用等式表示线段与的数量关系,并证明.E ABCD BC B C AC E AC G BG DG DG G DF BC GC GE DF BG DF27.(2020•鼓楼区校级三模)在中,,,为中点,点为延长线上一点,,连接,,.(1)如图:将射线绕逆时针旋转60”交延长线于点,且. ①求证:.②求的值; Rt ABC ∆90ACB ∠=︒30B ∠=︒M AB P BC CP BC <PM AC n =CP m =MP M CA D BC AD CP =+MDC PMA ∠=∠m n(2)如图2若将射线绕点顺时针旋转交延长线于点,求的长(用含有,的式子表示).28.(2020•莆田二模)如图,在四边形中,,.在延长线上取点,使得.(1)如图1,当时,求证:①;②;(2)如图2,若,,设,,求与的函数表达式. MP M 60︒AC H CH m n ABCD AC AD ⊥ABC ADC ∠=∠BC E DC DE =//AD BC ABC DEC ∠=∠2CE BC =4tan 3ABC ∠=10BE =AB x =BC y =y x29.(2021•开福区模拟)勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以的三边为边长,向外作正方形、、.(1)连接、,求证:;(2)过点作的垂线,交于点,交于点.①试说明四边形与正方形的面积相等;Rt ABC ∆ABDE BCFG ACHI BI CE ABI AEC ∆≅∆B AC AC M IH N AMNI ABDE②请直接写出图中与正方形的面积相等的四边形.(3)由第(2)题可得:正方形的面积正方形的面积的面积,即在中,.30.(2021春•连云港期末)中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.(1)探究猜想如图1,当点在线段上时,①与的位置关系为:;②、、之间的数量关系为:;(2)深入思考如图2,当点在线段的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;BCFGABDE+BCFG=Rt ABC∆22AB BC+=ABC∆90BAC∠=︒AB AC=D BCD B C AD AD ADEF CFD BCBC CFBC CD CFD CB若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点在线段的延长线上时,正方形对角线交于点.若已知,,请求出的长.D BC ADEF O 22AB =14CD BC =OC。

2020年福建省中考数学试卷(含详细解析)

2020年福建省中考数学试卷(含详细解析)
C选项与 完全相同,不符合题意;
D选项与 符号相同,不符合题意.
故选:B.
【点睛】
本题考查相反数的定义,解题关键是熟知相反数的定义:只有符号不同的两个数互为相反数.
2.B
【解析】
【分析】
根据图示确定几何体的三视图即可得到答案.
【详解】
由几何体可知,该几何体的三视图依次为.
主视图为:
左视图为:
俯视图为:
22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.
A. B. C. D.
9.如图,四边形 内接于 , , 为 中点, ,则 等于()
A. B. C. D.
10.已知 , 是抛物线 上的点,下列命题正确的是()
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
评卷人
得分
二、填空题
11.计算: __________.
12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.
(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;
(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;
(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.

[中考12年]福州市2020年中考数学试题分类解析专题12:押轴题(1).doc

[中考12年]福州市2020年中考数学试题分类解析专题12:押轴题(1).doc

1. (2020年福建福州4分)二次函数2y ax bx c(a 0)=++≠的图象如图所示,下列结论:(1)c 0< (2)b 0> (3)4a 2b c 0++> (4)22(a c)b +< 其中正确的有【 】A. 1个B. 2个C. 3个D. 4个【答案】C 。

【考点】二次函数图象与系数的关系。

【分析】(1)∵图象与y 轴交于y 轴负半轴,则c <0,正确。

(2)∵对称轴b x 12a=-=,开口向下,∴a<0,故b >0,正确。

(3)当x=2时,y <0,即4a +2b +c >0,错误。

(4)22(a c)b +<可化为(a -b +c )(a +b +c )<0,∵当x=1时,a +b +c >0,当x=-1时,a -b +c <0,故22(a c)b +<正确。

故选C 。

2. (2020年福建福州4分)已知:二次函数y =x 2+bx+c 与x 轴相交于A (x 1,0)、B (x 2,0)两点,其顶点坐标为P (b 2-,24c b 4-),AB =︱x 1-x 2︱,若S △APB =1,则b 与c 的关系式是【 】(A )b 2-4c +1=0(B )b 2-4c -1=0 (C )b 2-4c +4=0 (D )b 2-4c -4=03. (2020年福建福州4分)如图,⊙Ο的直径AB 垂直于弦CD ,垂足为H ,点 P 是A C 上一点(点P 不与A 、C 两点重合)。

连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB交于点F 。

给出下列四个结论:(1)2CH AH BH =⋅;(2)»»AD=AC ;(3)2AD DF DP =⋅;(4)∠EPC=∠APD。

其中正确的个数是【 】(A ) 1 (B ) 2 (C ) 3 (D ) 4【答案】C 。

【考点】圆周角定理,垂径定理,相交弦定理,圆内接四边形的性质。

福建省2020年中考数学试题(解析版)

福建省2020年中考数学试题(解析版)

福建省2020年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.有理数15-的相反数为()A. 5B. 15C.15- D. 5-【答案】B【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数即得.【详解】A选项与15-的符号和符号后的数值均不相同,不符合题意;B选项与15-只有符号不同,符合题意,B选项正确;C选项与15-完全相同,不符合题意;D选项与15-符号相同,不符合题意.故选:B.【点睛】本题考查相反数的定义,解题关键是熟知相反数的定义:只有符号不同的两个数互为相反数.2.如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图依次为.左视图为:俯视图为:故选:B .【点睛】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.3.如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF 的面积是( )A. 1B.12C.13D.14【答案】D 【解析】 【分析】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14. 【详解】∵,,D E F 分别是AB ,BC ,CA 的中点,且△ABC 是等边三角形, ∴△ADF ≌△DBE ≌△FEC ≌△DFE, ∴△DEF 的面积是14. 故选D .【点睛】本题考查等边三角形的性质及全等,关键在于熟练掌握等边三角形的特殊性质.4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.BD=,则CD等于()5.如图,AD是等腰三角形ABC的顶角平分线,5A. 10B. 5C. 4D. 3【答案】B【解析】【分析】根据等腰三角形三线合一的性质即可判断CD的长.【详解】∵AD是等腰三角形ABC的顶角平分线∴CD=BD=5.故选:B.【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.M N所对应的实数分别为,m n,则m n-的结果可能是()6.如图,数轴上两点,A. 1-B. 1C. 2D. 3【答案】C【解析】分析】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3 故选:C【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确m 和n 的范围,然后再确定m n -的范围即可.7.下列运算正确的是( ) A. 2233a a -= B. 222()a b a b +=+ C. ()222436-=-ab a bD. 11(0)-⋅=≠a a a【答案】D 【解析】 【分析】根据整式的加减乘除、完全平方公式、1(0)pp aa a-=≠逐个分析即可求解. 【详解】解:选项A :22232a a a -=,故选项A 错误; 选项B :222()2a b a ab b +=++,故选项B 错误; 选项C :()222439-=ab a b ,故选项C 错误;选项D :111(0)-⋅=⋅=≠a a a a a,故选项D 正确. 故选:D .【点睛】本题考查整式的加减乘除及完全平方公式、负整数指数幂等运算公式,熟练掌握公式及运算法则是解决此类题的关键.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A. 62103(1)-=x xB.621031=-x C. 621031-=x xD.62103=x【答案】A 【解析】 【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.【详解】解:由题意得:62103(1)-=x x, 故选A.【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键. 9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A. 40︒B. 50︒C. 60︒D. 70︒【答案】A 【解析】 【分析】根据AB CD =,A 为BD 中点求出∠CBD=∠ADB=∠ABD ,再根据圆内接四边形的性质得到∠ABC+∠ADC=180°,即可求出答案. 【详解】∵A 为BD 中点, ∴AB AD =,∴∠ADB=∠ABD ,AB=AD , ∵AB CD =,∴∠CBD=∠ADB=∠ABD , ∵四边形ABCD 内接于O ,∴∠ABC+∠ADC=180°, ∴3∠ADB+60°=180°, ∴ADB ∠=40°, 故选:A .【点睛】此题考查圆周角定理:在同圆中等弧所对的圆周角相等、相等的弦所对的圆周角相等,圆内接四边形的性质:对角互补.中考数学10.已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A. 若12|1||1|->-x x ,则12y y >B. 若12|1||1|->-x x ,则12y y <C. 若12|1||1|-=-x x ,则12y y =D. 若12y y =,则12x x =【答案】C 【解析】 【分析】分别讨论a >0和a <0的情况,画出图象根据图象的增减性分析x 与y 的关系. 【详解】根据题意画出大致图象:当a >0时,x =1为对称轴,|x -1|表示为x 到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y 值也相同, 当抛物线上的点到x=1的距离越大时,对应的y 值也越大,由此可知A 、C 正确.当a<0时,x=1为对称轴,|x-1|表示为x到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y值也相同,当抛物线上的点到x=1的距离越大时,对应的y值也越小,由此可知B、C正确.综上所述只有C正确.故选C.【点睛】本题考查二次函数图象的性质,关键在于画出图象,结合图象增减性分类讨论.第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.计算:8-=__________.【答案】8【解析】【分析】根据绝对值的性质解答即可.【详解】|﹣8|=8.故答案为8.【点睛】本题考查了绝对值的性质,掌握绝对值的性质是解答本题的关键.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.【答案】1 3【解析】【分析】利用概率公式即可求得答案.【详解】解:从甲、乙、丙3位同学中随机选取1人进行在线辅导功课共有3种等可能结果,其中甲被选中的只有1种可能,故答案为:13.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.一个扇形的圆心角是90︒,半径为4,则这个扇形的面积为______.(结果保留π)【答案】4π【解析】【分析】根据扇形的面积公式2360n r Sπ=进行计算即可求解.【详解】解:∵扇形的半径为4,圆心角为90°,∴扇形的面积是:29044360ππ⨯⨯==S.故答案为:4π.【点睛】本题考查了扇形面积的计算.熟记扇形的面积公式是解题的关键.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米.【答案】10907-【解析】【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30 【解析】 【分析】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB 的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成, 可得BD=AC ,BC=AF , ∴CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°, ∴∠ABC=30°, 故答案为:30.【点睛】本题考查正多边形的证明、多边形的内角和以及三角形的内角和,熟练掌握多边形内角和的计算是解题的关键.16.设,,,A B C D 是反比例函数ky x=图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)【答案】①④【解析】【分析】利用反比例函数的对称性,画好图形,结合平行四边形,矩形,菱形,正方形的判定可以得到结论,特别是对②的判断可以利用反证法.【详解】解:如图,反比例函数kyx=的图象关于原点成中心对称,,,OA OC OB OD∴==∴四边形ABCD是平行四边形,故①正确,如图,若四边形ABCD是菱形,则,AC BD⊥90,COD∴∠=︒显然:COD∠<90,︒所以四边形ABCD不可能是菱形,故②错误,如图,反比例函数kyx=的图象关于直线y x=成轴对称,当CD垂直于对称轴时,,, OC OD OA OB ∴==,OA OC=, OA OB OC OD ∴===,AC BD ∴=∴ 四边形ABCD 是矩形,故③错误,四边形ABCD 不可能是菱形,∴四边形ABCD 不可能是正方形,故④正确,故答案:①④.【点睛】本题考查的是平行四边形,矩形,菱形,正方形的判定,反比例函数的对称性,掌握以上知识是解题的关键.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解不等式组:26312(1)x x x x ≤-⎧⎨+>-⎩①②【答案】32x -<≤. 【解析】 【分析】分别求出各不等式的解集,再找到其公共解集即可求解. 【详解】解:由①得26+≤x x ,36x ≤, 2x ≤.由②得3122+>-x x ,3221->--x x , 3x >-.∴原不等式组的解集是32x -<≤.【点睛】本小题考查一元一次不等式组的解法等基础知识,解题的关键是熟知不等式的性质. 18.如图,点,E F 分别在菱形ABCD 的边BC ,CD 上,且BE DF =.求证:BAE DAF ∠=∠. 【答案】详见解析 【解析】 【分析】根据菱形的性质可知AB=AD ,∠B=∠D ,再结合已知条件BE=DF 即可证明ABE ADF ∆∆≌后即可求解. 【详解】解:证明:∵四边形ABCD 是菱形, ∴B D ∠=∠,AB AD =.在ABE ∆和ADF ∆中,ABAD B D BEDF∴()≌∆∆ABE ADF SAS , ∴BAE DAF ∠=∠.【点睛】本题考查菱形的性质、全等三角形的判定与性质等基础知识,熟练掌握其性质是解决此类题的关键.19.先化简,再求值:211(1)22x x x --÷++,其中21x =. 【答案】11x -,22【解析】 【分析】根据分式运算法则即可求出答案. 【详解】原式()()212211x x x x x +-+=⋅++-11x =-; 当21x =时,原式222==【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润. 【答案】(1)甲特产15吨,乙特产85吨;(2)26万元. 【解析】 【分析】(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨,根据题意列方程解答;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m ,根据题意列函数关系式(10.510)(1.21)(100)0.320=-+--=+w m m m ,再根据函数的性质解答.【详解】解:(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨, 依题意,得()10100235+-=x x , 解得15x =,则10085-=x , 经检验15x =符合题意,所以,这个月该公司销售甲特产15吨,乙特产85吨;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m , 公司获得的总利润(10.510)(1.21)(100)0.320=-+--=+w m m m , 因为0.30>,所以w 随着m 的增大而增大, 又因为020≤≤m ,所以当20m =时,公司获得的总利润的最大值为26万元, 故该公司一个月销售这两种特产能获得的最大总利润为26万元.【点睛】此题考查一元一次方程的实际应用、一次函数的性质等基础知识,考查运算能力、应用意识,考查函数与方程思想,正确理解题意,根据问题列方程或是函数关系式解答问题. 21.如图,AB 与O 相切于点B ,AO 交O 于点C ,AO 的延长线交O 于点D ,E 是BCD 上不与,B D重合的点,1sin 2A =.(1)求BED ∠的大小; (2)若O 的半径为3,点F 在AB 的延长线上,且33BF =,求证:DF 与O 相切.【答案】(1)60°;(2)详见解析 【解析】 【分析】(1)连接OB ,在Rt △AOB 中由1sin 2A =求出∠A =30°,进而求出∠AOB=60°,∠BOD=120°,再由同弧所对的圆周角等于圆心角的一半可以求出∠BED 的值; (2)连接OF ,在Rt △OBF 中,由tan 3∠==BFBOF OB可以求出∠BOF=60°,进而得到∠FOD=60°,再证明△FOB ≌△FOD ,得到∠ODF=∠OBF=90°. 【详解】解:(1)连接OB ,∵AB 与O 相切于点B ,∴OB AB ⊥, ∵1sin 2A =,∴30A ∠=︒, ∴60AOB ∠=︒,则120BOD ∠=︒. 由同弧所对的圆周角等于圆心角的一半可知:1602︒∠=∠=BED BOD .故答案为:60︒. (2)连接OF ,由(1)得OB AB ⊥,120BOD ∠=︒, ∵3OB =,33BF=,∴tan 3∠==BFBOF OB, ∴60BOF ∠=︒,∴60DOF ∠=︒.在BOF ∆与DOF ∆中,OB OD BOF DOF OF OF =⎧⎪∠=∠⎨⎪=⎩∴()≌∆∆BOF DOF SAS , ∴90ODF OBF ∠=∠=︒. 又点D 在O 上,故DF 与O 相切.【点睛】本题考查圆的有关性质、直线与圆的位置关系、特殊角的三角函数值、解直角三角形、全等三角形的判定和性质,熟练掌握其性质是解决此类题的关键.22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【答案】(1)120;(2)2.4千元;(3)可以预测该地区所有贫困家庭能在今年实现全面脱贫,理由详见解析 【解析】 【分析】(1)用2000乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可; (2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为6100012050⨯=. (2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为()1.56 2.08 2.210 2.512 3.09 3.25 2.4150⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元). (3)依题意,2020年该地区农民家庭人均月纯收入的最低值如下: 月份12 3 4 5 6 人均月纯收入(元) 500 300 150 200 300 450 月份78 9 10 11 12 人均月纯收入(元) 620 790960113013001470由上表可知当地农民2020年家庭人均年纯收入不低于500300150200300450620790960113013001470+++++++++++9601130130014704000>+++>.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.【点睛】本小题考查频数和频数分布的意义、加权平均数、条形图、折线图等基础知识,考查运算能力、推理能力、数据分析观念、应用意识,考查统计与概率思想. 23.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析 【解析】 【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上. 【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠, ∴ABP CDP ∆∆∽,∴ABAP CD CP. ∵,M N 分别为AB ,CD 的中点, ∴2AB AM =,2CD CN =,∴=AM APCN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.24.如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:=EP PCPF CF. 【答案】(1)90°;(2)①=DF PF ,证明详见解析;②详见解析 【解析】 【分析】(1)根据旋转的性质,得出ABC ADE ∆∆≌,进而得出=B ADE ADB ∠=∠∠,求出结果;(2)①由旋转的性质得出AC AE =,90CAE ∠=︒,进而得出45∠=∠=︒ACE AEC ,再根据已知条件得出∠+∠=∠+∠ADB CDF ACE CAD ,最后得出结论即可;②过点P 作//PH ED 交DF 于点H ,得出≌∆∆HPF CDF ,由全等得出HF CF =,=DH PC ,最后得出结果.【详解】解:(1)由旋转的性质可知,AB AD =,90BAD ∠=︒,ABC ADE ∆∆≌, ∴B ADE ∠=∠,在Rt ABD ∆中,45∠=∠=︒B ADB , ∴45∠=∠=︒ADE B ,∴90∠=∠+∠=︒BDE ADB ADE . (2)①=DF PF .证明:由旋转的性质可知,AC AE =,90CAE ∠=︒, 在Rt ACE ∆中,45∠=∠=︒ACE AEC , ∵CDF CAD ∠=∠,45∠=∠=︒ACE ADB , ∴∠+∠=∠+∠ADB CDF ACE CAD , 即∠=∠FPD FDP , ∴=DF PF .②过点P 作//PH ED 交DF 于点H , ∴∠=∠HPF DEP ,=EP DHPF HF, ∵45∠=∠+∠=︒+∠DPF ADE DEP DEP ,45∠=∠+∠=︒+∠DPF ACE DAC DAC , ∴∠=∠DEP DAC , 又∵∠=∠CDF DAC , ∴∠=∠DEP CDF , ∴=∠∠HPF CDF . 又∵FD FP =,F F ∠=∠ ∴≌∆∆HPF CDF , ∴HF CF =, ∴=DH PC ,又∵=EP DHPF HF , ∴=EP PCPF CF.【点睛】本题考查了旋转的性质、三角形内角与外角的关系、等腰三角形的判定、全等三角形的判定与性质、平行线的性质、平行线分线段成比例等基础知识,解题的关键是熟练运用这些性质.25.已知直线1:210=-+l y x 交y 轴于点A ,交x 轴于点B ,二次函数的图象过,A B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点()111,P x y ,()222,P x y ,当125>≥x x 时,总有12y y >. (1)求二次函数的表达式;(2)若直线2:(10)=+≠l y mx n n ,求证:当2m =-时,21//l l ;(3)E 为线段BC 上不与端点重合的点,直线3:2=-+l y x q 过点C 且交直线AE 于点F ,求ABE ∆与CEF ∆面积之和的最小值.【答案】(1)221210y x x =-+;(2)详见解析;(3)∆∆+ABE FCE S S 的最小值为40. 【解析】 【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,B 两点的坐标,再根据BC=4,得出点C 的坐标,最后利用待定系数法可求二次函数的表达式; (2)利用反证法证明即可;(3)先求出q 的值,利用//CF AB ,得出∽∆∆FCE ABE ,设()04=<<BE t t ,然后用含t 的式子表示出∆∆+ABE FCE S S 的面积,再利用二次函数的性质求解即可. 【详解】解:(1)对于1:210=-+l y x , 当0x =时,10y =,所以()0,10A ;当0y =时,2100x -+=,5x =,所以()5,0B , 又因为4BC =,所以()9,0C 或()1,0C ,若抛物线过()9,0C ,则当57x <<时,y 随x 的增大而减少,不符合题意,舍去. 若抛物线过()1,0C ,则当3x >时,必有y 随x 的增大而增大,符合题意. 故可设二次函数的表达式为210=++y ax bx , 依题意,二次函数的图象过()5,0B ,()1,0C 两点,所以255100100a b a b ++=⎧⎨++=⎩,解得212a b =⎧⎨=-⎩所求二次函数的表达式为221210y x x =-+.(2)当2m =-时,直线2:2(10)=-+≠l y x n n 与直线1:210=-+l y x 不重合,假设1l 和2l 不平行,则1l 和2l 必相交,设交点为()00,P x y ,由00002102y x y x n=-+⎧⎨=-+⎩得002102-+=-+x x n , 解得10n =,与已知10n ≠矛盾,所以1l 与2l 不相交,所以21//l l .(3)如图,因为直线3:2=-+l y x q 过()1,0C ,所以2q ,又因为直线1:210=-+l y x ,所以31//l l ,即//CF AB ,所以∠=∠FCE ABE ,∠=∠CFE BAE ,所以∽∆∆FCE ABE ,所以2∆∆⎛⎫= ⎪⎝⎭FCE ABE S CE S BE , 设()04=<<BE t t ,则4CE t =-, 1110522∆=⋅=⨯⨯=ABE S BE OA t t , 所以2222(4)5(4)5∆∆--⎛⎫=⨯=⨯= ⎪⎝⎭FCE ABE CE t t S S t BE t t , 所以25(4)5∆∆-+=+ABE FCEt S S t t 801040=+-t t 2221040240=+t t 所以当22t =∆∆+ABE FCE S S 的最小值为40240.【点睛】本题考查了一次函数和二次函数的图象与性质、相似三角形的性质与判定、三角形面积等基础知识,注意函数与方程思想、数形结合思想、化归与转化思想及分类与整合思想的运用.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档