高考不等式经典例题
高中不等式题目30道
高中不等式的题目:1. x2+3x+2/x2+2x+1 的取值范围是什么?2. 对于实数x,求解不等式|x-1|+|x+3|≥5。
3. 若不等式(k+1)x2-2(k+2)x+4>0 对任意实数x 恒成立,求k 的取值范围。
4. 已知不等式ax2-2x+b<0 的解集是{x|1<x<3},求a、b 的值。
5. 求下列不等式的解集:(1)3x2-7x-10≥0(2)4x2-12x+9≤0(3)4-3x-5x2≥0(4)6x-10x2≥06. 解不等式|2x+1|+|3x-4|≥5。
7. 求不等式-2x2+4x-3<0 的解集。
8. 若不等式(a-1)x2+2(a-1)x-3≤0 对于任意实数x 都成立,求a 的取值范围。
9. 解不等式|x-3|-|2x+1|≤x+2。
10. 求不等式x2+2x+3≥2x2+ x的解集。
11. 求下列不等式的整数解:(1)5x-7<3x+1(2)3(x-1)≥7(x-4)(3)10-4(3x-9)≤2(9-4x)(4)5(6x+1)-7(3x+2)≥012. 求不等式-3≤x< 4 的整数解。
13. 解不等式(x-5)(x+7)≥8(x-3)。
14. 求不等式4(3x-7)≥24(x-5)的解集。
15. 求不等式|2x-3|≤x+1 的解集。
16. 求不等式-2x+3>10-3x的解集。
17. 求不等式3(2x-4)≥5(x-1)的解集。
18. 求不等式2(4x-2)≥3(x+1)的解集。
19. 求不等式-3(x+2)≥4(x-3)的解集。
20. 求不等式5(x-1)≥2(x+2)的解集。
21. 求不等式-4(x-3)≥5(x-2)的解集。
22. 求不等式2(3x-1)≥5(x+1)的解集。
23. 求不等式6(x+1)≤7(x-2)的解集。
24. 求不等式5(x-1)≤2(x+3)的解集。
25. 求不等式3(x+1)≥5(x-1)的解集。
不等式练习题及讲解高中答案
不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
高中不等式经典例题
高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。
解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。
高三数学不等式解法15个典型例题doc
高三数学不等式解法15个典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
高中数学不等式高考真题精选和解析
高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。
高三数学解不等式练习题
高三数学解不等式练习题解答一:1. 解不等式2x - 5 < 7:首先加5得到:2x < 12然后除以2:x < 6因此解集为x < 62. 解不等式3(x - 1) + 2 > 5:首先化简得到:3x - 3 + 2 > 5再合并同类项:3x - 1 > 5最后加1得到:3x > 6除以3:x > 2因此解集为x > 23. 解不等式4 - x > 2x + 5:首先整理得到:4 - 2x > 3x + 5然后移项得到:4 - 5 > 3x + 2x化简得到:-1 > 5x最后除以5:x < -1/5因此解集为x < -1/54. 解不等式2x - 3 < 4 - x:首先移项得到:2x + x < 4 + 3合并同类项得到:3x < 7最后除以3:x < 7/3因此解集为x < 7/35. 解不等式|x - 2| > 3:针对绝对值不等式,分为正负两种情况求解:当x - 2 > 0时,即x > 2时,不等式转换为:x - 2 > 3移项得到:x > 5当x - 2 < 0时,即x < 2时,不等式转换为:-(x - 2) > 3移项得到:-x + 2 > 3再移项得到:-x > 1最后乘以-1(注意改变不等号方向):x < -1综合两种情况,解集为x < -1 或 x > 5解答二:1. 解不等式3x - 4 > 7:首先加4得到:3x > 11然后除以3:x > 11/3因此解集为x > 11/32. 解不等式2(x + 3) - 5 > 4(x - 1):首先化简得到:2x + 6 - 5 > 4x - 4再合并同类项:2x + 1 > 4x - 4最后移项得到:5 > 2x因此解集为x < 5/23. 解不等式-2x - 3 < 5 - x:首先移项得到:-2x + x < 5 + 3合并同类项得到:-x < 8最后乘以-1(注意改变不等号方向):x > -8因此解集为x > -84. 解不等式3x - 2 > 4(x + 1):首先化简得到:3x - 2 > 4x + 4然后移项得到:-2 - 4 > 4x - 3x化简得到:-6 > x因此解集为x < -65. 解不等式|2x + 1| < 5:针对绝对值不等式,分为正负两种情况求解:当2x + 1 > 0时,即2x > -1时,不等式转换为:2x + 1 < 5移项得到:2x < 4最后除以2:x < 2当2x + 1 < 0时,即2x < -1时,不等式转换为:-(2x + 1) < 5移项得到:-2x - 1 < 5再移项得到:-2x < 6最后除以-2(注意改变不等号方向):x > -3综合两种情况,解集为-3 < x < 2通过以上解答,你可以更好地理解高三数学中的解不等式练习题。
(完整版)高考不等式经典例题
高考不等式经典例题【例1】已知a>0,a≠1,P=loga (a3-a+1),Q=loga(a2-a+1),试比较P与Q的大小.【解析】因为a3-a+1-(a2-a+1)=a2(a-1),当a>1时,a3-a+1>a2-a+1,P>Q;当0<a<1时,a3-a+1<a2-a+1,P>Q;综上所述,a>0,a≠1时,P>Q.【变式训练1】已知m=a+A.m<n11-(a>2),n=x2(x≥),则m,n之间的大小关系为()2a-2B.m>nC.m≥nD.m≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递.m=a+111=a-2++2≥2+2=4,而n=x-2≤()-2=4.2a-2a-2【变式训练2】已知函数f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.【解析】由已知-4≤f(1)=a-c≤-1,-1≤f(2)=4a-c≤5.令f(3)=9a-c=γ(a-c)+μ(4a-c),5⎧γ=-,⎪⎧γ+4μ=9,⎪3所以⎨⇒⎨⎩-γ-μ=-1⎪μ=8⎪3⎩58故f(3)=-(a-c)+(4a-c)∈[-1,20].33题型三开放性问题c d【例3】已知三个不等式:①ab>0;②>;③bc>ad.以其中两个作条件,余下的一个作结论,则能组a b成多少个正确命题?c d bc-ad【解析】能组成3个正确命题.对不等式②作等价变形:>⇔>0.a b abbc-ad(1)由ab>0,bc>ad⇒>0,即①③⇒②;abbc-ad(2)由ab>0,>0⇒bc-ad>0⇒bc>ad,即①②⇒③;abbc-ad(3)由bc-ad>0,>0⇒ab>0,即②③⇒①.ab故可组成3个正确命题.【例2】解关于x的不等式mx2+(m-2)x-2>0 (m∈R).【解析】当m=0时,原不等式可化为-2x-2>0,即x<-1;当m≠0时,可分为两种情况:2(1)m>0时,方程mx2+(m-2)x-2=0有两个根,x1=-1,x2=.m2所以不等式的解集为{x|x<-1或x>};m(2)m<0时,原不等式可化为-mx2+(2-m)x+2<0,m+222其对应方程两根为x1=-1,x2=,x2-x1=-(-1)=.m m m2①m<-2时,m+2<0,m<0,所以x2-x1>0,x2>x1,不等式的解集为{x|-1<x<};m②m=-2时,x2=x1=-1,原不等式可化为(x+1)2<0,解集为∅;2③-2<m<0时,x2-x1<0,即x2<x1,不等式解集为{x|<x<-1}.m【变式训练2】解关于x的不等式ax-1>0.x+1【解析】原不等式等价于(ax-1)(x+1)>0.1当a=0时,不等式的解集为{x|x<-1};当a>0时,不等式的解集为{x|x>或x<-1};a1当-1<a<0时,不等式的解集为{x|<x<-1};当a=-1时,不等式的解集为∅;a1当a<-1时,不等式的解集为{x|-1<x<}.a【例3】已知ax2+bx+c>0的解集为{x|1<x<3},求不等式cx2+bx+a<0的解集.1【解析】由于ax2+bx+c>0的解集为{x|1<x<3},因此a<0,解得x<或x>1.32y+1(1)z=x+2y-4的最大值;(2)z=x2+y2-10y+25的最小值;(3)z=的取值范围.x+1【解析】作出可行域如图所示,并求出顶点的坐标A(1,3),B(3,1),C(7,9).(1)易知直线x+2y-4=z过点C时,z最大.所以x=7,y=9时,z取最大值21.(2)z=x2+(y-5)2表示可行域内任一点(x,y)到定点M(0,5)的距离的平方,过点M作直线AC的垂线,易知垂足N在线段AC上,故z的最小值是(|0-5+2|9)2=.221(3)z=2·表示可行域内任一点(x,y)与定点Q(-1,-)连线斜率的2倍.2x-(-1)7337因为kQA=,kQB=,所以z的取值范围为[,].4842【例1】(1)设x,y∈R+,且xy-(x+y)=1,则()1y-(-)2A .x +y ≥2(2+1)B .x +y ≤2(2+1) C.x +y ≤2(2+1)2D.x +y ≥(2+1)2(2)已知a ,b ∈R +,则ab ,a +b,2a 2+b 22ab,的大小顺序是.2a +bx +y x +y)2,所以()2≥1+(x +y ).22【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(解得x +y ≥2(2+1)或x +y ≤2(1-2).因为x +y >0,所以x +y ≥2(2+1).a +b 2ab 2ab(2)由≥ab 有a +b ≥2ab ,即a +b ≥,所以ab ≥.2ab a +b a +b 又=2a 2+2ab +b 2≤42(a 2+b 2),所以4a 2+b 2a +b≥,所以22a 2+b 2a +b 2ab≥≥ab ≥.22a +b11λ【变式训练1】设a >b >c ,不等式+>恒成立,则λ的取值范围是.a -b b -c a -c 【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1111+)=[(a -b )+(b -c )](+)≥4,所以λ<4.a -b b -c a -b b -c 51【例2】(1)已知x <,则函数y =4x -2+的最大值为;44x -5511【解析】(1)因为x <,所以5-4x >0.所以y =4x -2+=-(5-4x +)+3≤-2+3=1.44x -55-4x1当且仅当5-4x =,即x =1时,等号成立.所以x =1时,y max =1.5-4x(a +b )2【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求的取值范围.cd 【解析】由等差数列、等比数列的性质得a +b =x +y ,(a +b )2(x +y )2(a +b )2(a +b )2x y y y cd =xy ,所以==2++,当>0时,≥4;当<0时,≤0,cd xy y x x cd x cd (a +b )2故的取值范围是(-∞,0]∪[4,+∞).cd例已知x ,y ,>0,28+=1,求xy的最小值。
高考不等式经典例题
高考不等式经典例题高考数学中的不等式经典例题通常包括比较两个数(式)的大小、不等式的性质、一元二次不等式恒成立问题、特值法判断不等式等。
以下是一些高考数学中不等式的经典例题:例1:比较两个数的大小题目:若a = 1/2, b = 3, c = 2, 请比较a, b, c的大小。
解答:因为a = 1/2 < 1 < 2 < 3 = b < c,所以a < b < c。
例2:不等式的性质题目:若x > 0, y > 0, 且x + y > 2, 请证明:xy < 1。
解答:根据不等式的性质,可以得到以下推导:x > 0, y > 0, 则x + y > 2 > 0, 所以xy < (x + y) / 2 < 1。
例3:一元二次不等式恒成立问题题目:若a, b, c均为实数,且a > 0, b > 0, c > 0。
求解不等式:ax2 + bx + c > 0。
解答:首先考虑判别式,由一元二次方程的判别式可知,当判别式小于0时,不等式恒成立。
因此,我们需要求解判别式:Δ= b2 - 4ac < 0,所以不等式ax2 + bx + c > 0恒成立。
例4:特值法判断不等式题目:若a, b为实数,且a > 0, b > 0。
求解不等式:a2 + b2 > ab。
解答:我们可以使用特值法来求解这个不等式。
取a = 2, b = 1,则a2 = 4, b2 = 1, ab = 2。
因为4 > 2 > 1,所以a2 + b2 > ab。
希望以上例题能够帮助你复习不等式部分的知识,祝你高考取得好成绩!。
不等式高考试题及答案
不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。
答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。
答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。
答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。
答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。
答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。
(完整版)高中不等式试题和答案
不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 .15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14.415.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高中数学不等式解法15种典型例题
x(2x + 5)(x − 3) 0
把方程
x(2x
+
5)(x
−
3)
=
0
的三个根
x1
=
0,
x2
=
−
5 2
,
x3
=
3
顺次标上数轴.然
后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.
∴原不等式解集为
x
−
5 2
x
0或 x
3
(2)原不等式等价于
(x + 4)(x + 5)2 (x − 2)3 0
或
(x (x
−1)(x − 5) 0, + 2)(x − 6) 0;
1 x 5, − 2 x
;或 6
x x
1,或x −2,或x
5, 6
1 x 5, 或 x −2 或 x 6 .∴原不等式解集是{x x −2,或1 x 5,或x 6} .
解法二:原不等式化为 (x −1)(x − 5) 0 . (x + 2)(x − 6)
例 8 解不等式 4x2 −10x − 3 3 .
分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.
解答:去掉绝对值号得 − 3 4x2 −10x − 3 3 ,
∴原不等式等价于不等式组
− 3 4x2 −10x
4x
2
− 10 x
−
3
−3
3
4x2
4
x
2
−10x −10x
典型例题九
例 9 解关于 x 的不等式 x2 − (a + a2 )x + a3 0 . 分析:不等式中含有字母 a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程 x 2 − (a + a 2 )x + a3 = 0 的根,然后写出不等式的解,但由于方程的根含有字母 a ,故需比较两根的大小,从而引出讨论.
解不等式例题50道
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
高考数学《基本不等式》真题练习含答案
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
高中不等式试题及答案
高中不等式试题及答案1. 若不等式\(2x-1 > 5\)成立,求\(x\)的取值范围。
答案:首先将不等式\(2x-1 > 5\)进行移项,得到\(2x > 6\)。
然后将不等式两边同时除以2,得到\(x > 3\)。
因此,\(x\)的取值范围是\(x > 3\)。
2. 已知\(a > 0\),求不等式\(\frac{1}{a} < \frac{1}{2}\)的解集。
答案:将不等式\(\frac{1}{a} < \frac{1}{2}\)进行交叉相乘,得到\(2 < a\)。
因为已知\(a > 0\),所以解集为\(a > 2\)。
3. 已知\(x\)和\(y\)满足\(x + y = 10\),且\(y > 0\),求\(x\)的取值范围。
答案:由\(x + y = 10\)可得\(x = 10 - y\)。
因为\(y > 0\),所以\(10 - y > 0\),即\(y < 10\)。
因此,\(x\)的取值范围是\(0 < x< 10\)。
4. 已知不等式\(3x - 2 > 7\),求\(x\)的取值范围。
答案:将不等式\(3x - 2 > 7\)进行移项,得到\(3x > 9\)。
然后将不等式两边同时除以3,得到\(x > 3\)。
因此,\(x\)的取值范围是\(x > 3\)。
5. 已知\(a\)和\(b\)满足\(a + b = 12\),且\(a > 0\)和\(b > 0\),求\(a\)的取值范围。
答案:由\(a + b = 12\)可得\(b = 12 - a\)。
因为\(a > 0\)和\(b > 0\),所以\(12 - a > 0\),即\(a < 12\)。
同时,\(a > 0\)。
因此,\(a\)的取值范围是\(0 < a < 12\)。
高三数学不等式练习题及答案
高三数学不等式练习题及答案1. 求解以下不等式,并将解集表示在数轴上:a) 3x - 5 > 7b) 2x + 1 ≤ 9c) 4 - 3x ≥ 1解析:a) 首先将不等式转化成等式:3x - 5 = 7解这个等式可以得到 x = 4,所以 x 大于 4。
因此解集表示在数轴上为(4, +∞)。
b) 将不等式转化成等式:2x + 1 = 9解这个等式可以得到 x = 4,所以 x 小于等于 4。
因此解集表示在数轴上为 (-∞, 4]。
c) 不等式已经是等式形式:4 - 3x = 1解这个等式可以得到 x = 1,所以 x 小于等于 1。
因此解集表示在数轴上为 (-∞, 1]。
2. 计算以下不等式的解集,并将解集表示在数轴上:a) 2x + 3 > 10 - xb) 5 - 3x ≤ 2x + 4c) 3(2x - 1) ≥ 2(x + 3)解析:a) 通过整理不等式,得到 3x > 7,解为 x > 7/3,即解集为(7/3, +∞)。
b) 整理不等式可以得到8 ≤ 5x,解为x ≥ 8/5,即解集为[8/5, +∞)。
c) 展开括号得到 6x - 3 ≥ 2x + 6,然后整理不等式可以得到4x ≥ 9,解为x ≥ 9/4,即解集为[9/4, +∞)。
3. 解以下含有绝对值的不等式,并将解集表示在数轴上:a) |3x + 1| < 5b) |2x - 1| ≥ 3c) |x - 4| > 2解析:a) 当 3x + 1 > 0 时,原不等式可以化简为 3x + 1 < 5,解为 x < 4/3。
当 3x + 1 < 0 时,原不等式可以化简为 -(3x + 1) < 5,解为 x > -6/3。
综合起来,解集为 (-∞, -6/3)∪(4/3, +∞)。
b) 当 2x - 1 ≥ 0 时,原不等式可以化简为 2x - 1 ≥ 3,解为x ≥ 4/2。
专题07 不等式丨十年高考数学真题分项汇编(解析版)(共39页)
十年(2014-2023)年高考真题分项汇编—不等式目录题型一:不等式的性质及其应用.......................................1题型二:解不等式...................................................4题型三:基本不等式.................................................5题型四:简单的线性规划问题.........................................7题型五:不等式的综合问题 (34)题型一:不等式的性质及其应用一、选择题1.(2019·天津·理·第6题)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为()A .a c b <<B.a b c<<C.b c a<<D.c a b<<【答案】A解析:5511log 2log ,0,22a a ⎛⎫=<=∴∈ ⎪⎝⎭,110.5222log 2log 50.log 5log 42b --===>=,即2b >,11520.211220.5,,12222c c ⎛⎫⎛⎫⎛⎫==>=∴∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a c b <<.2.(2019·全国Ⅰ·理·第3题)已知2log 0.2a =,0.22b =,0.30.2c =,则()A .a b c <<B .a c b<<C .c a b <<D .b c a<<【答案】答案:B解析:22log 0.2log 10a =<=,0.20221b =>=,0.300.20.21,(0,1)c c =<=∴∈,故a c b <<.3.(2014高考数学四川理科·第4题)若0,0a b c d >><<,则一定有()A.a b c d >B.a b c d <C.a b d c >D.a b d c<【答案】D解析:由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c<4.(2018年高考数学课标Ⅲ卷(理)·第12题)设0.2log 0.3a =,2log 0.3b =,则()A .0a b ab +<<B.0ab a b <+<C .0a b ab +<<D.0ab a b<<+【答案】B解析:一方面()0.2log 0.30,1a =∈,()2log 0.32,1b =∈--,所以0ab <0.31log 0.2a =,0.31log 2b =,所以()()0.30.311log 0.22log 0.40,1a b+=⨯=∈所以1101a b <+<即01a b ab +<<,而0ab <,所以0a b +<,所以1a ba b ab ab+<⇒+>综上可知0ab a b <+<,故选B .5.(2014高考数学湖南理科·第8题)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为()A.2q p +B.()()2111-++q p C.pqD.()()111-++q p 【答案】D解析:设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒=-,故选D.6.(2017年高考数学山东理科·第7题)若0a b >>,且1ab =,则下列不等式成立的是()A.()21log 2a ba ab b +<<+B.()21log 2a b a b a b<+<+C.()21log 2a b a a b b +<+<D.()21log 2a ba b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2aba b a b ><<∴<+>=12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B.二、填空题1.(2017年高考数学北京理科·第13题)能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为_________________________.【答案】1,2,3---(答案不唯一)【解析】()123,1233->->--+-=->-出现矛盾,所以验证是假命题.三、多选题1.(2020年新高考全国Ⅰ卷(山东)·第11题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D +≤【答案】ABD解析:对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,所以≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 2.(2020年新高考全国卷Ⅱ数学(海南)·第12题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D +≤【答案】ABD解析:对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,所以≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD一、选择题1.(2015高考数学北京理科·第7题)如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是()()A.{}|10x x -<≤B.{}|11x x -≤≤C.{}|11x x -<≤D.{}|12x x -<≤【答案】C解析:如图所示,把函数2log y x =的图象向左平移一个单位得到2log (1)y x =+的图象1x =时两图象相交,不等式的解为11x -<≤,用集合表示解集,故选C.二、填空题1.(2015高考数学江苏文理·第7题)不等式422<-xx的解集为_______.【答案】(1,2).-解析:由题意得:2212x x x -<⇒-<<,解集为(1,2).-2.(2017年高考数学上海(文理科)·第7题)不等式11x x->的解集为________.【答案】(),0-∞【解析】111100x x x->⇒<⇒<,解集为(,0)-∞.一、填空题1.(2021高考天津·第13题)若0 , 0a b >>,则21a b a b ++的最小值为____________.【答案】解析: 0 , 0a b >>,212a b b a b b b ∴++≥+=+≥=,当且仅当21a a b =且2b b=,即a b ==所以21a b ab ++的最小值为故答案为:.2.(2020天津高考·第14题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________.【答案】4【解析】0,0,0a b a b >>∴+> ,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=,或22a b ==时,等号成立.故答案为:43.(2020江苏高考·第12题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45【解析】22451x y y += ,0y ∴≠且42215y x y -=42222221144+5555y y x y y y y -∴+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号.22x y ∴+的最小值为45.故答案为:45.4.(2019·天津·理·第13题)设0,0,25x y x y >>+=,则的最小值为.【答案】解析:524x y =+≥,=====即31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时等号成立,因为2538<<5.(2019·上海·第7题)若x y R+∈、,且123yx+=,则yx的最大值为________.【答案】98【解析】法一:yxyx212213⋅≥+=,∴892232=⎪⎪⎭⎫⎝⎛≤xy;法二:由yx231-=,yyyyxy32)23(2+-=⋅-=(230<<y),求二次最值89max=⎪⎭⎫⎝⎛xy. 6.(2019·江苏·第10题)在平面直角坐标系xOy中,P是曲线()4y x xx=+>0上一动点,则点P到直线x y+=的距离最小值是______.【答案】4【解析】法1:由已知,可设4(,0P x x xx+>,,所以42+4xxd===.当且仅当42xx=,即x=时取等号,故点P到直线的距离的最小值为4.法2:距离最小时,24'11yx-=-=,则x=,所以P,所以最小值为4.7.(2018年高考数学江苏卷·第13题)在ABC△中,角,,A B C所对的边分别为,,a b c,120ABC∠=︒,ABC∠的平分线交AC于点D,且1BD=,则4a c+的最小值为.【答案】9解析:由题意可知,ABC ABD BCDS S S∆∆∆=+,由角平分线性质和三角形面积公式得,111sin1201sin60+1sin60222ac a c=⨯⨯⨯⨯,化简得+ac a c=,111a c+=,因此1144(4)()5c aa c a ca c a c+=++=++≥,当且仅当=2=3c a时取等号,所以4a c+的最小值为9.8.(2018年高考数学天津(理)·第13题)已知,a b∈R,且360a b-+=,则128ab+的最小值为.【答案】14解析:由360a b -+=,得36a b =-,所以3633112222284ab b b ---+=+=⨯=≥,当且仅当363b b -=-,即1,3b a =-=-时等号成立,故128ab +的最小值为14.9.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =吨.【答案】20解:某公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用之和为40044x x ⋅+万元,40044x x⋅+≥160,当16004x x=即x =20吨时,一年的总运费与总存储费用之和最小。
(完整版)数学不等式高考真题
1.(2018•卷Ⅱ)设函数(1)当时,求不等式的解集;(2)若,求的取值范围2。
(2013•辽宁)已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.4.(2017•新课标Ⅱ)[选修4-5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.5。
(2017•新课标Ⅰ卷)[选修4-5:不等式选讲]已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.6.(2017•新课标Ⅱ)[选修4—5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.7。
(2018•卷Ⅰ)已知(1)当时,求不等式的解集(2)若时,不等式成立,求的取值范围8.(2018•卷Ⅰ)已知f(x)=|x+1|—|ax-1|(1)当a=1时,求不等式f(x)〉1的解集(2)若x∈(0,1)时不等式f(x)〉x成立,求a的取值范围9。
(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.10。
(2014•新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.11。
关于证明不等式的高考题
1、已知a, b ∈ R,且a + b = 1。
求证:3a + 3b < 4。
以下哪个选项是正确的推导步骤?A. 利用均值不等式,得到3a + 3b ≥ 2√(3a * 3b)B. 直接计算3a + 3b的值C. 利用指数函数的性质,得到3a + 3b > 4D. 通过代入a + b = 1,化简得到3a + 3b < 4(答案:A,后续需进一步推导至D的结论)2、设x, y > 0,且x + y = 4。
下列不等式中正确的是:A. x2 + y2 ≥ 8B. √(xy) ≥ 2C. 1/(x + 1) + 1/(y + 1) ≤ 1/2D. x3 + y3 ≥ 64(答案:A)3、若a, b, c > 0,且a + b + c = 1,则下列不等式成立的是:A. a2 + b2 + c2 ≥ 1/3B. abc ≥ (1/3)3C. 1/(a + b) + 1/c ≥ 4D. √a + √b + √c ≤ 1(答案:A)4、设x > 1,y > 1,且xy = 4。
下列不等式正确的是:A. x + y ≥ 4B. x + y ≤ 4C. 1/x + 1/y ≥ 1D. 1/x + 1/y ≤ 1/2(答案:C)5、已知a, b > 0,且a + b = 2。
下列不等式中正确的是:A. a3 + b3 ≥ 8B. ab ≥ 1C. 1/a + 1/b ≤ 2D. √(a2 + b2) ≤ 2(答案:D)6、设x, y ∈ R,且xy ≠ 0。
若|x| + |y| = 2,则下列不等式恒成立的是:A. x2 + y2 ≥ 2B. 1/x2 + 1/y2 ≥ 1C. |x + y| ≥ 2D. |x - y| ≤ 2(答案:A)7、已知a, b, c ∈ R,且a - b = b - c = 1/2。
则下列不等式中正确的是:A. a2 + b2 + c2 ≥ 3/2B. ab + bc + ca ≥ -1/4C. a + b + c ≤ 3/2D. |a| + |b| + |c| ≥ 3/2(答案:B,注意此题需利用平方和与平方差公式进行推导)8、设x > 0,y > 0,且x + y = 5。
不等式经典例题
不等式经典例题一、一元一次不等式例1:解不等式2x + 3>5x - 11. 移项- 将含有x的项移到一边,常数项移到另一边。
- 得到2x-5x > - 1 - 3。
2. 合并同类项- 计算得-3x>-4。
3. 求解x的范围- 两边同时除以-3,因为除以一个负数,不等式要变号。
- 所以x <(4)/(3)。
二、一元一次不等式组例2:解不等式组x + 3>2x - 1 2x - 1≥(1)/(2)x1. 解第一个不等式x + 3>2x - 1- 移项可得x-2x > - 1 - 3。
- 合并同类项得-x>-4。
- 两边同时除以-1,不等式变号,解得x < 4。
2. 解第二个不等式2x - 1≥(1)/(2)x- 移项得到2x-(1)/(2)x≥1。
- 合并同类项(3)/(2)x≥1。
- 两边同时乘以(2)/(3),解得x≥(2)/(3)。
3. 综合两个不等式的解- 所以不等式组的解集为(2)/(3)≤x < 4。
三、一元二次不等式例3:解不等式x^2-3x + 2>01. 因式分解- 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)>0。
2. 分析不等式的解- 要使(x - 1)(x - 2)>0成立,则有两种情况:- 情况一:x - 1>0 x - 2>0,即x>1 x>2,取交集得x>2。
- 情况二:x - 1<0 x - 2<0,即x<1 x<2,取交集得x<1。
- 所以不等式的解集为x < 1或x>2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考不等式经典例题【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小.【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a +1a -2(a >2),n =x -2(x ≥12),则m ,n 之间的大小关系为( )A.m <nB.m >nC.m ≥nD.m ≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a +1a -2=a -2+1a -2+2≥2+2=4,而n =x -2≤(12)-2=4.【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ),所以⎩⎨⎧-=--=+1,94μγμγ⇒⎪⎪⎩⎪⎪⎨⎧=-=38,35μγ 故f (3)=-53(a -c )+83(4a -c )∈[-1,20].题型三 开放性问题【例3】已知三个不等式:①ab >0;② c a >db ;③bc >ad .以其中两个作条件,余下的一个作结论,则能组成多少个正确命题?【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ⇔bc -adab >0.(1)由ab >0,bc >ad ⇒bc -adab>0,即①③⇒②;(2)由ab >0,bc -adab >0⇒bc -ad >0⇒bc >ad ,即①②⇒③;(3)由bc -ad >0,bc -adab >0⇒ab >0,即②③⇒①.故可组成3个正确命题.【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况:(1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2m .所以不等式的解集为{x |x <-1或x >2m};(2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0, 其对应方程两根为x 1=-1,x 2=2m ,x 2-x 1=2m -(-1)=m +2m.①m <-2时,m +2<0,m <0,所以x 2-x 1>0,x 2>x 1, 不等式的解集为{x |-1<x <2m };②m =-2时,x 2=x 1=-1,原不等式可化为(x +1)2<0,解集为∅; ③-2<m <0时,x 2-x 1<0,即x 2<x 1,不等式解集为{x |2m <x <-1}.【变式训练2】解关于x 的不等式ax -1x +1>0. 【解析】原不等式等价于(ax -1)(x +1)>0.当a =0时,不等式的解集为{x |x <-1};当a >0时,不等式的解集为{x |x >1a 或x <-1};当-1<a <0时,不等式的解集为{x |1a <x <-1};当a =-1时,不等式的解集为∅;当a <-1时,不等式的解集为{x |-1<x <1a}.【例3】已知ax 2+bx +c >0的解集为{x |1<x <3},求不等式cx 2+bx +a <0的解集. 【解析】由于ax 2+bx +c >0的解集为{x |1<x <3},因此a <0, 解得x <13或x >1.(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的取值范围.【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9). (1)易知直线x +2y -4=z 过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21. (2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方, 过点M 作直线AC 的垂线,易知垂足N 在线段AC 上, 故z 的最小值是(|0-5+2|2)2=92.(3)z =2·y -(-12)x -(-1)表示可行域内任一点(x ,y )与定点Q (-1,-12)连线斜率的2倍.因为k QA =74,k QB =38,所以z 的取值范围为[34,72].【例1】(1)设x ,y ∈R +,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .x +y ≤2(2+1) C. x +y ≤2(2+1)2 D. x +y ≥(2+1)2 (2)已知a ,b ∈R +,则ab ,a +b2,a 2+b 22,2aba +b的大小顺序是 . 【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(x +y 2)2,所以(x +y2)2≥1+(x +y ). 解得x +y ≥2(2+1)或x +y ≤2(1-2). 因为x +y >0,所以x +y ≥2(2+1). (2)由a +b 2≥ab 有a +b ≥2ab ,即a +b ≥2ab ab ,所以ab ≥2aba +b .又a +b 2=a 2+2ab +b 24≤2(a 2+b 2)4,所以a 2+b 22≥a +b2, 所以a 2+b 22≥a +b 2≥ab ≥2aba +b. 【变式训练1】设a >b >c ,不等式1a -b +1b -c >λa -c 恒成立,则λ的取值范围是 .【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1a -b +1b -c )=[(a -b )+(b -c )](1a -b +1b -c)≥4,所以λ<4. 【例2】(1)已知x <54,则函数y =4x -2+14x -5的最大值为 ;【解析】(1)因为x <54,所以5-4x >0. 所以y =4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立. 所以x =1时,y max =1.【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求(a +b )2cd 的取值范围.【解析】由等差数列、等比数列的性质得a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =2+x y +y x ,当y x >0时,(a +b )2cd ≥4;当yx <0时,(a +b )2cd ≤0,故(a +b )2cd的取值范围是(-∞,0]∪[4,+∞).例 已知28,,0,1x y x y>+=,求xy 的最小值。
解:222846446413223264y x y x xy xy xy x y x y x y ⎛⎫==+=++≥+= ⎪⎝⎭。
当且仅当2812x y ==时,即 4.16x y ==,上式取“=”,故()min64xy =。
例 已知01x <<,求函数411y x x=+-的最小值。
解:因为01x <<,所以10x ->。
所以()()414141159111x x y x x x x x x x x -⎛⎫=+=+-+=++≥⎡⎤ ⎪⎣⎦---⎝⎭。
当且仅当()411x x x x -=-时,即23x =,上式取“=”,故min 9y =。
例 已知,,x y z R +∈,且1x y z ++=,求149x y z++的最小值。
解:设0λ>,故有()10x y z λ++-=。
()1491491491x y z x y z x y z x y z x y zλλλλλ⎛⎫⎛⎫⎛⎫∴++=+++++-=+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭λλ≥=。
当且仅当149,,x y z x y z λλλ===同时成立时上述不等式取“=”,即x y z===,代入1x y z ++=,解得36λ=,此时36λ=,故149x y z++的最小值为36。
例 若正实数x ,y 满足26xy x y =++ ,则xy 的最小值是 。
(变式:求2x +y 的最小值为______) 答案:18解:因为x >0,y >0 ,所以62262+≥++=xy y x xy,60xy -≥≥≤ 等号当且仅当2x=y=6时成立,故xy 的最小值为18。
变式答案:12解:因为x >0,y >0 ,所以21226()22x y xyx y +=++≤整理得2(2)8(2)480x y x y +-+-≥,解得21224(x y x y +≥+≤-或舍)等号当且仅当2x=y=6时成立,故2x +y 的最小值为12。
例 若对任意0x>,231xa x x ≤++恒成立,则a 的取值范围是 。
答案:15a ≥解:因为0x>,所以12x x+≥(当且仅当x=1时取等号),所以有 21111312353x x x x x=≤=+++++,即231x x x ++的最大值为15,故15a ≥。