2018-2019学年宜昌市东部八年级数学下册期中试卷-附参考答案
湖北省宜昌市宜昌中学2018-2019学年度八年级下期期中考试数学试卷(解析版)
新人教部编版初中数学“活力课堂”精编试题湖北省宜昌市宜昌中学2018-2019学年度第二学期八年级期中考试数学试题一、选择题1.下列二次根式中,属于最简二次根式的是()A. 12B. 0.8C. 5D. 4【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】A. 12,根号内含有分数,故不是最简二次根式;B. 0.8,根号内含有小数,故不是最简二次根式;C. 5,是最简二次根式;D. 4=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.2.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A. 5B. 10C. 15D. 20 【答案】A【解析】试题解析:∵四边形ABCD是菱形,∴∠B+∠BCD=180°,AB=BC,∵∠B:∠BCD=1:2,∴∠B=60°,∴△ABC是等边三角形,新人教部编版初中数学“活力课堂”精编试题∴AB=BC=AC=5.故选A.3.下列计算错误..的是( )A. =B. =C= D. 3=【答案】D【解析】【分析】根据二次根式的运算法则即可计算,进行判断.【详解】A.=B.=,正确;C.==D.-=故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.4.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A. a=1.5,b=2,c=3B. a=7,b=24,c=25C. a=6,b=8,c=10D. a=5,b=12,c=13【答案】A【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.1.52+22≠32,故不是直角三角形,故此选项符合题意;B.72+242=252,故是直角三角形,故此选项不合题意;C.62+82=102,故直角三角形,故此选项不合题意;D.52+122=132,故是直角三角形,故此选项不合题意.故选A.【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5. 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是()A. 12B. 24C. 123D. 163【答案】D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°3∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积33D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.6.如图,O是菱形ABCD的对角线AC,BD的交点,E,F分别是OA,OC的中点.下列结论:①S△ADE=S△EOD;②四边形BFDE也是菱形;③△DE F是轴对称图形;④∠ADE=∠EDO;⑤四边形ABCD面积为EF×BD.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个【答案】B 【解析】①∵E、F 分别是OA 、OC 的中点.∴AE=OE.12ADE S AE OD ∆=⋅ , 12EOD S OE OD ∆=⋅,AE OE = , ADE EOD S S ∆∆∴=.故①正确; ②∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD .E ,F 分别是OA ,OC 的中点,∴ OE =OF .∴四边形BFDE 是菱形.故②正确;③∵四边形BFDE 是菱形,∴EF ⊥OD ,OE =OF ,OD =OD ,∴△DEO ≌△DFO ,∴△DEF 是轴对称图形,故③正确; ④无法说明其正确性,故④不正确; ⑤12ABCD S AC BD =⋅菱形 ,12EF AC = , ABCD S EF BD ∴=⋅菱形,故⑤正确; ∴正确的结论有①②③⑤,故选B .7.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A. 9B. 10C. 42D. 217【答案】B 【解析】如图224(64)116++= 如图226(44)10010++==. 故选B.8.若2x-有意义,则x的取值范围是( )A. 2x> B. x≥2C. 2x< D. x≤2【答案】B【解析】【分析】根据二次根式中的被开方数必须是非负数,即可求解.【详解】根据题意得:x-2≥0,解得:x≥2.故选B.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.9.如图所示,A(﹣3,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A. 7423 D. 2【答案】C【解析】【分析】过P点作PD⊥x轴,垂足为D,根据A(3-0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S △ABP =S △AOB +S 梯形BODP ﹣S △ADP ,列方程求a .【详解】过P 点作PD ⊥x 轴,垂足为D ,由A (3-,0)、B (0,1),得OA 3=,OB =1. ∵△ABC 为等边三角形,由勾股定理,得AB 22OA OB =+=2,∴S △ABC 12332=⨯⨯=. 又∵S △ABP =S △AOB +S 梯形BODP ﹣S △ADP 113122=⨯⨯+⨯(1+a )×312-⨯(3+3)×a =3332a +- 由2S △ABP =S △ABC ,得:3333a +-=,∴a 3=. 故选C .【点睛】本题考查了坐标与图形,点的坐标与线段长的关系,不规则三角形面积的表示方法及等边三角形的性质和勾股定理.10.如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连接B ′D ,则B ′D 的最小值是( )A. 10﹣2B. 6C. 132D. 4【答案】A 【解析】 【分析】B ′的运动轨迹是以E 为圆心,以AE 的长为半径的圆.所以,当B ′点落在DE 上时,B ′D 取得最小值.根据勾股定理求出DE ,根据折叠的性质可知B ′E =BE =2,DE ﹣B ′E 即为所求.【详解】解:如图,B ′的运动轨迹是以E 为圆心,以AE 的长为半径的圆.所以,当B ′点落在DE 上时,B ′D 取得最小值.根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE22+10,62∴DB′=10﹣2.故选A.【点睛】本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.二.填空题11.相邻两边长分别是323________.【答案】8【解析】⨯+=试题解析:平行四边形的周长为:(223238.故答案为8.点睛:根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.12.计算:32)2019•3)2020=______.-【答案】32【解析】【分析】32)202032)201932)的形式,然后再根据幂的运算法则和二次根式的乘除法运算法则进行计算.【详解】32)201932)2020=32)2019•32)201932)= [32)32)]2019(32+)=32--.故答案为32--.【点睛】本题考查了二次根式的混合运算.主要涉及的知识点有:幂的运算:a n•b n=(ab)n;平方差公式的应用;二次根式的乘除法运算等知识.13.矩形的两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.【答案】24【解析】分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.详解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=12BD=12AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为24.点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.14.已知m<32(3)m-=______;若2<x<32(2)|3|x x-+-=______.【答案】(1). 3-m (2). 1;【解析】【分析】2a=|a|(0)(0)a aa a≥⎧=⎨-⎩<求出即可.【详解】∵m<3,∴m﹣3<023m-=()|m﹣3|=3﹣m.∵2<x<3,∴x-2>0,x-3<022x-()|x﹣3|=x ﹣2+3﹣x =1.故答案为3﹣m ,1.【点睛】本题考查了二次根式的性质与化简的应用,主要考查学生的计算和化简能力.15.已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为______ 【答案】4.8cm ; 【解析】 【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答. 【详解】∵直角三角形的两条直角边分别为6cm ,8cm ,∴斜边为2268+=10(cm ). 设斜边上的高为h ,则直角三角形的面积为12⨯6×812=⨯10h ,解得:h =4.8(cm ),这个直角三角形斜边上的高为4.8cm .故答案为4.8cm . 【点睛】本题考查了勾股定理的运用以及直角三角形的面积的求法,正确利用三角形面积得出其高的长是解题的关键.16.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π 【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,,所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.17.如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE=EF=FA .下列结论:①△ABE ≌△ADF ;②CE=CF ;③∠AEB=75°;④BE+DF=EF ;⑤S △ABE +S △ADF =S △CEF , 其中正确的是______(只填写序号).【答案】①②③⑤ 【解析】 【分析】AD=AB ,AE=AF ,∠B =∠D ,△ABE ≌△ADF , ①正确, BE=DF , CE=CF , ②正确,∴∠EFC =∠CEF =45°, ∴AE=EF=F A,∠AFE=60°,75,AFD ∠∴=︒∠AEB =75°. ③正确.设FC =1,EF =2,勾股定理知,DF =13-±,AD =13+, S △ABE +S △ADF =2311322-+⨯⨯=12. S △CEF =111122⨯⨯=. ⑤正确.无法判断圈四的正确性, ①②③⑤正确. 故答案为①②③⑤. 【详解】 请在此输入详解!18.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.【答案】6. 【解析】试题分析:根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可:∵四边形ABCD 是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD 沿CE 折叠后,点B 落在AD 边的F 点上, ∴CF=BC=10.在Rt △CDF 中,由勾股定理得:6=. 考点:1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.三、解答题:19.计算(1;(2);(3)((7﹣1)2.【答案】(1;(2(3)3; 【解析】 【分析】(1)根据二次根式乘除法法则计算即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式和完全平方公式计算后,再合并同类二次根式即可.【详解】(1)原式2;(2)原式=24-+4+(3)原式=227(31)---=49484--+3.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)填空:当AB :AD= 时,四边形MENF 是正方形.【答案】(1)见解析;(2)当AB:AD=1:2时,四边形MENF是正方形.【解析】【分析】(1)根据矩形性质得出AB=DC,∠A=∠D=90°,根据全等三角形的判定推出即可;(2)求出四边形MENF是平行四边形,求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.【详解】(1)∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°.∵M为AD的中点,∴AM=DM.在△ABM和△DCM中,∵AM DM A D AB DC=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△DCM(SAS).(2)当AB:AD=1:2时,四边形MENF是正方形.理由如下:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC.∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°.∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM.∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形.∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形.故答案为1:2.【点睛】本题考查了矩形的性质,平行四边形的判定,正方形的判定,全等三角形的性质和判定,三角形的中位线的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.21.已知a,b为等腰三角形的两条边长,且a,b满足b3a-2a6-4,求此三角形的周长.【答案】10或11【解析】试题分析:根据题意,30{260aa-≥-≥,解得3a=,所以32644b a a=-+-+=,(1)若3是腰长,则三角形的三边长为:3,3,4,能组成三角形,周长为3+3+4=10;(2)若4是腰长,则三角形的三边长为:4,4,3,能组成三角形,周长为4+4+3=11.故填10或11.考点:1.等腰三角形的性质;2.二次根式有意义的条件;3.三角形三边关系.22.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【答案】7200元.【解析】【分析】连接BD.在Rt△ABD中,根据勾股定理求得BD=5,在△CBD中,由勾股定理的逆定理判定∠DBC=90°,再由S四边形ABCD=S△BAD+S△DBC求得四边形ABCD的面积,由此即可求得所需费用.【详解】如图,连接BD.在Rt△ABD中,BD2=AB2+AD2=32+42=52,BD=5;在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=12AD·AB+12DB·BC=12×4×3+12×5×12=36,所以需费用36×200=7200(元).【点睛】本题考查了勾股定理及勾股定理的逆定理的应用,根据勾股定理求得BD=5及利用勾股定理的逆定理判定∠DBC=90°是解决问题的关键.23. 如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【答案】解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形.∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【解析】试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.24.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【答案】(1)四边形ADEF是平行四边形;(2)∠BAC=150°时,四边形ADEF是矩形;(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.【解析】【分析】(1)四边形ADEF平行四边形.根据△ABD,△EBC都是等边三DAE角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF平行四边形;(2)若边形ADEF是矩形,则∠F AD=90°,然后根据已知可以得到∠BAC=150°;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【详解】(1)四边形ADEF是平行四边形.理由如下:∵△ABD,△EBC都是等边三角形,∴AD=BD=AB,BC=BE=EC,∠DBA=∠EBC=60°,∴∠DBE+∠EBA=∠ABC+∠EBA,∴∠DBE=∠ABC.在△DBE和△ABC中,∵BD=BA,∠DBE=∠ABC,BE=BC,∴△DBE≌△ABC,∴DE=AC.又∵△ACF是等边三角形,∴AC=AF,∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形.(2)当∠BAC=150°时,四边形ADEF是矩形.理由如下:∵四边形ADEF是矩形,∴∠F AD=90°,∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠F AC=360°﹣90°﹣60°﹣60°=150°,∴∠BAC=150°时,四边形ADEF是矩形.(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠F AC=360°﹣60°﹣60°﹣60°=180°.此时,点A、D、E、F四点共线,∴以A、D、E、F为顶点的四边形不存在.【点睛】本题是四边形综合题.主要用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.25.如图,矩形ABCD的两边AB=3,BC=4,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F.求PE+PF 的值.【答案】12 5【解析】【分析】首先连接OP.由矩形ABCD的两边AB=3,BC=4,可求得OA=OD=52,S△AOD=14S矩形ABCD然后由S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=1522⨯×(PE+PF)=3,求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=3,BC=4,∴S矩形ABCD =AB•BC=12,OA=OC,OB=OD,AC=BD,22AB BC+=5,∴S△AOD=14S矩形ABCD=3,OA=OD=52,∵PE⊥AC, PF⊥BD∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=1522⨯×(PE+PF)=3,∴PE+PF=125.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.26. 已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【答案】(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD 的中点,∴MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.考点:1.四边形综合题;2.综合题.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年人教新版湖北省宜昌市东部八年级第二学期期中数学试卷及答案
2018-2019学年八年级第二学期期中数学试卷一、选择题1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤12.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.下列运算正确的是()A.×=3B.÷=4C.3+=3D.+=4.下列三条线段不能构成直角三角形的是()A.1、、2B.、、C.5、12、13D.9、40、41 5.如图,以Rt△ABC为直径分别向外作半圆,若S1=10,S3=8,则S2=()A.2B.6C.D.6.在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°7.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:18.在△ABC中,AB=7,AC=8,BC=9,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC10.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm11.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形12.如图,矩形ABCD中,对角线AC、BD交于点O,若∠BOC=120°,AC=8,AB的长度是()A.4B.4C.4D.813.如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,则OC的长为()A.3B.C.D.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17B.18C.19D.2015.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S=S△ABC;④BE+CF=EF.上述结论中始终正确的有()四边形AEPFA.4个B.3个C.2个D.1个二、解答题(共9小题)16.计算:(1)(﹣)+(+1)2.(2)(﹣)÷17.若﹣=(x﹣y)2,求x﹣y的值.18.求如图的Rt△ABC的面积.19.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.20.正方形ABCD中,AB=4,对角线交于点O,F是BO的中点,连接AF,求AF的长度.21.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.22.如图,在四边形ABCD中,E、F分别为对角线BD上的两点,且BE=DF.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,则四边形ABCD是菱形吗?请说明理由?(3)若四边形AECF是矩形,则四边形ABCD是矩形吗?不必写出理由.23.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②延长CE交BA的延长线于点F,补全图形,探究BD与EC的数量关系,并证明你的结论;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.参考答案一、选择题(共15小题)1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣1≥0,解得x≥1.故选:B.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.3.下列运算正确的是()A.×=3B.÷=4C.3+=3D.+=【分析】分别利用二次根式的加减运算法则和乘除运算法则化简求出即可.解:A、×=3,正确;B、÷==2,故此选项错误;C、3+无法计算,故此选项错误;D、+无法计算,故此选项错误.故选:A.4.下列三条线段不能构成直角三角形的是()A.1、、2B.、、C.5、12、13D.9、40、41【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、因为12+()2=22,故是直角三角形,不符合题意;B、因为()2+()2≠()2,故不是直角三角形,符合题意;C、因为52+122=132,故是直角三角形,不符合题意;D、因为92+402=412,故是直角三角形,不符合题意;故选:B.5.如图,以Rt△ABC为直径分别向外作半圆,若S1=10,S3=8,则S2=()A.2B.6C.D.【分析】根据勾股定理,得:AB2+BC2=AC2,再根据圆面积公式,可以证明:S1+S2=S3.即S2=10﹣8=2.解:∵AB2+BC2=AC2,S1=•π()2=;S2=π()2=;S3=π()2=;S2+S3=+=(AB2+BC2)==S1,故S2=S1﹣S3=10﹣8=2.故选:A.6.在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°【分析】根据平行四边形的性质得到,平行四边形邻角互补,对角相等,对边相等.而对角却不一定互补.解:A、平行四边形的对边相等,故A选项正确;B、平行四边形的对边平行,故B选项正确;C、平行四边形的对角相等不一定互补,故C选项错误;D、平行四边形的内角和为360°,故D选项正确;故选:C.7.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:1【分析】根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.8.在△ABC中,AB=7,AC=8,BC=9,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】根据三角形三边关系和角解答即可.解:∵72+82>92,∴这个三角形是锐角三角形,故选:A.9.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC【分析】根据菱形的性质对各选项分析判断后利用排除法求解.解:A、菱形的对边平行且相等,所以AB∥DC,故A选项正确;B、菱形的对角线不一定相等,故B选项错误;C、菱形的对角线一定垂直,AC⊥BD,故C选项正确;D、菱形的对角线互相平分,OA=OC,故D选项正确.故选:B.10.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选:B.11.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.两组对边平行的四边形是平行四边形;有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;有一组邻边相等的平行四边形是菱形;对角线互相垂直平分且相等的四边形是正方形.解:A、应为两组对边平行的四边形是平行四边形;B、有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;C、符合菱形定义;D、应为对角线互相垂直平分且相等的四边形是正方形.故选:C.12.如图,矩形ABCD中,对角线AC、BD交于点O,若∠BOC=120°,AC=8,AB的长度是()A.4B.4C.4D.8【分析】由矩形的性质得出OA=OB=4,再证明△AOB是等边三角形,得出AB=OA 即可.解:∵四边形ABCD是矩形,∴OA=AC=4,OB=BD,AC=BD,∴OA=OB=4,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4;故选:A.13.如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,则OC的长为()A.3B.C.D.【分析】先在直角△OAB中,根据勾股定理求出OB,再根据同圆的半径相等即可求解.解:∵在直角△OAB中,∠OAB=90°,∴OB===,∴OC=OB=.故选:D.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17B.18C.19D.20【分析】根据题意可知OM是△ADC的中位线,得出OM=CD;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半求出BO,进而求出四边形ABOM 的周长.解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.15.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E 不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S=S△ABC;④BE+CF=EF.上述结论中始终正确的有()四边形AEPFA.4个B.3个C.2个D.1个【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,在△APE和△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;故AE=FC,BE=AF,∴AF+AE>EF,∴BE+CF>EF,故④不成立.始终正确的是①②③.故选:B.二、解答题(共9小题,满分75分)16.计算:(1)(﹣)+(+1)2.(2)(﹣)÷【分析】(1)根据二次根式的混合运算顺序和运算法则计算可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.【解答】解;(1)原式=3﹣3+3+2=5;(2)原式=﹣=5﹣2=3.17.若﹣=(x﹣y)2,求x﹣y的值.【分析】根据二次根式有意义的条件可得x=3,进而可得(x﹣y)2=0,从而可得答案.解:由题意得:,解得:x=3,∴(x﹣y)2=0,∴x﹣y=0.18.求如图的Rt△ABC的面积.【分析】首先利用勾股定理得到三边关系,进而建立关于x的方程,解方程求出x的值,再利用三角形的面积公式计算即可.解:由勾股定理得:(x+4)2=36+x2,解得:x=,所以△ABC的面积=×6×=7.5.19.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【分析】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF 的周长也就能求出了.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.20.正方形ABCD中,AB=4,对角线交于点O,F是BO的中点,连接AF,求AF的长度.【分析】首先根据勾股定理可求出BO和AO的长,因为正方形的对角线互相垂直,所以再利用勾股定理即可求出AF的长.解:∵四边形ABCD是正方形,∴AO=OD=AO=CO,BD⊥AC,∵AB=4,∴AO2+BO2=42,∴OA=OB=2,∵F是BO的中点,∴OF=,∴AF==.21.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.22.如图,在四边形ABCD中,E、F分别为对角线BD上的两点,且BE=DF.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,则四边形ABCD是菱形吗?请说明理由?(3)若四边形AECF是矩形,则四边形ABCD是矩形吗?不必写出理由.【分析】(1)连接AC交BD于点O,由平行四边形的性质得出OA=OC,OE=OF,再证出OB=OD,即可得出结论;(2)由菱形的性质得出AC⊥BD,即可得出结论;(3)由矩形的性质得出OA=OC=OE=OF,证出OB=OD,AC<BD,得出四边形ABCD 是平行四边形,不是矩形.【解答】(1)证明:连接AC交BD于点O,如图所示:∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OB=OD,∴四边形ABCD是平行四边形;(2)解:理由如下:∵四边形AECF是菱形,∴AC⊥BD,由(1)知,四边形ABCD是平行四边形;∴四边形ABCD是菱形;(3)解:四边形ABCD不是矩形;理由如下:∵四边形AECF是矩形,∴OA=OC,OE=OF,AC=EF,∴OA=OC=OE=OF,∵BE=DF,∴OB=OD,∴AC<BD,∴四边形ABCD是平行四边形,不是矩形.23.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2.【分析】(1)由旋转的性质得出AG=AF,BG=DF,∠GAF=90°,∠BAG=∠DAF,证出∠GAE═∠EAF,由SAS即可得出△AEG≌△AEF;(2)连接GM,由正方形的性质和已知条件得出BE=DF,得出BG=DF=BE=BF,得出∠BMG=45°,因此∠EMG=90°,由勾股定理得出EG2=MG2+ME2=NF2+ME2,再由EG=EF,即可得出结论.【解答】(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AG=AF,BG=DF,∠GAF=90°,∠BAG=∠DAF,∵∠EAF=45°,∴∠BAE+∠DAF=∠BAE+∠BAG=90°﹣45°=45°,即∠GAE=∠EAF,∴在△AEG和△AEF中,,∴△AEG≌△AEF(SAS);(2)证明:连接G,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠C=90°,∵∠CEF=45°∴CE=CF,DF=DN,BM=BE,∵BC=CD,∴BE=DF,∵BG=DF,∴BG=DF=BE=BM,∴∠BMG=45°,∵∠EMB=45°,∴∠EMG=90°,∴MG=BM,同理:NF=DF,∴MG=NF,∴EG2=MG2+ME2=NF2+ME2,∵△AEG≌△AEF,∴EG=EF,∴EF2=ME2+NF2.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②延长CE交BA的延长线于点F,补全图形,探究BD与EC的数量关系,并证明你的结论;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【分析】(1)①根据等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD ≌△ACG,利用全等三角形的性质解答即可;(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②BD=2CE.证明:延长CE交BA的延长线于点F,如图1,∵BD平分∠ABC,CE⊥BD,∴CE=FE,在△ABD与△ACF中,,∴△ABD≌△ACF(AAS),∴BD=CF=2CE;(2)结论:BE﹣CE=2AF.证明:过点A作AH⊥AE,交BE于点H,如图2,∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.。
湖北省宜昌市宜昌中学2018-2019学年度第二学期八年级下期期中考试数学测试卷
湖北省宜昌市宜昌中学2018-2019学年度第二学期八年级下册期中考试数学测试卷一、选择题(共10小题,每小题3分,共30分)1、下列二次根式中,属于最简二次根式的是()A.B.C.D.2、如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A.5 B.10 C.15 D.203、下列计算错误..的是( )A=B==C=D.34、下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=5,b=12,c=135、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A .12B .24C .12D .166、如图,O 是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是OA ,OC 的中点.下列结论:①S △ADE =S △EOD ;②四边形BFDE 也是菱形;③△DEF 是轴对称图形;④∠ADE =∠EDO ;⑤四边形ABCD 面积为EF ×B D .其中正确的结论有( )A .5个B .4个C .3个D .2个7、如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A .9B .10C .24D .1728、若有意义,则x 满足条件( )A .x >2.B .x ≥2C .x <2D .x ≤2.9、如图所示,A (﹣,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A.B.C.D.210、如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.4二.填空题(共8小题,每小题3分,共24分)11、相邻两边长分别是2+与2﹣的平行四边形的周长是.12、计算:(﹣2)2019•(+2)2020=______.13、矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为cm.14、已知m<3,则=______;若2<x<3,则=______.15、已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为16、如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.17、如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=F A.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).18、如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.三、解答题:(计8小题,共66分)19、计算(1)×;(2)(﹣2)﹣(﹣);(3)(7+4)(7﹣4)﹣(﹣1)2.20、已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD=时,四边形MENF是正方形.21、已知,a b为等腰三角形的两条边长,且,a b满足4b=,求此三角形的周长.22、如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?23、如上右图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24、如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?25、如图,矩形ABCD的两边AB=3,BC=4,P是AD上任一点,PE⊥AC于点E,PF⊥BD 于点F.求PE+PF的值.26、已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F 分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.。
2018年宜昌市东部八年级下期中数学试卷及答案
2017-2018学年湖北省宜昌市东部八年级(下)期中数学试卷、选择题(每题3分,共45分)(3分)若二次根式—有意义,则x 的取值范围为( x >2 B. x 工 2 C. x >2 D. x > 08(3分)一个四边形的三个相邻内角度数依次如下, 那么其中是平行四边形的是( )A. 88°, 108°, 88° B . 88°, 104°, 108° C. 88°, 92°, 92°D. 88°, 92°, 889. (3分)如图,在四边形ABCD 中,对角线AG BD 相交于点O,下列条件不能判定四 边形ABC 助平行四边形的是()1. A. 2(3分)下列二次根式中,不能与 「合并的是( ) A.B . 7 C. — D.— 3. (3分)下列各式中属于最简二次根式的是( A.4. (3分)若 ,则( )A. b > 3B. b v 3C. b >3D. b <3 5. (3 分)F 列各组线段中,能够组成直角三角形的是(A. 6, 7, 8B. 5, 6, 7C. 4, 5, 6D. 3, 4, 5 6.A. (3分) 若 a=b ,则 a 2=b 2B.若 a >0, b >0,贝U ab >0F 列命题的逆命题是正确的是( 等边三角形是锐角三角形D.全等三角形的对应边相等Rt △ ABC 中,/ C=90,/ A=30 , BC=2 贝U AB=().B. ' C .讥 £ D.10. (3分)八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了 49盆红花,还需要从花房运来红花()A. 48 盆B. 49 盆C. 50 盆D. .51 盆11.(3分)若一直角三角形的两边为5和12,则它第三边的长为( )A. 13B.7C. 13 或―D. 13 或 712. (3分)平行四边形 ABCD 中, AB=1, BC 铤,AC=2则连接四边形ABCD 四边中点 所成的四边形是( )A.平行四边形B .菱形C •矩形D.正方形13. (3分)如图是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出 “弦图”这位数学家是()A.毕达哥拉斯B .祖冲之 C.赵爽 D.华罗庚14. (3分)如图,正方形ABCD 勺对角线交于点重叠部分的面积,总等于一个正方形面积的( )OA=O, OB=OD C. AD=BC AB// CD D. AB=CD AD=BCO,点O 又是正方形AB.QO 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1CO 绕点O 怎样转动,两个正方形 DDA. B. C. D.2 3 4 515. (3分)如图,点P是?ABCD内的任意一点,连接PA PB PC PD,得到△ PAB △PBC △ PCD △ PDA设它们的面积分别是S i、S2、S3、S,给出如下结论:① S+S=S+S;②如果S> S,贝U S> S ;③若S=2S,贝U S=2S;④若S i-S=S - S, 则P点一D.①④定在对角线BD上.二、解答题(共9题,共75分)16. (6分)计算:(1) 4 :+ 了 -—(2)—X —>「17. (6分)计算:(1)(3+ 7) (3- 7)(2)(- 3) -2+「-|1 - 2 7| -( 7-3) 018. (7分)先化简,再求值:(1-2)十(a-经垒),其中,a=2^2 .a a19. ( 7分)如图,平行四边形ABCD勺对角线AC,BD相交于点0, EF过点0且与AB20. (8分)如图,菱形ABCD勺较短对角线BD为4,/ ADB=60,E、F分别在AD, CD 上,且/ EBF=60 .(1)求证:△ ABE^A DBF(2)判断△ BEF的形状,并说明理由.R21. (8分)在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动•具体内容如下:在一段笔直的公路上选取两点A、B,在公路另一侧的开阔地带选取一观测点C,在C处测得点A位于C点的南偏西45°方向,且距离为100 —米,又测得点B位于C点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒,请你帮助他们算一算,这辆小车是否超速?(参考数据:一~ 1.41,--1.73,计算结果保留两位小数)C22. (10分)如图,在厶ABC中,点0是AC边上一动点,过点0作BC的平行线交/ ACB 的角平分线于点E,交/ ACB的外角平分线于点F(1)求证:EO=F0(2)当点0运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3 EC=4 AB=12 BC=13请直接写出凹四边形ABCE 的面积为23. (11分)如图,在矩形ABCD中,AB=8cm BC=20cm E是AD的中点.动点P从A 点出发,沿A- B-C路线以1cm/秒的速度运动,运动的时间为t秒.将△ APE以EP为折痕折叠,点A的对应点记为M.(1) 如图(1),当点P 在边AB 上,且点M 在边BC 上时,求运动时间t ; (2) 如图(2),当点P 在边BC 上,且点M 也在边BC 上时,求运动时间t ; (3)直接写出点P 在运动过程中线段BM 长的最小值24. ( 12 分)已知:在厶 ABC 中, Z BAC=90,AB=AC 点 D 为直线 BC 上2, 当点D 在线段BC 的延长线上时,其它条件不变,请直接写出 CD 三条线段之间的关系;⑶如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线 其它条件不变:①请直接写出 CF BC CD 三条线段之间的关系.②若连接正方形对角线AE DF,交点为0,连接0C 探究△ A0C 勺形状,并说明理由.2017-2018学年湖北省宜昌市东部八年级(下)期中数学试 卷参考答案与试题解析一、选择题(每题3分,共45分)1. (3分)若二次根式 7=有意义,则x 的取值范围为()ES(l)动点(点D(1) 如图 图11,当点D 在线段BC 上时,求证:①BDLCF. 图3②CF=BC- CD 如图 CF BC BC 的两侧, 图心)不与B 、C 重合).以AD 为边作正方形ADEF 连接CF. 0EA. x >2B. x 工2C. x >2D. x > 0 【解答】解:由题意得:x - 2>0, 解得:x>2,故选:A.2. (3分)下列二次根式中,不能与 「合并的是(所以,这三个选项都不是最简二次根式.故选 A.4. (3 分)若:―-.,则()A. b >3B. b v 3C. b >3D. b <3 【解答】解:T 「h 卜— ••• 3- b > 0,解得 b < 3.故选 D.5. (3分)下列各组线段中,能够组成直角三角形的是( )A. 6,7,8B. 5,6,7C. 4,5,6D. 3,4,5 【解答】解:A >v 62+7"=36+49=85; 82=64, /• 62 + 72 ^ 82,则此选项线段长不能组成直角三角形;52+&=25+36=61; 7^=49,【解答】解: A 二^,故A 能与】合并; B 齐二m 故B 能与—合并; C 上d 故C 不能与「合并;D ,故D 能与「合并;故选:C.3. (3分)下列各式中属于最简二次根式的是(A.B .7C. —D.—C —=2 -;••• 52+&工7,则此选项线段长不能组成直角三角形;C T 42+丘=16+25=41; 62=36,二4+52^ 6,则此选项线段长不能组成直角三角形;32+42=9+16=85; 52=25,••• 32+42=52,则此选项线段长能组成直角三角形;故选:D.6. (3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0, b>0,则ab>0C.等边三角形是锐角三角形D.全等三角形的对应边相等【解答】解:A、逆命题为若a2=b2,贝U a=b,此逆命题为假命题;B逆命题为ab>0,则a>0, b>0,此逆命题为假命题;C逆命题为锐角三角形是等边三角形,此逆命题为假命题;D逆命题为对应边相等的三角形为全等三角形,此逆命题为真命题.故选:D.7. (3 分)如图,在Rt△ ABC中,/ C=90,/ A=30°, BC=2 则AB=()A. 4【解答】解:••• Rt△ ABC中,/ C=9D°,Z A=30°, BC=2••• BC= AB••• AB=2BC=Z2=4,故选:A.8. (3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是(A. 88°, 108°, 88°B. 88°, 104°, 108°C. 88°, 92°, 92°D. 88°, 92°, 88°【解答】解:两组对角分别相等的四边形是」平行四边形,故B不是;当三个内角度数依次是88°, 108°, 88°时,第四个角是76°,故A不是;当三个内角度数依次是88°, 92°, 92°,第四个角是88°,而C中相等的两个角不是对角故C 错,D中满足两组对角分别相等,因而是平行四边形.故选:D.9. (3分)如图,在四边形ABCD中,对角线AC BD相交于点O,下列条件不能判定四边形ABC助平行四边形的是()丘------------ 汽A. AB// CD AD// BCB. OA=OC OB=ODC. AD=BC AB// CDD. AB=CD AD=BC【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C不能判定四边形ABCD1平行四边形,故此选项符合题意;D根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.10. (3分)八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A. 48 盆B. 49 盆C. 50 盆D. .51 盆【解答】解:•••矩形的对角线互相平分且相等,•••一条对角线用了49盆红花,中间一盆为对角线交点,49-仁48,•••还需:要从花房运来红花48盆;故选:A.11. (3分)若一直角三角形的两边为5和12,则它第三边的长为()A. 13B. —C. 13 或—D. 13 或—【解答】解:由题意得:当所求的边是斜边时,则有.*=13;当所求的边是直角边时,则有弓[匸片=—-.故选:D.12. (3分)平行四边形ABCD中, AB=1, BC=W , AC=2则连接四边形ABCD四边中点所成的四边形是()A.平行四边形B .菱形C•矩形 D.正方形【解答】解:•••平行四边形ABC冲,AB=1, BC= —, AC=2••• AB+B C=A C,•••/ ABC=90 ,•四边形ABC助矩形,•••连接矩形ABCD勺四边中点所成的四边形是菱形,故选:B.13. (3分)如图是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”这位数学家是()A.毕达哥拉斯B .祖冲之C.赵爽 D.华罗庚【解答】解:我国古,代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.故选:C.14. (3分)如图,,正方形ABCD 勺对角线交于点0,点0又是正方形A i B i CO 的一个顶 点,而且这两个正方形的边长相等•无论正方形 ARCO 绕点0怎样转动,两个正方形重叠部:分的面积,总等于一个正方形面积的()D.【解答】解:(1)当正方形绕点OAB i CO 绕点0转动到其边0A , 0C 分别于正方形ABCD 的两条对角线重合这一特殊位置时, 显然S 两个正方形重叠部分正方形ABC,(2)当正方形绕点OABCO 绕点0转动到如图位置时. •••四边形ABCD^正方形, •••/ OAB M OBF=45,OA=OB BOL AC 即/ AOE # EOB=90, 又•••四边形A B' C O 为正方形,•••/ A OC =90。
2018-2019学年度八年级(下)期中考试数学试卷(五四学制)含答案解析
2018-2019学年度八年级(下)期中数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.下列各式:,,,(a>0),其中是二次根式的有()A. 1个B. 2个C. 3个D. 4个2.将-a中的a移到根号内,结果是()A. B. C. D.3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. B. C. D.4.若关于x的一元二次方程(m-1)x2+5x+m2-5m+4=0有一个根为0,则m的值等于()A. 1B. 4C. 1或4D. 05.若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是()A. 1,0B. ,0C. 1,D. 无法确定6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C. 5D. 47.用因式分解法解方程,下列方法中正确的是()A. ,或B. ,或C. ,或D. ,8.菱形ABCD的一条对角线长为6,边AB的长为方程y2-7y+10=0的一个根,则菱形ABCD的周长为()A. 8B. 20C. 8或20D. 109.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. B. C. D. b10.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A. 12厘米B. 16厘米C. 20厘米D. 28厘米二、填空题(本大题共10小题,共30.0分)11.计算()=______.12.以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数为______.13.若|b-1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是______.14.化简的结果为______.15.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为______.16.观察下列各式:,,…请你将发现的规律用含自然数n(n≥1)的代数式表达出来______.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为______.18.如果二次三项式x2-2(m+1)x+16是一个完全平方式,那么m的值是______.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为______.20.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为______度.三、计算题(本大题共2小题,共10.0分)21.计算(1)(-)2+2•3;(2)(5-6+4)÷.22.解方程(1)2x2-4x-5=0.(公式法)(2)x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)四、解答题(本大题共4小题,共30.0分)23.如下表,方程1、方程2、方程3…是按照一定的规律排列的一列方程,解方程3,(2)用你探究的规律解方程x2-8x-20=0.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.26.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.答案和解析1.【答案】B【解析】解:是三次根式;,符合二次根式的定义,所以它们是二次根式;∵a>0,-6a<0,(a>0)不是二次根式.综上所述,二次根式的个数是2个.故选:B.二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.本题考查了二次根式的定义.注意,二次根式的被开方数是非负数.2.【答案】B【解析】解:由题意得a<0,原式==故选:B.根据二次根式的运算即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.【答案】B【解析】解:A、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当 ∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.4.【答案】B【解析】解:把x=0代入方程得m2-5m+4=0,解得m1=4,m2=1,而a-1≠0,所以m=4.故选:B.先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.5.【答案】C【解析】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是-1.则方程的根是1,-1.故选:C.本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.6.【答案】A【解析】【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形=是解此题的关键.的性质得出S菱形ABCD【解答】解:∵四边形ABCD是菱形,AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S=,菱形ABCD,DH=,故选:A.7.【答案】A【解析】解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.8.【答案】B【解析】解:∵解方程y2-7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;菱形的边长为5.菱形ABCD的周长为4×5=20.故选:B.边AB的长是方程y2-7y+10=0的一个根,解方程求得y的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.9.【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.10.【答案】C【解析】解:设斜线上两个点分别为P、Q,∵P点是B点对折过去的,∠EPH为直角,△AEH≌△PEH,∠HEA=∠PEH,同理∠PEF=∠BEF,∠PEH+∠PEF=90°,四边形EFGH是矩形,△DHG≌△BFE,HEF是直角三角形,BF=DH=PF,∵AH=HP,AD=HF,∵EH=12cm,EF=16cm,FH===20cm,FH=AD=20cm.故选:C.先求出△EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可.本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.11.【答案】【解析】解:原式=÷(+)=÷=×=,故答案为:先计算括号内的加法,再计算除法即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.12.【答案】150°或30°【解析】解:如图(1)∠ABE=90°+60°=150°,AB=BE, ∠AEB=15°=∠DEC, ∠AED=30°如图(2)BE=BA,∠ABE=30°, ∠BEA=75°=∠CED∠AED=360°-75°-75°-60°=150°.故答案为30或150.等边△BCE可能在正方形,外如图(1),也可在正方形内如图(2),应分情况讨论.本题考查了正方形的性质及等边三角形的性质.13.【答案】k≤4且k≠0【解析】解:∵|b-1|+=0,b-1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,△=a2-4kb≥0且k≠0,即16-4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.14.【答案】2-【解析】解:原式=[(-2)(+2)]2015•(-2)=(3-4)2015•(-2)=-(-2)=2-.故答案为2-.先利用积的乘方得到原式=[(-2)(+2)]2015•(-2),然后根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】(0,-)【解析】解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,OC∥AB,∠BAC=∠DCA,∠B′AC=∠DCA,AD=CD,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6-x)2,解得:x=,点D的坐标为:(0,),故答案为:(0,-).由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得OD,得OD的坐标.本题主要考查了翻折变换的性质及其应用问题,灵活运用有关定理来分析、判断、推理或解答是解题的关键.16.【答案】(n≥1)【解析】解:∵=(1+1);=(2+1);=(n+1)(n≥1).故答案为:=(n+1)(n≥1).观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).17.【答案】4.8【解析】解:∵Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,连接CP,∵PD⊥AC于点D,PE⊥CB于点E,四边形DPEC是矩形,DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,DE=CP==4.8,故答案为:4.8.连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.18.【答案】3或-5【解析】解:中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,解得m=3或-5,故答案为:3或-5.这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,求解即可.本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19.【答案】【解析】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°AB=AD,∠A=60°,∵BM=AE,AD=ME,∵△DEF为等边三角形,∠DAE=∠DFE=60°,DE=EF=FD,∠MEF+∠DEA═120°,∠ADE+∠DEA=180°-∠A=120°,∠MEF=∠ADE,在△DAE和△EMF中,△DAE≌EMF(SAS),AE=MF,∠M=∠A=60°,又∵BM=AE,△BMF是等边三角形,BF=AE,∵AE=t,CF=2t,BC=CF+BF=2t+t=3t,∵BC=4,3t=4,t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.20.【答案】32【解析】解:∵∠ABC=∠ADC=90°,点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=58°,∠DEB=116°,∵DE=BE=AC,∠EBD=∠EDB=32°,故答案为:32.根据已知条件得到点A,B,C,D在以E为圆心,AC为直径的同一个圆上,根据圆周角定理得到∠DEB=116°,根据直角三角形的性质得到DE=BE=AC,根据等腰三角形的性质即可得到结论.本题考查了直角三角形斜边上的中线的性质,圆周角定理,推出A,B,C,D 四点共圆是解题的关键.21.【答案】解:(1)原式=2-2+3+×3=5-2+2=5;(2)原式=(20-18+4)÷=(2+4)÷=2+4.【解析】(1)先利用完全平方公式和二次根式的乘法法则运算,然后把各二次根式化简为最简二次根式后合并即可;(2)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:(1)2x2-4x-5=0,a=2,b=-4,c=-5,△=b2-4ac=(-4)2-4×2×(-5)=16+40=56,x===,x1=,x2=,(2)x2-4x+1=0,x2-4x+4=3,(x-2)2=3,x=2,x1=2+,x2=2-,(3)(y-1)2+2y(1-y)=0,y2-1=0,(y+1)(y-1)=0,y1=1,y2=-1.【解析】本题考查的是一元二次方程的解法,掌握公式法、配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)先确定a、b、c的值,根据公式法解方程;(2)根据配方法解方程;(3)先化为一般式,根据平方差公式分解因式后解方程.23.【答案】3;-9【解析】解:x2+6x-27=0,(x-3)(x+9)=0,所以,x1=3,x2=-9.故答案为:3,-9;(1)第m个方程为:x2+2mx-3•m2=0,方程的解是x1=m,x2=-3m;(2)∵x2-8x-20=0可化为(x-10)(x+2)=0,方程的解是x1=10,x2=-2.利用因式分解法将方程3变形为(x-3)(x+9)=0,进而求解即可;(1)观察图表,一次项系数为从2开始的连续偶数,常数项是从1开始的连续自然数的平方的3倍的相反数,然后写方程,再根据方程的第一个解是连续自然数,第二个解是3的倍数的相反数写出即可;(2)利用因式分解法将方程3变形为(x-10)(x+2)=0,进而求解即可.本题考查了因式分解法解一元二次方程,读懂图表信息,理解一元二次方程的解与一次项系数和常数项的关系是解题的关键.24.【答案】(1)证明:∵AF∥BC,∠AFE=∠DBE,∵E是AD的中点,AE=DE,在△AFE和△DBE中,∠ ∠∠ ∠△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线DB=DC,AF=CD.∵AF∥BC,四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,四边形ABDF是平行四边形,DF=AB=5,∵四边形ADCF是菱形,S菱形ADCF=AC▪DF=×4×5=10.【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.25.【答案】解:(1).(2)原式==.【解析】(1)分式的分子和分母都乘以-,即可求出答案;把2看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.本题考查了分母有理化,平方差公式的应用,主要考查学生的计算和化简能力.26.【答案】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∠BCD=90°,∠ECN=45°∠EMC=∠ENC=∠BCD=90°且NE=NC,四边形EMCN为正方形∵四边形DEFG是矩形,EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∠DEN=∠MEF,又∠DNE=∠FME=90°,∠ ∠在△DEN和△FEM中,,∠ ∠△DEN≌△FEM(ASA),ED=EF,矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∠ADE=∠CDG,在△ADE和△CDG中,∠ ∠ ,△ADE≌△CDG(SAS),AE=CGAC=AE+CE=AB=×2=4,CE+CG=4 是定值.【解析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.此题是四边形综合题,主要考查了正方形的性质,矩形的性质,矩形的判定,三角形的全等的性质和判定,勾股定理,解本题的关键是作出辅助线,判断三角形全等.。
湖北省宜昌市八年级下学期期中数学试卷
湖北省宜昌市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019八下·灯塔期中) 在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是().A .B .C .D .2. (2分)(2019·东城模拟) 若a2+2a﹣3=0,则代数式(a﹣)• 的值是()A . 4B . 3C . ﹣3D . ﹣43. (2分)若分式中的x和y都扩大2倍,则分式的值().A . 扩大2倍B . 缩小2倍C . 缩小4倍D . 不变4. (2分) (2017九上·兰山期末) 下列说法正确的是()A . 为了审核书稿中的错别字,选择抽样调查B . 斜坡的坡度指的是坡角的度数C . 所有的等腰直角三角形都相似D . “经过有交通信号灯的路口,遇到红灯”是必然事件5. (2分)如果等边三角形的边长为4,那么等边三角形的中位线长为()A . 2B . 4C . 6D . 86. (2分)(2020·沐川模拟) 如图,分别是正方形的边,上的点,且,,,如下结论:① ;② ;③ ;④ .其中,正确的结论有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2020八下·察哈尔右翼前旗期末) 如图,已知某菱形花坛的周长是,,则花坛对角线的长是()A .B .C .D .8. (2分)(2017·江津模拟) 如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N 分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A .B .C .D . ﹣2二、填空题 (共10题;共10分)9. (1分) (2020七下·上虞期末) 当x=________时,分式的值为零。
10. (1分)分式与的最简公分母是________.11. (1分)(2017·黄冈模拟) 从﹣3,﹣2,﹣1,0,1,3,4这七个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数y= 的自变量取值范围内的概率是________.12. (1分)(2019·肥城模拟) 如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.13. (1分) (2019八下·吴江期中) 若关于的方程产生增根,则的值为________14. (1分) (2020八下·灵璧月考) 如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C 恰好在AB上,∠AOD=90°,则∠D的度数是________°.15. (1分)计算: - =________16. (1分) (2017九上·沂源期末) 已知关于x的方程 =3的解是正数,则m的取值范围是________.17. (1分) (2019八上·重庆期末) 如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,若PA=6,PB=8,PC=10,则∠APB=________°.18. (1分)二次函数y== 的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y= 的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为________.三、解答题 (共10题;共110分)19. (5分) (2019九上·南关期末) 先化简,再求值:,其中x=﹣3.20. (10分)解下列方程(组)(1) 1+ =(2).21. (10分) (2018九上·朝阳期中) 如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1 .(2)求点B旋转到点B1所经过的路线长(结果保留π)22. (5分) (2015八上·阿拉善左旗期末) 先化简,再求值:,其中x=﹣1.23. (13分)(2018·洛阳模拟) 中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1) m=________,n=________;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?24. (10分) (2017八下·林州期末) 如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.25. (20分)(2014·盐城) 【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.(1) .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(2) .【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;(3) .【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;(4) .【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.26. (10分) (2016八上·仙游期末) 一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
2018-2019学年第二学期期中质量检测八年级数学试题(带答案)
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
湖北省宜昌市宜昌中学2018-2019学年第二学期八年级下期期中考试数学测试卷(含答案)
湖北省宜昌市宜昌中学2018-2019学年度第二学期八年级下册期中考试数学测试卷一、选择题(共10小题,每小题3分,共30分) 1、下列二次根式中,属于最简二次根式的是( ) A .B .C .D .2、如图,在菱形ABCD 中,AB=5,∠B :∠BCD=1:2,则对角线AC 等于( )A .5B .10C .15D .203、下列计算错误..的是 ( ) A .14772⨯= B .60302÷=C .9258a a a +=D .3223-=4、下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是() A . a=1.5,b=2,c=3 B . a=7,b=24,c=25C . a=6,b=8,c=10D . a=5,b=12,c=135、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .12D .166、如图,O 是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是OA ,OC 的中点.下列结论:①S △ADE =S △EOD ;②四边形BFDE 也是菱形;③△DEF 是轴对称图形;④∠ADE=∠EDO ;⑤四边形ABCD 面积为EF ×BD .其中正确的结论有( )A .5个B .4个C .3个D .2个7、如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A .9B .10C .24D .172 8、若有意义,则x 满足条件( )A .x >2.B .x ≥2C .x <2D .x ≤2. 9、如图所示,A (﹣,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .210、如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连接B ′D ,则B ′D 的最小值是( )A .2﹣2B .6C .2﹣2D .4二.填空题(共8小题,每小题3分,共24分) 11、相邻两边长分别是2+与2﹣的平行四边形的周长是 .12、计算:(﹣2)2019•(+2)2020=______.13、矩形的两条对角线的夹角为60°,较短的边长为12cm ,则对角线长为 cm . 14、已知m <3,则=______;若2<x <3,则=______.15、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为16、如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.17、如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).18、如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F 点上,则DF的长为.三、解答题:(计8小题,共66分)19、计算(1)×;(2)(﹣2)﹣(﹣);(3)(7+4)(7﹣4)﹣(﹣1)2.20、已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD= 时,四边形MENF是正方形.21、已知,a b为等腰三角形的两条边长,且,a b满足3264=-+-+,求此三角形的周长.b a a22、如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?23、如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24、如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?25、如图,矩形ABCD的两边AB=3,BC=4,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F.求PE+PF的值.26、已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.参考答案1. D.2. A.3. D.4. A.5. D.6. B.7. B.8. B.9. C. 10. A. 11. 8; 12. 1; 13. 24; 14. 1; 15. 4.8; 16. π2;17. ①②③⑤; 18. 6; 19. (1)原式=1423;(2)原式=331342+;(3)原式=332-; 20.(1)证明:∵四边形ABCD 是矩形,∴AB=DC ,∠A=∠D=90°, ∵M 为AD 中点, ∴AM=DM ,在△ABM 和△DCM ,AM =DM ,∠A =∠D ,AB =CD ∴△ABM ≌△DCM (SAS );(2)解:当AD :AB=2:1时,四边形MENF 是正方形. 理由是:∵M 为AD 中点, ∴AD=2AM ,∵AD :AB=2:1, ∴AM=AB ,∵∠A=90∴∠ABM=∠AMB=45°, 同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°, ∵四边形MENF 是菱形, ∴菱形MENF 是正方形。
湖北省宜昌市东部八年级(下)期中数学试卷
(1)如图 1,当点 D 在线段 BC 上时,求证:①BD⊥CF.②CF=BC﹣CD. (2)如图 2,当点 D 在线段 BC 的延长线上时,其它条件不变,请直接写出 CF、BC、CD
三条线段之间的关系; (3)如图 3,当点 D 在线段 BC 的反向延长线上时,且点 A、F 分别在直线 BC 的两侧,其
C.88°,92°,92°
D.88°,92°,88°
9.(3 分)如图,在四边形 ABCD 中,对角线 AC、BD 相交于点 O,下列条件不能判定四边
形 ABCD 为平行四边形的是( )
第1页(共6页)
A.AB∥CD,AD∥BC
B.OA=OC,OB=OD
C.AD=BC,AB∥CD
D.AB=CD,AD=BC
第3页(共6页)
20.(8 分)如图,菱形 ABCD 的较短对角线 BD 为 4,∠ADB=60°,E、F 分别在 AD, CD 上,且∠EBF=60°.
(1)求证:△ABE≌△DBF; (2)判断△BEF 的形状,并说明理由.
21.(8 分)在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进 行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点 A、B,在公路 另一侧的开阔地带选取一观测点 C,在 C 处测得点 A 位于 C 点的南偏西 45°方向,且距 离为 100 米,又测得点 B 位于 C 点的南偏东 60°方向.已知该路段为乡村公路,限速 为 60 千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时 13 秒,请你帮助他们 算一算,这辆小车是否超速?(参考数据: ≈1.41, ≈1.73,计算结果保留两位小 数)
D.13 或
12.(3 分)平行四边形 ABCD 中,AB=1,BC= ,AC=2,则连接四边形 ABCD 四边中
2018-2019学年人教版八年级数学第二学期期中试卷(含答案解析)
2018-2019学年八年级(下)期中数学试卷一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来每小题3分,满分36分)1.直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)2.如图,下面不能判断是平行四边形的是()A.∠B=∠D,∠BAD=∠BCDB.AB∥CD,AD=BCC.∠B+∠DAB=180°,∠B+∠BCD=180°D.AB∥CD,AB=CD3.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为()A.53°B.37°C.47°D.123°5.下列曲线中,表示y不是x的函数是()A.B.C.D.6.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3B.3和2C.4和1D.1和47.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣48.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1B.y=2x﹣2C.y=2x+1D.y=2x+29.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm12.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分.)13.在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第象限.14.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为.15.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是.16.如果点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,则y1y2.(填“>”,“<”或“=”)17.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,若∠BAF=58°,则∠DAE等于度.18.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.19.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.20.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为.三、解答题:(本大题共7个小题,满分74分.解答时请写出必要的演推过程21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(12分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.23.(10分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.24.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?25.(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.26.(10分)如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.27.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来每小题3分,满分36分)1.直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】令x=0,求出y的值,即可求出与y轴的交点坐标.【解答】解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.2.如图,下面不能判断是平行四边形的是()A.∠B=∠D,∠BAD=∠BCDB.AB∥CD,AD=BCC.∠B+∠DAB=180°,∠B+∠BCD=180°D.AB∥CD,AB=CD【分析】由平行四边形的判定方法得出选项A、C、D正确,选项B不正确,即可得出结论.【解答】解:∵∠B=∠D,∠BAD=∠BCD,∴四边形ABCD是平行四边形,A选项正确;∵AB∥CD,AD=BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,B选项不正确;∵∠B+∠DAB=180°,∠B+∠BCD=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,C选项正确;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,D选项正确.故选:B.【点评】本题考查了平行四边形的判定方法;熟记平行四边形的判定方法是解决问题的关键.3.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R【分析】根据变量是改变的量,据此即可确定周长公式中的变量.【解答】解:圆的周长公式C=2πR中,变量是C和R,故选:D.【点评】本题考查了常量和变量的定义,明确变量是改变的量,常量是不变的量.4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为()A.53°B.37°C.47°D.123°【分析】设EC于AD相交于F点,利用直角三角形两锐角互余即可求出∠EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出∠BCE的度数.【解答】解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选:B.【点评】此题主要考查了平行四边形的性质和对顶角相等,根据题意得出∠E=90°和的对顶角相等是解决问题的关键.5.下列曲线中,表示y不是x的函数是()A.B.C.D.【分析】根据函数的意义即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 不正确.故选:B.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.6.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3B.3和2C.4和1D.1和4【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选:B.【点评】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE =∠AEB是解决问题的关键.7.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x 的增大而减小.8.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1B.y=2x﹣2C.y=2x+1D.y=2x+2【分析】根据函数图象平移的法则进行解答即可.【解答】解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x﹣1),即y=2x﹣2.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.9.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】将(2,﹣1)与(﹣3,4)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将(2,﹣1)、(﹣3,4)代入一次函数y=kx+b中得:,①﹣②得:5k=﹣5,解得:k=﹣1,将k=﹣1代入①得:﹣2+b=﹣1,解得:b=1,∴,∴一次函数解析式为y=﹣x+1不经过第三象限.故选:C.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.10.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【分析】由菱形ABCD中,OE∥DC,可得OE是△BCD的中位线,又由AD=6cm,根据菱形的性质,可得CD=6cm,再利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,∴OE=CD=3cm.故选:C.【点评】此题考查了菱形的性质以及三角形中位线的性质.注意证得OE是△BCD的中位线是解此题的关键.11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选:D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.12.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个【分析】根据含30°角所对的直角边等于斜边一半,然后依次判断直角三角形中能否找到一个角等于30°,从而判断出答案.【解答】解:设正方形的边长为a,在图①中,由折叠知,BC=BD=a,AB=a,在Rt△ABC中,根据勾股定理得,AC=a,∴CF=AF﹣AC=a,设CE=ED=x,则EF=a﹣x,在Rt△CEF中,(a﹣x)2+(a)2=x2,∴x=2﹣,∴CE=ED=2﹣,在Rt△BDE中,tan∠DBE==2﹣故∠DBE=∠CBE<30°,故△ECB,故不能满足它的一条直角边等于斜边的一半.在图②中,BC=a,AC=AE=a,故∠BAC=30°,从而可得∠CAD=∠EAD=30°,故能满足它的一条直角边等于斜边的一半.在图③中,AC=a,AB=a,故∠ABC=∠DBC≠30°,故不能满足它的一条直角边等于斜边的一半.在图④中,AE=a,AB=AD=a,故∠ABE=30°,∠EAB=60°,从而可得∠BAC=∠DAC=60°,∠ACB=30°,故能满足它的一条直角边等于斜边的一半.综上可得有2个满足条件.故选:C.【点评】此题主要考查了直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力,难度较大,注意细心、耐心思考.二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分.)13.在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第二象限.【分析】先根据正比例函数y=﹣3mx中,函数y的值随x值的增大而增大判断出﹣3m的符号,求出m的取值范围即可判断出P点所在象限.【解答】解:∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为:二.【点评】本题考查的是正比例函数的性质,根据题意判断出m的符号是解答此题的关键.14.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为(3,1).【分析】画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.【解答】解:∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),∴AB=CD=2﹣(﹣1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).【点评】本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.15.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是m<0.【分析】根据一次函数y=mx+3的图象经过第一、二、四象限判断出m的取值范围即可.【解答】解:∵一次函数y=mx+3的图象经过第一、二、四象限,∴m<0.故答案为:m<0.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.16.如果点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,则y1>y2.(填“>”,“<”或“=”)【分析】根据一次函数图象上点的坐标特征,将点P1、P2的坐标分别代入已知函数的解析式,分别求得y1、y2的值,然后再来比较一下y1、y2的大小.【解答】解:∵点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,∴y1=2×3﹣1=5,y2=2×2﹣1=3,∵5>3,∴y1>y2;故答案是:>.【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.解题时也可以根据一次函数的单调性进行解答.17.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,若∠BAF=58°,则∠DAE等于16度.【分析】根据翻折不变性可知,∠DAE=∠FAE,又因为∠BAF=58°且长方形的一个角为90度,可求出∠EAD的度数.【解答】解:根据翻折不变性设∠DAE=∠FAE=x度,又∵∠BAF=58°,∠BAD=90°,∴x+x+58°=90°,解得x=16∴∠EAD=16°.故答案为:16【点评】此题考查了翻折不变性,要注意运用长方形的性质.此题有诸多隐含条件,解答时要注意挖掘.18.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=5cm.【分析】根据菱形的对角线互相垂直平分求出对角线一半的长度,然后利用勾股定理列式计算即可得解.【解答】解:如图,∵菱形ABCD中,对角线长AC=8cm,BD=6cm,∴AO=AC=4cm,BO=BD=3cm,∵菱形的对角线互相垂直,∴在Rt△AOB中,AB===5cm.故答案为:5.【点评】本题主要考查了菱形的对角线互相垂直平分的性质,作出图形更形象直观且有助于理解.19.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是3.【分析】根据平行四边形的对边相等,可得CD=AB=4,又因为S▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长,进而利用勾股定理解得即可.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.在Rt△ADF中,DF=,故答案为3.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.20.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题共7个小题,满分74分.解答时请写出必要的演推过程21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.22.(12分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【分析】(1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y=0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),=×2×4=4,(3)S△AOB(4)x<﹣2.【点评】本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数与x轴与y轴的交点是解题的关键.23.(10分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.【分析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.【点评】本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB ≌△CFB,找出相等的线段.24.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?【分析】(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B 的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.【解答】解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为s=kt,则3k=60,解得k=20,所以,s=20t,设DE的解析式为s=mt+n,则,解得,所以,s=45t﹣45,由题意得,解得,所以,B出发小时后两人相遇.【点评】本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.25.(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.【分析】(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,(2)由矩形的性质可知四边形OCED的面积为矩形ABCD面积的一半,问题得解.【解答】解:(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OD=OC,∴四边形CODE是菱形;(2)∵AB=3,BC=4,∴矩形ABCD的面积=3×4=12,∵S △ODC =S 矩形ABCD =3,∴四边形OCED 的面积=2S △ODC =6.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE 是菱形是解此题的关键.26.(10分)如图,已知直线l 1:y =2x +1、直线l 2:y =﹣x +7,直线l 1、l 2分别交x 轴于B 、C 两点,l 1、l 2相交于点A .(1)求A 、B 、C 三点坐标;(2)求△ABC 的面积.【分析】(1)联立两直线解析式,解方程即可得到点A 的坐标,两直线的解析式令y =0,求出x 的值,即可得到点A 、B 的坐标;(2)根据三点的坐标求出BC 的长度以及点A 到BC 的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l 1:y =2x +1、直线l 2:y =﹣x +7联立得,, 解得,∴交点为A (2,5),令y =0,则2x +1=0,﹣x +7=0,解得x =﹣0.5,x =7,∴点B 、C 的坐标分别是:B (﹣0.5,0),C (7,0);(2)BC =7﹣(﹣0.5)=7.5,∴S △ABC =×7.5×5=.【点评】本题考查了两直线的相交问题,联立两直线的解析式,解方程即可得到交点的坐标,求直线与x轴的交点坐标,令y=0即可,求直线与y轴的交点坐标,令x=0求解.27.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.。
2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)
2018-2019学年度八年级(下)期中考试数学试卷一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. 任何数都有两个平方根B. 若a2=b2,则a=bC. √4=±2D. −8的立方根是−22.下列二次根式中,能与√3合并的是()A. √24B. √12C. √32D. √183.数轴上点A表示的数为-√105,点B表示的数为√77,则A、B之间表示整数的点有()A. 21个B. 20个C. 19个D. 18个4.不等式9-3x<x-3的解集在数轴上表示正确的是()A.B.C.D.5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 806.等式√x−1•√x+1=√x2−1成立的条件是()A. x>1B. x<−1C. x≥1D. x≤−17.下列各式计算正确的是()A. √102−82=√102−√82=10−8=2B. √(−4)×(−9)=√−4×√−9=(−2)×(−3)=6C. √14+19=√14+√19=12+13=56D. −√1916=−√2516=−458.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是√3和-1,则点C所对应的实数是()A. 1+√3B. 2+√3C. 2√3−1D. 2√3+19.在△ABC中,BC=8cm,AC=5cm,若△ABC的周长为xcm,则x应满足()A. 15<x<24B. 18<x<21C. 10<x<26D. 16<x<2610.如图,每个小正方形的边长都为1,A、B、C是小正方形各顶点,则∠ABC的度数为()A. 90∘B. 60∘C. 45∘D.30∘11. 已知关于x 的不等式组的{2x −a <2b +1x−a≥b 解集为3≤x <5,则ba 的值为( )A. −2B. −12C. −4D. −1412. 如图,ABCD 是一张矩形纸片,AB =3cm ,BC =4cm ,将纸片沿EF 折叠,点B 恰与点D 重合,则折痕EF 的长等于( )A. 3.25cmB. 3.5cmC. 3.6cmD. 3.75cm二、填空题(本大题共6小题,共18.0分) 13. 已知533=148877,那么5.33等于______.14. 已知x -2=√5,则代数式(x +2)2-8(x +2)+16的值等于______.15. 设√10的整数部分为a ,小数部分为b ,则b (√10+a )的值为______.16. 已知关于x 的不等式组{5−2x >1x−a≥0只有四个整数解,则实数a 的取值范是______. 17. 已知实数a 、b 、c 在数轴上的位置如图所示,化简代数式|a |-√(a +c)2+√(c −a)2-√−b 33的结果等于______.18. 观察下列式子:当n =2时,a =2×2=4,b =22-1=3,c =22+1=5 n =3时,a =2×3=6,b =32-1=8,c =32+1=10 n =4时,a =2×4=8,b =42-1=15,c =42+1=17…根据上述发现的规律,用含n (n ≥2的整数)的代数式表示上述特点的勾股数a =______,b =______,c =______.三、计算题(本大题共1小题,共12.0分)19. 实验中学计划从人民商场购买A 、B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.(1)求购买一块A 型小黑板、一块B 型小黑板各需多少元?(2)根据实验中学实际情况,需从人民商场购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号的小黑板总费用不超过5240元,并且购买A 型小黑板的数量至少占总数量的13,请你通过计算,求出购买A 、B 两种型号的小黑板有哪几种方案?四、解答题(本大题共5小题,共54.0分)20. (1)已知a 、b 为实数,且√1+a +(1-b )√1−b =0,求a 2017-b 2018的值;(2)若x 满足2(x 2-2)3-16=0,求x 的值.21. 计算下列各题(1)√−0.1253+√3116+3(78−1)2-|−112| (2)(√7+√3)(√7−√3)2 (3)(2√27+14√48-6√13)÷√1222. (1)解不等式组:{1−x+12≤x +2x(x −1)>(x +3)(x −3)并把解集在数轴上表示出来. (2)解不等式组:{3x −4(x −2)≥3x 2−1<2x−1323. 如图,四边形ABCD 中,AD =4,AB =2√5,BC =8,CD =10,∠BAD =90°.(1)求证:BD ⊥BC ;(2)计算四边形ABCD 的面积.24. 如图,在⊙O 中,DE 是⊙O 的直径,AB 是⊙O 的弦,AB 的中点C 在直径DE 上.已知AB =8cm ,CD =2cm (1)求⊙O 的面积;(2)连接AE ,过圆心O 向AE 作垂线,垂足为F ,求OF的长.答案和解析1.【答案】D【解析】解:A、负数没有平方根,0的平方根是0,只有正数有两个平方根,故本选项错误;B、当a=2,b=-2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、-8的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出-8的立方根即可判断D.本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.2.【答案】B【解析】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查同类二次根式的概念,正确对根式进行化简是关键.3.【答案】C【解析】【解答】解:设A、B之间的整数是x,那么-<x<,而-11<-<-10,8<<9,∴-11<x<9,AB之间的整数有19个.故选:C.【分析】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.先设AB之间的整数是x,于是-<x<,而-11<-<-10,8<<9,从而可求-11<x<9,进而可求A、B之间整数的个数.4.【答案】B【解析】解:移项,得:-3x-x<-3-9,合并同类项,得:-4x<-12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.直接解不等式,进而在数轴上表示出解集.此题主要考查了在数轴上表示不等式的解集以及解不等式,正确解不等式是解题关键.5.【答案】C【解析】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE,=AB2-×AE×BE=100-×6×8=76.故选:C.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6.【答案】C【解析】解:∵、有意义,∴,∴x≥1.故选:C.根据二次根式有意义的条件,即可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.7.【答案】D【解析】解:A、原式==6,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式==,所以C选项错误;D、原式=-=-,所以D选项正确.故选:D.根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】D【解析】解:设点C所对应的实数是x.则有x-=-(-1),解得x=2+1.故选D.设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.【答案】D【解析】解:设AB长度为acm,∵根据三角形的三边关系定理得:8-5<a<8+5,∴3<a<13,∴8+5+3<a+8+5<13+8+5,即16<a+8+5<26,∵△ABC的周长为xcm,∴16<x<26,故选:D.根据三角形的三边关系定理求出边AB的范围,再根据不等式的性质进行变形,即可得出选项.本题考查了三角形的三边关系定理,能求出边AB的范围是解此题的关键.10.【答案】C【解析】解:由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形,∴∠ABC=45°,故选:C.利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.11.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.12.【答案】D【解析】解:连接DF、BD、EB,由折叠的性质可知,FD=FB,在Rt△DCF中,DF2=(4-DF)2+32,解得,DF=cm,由折叠的性质可得,∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴平行四边形BFDE是菱形,在Rt△BCD中,BD═=5,∵S菱形BFDE=EF×BD=BF×CD,∴×EF×5=×3,解得EF=3.75,故选:D.根据折叠的性质得到FD=FB,根据勾股定理求出BF,证明平行四边形BFDE 是菱形,根据菱形的面积公式计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】148.877【解析】解:∵533=148877,∴5.33=148.877,故答案为:148.877.直接利用有理数的乘方运算性质得出答案.此题主要考查了有理数的乘方运算,正确得出小数点移动位数是解题关键.14.【答案】5【解析】解:当x-2=时,原式=[(x+2)-4]2=(x-2)2=5故答案为:5根据二次根式的运算法则以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【答案】1【解析】解:∵3<<4,∴a=3,b=-3,∴b(+a)=(-3)(+3)=10-9=1,故答案为:1.先求出的范围,求出a、b的值,代入根据平方差公式求出即可.本题考查了估算无理数的大小,平方差公式的应用,解此题的关键是求出a、b的值.16.【答案】-3<a≤-2【解析】解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:-2,-1,0,1.则实数a的取值范围是:-3<a≤-2.故答案是:-3<a≤-2.首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】a+b-2c【解析】解:原式=|a|-|a+c|+|c-a|+b,=a-(a+c)+(a-c)+b,=a-a-c+a-c+b,=a+b-2c.故答案为:a+b-2c.根据=|a|进行化简,然后再利用绝对值的性质化简,再合并同类项即可.此题主要考查了实数运算,关键是掌握二次根式的性质和绝对值的性质.18.【答案】2n;n2-1;n2+1【解析】解:∵当n=2时,a=2×2=4,b=22-1=3,c=22+1=5 n=3时,a=2×3=6,b=32-1=8,c=32+1=10n=4时,a=2×4=8,b=42-1=15,c=42+1=17…∴勾股数a=2n ,b=n 2-1,c=n 2+1.故答案为:2n ,n 2-1,n 2+1.由n=2时,a=2×2=4,b=22-1=3,c=22+1=5;n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n ,b=n 2-1,c=n 2+1,满足勾股数.此题主要考查了数据变化规律,得出a 与b 以及a 与c 的关系是解题关键. 19.【答案】解:(1)设一块A 型小黑板x 元,一块B 型小黑板y 元.则{5x +4y =820x−y=20,解得{y =80x=100.答:一块A 型小黑板100元,一块B 型小黑板80元.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块则{100m +80(60−m)≤5240m ≥13×60, 解得20≤m ≤22,又∵m 为正整数∴m =20,21,22则相应的60-m =40,39,38∴共有三种购买方案,分别是方案一:购买A 型小黑板20块,购买B 型小黑板40块;方案二:购买A 型小黑板21块,购买B 型小黑板39块;方案三:购买A 型小黑板22块,购买B 型小黑板38块.方案一费用为100×20+80×40=5200元; 方案二费用为100×21+80×39=5220元; 方案三费用为100×22+80×38=5240元. ∴方案一的总费用最低,即购买A 型小黑板20块,购买B 型小黑板40块总费用最低,为5200元【解析】(1)设购买一块A 型小黑板需要x 元,一块B 型为y 元,根据等量关系:购买一块A 型小黑板比买一块B 型小黑板多用20元;购买5块A 型小黑板和4块B 型小黑板共需820元;可列方程组求解.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块,根据需从公司购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,列出不等式组求解. 20.【答案】解:(1)∵a ,b 为实数,且√1+a +(1-b )√1−b =0,∴1+a =0,1-b =0,解得a =-1,b =1,∴a 2017-b 2018=(-1)2017-12018=(-1)-1=-2;(2)2(x 2-2)3-16=0,2(x 2-2)3=16,(x 2-2)3=8,x 2-2=2,x 2=4,x =±2.【解析】(1)根据+(1-b )=0和二次根式有意义的条件,可以求得a 、b 的值,从而可以求得所求式子的值; (2)根据立方根的定义求出x 2-2=2,再根据平方根的定义即可解答本题. 本题考查非负数的性质:算术平方根,整式的混合运算-化简求值,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)√−0.1253+√3116+3(78−1)2-|−112| =-0.5+74-12-32=-34;(2)(√7+√3)(√7−√3)2=(√7+√3)×(√7-√3)×(√7-√3)=4√7-4√3;(3)(2√27+14√48-6√13)÷√12 =(6√3+√3-2√3)÷2√3=52. 【解析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用平方差公式计算得出答案;(3)首先化简二次根式,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1){1−x+12≤x +2①x(x −1)>(x +3)(x −3)②, 解不等式①得x ≥-1,解不等式②得x <9,故不等式的解集为-1≤x <9,把解集在数轴上表示出来为:(2){3x −4(x −2)≥3①x 2−1<2x−13②, 解不等式①得x ≤5,解不等式②得x >-4,故不等式的解集为-4<x ≤5.【解析】(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可; (2)求出两个不等式的解集的公共部分即可.考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.【答案】解:(1)∵AD =4,AB =2√5,∠BAD =90°, ∴BD =√AB 2+AD 2=6.又BC =8,CD =10,∴BD 2+BC 2=CD 2,∴BD ⊥BC ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积 =12×4×2√5+12×6×8=4√5+24.【解析】(1)先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明BD ⊥BC ;(2)根据图形得到四边形ABCD 的面积=2个直角三角形的面积和即可求解. 此题主要考查了勾股定理和勾股定理的逆定理,把四边形的面积分解成两个直角三角形的面积来求是解本题的关键所在.24.【答案】解:(1)连接OA ,如图1所示∵C 为AB 的中点,AB =8cm ,∴AC =4cm又∵CD =2cm设⊙O 的半径为r ,则(r -2)2+42=r 2解得:r =5∴S =πr 2=π×25=25π(2)OC =OD -CD =5-2=3EC =EO +OC =5+3=8∴EA =√AC 2+EC 2=√42+82=4√5∴EF =EA2=4√52=2√5 ∴OF =√EO 2−EF 2=√25−20=√5【解析】(1)连接OA ,根据AB=8cm ,CD=2cm ,C 为AB 的中点,设半径为r ,由勾股定理列式即可求出r ,进而求出面积.(2)在Rt △ACE 中,已知AC 、EC 的长度,可求得AE 的长,根据垂径定理可知:OF ⊥AE ,FE=FA ,利用勾股定理求出OF 的长.本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.。
2018-2019学年八年级(下)期中数学试卷1 解析版
2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。
2018-2019学年度第二学期八年级数学期中考试题及参考答案
学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。
宜昌市八年级下学期数学期中考试试卷
宜昌市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)三角形的三边长a、b、c满足,则此三角形是()A . 直角三角形B . 锐角三角形C . 钝角三角形D . 等腰三角形2. (2分) (2020八下·金华期中) 在下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .3. (2分) (2019八下·汉阳期中) 一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A . 88°,108°,88°B . 88°,104°,108°C . 88°,92°,92°D . 88°,92°,88°4. (2分) (2019八下·麟游期末) 下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A .B .C .D .5. (2分)如图,为测量河两岸相对两电线杆A、B间的距离,在距A点16m的C处(AC⊥AB),测得∠ACB=52°,则A、B之间的距离应为()A . 16sin52°mB . 16cos52°mC . 16tan52°mD . m6. (2分)在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有()A . 3B . 4C . 5D . 67. (2分)如图,以两条直线l1 , l2的交点坐标为解的方程组是()A .B .C .D .8. (2分)如图,直线y=kx+b交坐标轴于两点,则不等式kx+b<0的解集是()A . x>-2B . x>3C . x<-2D . x<39. (2分)(2015·宁波模拟) 如图,有一张△ABC纸片,AC=8,∠C=30°,点E在AC边上,点D在边AB上,沿着DE对折,使点A落在BC边上的点F处,则CE的最大值为()A .B .C . 4D .二、填空题 (共8题;共17分)10. (1分)若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集是________.11. (1分)(2017·苏州模拟) 如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D 分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′________.12. (1分) (2019八下·厦门期末) 一个水库的水位在最近的10小时内将持续上涨.如表记录了3小时内5个时间点对应的水位高度,其中t表示时间,y表示对应的水位高度.根据表中的数据,请写出一个y关于t的函数解析式合理预估水位的变化规律.该函数解析式是:________.(不写自变量取值范围)t/小时00.51 2.53y/米3 3.1 3.2 3.5 3.613. (1分) (2017九上·云梦期中) 如图,点B的坐标是(0,1),AB⊥y轴,垂足为B,点A在直线y=x,将△ABO绕点A顺时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y= x上,再将△AB1O1绕点B1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,则点O100的纵坐标是________.14. (1分)如图,在四边形ABCD中,已知AB=CD,再添加一个条件________(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)15. (1分) (2019八下·镇江期中) 平行四边形ABCD中,∠A=40°,则∠D=________度16. (1分) (2017八下·扬州期中) 如图,在□ABCD中,BE、CF分别是∠ABC和∠BCD的平分线,BE、CF 分别与AD相交于点E、F,AB=6,BC=10,则EF=________.17. (10分)(2017·莲池模拟) 如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.(1)求证:△AOB≌△AOD;(2)试判定四边形ABOD是什么四边形,并说明理由.三、解答题 (共9题;共91分)18. (5分) (2017八下·路北期中) 如图,要从电线杆离地面4m处向地面拉一条钢索,若地面钢索固定点A 到电线杆底部B的距离为2m,求钢索的长度.19. (5分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF。
湖北省宜昌市八年级下学期数学期中考试试卷
湖北省宜昌市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2019八下·许昌期中) 下列二次根式是最简二次根式的是()A .B .C .D .2. (3分)用配方法解方程2x 2 + 3 = 7x时,方程可变形为()A . (x-)2=B . (x-)2=C . (x-)2=D . (x-)2=3. (3分) (2018九上·东台期中) 一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A . 4B . 5C . 6D . 74. (3分)设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣.其中正确的是()A . ①②④B . ①③④C . ②③D . ②④5. (3分) (2017八下·宁波月考) 下列给出的四个命题:①若 ,则;②若,则;③ ;④若方程的两个实数根中有且只有一个根为0,那么 .其中是真命题是()A . ①②B . ②③C . ②④D . ③④6. (3分)已知三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一个公共根,则++的值为()A . 0B . 1C . 2D . 37. (3分)(2017·通辽) 空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A . 折线图B . 条形图C . 直方图D . 扇形图8. (3分)下列说法不正确的是()A . 一组邻边相等的矩形是正方形B . 有一个角是直角的平行四边形是正方形C . 对角线互相垂直的矩形是正方形D . 对角线相等的菱形是正方形9. (3分) (2019九上·惠州期末) 某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A . 56元B . 57元C . 59元D . 57元或59元10. (3分)小伟5次引体向上的测试成绩(单位:个)分别为:16、18、20、18、18,对此成绩描述错误的是A . 平均数为18B . 众数为18C . 方差为0D . 极差为4二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为________.12. (4分)(2016·西安模拟) 等腰三角形腰长为2cm,底边长为 cm,则顶角为________,面积为________.13. (4分) (2020九上·泰兴期末) 人数相同的九年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:= 90,S2甲=1.234,S2乙=2.001,则成绩较为稳定的班级是________(填甲班或乙班).14. (4分)在平行四边形ABCD中,已知AD=10cm,AB垂直于BD,点O是两条对角线的交点,OD=4cm,则AB=________cm.15. (4分)已知a,b为实数,且满足b2+ +36=12b,则a=________ ,b=________ .16. (4分)若等腰三角形两边为4,10,则底角的正弦值是________三、解答题(共66分) (共8题;共66分)17. (8分) (2018九上·北京期末) 计算:3tan30°+cos245°-2sin60°.18. (8分)解方程2x2﹣5x+3=0.19. (6分)(2017·泸州模拟) 如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.20. (8.0分)(2018·福建模拟) 某校为了调查学生书写规范汉字的能力,从七年级1000名学生中随机抽选了部分学生参加测试,并根据测试成绩绘制了如下频数分布表和扇形统计图(尚不完整)组别成绩x分频数(人数)第1组x<604第2组60≤x<70a第3组70≤x<8020第4组80≤x<90b第5组90≤x<10010请结合图表完成下列各题(1)填空:表中a的值为________,b的值为________,扇形统计图中表示第1组所对应的圆心角度数为________.(2)若测试成绩不低于80分为优秀,请你估计从该校七年级学生中随机抽查一个学生,他是规范汉字书写优秀的概率是________;(3)若测试成绩在60~80分之间(含60分,不含80分)为合格,请你估计则该校七年级学生规范汉字书写不合格的人数.21. (8分) (2018九上·江苏月考) 已知:关于x的方程.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求m的值.22. (8分)如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.23. (8分) (2017九上·南涧期中) 现有一个产品销售点在经销某著名特色小吃时发现:如果每箱产品赢利10元,每天可销售50箱,若每箱产品涨价1元,日销量将减少2箱.(1)现该销售点为使每天赢利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元?才能使每天的盈利最高?24. (12分) (2019八上·江津期中) 如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.参考答案一、选择题(每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共66分) (共8题;共66分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、。
湖北省宜昌市八年级下学期数学期中考试试卷
湖北省宜昌市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018八下·邯郸开学考) 下列各式中;④ ;⑤ ;⑥,一定是二次根式的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2017八下·南江期末) 在同一平面直角坐标系中,函数和(<0)的图象大致是().A .B .C .D .3. (2分)(2018·阿城模拟) 如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A .B .C .D .4. (2分) (2018八下·桐梓月考) 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A . 钝角三角形B . 锐角三角形C . 直角三角形D . 等边三角形5. (2分)如图,矩形ABCD中,点E是BC边上一点,连接AE,将△ABE向右平移得到△DCF,连接AF.若四边形AEFD为菱形,AF=4 ,BE:EC=3:2,则AD长为()A . 3B .C . 5D .6. (2分)(2018·温州模拟) 小明在某次投篮中刚好把球打到篮板的点D处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB= 米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()A . 2.7米B . 3.0米C . 3.2米D . 3.4米7. (2分) (2017八下·兴隆期末) 己知直线1:y=(m﹣3)x+m+2经过第一、二、四象限,则m的取值范围是()A .B .C .D .8. (2分)一次函数y=k x+b(k≠0)与反比例函数y=(k≠0)的图像在同一直角坐标系下的大致图像如图所示,则k、b的取值范围是()A . k>0,b>0B . k>0,b<0C . k<0,b<0D . k<0,b>09. (2分) (2019八上·遵义期末) 如图,点 B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用 m 的代数式表示△ABE 的面积()A .B . mC . mD . 3m10. (2分)(2020·松江模拟) 如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角,它们重叠部分(阴影部分)的面积是1.5,那么的值为()A .B .C .D .11. (2分) (2019八下·邓州期中) 如图,甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图中1,分别表示甲、乙两人前往目的地所走的路程S(千米)随时间(分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲、乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的是()A . ①②B . ③④C . ①③④D . ②③④12. (2分) (2019八上·无锡期中) 若等腰三角形的两边长为3和4,则这个三角形的周长为()A . 10B . 11C . 12D . 10或11二、填空题 (共6题;共7分)13. (1分) (2019八下·长春月考) 对于正比例函数,若的值随的值增大而减小,则的值为________.14. (1分) (2019八上·兰州期末) 若代数式在实数范围内有意义,则x的取值范围是________。
人教版2018-2019学年八年级下册期中数学考试试卷附答案
2018-2019学年八年级(下)期中数学试卷一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来每小题3分,满分36分)1.如图,下面不能判断是平行四边形的是()A.∠B=∠D,∠BAD=∠BCDB.AB∥CD,AD=BCC.∠B+∠DAB=180°,∠B+∠BCD=180°D.AB∥CD,AB=CD2.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R3.直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为()A.53°B.37°C.47°D.123°5.下列曲线中,表示y不是x的函数是()A.B.C.D.6.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3B.3和2C.4和1D.1和47.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣48.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1B.y=2x﹣2C.y=2x+1D.y=2x+29.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm12.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分.)13.在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第象限.14.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为.15.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是.16.如果点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,则y1y2.(填“>”,“<”或“=”)17.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,若∠BAF=58°,则∠DAE等于度.18.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.19.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.20.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为.三、解答题:(本大题共7个小题,满分74分.解答时请写出必要的演推过程21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(12分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.23.(10分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.24.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?25.(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.26.(10分)如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.27.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来每小题3分,满分36分)1.如图,下面不能判断是平行四边形的是()A.∠B=∠D,∠BAD=∠BCDB.AB∥CD,AD=BCC.∠B+∠DAB=180°,∠B+∠BCD=180°D.AB∥CD,AB=CD【分析】由平行四边形的判定方法得出选项A、C、D正确,选项B不正确,即可得出结论.【解答】解:∵∠B=∠D,∠BAD=∠BCD,∴四边形ABCD是平行四边形,A选项正确;∵AB∥CD,AD=BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,B选项不正确;∵∠B+∠DAB=180°,∠B+∠BCD=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,C选项正确;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,D选项正确.故选:B.【点评】本题考查了平行四边形的判定方法;熟记平行四边形的判定方法是解决问题的关键.2.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R【分析】根据变量是改变的量,据此即可确定周长公式中的变量.【解答】解:圆的周长公式C=2πR中,变量是C和R,故选:D.【点评】本题考查了常量和变量的定义,明确变量是改变的量,常量是不变的量.3.直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】令x=0,求出y的值,即可求出与y轴的交点坐标.【解答】解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为()A.53°B.37°C.47°D.123°【分析】设EC于AD相交于F点,利用直角三角形两锐角互余即可求出∠EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出∠BCE的度数.【解答】解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选:B.【点评】此题主要考查了平行四边形的性质和对顶角相等,根据题意得出∠E=90°和的对顶角相等是解决问题的关键.5.下列曲线中,表示y不是x的函数是()A.B.C.D.【分析】根据函数的意义即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 不正确.故选:B.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.6.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3B.3和2C.4和1D.1和4【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选:B.【点评】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE =∠AEB是解决问题的关键.7.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x 的增大而减小.8.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1B.y=2x﹣2C.y=2x+1D.y=2x+2【分析】根据函数图象平移的法则进行解答即可.【解答】解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x﹣1),即y=2x﹣2.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.9.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】将(2,﹣1)与(﹣3,4)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将(2,﹣1)、(﹣3,4)代入一次函数y=kx+b中得:,①﹣②得:5k=﹣5,解得:k=﹣1,将k=﹣1代入①得:﹣2+b=﹣1,解得:b=1,∴,∴一次函数解析式为y=﹣x+1不经过第三象限.故选:C.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.10.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【分析】由菱形ABCD中,OE∥DC,可得OE是△BCD的中位线,又由AD=6cm,根据菱形的性质,可得CD=6cm,再利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,∴OE=CD=3cm.故选:C.【点评】此题考查了菱形的性质以及三角形中位线的性质.注意证得OE是△BCD的中位线是解此题的关键.11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选:D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.12.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个【分析】根据含30°角所对的直角边等于斜边一半,然后依次判断直角三角形中能否找到一个角等于30°,从而判断出答案.【解答】解:设正方形的边长为a,在图①中,由折叠知,BC=BD=a,AB=a,在Rt△ABC中,根据勾股定理得,AC=a,∴CF=AF﹣AC=a,设CE=ED=x,则EF=a﹣x,在Rt△CEF中,(a﹣x)2+(a)2=x2,∴x=2﹣,∴CE=ED=2﹣,在Rt△BDE中,tan∠DBE==2﹣故∠DBE=∠CBE<30°,故△ECB,故不能满足它的一条直角边等于斜边的一半.在图②中,BC=a,AC=AE=a,故∠BAC=30°,从而可得∠CAD=∠EAD=30°,故能满足它的一条直角边等于斜边的一半.在图③中,AC=a,AB=a,故∠ABC=∠DBC≠30°,故不能满足它的一条直角边等于斜边的一半.在图④中,AE=a,AB=AD=a,故∠ABE=30°,∠EAB=60°,从而可得∠BAC=∠DAC=60°,∠ACB=30°,故能满足它的一条直角边等于斜边的一半.综上可得有2个满足条件.故选:C.【点评】此题主要考查了直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力,难度较大,注意细心、耐心思考.二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分.)13.在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第二象限.【分析】先根据正比例函数y=﹣3mx中,函数y的值随x值的增大而增大判断出﹣3m的符号,求出m的取值范围即可判断出P点所在象限.【解答】解:∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为:二.【点评】本题考查的是正比例函数的性质,根据题意判断出m的符号是解答此题的关键.14.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为(3,1).【分析】画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.【解答】解:∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),∴AB=CD=2﹣(﹣1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).【点评】本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.15.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是m<0.【分析】根据一次函数y=mx+3的图象经过第一、二、四象限判断出m的取值范围即可.【解答】解:∵一次函数y=mx+3的图象经过第一、二、四象限,∴m<0.故答案为:m<0.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.16.如果点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,则y1>y2.(填“>”,“<”或“=”)【分析】根据一次函数图象上点的坐标特征,将点P1、P2的坐标分别代入已知函数的解析式,分别求得y1、y2的值,然后再来比较一下y1、y2的大小.【解答】解:∵点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,∴y1=2×3﹣1=5,y2=2×2﹣1=3,∵5>3,∴y1>y2;故答案是:>.【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.解题时也可以根据一次函数的单调性进行解答.17.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,若∠BAF=58°,则∠DAE等于16度.【分析】根据翻折不变性可知,∠DAE=∠FAE,又因为∠BAF=58°且长方形的一个角为90度,可求出∠EAD的度数.【解答】解:根据翻折不变性设∠DAE=∠FAE=x度,又∵∠BAF=58°,∠BAD=90°,∴x+x+58°=90°,解得x=16∴∠EAD=16°.故答案为:16【点评】此题考查了翻折不变性,要注意运用长方形的性质.此题有诸多隐含条件,解答时要注意挖掘.18.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=5cm.【分析】根据菱形的对角线互相垂直平分求出对角线一半的长度,然后利用勾股定理列式计算即可得解.【解答】解:如图,∵菱形ABCD中,对角线长AC=8cm,BD=6cm,∴AO=AC=4cm,BO=BD=3cm,∵菱形的对角线互相垂直,∴在Rt△AOB中,AB===5cm.故答案为:5.【点评】本题主要考查了菱形的对角线互相垂直平分的性质,作出图形更形象直观且有助于理解.19.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是3.【分析】根据平行四边形的对边相等,可得CD=AB=4,又因为S▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长,进而利用勾股定理解得即可.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.在Rt△ADF中,DF=,故答案为3.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.20.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题共7个小题,满分74分.解答时请写出必要的演推过程21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.22.(12分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【分析】(1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y=0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),=×2×4=4,(3)S△AOB(4)x<﹣2.【点评】本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数与x轴与y轴的交点是解题的关键.23.(10分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.【分析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.【点评】本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB ≌△CFB,找出相等的线段.24.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?【分析】(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B 的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.【解答】解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为s=kt,则3k=60,解得k=20,所以,s=20t,设DE的解析式为s=mt+n,则,解得,所以,s=45t﹣45,由题意得,解得,所以,B出发小时后两人相遇.【点评】本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.25.(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.【分析】(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,(2)由矩形的性质可知四边形OCED的面积为矩形ABCD面积的一半,问题得解.【解答】解:(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OD=OC,∴四边形CODE是菱形;(2)∵AB=3,BC=4,∴矩形ABCD的面积=3×4=12,∵S △ODC =S 矩形ABCD =3,∴四边形OCED 的面积=2S △ODC =6.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE 是菱形是解此题的关键.26.(10分)如图,已知直线l 1:y =2x +1、直线l 2:y =﹣x +7,直线l 1、l 2分别交x 轴于B 、C 两点,l 1、l 2相交于点A .(1)求A 、B 、C 三点坐标;(2)求△ABC 的面积.【分析】(1)联立两直线解析式,解方程即可得到点A 的坐标,两直线的解析式令y =0,求出x 的值,即可得到点A 、B 的坐标;(2)根据三点的坐标求出BC 的长度以及点A 到BC 的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l 1:y =2x +1、直线l 2:y =﹣x +7联立得,, 解得,∴交点为A (2,5),令y =0,则2x +1=0,﹣x +7=0,解得x =﹣0.5,x =7,∴点B 、C 的坐标分别是:B (﹣0.5,0),C (7,0);(2)BC =7﹣(﹣0.5)=7.5,∴S △ABC =×7.5×5=.【点评】本题考查了两直线的相交问题,联立两直线的解析式,解方程即可得到交点的坐标,求直线与x轴的交点坐标,令y=0即可,求直线与y轴的交点坐标,令x=0求解.27.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年湖北省宜昌市东部八年级(下)期中数学试卷一、选择题(每题3分,共45分)1.(3分)若二次根式有意义,则x的取值范围为()A.x≥2 B.x≠2 C.x>2 D.x≥02.(3分)下列二次根式中,不能与合并的是()A.B.C. D.3.(3分)下列各式中属于最简二次根式的是()A. B.C. D.4.(3分)若,则()A.b>3 B.b<3 C.b≥3 D.b≤35.(3分)下列各组线段中,能够组成直角三角形的是()A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,56.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.全等三角形的对应边相等7.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,则AB=()A.4 B.C.D.8.(3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°9.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC10.(3分)八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆11.(3分)若一直角三角形的两边为5和12,则它第三边的长为()A.13 B.C.13或D.13或12.(3分)平行四边形ABCD中,AB=1,BC=,AC=2,则连接四边形ABCD四边中点所成的四边形是()A.平行四边形B.菱形C.矩形D.正方形13.(3分)如图是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”这位数学家是()A.毕达哥拉斯B.祖冲之C.赵爽D.华罗庚14.(3分)如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的()A.B.C.D.15.(3分)如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4;②如果S4>S2,则S3>S1;③若S3=2S1,则S4=2S2;④若S1﹣S2=S3﹣S4,则P 点一定在对角线BD上.其中正确的有()A.①③B.②④C.②③D.①④二、解答题(共9题,共75分)16.(6分)计算:(1)4+﹣(2)×÷17.(6分)计算:(1)(3+)(3﹣)(2)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)018.(7分)先化简,再求值:(1﹣)÷(a﹣),其中,a=2+.19.(7分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.20.(8分)如图,菱形ABCD的较短对角线BD为4,∠ADB=60°,E、F分别在AD,CD上,且∠EBF=60°.(1)求证:△ABE≌△DBF;(2)判断△BEF的形状,并说明理由.21.(8分)在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A、B,在公路另一侧的开阔地带选取一观测点C,在C处测得点A位于C点的南偏西45°方向,且距离为100米,又测得点B位于C点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒,请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数)22.(10分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为.23.(11分)如图,在矩形ABCD中,AB=8cm,BC=20cm,E是AD的中点.动点P从A点出发,沿A﹣B﹣C路线以1cm/秒的速度运动,运动的时间为t秒.将△APE以EP为折痕折叠,点A的对应点记为M.(1)如图(1),当点P在边AB上,且点M在边BC上时,求运动时间t;(2)如图(2),当点P在边BC上,且点M也在边BC上时,求运动时间t;(3)直接写出点P在运动过程中线段BM长的最小值.24.(12分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.2018-2019学年湖北省宜昌市东部八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共45分)1.(3分)若二次根式有意义,则x的取值范围为()A.x≥2 B.x≠2 C.x>2 D.x≥0【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:A.2.(3分)下列二次根式中,不能与合并的是()A.B.C. D.【解答】解:A、,故A能与合并;B 、,故B 能与合并;C 、,故C 不能与合并;D 、,故D 能与合并;故选:C .3.(3分)下列各式中属于最简二次根式的是( )A .B .C .D .【解答】解:因为B 、=;C 、=2;D 、=;所以,这三个选项都不是最简二次根式.故选A .4.(3分)若,则( )A .b >3B .b <3C .b ≥3D .b ≤3【解答】解:∵,∴3﹣b ≥0,解得b ≤3.故选D .5.(3分)下列各组线段中,能够组成直角三角形的是()A .6,7,8B .5,6,7C .4,5,6D .3,4,5【解答】解:A 、∵62+72=36+49=85;82=64,∴62+72≠82,则此选项线段长不能组成直角三角形;B 、∵52+62=25+36=61;72=49,∴52+62≠72,则此选项线段长不能组成直角三角形;C 、∵42+52=16+25=41;62=36,∴42+52≠62,则此选项线段长不能组成直角三角形;D 、∵32+42=9+16=85;52=25,∴32+42=52,则此选项线段长能组成直角三角形;故选:D.6.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.全等三角形的对应边相等【解答】解:A、逆命题为若a2=b2,则a=b,此逆命题为假命题;B、逆命题为ab>0,则a>0,b>0,此逆命题为假命题;C、逆命题为锐角三角形是等边三角形,此逆命题为假命题;D、逆命题为对应边相等的三角形为全等三角形,此逆命题为真命题.故选:D.7.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,则AB=()A.4 B.C.D.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,BC=2,∴BC=AB∴AB=2BC=2×2=4,故选:A.8.(3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°【解答】解:两组对角分别相等的四边形是平行四边形,故B不是;当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A不是;当三个内角度数依次是88°,92°,92°,第四个角是88°,而C中相等的两个角不是对角故C错,D中满足两组对角分别相等,因而是平行四边形.故选:D.9.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.10.(3分)八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆【解答】解:∵矩形的对角线互相平分且相等,∴一条对角线用了49盆红花,中间一盆为对角线交点,49﹣1=48,∴还需要从花房运来红花48盆;故选:A.11.(3分)若一直角三角形的两边为5和12,则它第三边的长为()A.13 B.C.13或D.13或【解答】解:由题意得:当所求的边是斜边时,则有=13;当所求的边是直角边时,则有=.故选:D.12.(3分)平行四边形ABCD中,AB=1,BC=,AC=2,则连接四边形ABCD四边中点所成的四边形是()A.平行四边形B.菱形C.矩形D.正方形【解答】解:∵平行四边形ABCD中,AB=1,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴四边形ABCD为矩形,∴连接矩形ABCD的四边中点所成的四边形是菱形,故选:B.13.(3分)如图是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”这位数学家是()A.毕达哥拉斯B.祖冲之C.赵爽D.华罗庚【解答】解:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.故选:C.14.(3分)如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的()A.B.C.D.【解答】解:(1)当正方形绕点OA1B1C1O绕点O转动到其边OA1,OC1分别于正方形ABCD的两条对角线重合这一特殊位置时,显然S两个正方形重叠部分=S正方形ABCD,(2)当正方形绕点OA1B1C1O绕点O转动到如图位置时.∵四边形ABCD为正方形,∴∠OAB=∠OBF=45°,OA=OBBO⊥AC,即∠AOE+∠EOB=90°,又∵四边形A′B′C′O为正方形,∴∠A′OC′=90°,即∠BOF+∠EOB=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,∴△AOE≌△BOF(ASA),∵S两个正方形重叠部分=S△BOE+S△BOF,又S△AOE=S△BOF,∴S两个正方形重叠部分=S△ABO=S正方形ABCD.综上所知,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.故选:C.15.(3分)如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4;②如果S4>S2,则S3>S1;③若S3=2S1,则S4=2S2;④若S1﹣S2=S3﹣S4,则P 点一定在对角线BD上.其中正确的有()A.①③B.②④C.②③D.①④【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,则S1=ABh1,S2=BCh2,S3=CDh3,S4=ADh4,∵ABh1+CDh3=AB•h AB,BCh2+ADh4=BC•h BC,=AB•h AB=BC•h BC又∵S平行四边形ABCD∴S2+S4=S1+S3,故①正确;根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;∵S1﹣S2=S3﹣S4,∴S1+S4=22+S3=S平行四边形ABCD,如图所示:此时S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即P点一定在对角线BD上,∴④正确;故选:D.二、解答题(共9题,共75分)16.(6分)计算:(1)4+﹣(2)×÷【解答】解:(1)原式=4+3﹣2=5;(2)原式==15.17.(6分)计算:(1)(3+)(3﹣)(2)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)0【解答】解:(1)原式=9﹣5=4;(2)原式=+2+1﹣2﹣1=.18.(7分)先化简,再求值:(1﹣)÷(a﹣),其中,a=2+.【解答】解:原式=÷=×=,当a=2+时,原式==.19.(7分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥CD,OA=OC,∴∠EAO=∠FCO,在△AOE和△COF中∴△AOE≌△COF(ASA),∴OE=OF.20.(8分)如图,菱形ABCD的较短对角线BD为4,∠ADB=60°,E、F分别在AD,CD上,且∠EBF=60°.(1)求证:△ABE≌△DBF;(2)判断△BEF的形状,并说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴AD=AB,∵∠ADB=60°,∴△ADB是等边三角形,△BDC是等边三角形,∴AB=BD,∠ABD=∠A=∠BDC=60°,∵∠ABD=∠EBF=60°,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF.(2)解:结论:△BEF是等边三角形.理由:∵△ABE≌△DBF,∴BE=BF,∵∠EBF=60°,∴△EBF是等边三角形.21.(8分)在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A、B,在公路另一侧的开阔地带选取一观测点C,在C处测得点A位于C点的南偏西45°方向,且距离为100米,又测得点B位于C点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒,请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数)【解答】解:如图,作CD⊥AB于点D.∵在Rt△ADC中,∠ACD=45°,AC=100,∴CD=AC•cos∠ACD=AC=100,∴AD=CD=100.∵在Rt△CDB中,∠BCD=60°,∴∠CBD=30°,∴BD=CD=100.∴AB=AD+BD=100+100=100(+1)≈273.又∵小轿车经过AB路段用时13秒,∴小轿车的速度为=21米/秒.…………(5分)而该路段限速为60千米/时≈16.67米/秒,∵21>16.67,∴这辆小轿车超速了.22.(10分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为24.【解答】(1)证明:∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC===5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB•AC=×12×5=30,∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=24;故答案为:24.23.(11分)如图,在矩形ABCD中,AB=8cm,BC=20cm,E是AD的中点.动点P从A点出发,沿A﹣B﹣C路线以1cm/秒的速度运动,运动的时间为t秒.将△APE以EP为折痕折叠,点A的对应点记为M.(1)如图(1),当点P在边AB上,且点M在边BC上时,求运动时间t;(2)如图(2),当点P在边BC上,且点M也在边BC上时,求运动时间t;(3)直接写出点P在运动过程中线段BM长的最小值2﹣10.【解答】解:(1)如图1,作EF⊥BC于F,AP=t,则PB=8﹣t,PM=t,EF=AB=8,∵∠B=∠PME=∠EFM=90°,∴△PBM∽△MFE,∴=,BM=t,在Rt△PBM中,PB2+BM2=PM2,(8﹣t)2+(t)2=t2,解得:t=5;(2)由题意可知,∠APE=∠MPE,∠AEP=∠MEP,∵BC∥AD,∴∠MPE=∠AEP,∴四边形APME为菱形,∴AP=AE=10,在Rt△ABP中,AB2+BP2=PA2,即82+(t﹣8)2=102,解得:t1=2(不合题意),t2=14;(3)如图2,当点M在线段BE上时,BM最小,∵AB=8,AE=10,由勾股定理,BE=2,BM=2﹣10.24.(12分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.【解答】(1)证明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BD⊥CF;②由①△BAD≌△CAF可得BD=CF,∵BD=BC﹣CD,∴CF=BC﹣CD;(2)与(1)同理可得BD=CF,所以,CF=BC+CD;... (3)①与(1)同理可得,BD=CF,所以,CF=CD﹣BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠A CB=45°,则∠ABD=180°﹣45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°﹣45°=135°,∴∠FCD=∠ACF﹣∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=DF,∵在正方形ADEF中,OA=AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形.。