2016中考数学第一轮复习专题训练十五相似图形【含答案】
中考数学《相似的综合》专项训练及答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)解:如图1,过点P作PH⊥BC于点H,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD∥BC,∴∠CDP=90°,∴四边形PHCD是矩形,∴PH=CD=3,HC=PD=2t,∵CQ=t,BC=4,∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,∴BQ2= ,BP2= ,PQ2= ,由BQ2=BP2可得:,解得:无解;由BQ2=PQ2可得:,解得:;由BP2= PQ2可得:,解得:或,∵当时,BQ=4-4=0,不符合题意,∴综上所述,或;(3)(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD∥BC,DM∥PQ,∴四边形PQMD是平行四边形,∴QM=PD=2t,∵QC=t,∴CM=QM-QC=t,∵∠BCD=∠MCD=90°,∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,∵BM2=(BC+CM)2=(4+t)2,∴由BM2=BD2+DM2可得:,解得:,∴当时,∠BDM=90°,即当时,PQ⊥BD.【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴,解得:,∴MQ= ,又∵PM=3,∠PMQ=90°,∴tan∠BPQ= ;【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
2016年全国中考数学真题分类 相似形及应用(习题解析)
2016年全国中考数学真题分类相似形及应用一、选择题1.(2016安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.2.(2016甘肃定西,7,3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2, 故选:D .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.3. (2016浙江杭州,2,3分) 如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC=,则DE EF=( )FE D CB A cb a nmA. 13B.12C. 23D.1 【答案】B4.(2016新疆生产建设兵团,7,5分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB . =C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE ∥BC ,DE=BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定. 【解答】解:∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=BC , ∴=,△ADE ∽△ABC ,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.5.(2016河北,15,2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图答案:C解析:只要三个角相等,或者一角相等,两边成比例即可。
中考数学复习相似专项综合练及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时,s有最小值,且最小值为1(3)解:在中,,,则;在中,,,则;∴;以P、B、D为顶点的三角形与相似,已知,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。
中考数学复习相似专项综合练含详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。
初三中考一轮复习(16)相似图形 题型分类 含答案(全面 非常好)
教学主题相似图形教学目标重要知识点1.2.3.易错点教学过程相似图形【重点考点例析】考点一:平行线分线段成比例例1 如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5思路分析:先由AD:DB=3:5,求得BD:AB的长,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.点评:此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.对应训练1.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为.1.65考点二:位似例2 在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中,把△EFO缩小,则点E的对应点E′的坐标是()心,相似比为12A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)思路分析:根据题意画出相应的图形,找出点E的对应点E′的坐标即可.解:根据题意得:则点E 的对应点E ′的坐标是(-2,1)或(2,-1).故选D .点评:此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.对应训练2.如图,△ABO 缩小后变为△A ′B ′O ,其中A 、B 的对应点分别为A ′、B ′点A 、B 、A ′、B ′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A .(2m,n ) B .(m ,n ) C .(m ,2n) D .(2m,2n )5.D考点三:相似三角形的性质及其应用例3 一天晚上,黎明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立时身高AM 与影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m ,已知李明直立时的身高为1.75m ,求路灯的高CD 的长.(结果精确到0.1m .思路分析:根据AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA=MA 得到MA ∥CD ∥BN ,从而得到△ABN ∽△ACD ,利用相似三角形对应边的比相等列出比例式求解即可.解:设CD 长为x 米,∵AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA=MA∴MA ∥CD ∥BN∴EC=CD=x∴△ABN ∽△ACD ,∴BN AB CD AC =, 即1.75 1.251.75x x =-。
新初中数学图形的相似真题汇编含答案(1)
新初中数学图形的相似真题汇编含答案(1)一、选择题1.(2016山西省)宽与长的比是51-(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【答案】D【解析】【分析】 先根据正方形的性质以及勾股定理,求得DF 的长,再根据DF=GF 求得CG 的长,最后根据CG 与CD 的比值为黄金比,判断矩形DCGH 为黄金矩形.【详解】 解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF 中,22125DF +=5FG ∴=51CG ∴=51CG CD -∴=∴矩形DCGH 为黄金矩形故选:D .【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长51-的矩形叫做黄金矩形,图中的矩形ABGH 也为黄金矩形.2.如图,在ABC ∆中,点D E F 、、分别在边AB AC BC 、、上,// ,//DE BC DF AC ,则下列结论一定正确的是( )A .DE CE BF AE= B .AE CE CF BF = C .AD AB CF AC= D .DF AD AC AB = 【答案】B【解析】【分析】 根据平行线分线段成比例定理,可得B 正确.【详解】解://DE BC Q ,//DF AC , ∴AE AD CE BD =,BF BD CF AD =, ∴AE CF CE BF=, 故B 选项正确,选项A 、C 、D 错误,故选:B .【点睛】本题主要考查平行线分线段成比例,找准对应边是解题的关键.3.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;②2BG AG =;③EBF DEG ∆∆:;④23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL”判定Rt △ADG ≌Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故②正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故③错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故④错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG⎧⎨⎩==, ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,∵BE =EC ,∴EF =CE =BE =12a∴GE=12a+x 由勾股定理得:EG 2=BE 2+BG 2,即:(12a+x)2=(12a)2+(a-x)2解得:x=13∴BG=2AG,故②正确;∵BE=EF,∴△BEF是等腰三角形,易知△GED不是等腰三角形,∴△EBF与△DEG不相似,故③错误;连接CF,∵BE=CE,∴BE=12 BC,∴S△BFC=2S△BEF.故④错误,综上可知正确的结论的是2个.故选:B.【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.4.如图,点E是平行四边形ABCD中BC的延长线上的一点,连接AE交CD于F,交BD于M,则图中共有相似三角形(不含全等的三角形)( )对.A.4 B.5 C.6 D.7【答案】B【解析】【分析】由平行四边形的性质可得AD//BC,AB//CD,根据相似三角形的判定方法进行分析,即可得到图中的相似三角形的对数.【详解】∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴△ADM∽△EBM,△ADF∽△ECF,△DFM∽△BAM,△EFC∽△EAB,∵∠AFD=∠BAE,∠DAE=∠E,∴△ADF∽△EBA,∴图中共有相似三角形5对,故选:B .【点睛】本题考查平行四边形的性质及相似三角形的判定,平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.5.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于G ,H ,试判断下列结论:①△ABE ≌△CDF ;②AG =GH =HC ;③2EG =BG ;④S △ABG :S 四边形GHDE =2:3,其中正确的结论是( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据SAS ,即可证明①△ABE ≌△CDF ;在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,根据有一组对边平行且相等四边形是平行四边形,即可证明四边形BFDE 是平行四边形,由AD ∥BC ,即可证明△AGE ∽△CGB ,△CHF ∽△AHD ,然后根据相似三角形的对应边成比例,证得AG ∶CG =EG ∶BG =1∶2,CH ∶AH =1∶2,即可证得②AG =GH =HC ,③2EG =BG ;由S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,可得结论④S △ABG :S 四边形GHDE =2:3.【详解】解:在平行四边形ABCD 中,AB =CD ,∠BAE =∠DCF ,BC =DA ,∵E ,F 分别是边AD ,BC 的中点,∴AE =CF ,∴△ABE ≌△CDF ,故①正确;∵AD ∥BC ,∴△AGE ∽△CGB ,△CHF ∽△AHD ,∴AG ∶CG =EG ∶BG =AE ∶CB ,CH ∶AH =CF ∶AD ,∵E ,F 分别是边AD ,BC 的中点,∴AE =12AD ,CF =12BC , ∴AE ∶CB =1∶2,CF ∶AD =1∶2,∴EG ∶BG =AG ∶CG =1∶2,CH ∶AH =1∶2∴AG =CH =13AC ,2EG =BG ,故③正确;∴AG=GH=HC,故②正确;∵S△ABG=2S△AEG,S四边形GHD E=3S△AEG,∴S△ABG:S四边形GHDE=2:3,故④正确,故选:D【点睛】本题主要考查全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定与性质,熟练掌握这些知识是解本题的关键.6.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD =8∴S △OED =12×OD×EM =12×12BD×12AN =18AN×BD =1. 故选:C .【点睛】 本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.7.如图Rt ABC V 中,90ABC ∠=︒,4AB =,3BC =,D 为BC 上一动点,DE BC ⊥,当BD CE =时,BE 的长为( ).A .52B .125C 515D .3418【答案】D【解析】【分析】利用90ABC ∠=︒,DE BC ⊥得到相似三角形,利用相似三角形的性质求解,,BD DE 再利用勾股定理计算即可.【详解】解:90,ABC ∠=︒Q DE BC ⊥, //,DE BA ∴,CED CAB ∴∆∆:,CE CD ED CA CB AB∴== 90,4,3,ABC AB BC ∠=︒==Q 5,AC ∴=设,BD x = Q BD CE =,,3,BD CE x CD x ∴===-3,534x x ED -∴== 3155,x x ∴=-15,8x ∴= 158,54ED ∴= 3,2ED ∴= Q DE BC ⊥,2222153341()().82BE DB DE ∴=+=+=故选D .【点睛】本题考查的是三角形相似的判定与性质,勾股定理的计算求解,掌握相关知识点是解题关键.8.如图,边长为4的等边ABC V 中,D 、E 分别为AB ,AC 的中点,则ADE V 的面积是( )A 3B 3C 33D .23【答案】A【解析】【分析】 由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】Q 等边ABC V 的边长为4,2ABC 3S 4434∴==VQ 点D ,E 分别是ABC V 的边AB ,AC 的中点,DE ∴是ABC V的中位线, DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴V ∽ABC V ,相似比为12, 故ADE S V :ABC S 1=V :4,即ADE ABC 11S S 43344==⨯=V V , 故选A .【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理. 9.如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO V ∽CBO V ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC ,∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V , DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】 本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.10.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DG CF=( )A .23B .22C .33D .32【答案】B【解析】【分析】连接AC 和AF ,证明△DAG ∽△CAF 可得DG CF的值. 【详解】连接AC 和AF ,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.11.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(12a+1,12b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S112=S2B.S114=S2C.S1=2S2D.S1=4S2【答案】D【解析】【分析】先根据点P及其对应点判断出变换的类型,再依据其性质可得答案.【详解】由点P(a,b)经过变换后得到的对应点为P′(12a+1,12b﹣1)知,此变换是以点(2,﹣2)为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴S1=4S2,故选:D.【点睛】本题主要考查几何变换类型,解题的关键是根据对应点的坐标判断出其几何变换类型.12.如图,△AOB是直角三角形,∠AOB=90°,△AOB的两边分别与函数12,y yx x =-=的图象交于B、A两点,则等于()A .22B .12C .14D .3 【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解13.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B 1AC =∠AB 1C ,∴CA =CB 1;故④正确.故选:B .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图,网格中的两个三角形是位似图形,它们的位似中心是( )A .点AB .点BC .点CD .点D【答案】D【解析】【分析】 利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D .故选D .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.15.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k ,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.16.下列图形中,一定相似的是( )A .两个正方形B .两个菱形C .两个直角三角形D .两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A 、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B 、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C 、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D 、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A .【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.17.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.18.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A.4.4 B.4 C.3.4 D.2.4【答案】D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.19.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.20.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.。
中考数学一轮复习《相似》专项练习-带含参考答案
中考数学一轮复习《相似》专项练习-带含参考答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列四组图形中,不是相似图形的是()A.B.C.D.2.如图,已知,那么添加下列一个条件后,仍无法判定的是()A.B.C.D.3.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m4.如图所示,四边形中,AD//BC,∠B=90°,AB=7,AD=3,BC=4,若与相似,则符合条件的点个数是()A.0 B.1 C.2 D.35.如图,在平面直角坐标系中,已知点,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或B.C. D.或6.如图,四边形是平行四边形,点E在边上,连接交于点F,则()A.2:1 B.2:3 C.2:5 D.1:37.如图,点为的重心连结CG并延长交AB于点,作于点,过点作交AC于点,则的值为()A.1 B.C.D.8.如图,是等腰直角三角形,点O是的中点,点D是延长线上的一点,以为斜边向左侧作等腰,与交于点F,连接,平分.下列结论不成立的是()A.B.C.D.二、填空题9.如果,那么的值为.10.如图,与交于点,若,则.11.如图,平行四边形中,E为延长线上的一点,且,交于点F.若,则的长为.12.如图,将正方形ABCD的边AB,BC绕着点A逆时针旋转一定角度,得到线段,连接交CD于点E,连接,若,则.13.如图,在中,∠C=60°,D为线段的中点,点E,F分别在,上,且,沿将折叠得到,若,则的长是.三、解答题14.如图,为了测量山坡的护坡石坝高,把一根长为的竹竿斜靠在石坝旁,量出竿上长为时,它离地面的高度为,则坝高为多少.15.已知a,b,c是的三边长,且.(1)求的值;(2)若的周长为81,求三边a,b,c的长.16.如图,在中,BC=20,BA=10,点是边上的一点,且,联结,过点作,交的延长线于点.(1)求证:;(2)如果,求的面积.17.如图,在中,点、分别在边,上,线段分别交线段,于点,G,且.(1)求证:;(2)若,求的值.18.如图,在锐角中,过点A作于点D,过点B作于点E,与相交于点H,连接.的平分线交于点F,连接交于点G. (1)求证:(2)试探究线段,BE,DE之间的数量关系;(3)若,求的长.参考答案:1.D2.C3.A4.C5.D6.C7.B8.C9.510.11.2.512.75°13.14.解:如图,过作于,则∴,即解得答:坝高为.15.(1)解:因为设,则(2)解:令,得所以,和.16.(1)证明:∵∴∵∴∴在与中∴∴∵∴∴.(2)解:∵∴设∵在中,由勾股定理得∴.∴∵∴△CAD∽△CEB .∴∵∴.∴∴.17.(1)证明:.又;(2)解:.18.(1)证明:∵∴∴∴;(2)解:过点作,交于点则:∵∴,AD=BD ∴又∵∴∴∴是等腰直角三角形∴∴(3)解:由(2)知:∵∴∴∵的平分线交于点F∴∴∵∴∴∴∵∴∵∴∴∴过点作,垂足为则:∴∵∴∴∴∴,即:∴∴∴∵∴∴∴作,交于点则:∴,即:∴∴∵∴∴,即:∴。
中考数学第一轮复习专题训练十五相似图形【含答案】
非常实用优秀的教育电子word 文档中考数学小学相识图形复习专题附参考答案一、填空题:(每题3分,共36分)1、若3a =5b ,则ab=_____。
2、若线段a 、b 、c 、d 成比例且a =3cm ,b =6cm ,c =5cm ,则d =____cm 。
3、已知,线段AB =15,点C在AB 上,且AC ∶BC =3∶2,则BC =_____。
4、甲、乙两地的实际距离20千米,则在比例尺为 1∶1000000 的地图上两地间的距离应为____厘米。
5、已知△ABC ∽△A'B'C',AB =21cm ,A'B'=18cm ,则△ABC 与△A'B'C'的相似比 k =____。
6、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,则图中有____对相似三角形。
7、如图,△ABC 中,DE ∥BC ,已知DE BC =25,则AEAC=____。
8、两个相似三角形对应高的比为 2∶3,且已知较小的三角形的面积为 4,则较大的三角形的面积为____。
9、如图,已知:∠BAC =∠DAE ,当______时,△ABC ∽△ADE 。
10、如图,□ ABCD 中,E 为DC 边的中点,AE 交BD 于O ,若DO =4cm ,BO =__cm 。
第6题 第7题 第9题 第10题 第12题11、在同一时刻物高与影长成比例,小华量得综合楼的影长为 6米,同一时刻她量得身高 1.6米的同学的影长为 0.6 米,则可知综合楼高为____。
12、在长 8cm ,宽 4cm 的矩形中截去一个矩形(图中阴影部分)使留下的矩形与矩形相似,那么留下的矩形的面积为____cm 2。
二、选择题:(每题 4 分,共 24 分)1、以下列长度(同一单位)为长的四条线段中,不成比例的是( )A 、2,5,10,25B 、4,7,4,7C 、2,12,12,4 D 、2,5,25,522、两地的距离是 500 米,而地图上的距离为 10 厘米,则这张地图的比例尺为( )A 、1∶50B 、1∶500C 、1∶5000D 、1∶50000 3、下列各组图形不一定相似的是( )A 、两个等边三角形B 、各有一个角是100°的两个等腰三角形C 、两个正方形D 、各有一个角是45°的两个等腰三角形4、△ABC 的三边之比为 3∶4∶5,若 △ABC ∽△A'B'C' ,且△A'B'C' 的最短边长为 6,则△A'B'C'的周长为 ( ) A 、36 B 、24 C 、18 D 、12 5、如图,D 是BC 上的点,∠ADC =∠BAC ,则下列结论正确的是( ) A 、△ABC ∽△DAC B 、△ABC ∽△DAB C 、△ABD ∽△ACD D 、以上都不对6、如图,△ABC 中,AB 、AC 边上的高CE 、BD 相交于P 点,图中所有的相似三角形共有( )A 、2 个B 、3 个C 、4 个D 、5 个 三、解答题:(每题 9 分,共 54 分)A D EC B O1、在△ABC和△A'B'C'中,已知AB=3cm,BC=4cm,AC=5cm,A'B'=18cm,B'C'=24cm,A'C'=30cm,试说明△ABC∽△A'B'C'。
人教中考数学 相似综合试题含详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【答案】(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM= = = ,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN= = =5,综上,BN= 或5;(2)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图2所示.(3)解:①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△DFN,∴∠AEF=∠DNF,,∴,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM= AF,AN= AE,∵S△AMN= AM•AN•sin45°,S△AEF= AE•AF•sin45°,∴ =2,∴S△AMN=2S△AEF.【解析】【分析】(1)此题分两种情况:①当MN为最大线段时,②当BN为最大线段时,根据线段的勾股分割点的定义,利用勾股定理分别得出BM的长;(2)利用尺规作图,将线段AC,CD,DB转化到同一个直角三角形中,①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;这样的作图可以保证直角的出现,及AC 是一条直角边,③连接BF,并作BF的垂直平分线,交AB于D;这样的作图意图利用垂直平分线上的点到线段两个端点的距离相等,即BD=DF,从而实现将三条线段转化到同一直角三角形的目的;(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.根据正方形的性质及旋转的性质得出∠EAH=∠EAF=45°,AH=AF,利用SAS判断出△EAH≌△EAF,根据全等三角形对应边相等得出EF=HE,根据正方形的每条对角线平分一组对角,及旋转的性质得出∠ABH=∠ADF=45°=∠ABD,故∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,根据等量代换得出结论;②证明:如图4中,连接FM,EN.根据正方形的性质及对顶角相等判断出△AFE∽△DFN,根据相似三角形对应角相等,对应边成比例得出∠AEF=∠DNF, AF∶DF =EF∶FN ,根据比例的性质进而得出AF∶EF =DF∶FN,再判断出△AFD∽△EFN,根据相似三角形对应角相等得出∠DAF=∠FEN,根据直角三角形两锐角互余,及等量代换由∠DAF+∠DNF=90°,得出∠AEF+∠FEN=90°,即∠AEN=90°,从而判断出△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;根据等腰直角三角形的边之间的关系AM= AF,AN= AE,从而分别表示出S△AMN与S△AEF,求出它们的比值即可得出答案。
(专题精选)初中数学图形的相似经典测试题及答案解析
(专题精选)初中数学图形的相似经典测试题及答案解析一、选择题1.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.2.如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD=∠BDC=90°,E 为BC 的中点,AE 与BD 相交于点F ,若BC=4,∠CBD=30°,则DF 的长为( )A.235B.233C.334D.435【答案】D【解析】【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【详解】如图,在Rt△BDC中,BC=4,∠DBC=30°,∴3连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE=12BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴DF DE BF AB=,在Rt△ABD中,∠ABD=30°,3,∴AB=3,∴23 DFBF=,∴25 DFBD=,∴DF=224323555BD =⨯=, 故选D .【点睛】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE ∥是解本题的关键.3.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .5【答案】B【解析】【分析】 根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD :AF=3:5,∴AD :DF=3:2,∵AB ∥CD ∥EF ,∴AD BC DF CE =,即362CE=, 解得,CE=4,故选B .【点睛】 本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.4.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG=2,则线段AE 的长度为( )A .6B .8C .10D .12【答案】D【解析】分析:根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解. 详解:∵四边形ABCD 为正方形, ∴AB=CD ,AB ∥CD ,∴∠ABF=∠GDF ,∠BAF=∠DGF ,∴△ABF ∽△GDF , ∴AF AB GF GD==2, ∴AF=2GF=4,∴AG=6. ∵CG ∥AB ,AB=2CG ,∴CG 为△EAB 的中位线,∴AE=2AG=12.故选D .点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.5.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )A .2244x y +=B .2244x y -=C .2288x y -=D .2288x y+= 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC ,∴GE CE =CE FE, ∴y =2FE, ∴y 2=24FE , ∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,∴24y=x 2﹣4, ∴24y+4=x 2, 故选:A .【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.6.如图,点A在双曲线y═kx(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.3225C.435D.2525+【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴2555,∴45,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴215OB AB ==,∴OB=85,AB=45, ∴A (85,45), ∴k=3225. 故选B .点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.在Rt △ABC 中,∠BAC =90°,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在C ′的位置,C ′D 交AB 于点Q ,则BQ AQ的值为( )AB C D 【答案】A【解析】【分析】 根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD =DC =BD ,AC =AC′,∠ADC =∠ADC ′=45°,CD =C′D ,进而求出∠C 、∠B 的度数,求出其他角的度数,可得AQ =AC ,将BQ AQ 转化为BQ AC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A 作AE ⊥BC ,垂足为E ,∵∠ADC =45°,∴△ADE 是等腰直角三角形,即AE =DE =2AD , 在Rt △ABC 中,∵∠BAC =90°,AD 是△ABC 的中线,∴AD =CD =BD ,由折叠得:AC =AC ′,∠ADC =∠ADC ′=45°,CD =C ′D ,∴∠CDC ′=45°+45°=90°,∴∠DAC =∠DCA =(180°﹣45°)÷2=67.5°=∠C ′AD ,∴∠B =90°﹣∠C =∠CAE =22.5°,∠BQD =90°﹣∠B =∠C ′QA =67.5°,∴AC ′=AQ =AC ,由△AEC ∽△BDQ 得:BQ AC =BD AE , ∴BQ AQ =BQ AC =AD AE =2AE AE=2. 故选:A .【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.8.如图,在矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE ∆向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD 的长为( )A .2B 3C 15±D 15+ 【答案】D【解析】 【分析】 可设AD=x ,由四边形EFDC 与矩形ABCD 相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵1AB =,设AD=x ,则FD=x-1,FE=1,∵四边形EFDC 与矩形ABCD 相似,∴EF AD DF AB =,即111x x =-, 解得:1152x +=,2152x -=(不合题意,舍去)经检验152x +=,是原方程的解. ∴15AD +=. 故选:D .【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD 相似得到比例式.9.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,如果AC=3,AB=6,那么AD 的值为( )A .32B .92C 33D .3【答案】A【解析】【分析】【详解】解:∵Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∴△ACD ∽△ABC ,∴AC :AB=AD :AC ,∵AC=3,AB=6,∴AD=32.故选A . 考点:相似三角形的判定与性质.10.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.故选B .11.如图,Rt ABC V 中,90,60ABC C ∠=∠=o o ,边AB 在x 轴上,以O 为位似中心,作111A B C △与ABC V 位似,若()3,6C 的对应点()11,2C ,则1B 的坐标为( )A .()1,0B .3,02⎛⎫ ⎪⎝⎭C .()2,0D .()2,1【答案】A【解析】【分析】 如图,根据位似图形的性质可得B 1C 1//BC ,点B 在x 轴上,由∠ABC=90°,可得B 1C 1⊥x 轴,根据C 1坐标即可得B 1坐标.【详解】如图,∵111A B C △与ABC V 位似,位似中心为点O ,边AB 在x 轴上,∴B 1C 1//BC ,点B 在x 轴上,∵∠ABC=90°,∴B 1C 1⊥x 轴,∵C 1坐标为(1,2),∴B 1坐标为(1,0)故选:A .【点睛】本题考查位似图形的性质,位似图形的对应边互相平行,对应点的连线相交于一点,这一点叫做位似中心.12.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.13.如图,将图形用放大镜放大,应该属于( ).A.平移变换B.相似变换C.旋转变换D.对称变换【答案】B【解析】【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.14.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.15.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于( )A .103B .203C .52D .152【答案】C【解析】【分析】根据平行线分线段成比例定理得到3AD BC DF CE ==,得到BC=3CE ,然后利用BC+CE=BE=10可计算出CE 的长,即可.【详解】解:∵AB ∥CD ∥EF ,∴3AD BC DF CE==, ∴BC=3CE ,∵BC+CE=BE ,∴3CE+CE=10,∴CE=52. 故选C .【点睛】 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.16.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CB BD CD = D .AD AB AB AC= 【答案】C【解析】【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A 是公共角,∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB :BD=CB :AC 时,∠A 不是夹角,故不能判定△ADB 与△ABC 相似,故C 错误,符合题意要求,故选C .17.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt △ABC 中,AB=5,BC=10,∴AC=55,连接BE ,∵BD 是圆的直径,∴∠BED=90°=∠CBA ,∵∠BAC=∠EDB ,∴△ABC ∽△DEB ,∴AB AC DE DB=,∴5355DB=,∴DB=35,在Rt△ABD中,AD=2225BD AB-=,故选:D.【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.18.如图,在ABC∆中,,D E分别是边,AB AC的中点,ADE∆和四边形BCED的面积分别记为12,S S,那么12SS的值为()A.12B.14C.13D.23【答案】C【解析】【分析】根据已知可得到△ADE∽△ABC,从而可求得其面积比,则不难求得12SS的值.【详解】∵,D E分别是边,AB AC的中点,∴DE∥BC,∴△ADE∽△ABC,∴DE:BC=1:2,所以它们的面积比是1:4,所以1211=413SS=-,故选C.【点睛】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.19.把Rt ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.20.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A5B 453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:)52x5BF x CM2-==,.∴5.故选A.。
中考数学一轮复习专题解析—相似三角形
中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。
2.掌握三角形相似的判定方法和性质并学会运用。
考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
人教中考数学复习相似专项综合练及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:________.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.【答案】(1)PA=PB(2)解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=PB(3)解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•AB.【解析】【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P 为线段CD的中点,∴PA=PB.【分析】(1)根据直角三角形斜边上的中线等于斜边上的一半;(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,根据直角三角形斜边上的中线等于斜边上的一半得出PD=PE=PC,根据等边对等角得出∠CDE=∠PEB,根据二直线平行,内错角相等得出∠CDE=∠PCA,故∠PCA=∠PEB,根据夹在两平行线间的平行线相等得出AC=BE,然后利用SAS判断出△PAC∽△PBE,根据全等三角形的对应边相等得出PA=PB;(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,根据平行线分线段成比例定理得出AP=PF,根据线段垂直平分线上的点到线段两个端点的距离相等得出BF=AB;然后判断出△AEF∽△BPF,根据相似三角形的对应边成比例即可得出AF•BP=AE•BF,根据等量代换得出2PA•PB=2k.AB,即PA•PB=k•AB.2.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【答案】(1)解:把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线解析式为y=﹣ x2+ x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣ ×9+ ×3+4=5,∴D点坐标为(3,5)。
中考数学专题特训 相似图形(含详细参考答案)
中考数学专题复习相似图形【基础知识回顾】一、成比例线段:1、线段的比:如果选用同一长度的两条线段AB,CD的长度分别为m、n则这两条线段的比就是它们的比,即:AB CD=2、比例线段:四条线段a、b、c、d如果ab=那么四条线段叫做同比例线段,简称3、比例的基本性质:ab=cd<=>4、平行线分线段成比例定理:将平行线截两条直线【赵老师提醒:1、表示两条线段的比时,必须示用相同的,在用了相同的前提下,两条线段的比值与用的无关即比值没有2、全分割:点C把线段AB分成两条,线段AC和BC(AC>BC)如果那么称线段AB被点C全分割AC与AB的比叫全比,即L ACAB= ≈ 】二、相似三角形:1、定义:如果两个三角形的各角对应各边对应那么这两个三角形相似2、性质:⑴相似三角形的对应角对应边⑵相似三角形对应点的比、对应角平分线的比、对应的比都等于⑶相似三角形周长的比等于面积的比等于1、判定:⑴基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似⑵两边对应且夹角的两三角形相似⑶两角的两三角形相似⑷三组对应边的比的两三角形相似【赵老师提醒:1、全等是相似比为的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等相等一般要先证判定方法中最常用的是三组对应边成比例的两三角形相似多用在点三角形中】三、相似多边形:1、定义:各角对应各边对应的两个多边形叫做相似多边形2、性质:⑴相似多边形对应角对应边⑵相似多边形周长的比等于面积的比等于【赵老师提醒:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进行判定】一、位似:1、定义:如果两个图形不仅是而且每组对应点所在直线都经过那么这样的两个图形叫做位似图形,这个点叫做这时相似比又称为2、性质:位似图形上任意一点到位似中心的距离之比都等于【赵老师提醒:1、位似图形一定是图形,但反之不成立,利用位似变换可以将一个图形放大或2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r,那么位似图形对应点的坐标的比等于或】【典型例题解析】考点一:比例线段例1 (2012•福州)如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cosA的值是.(结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC∽△BDC,设AD=x,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D作DE⊥AB于点E,则E为AB中点,由余弦定义可求出cosA的值.解答:解:∵△ABC,AB=AC=1,∠A=36°,∴∠ABC=∠ACB=1802A-∠=72°.∵BD是∠ABC的平分线,∴∠ABD=∠DBC=12∠ABC=36°.∴∠A=∠DBC=36°,又∵∠C=∠C∴△ABC∽△BDC,∴ACBC=BCCD,设AD=x,则BD=BC=x.则11xx x=-,解得:x=152+(舍去)或152-.故x=152-.如右图,过点D作DE⊥AB于点E,∵AD=BD,∴E为AB中点,即AE=12AB=12.在Rt△AED中,cosA=12512AEAD=-=514+.故答案是:152-;514+.点评:△ABC、△BCD均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cosA时,注意构造直角三角形,从而可以利用三角函数定义求解.对应训练2.(2012•孝感)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A.512-B.512+C.51-D.51+考点:黄金分割.分析:根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD的长.解答:解:∵∠A=∠DBC=36°,∠C公共,∴△ABC∽△BDC,且AD=BD=BC.设BD=x,则BC=x,CD=2-x.由于BC AC CD BC=,∴22xx x=-.整理得:x2+2x-4=0,考点二:相似三角形的性质及其应用例2 (2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC 与△DEF的面积之比为.考点:相似三角形的性质.专题:探究型.分析:先根据相似三角形的性质求出其相似比,再根据面积的比等于相似比的平方进行解答即可.解答:解:∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴三角形的相似比是3:1,∴△ABC与△DEF的面积之比为9:1.故答案为:9:1.点评:本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.对应训练2.(2012•沈阳)已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为.考点:相似三角形的性质.专题:应用题.分析:根据相似三角形周长的比等于相似比计算即可得解.解答:解:∵△ABC∽△A′B′C′,∴△ABC的周长:△A′B′C′的周长=3:4,∵△ABC的周长为6,∴△A′B′C′的周长=6×43=8.故答案为:8.点评:本题主要考查了相似三角形周长的比等于相似比的性质,是基础题,熟记性质是解题的关键.考点三:相似三角形的判定方法及其应用例3 (2012•徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= 14BC.图中相似三角形共有()A.1对B.2对C.3对D.4对考点:相似三角形的判定;正方形的性质.分析:首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE=CE,FC= 14BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解答:解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=14 BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选C.点评:此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.例4 16.(2012•资阳)(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质.分析:(1)首先连接AG,由正方形AEGH的顶点E、H在正方形ABCD的边上,易证得∠GAE=∠CAB=45°,AE=AH ,AB=AD ,即A ,G ,C 共线,继而可得HD=BE ,GC= 2BE ,即可求得HD :GC :EB 的值; (2)连接AG 、AC ,由△ADC 和△AHG 都是等腰直角三角形,易证得△DAH ∽△CAG 与△DAH ≌△BAE ,利用相似三角形的对应边成比例与正方形的性质,即可求得HD :GC :EB 的值;(3)由矩形AEGH 的顶点E 、H 在矩形ABCD 的边上,由DA :AB=HA :AE=m :n ,易证得△ADC ∽△AHG ,△DAH ∽△CAG ,△ADH ∽△ABE ,利用相似三角形的对应边成比例与勾股定理即可求得HD :GC :EB 的值.解答:解:(1)连接AG ,∵正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,∴∠GAE=∠CAB=45°,AE=AH ,AB=AD ,∴A ,G ,C 共线,AB-AE=AD-AH ,∴HD=BE ,∵AG=sin 45AE =2AE ,AC=sin 45AB =2AB , ∴GC=AC-AG=2AB-2AE=2(AB-AE )=2BE ,∴HD :GC :EB=1:2:1。
初中数学专题复习图形的相似(含答案)
初中数学专题复习图形的相似(含答案)第19课时图形的相似一、知识导航图应用:解决实际问题3.面积的比等于相似比的平方2.对应边、对应中线、对应角平分线、对应高线、周长的比等于相似比1.对应角相等4.三边对应成比例3.两边对应成比例且夹角相等2.两角对应相等1.定义图形的运动与坐标用坐标来确定位置位似性质识别方法相似多边形的特征概念图形与坐标相似三角形相似的图形图形的相似二、中考课标要求三、中考知识梳理1.比例线段由于比例线段的实质就是四个正数组成的比例式,所以要学好本部分内容,首先要复习小学所学的有关比例的相关知识.2.相似形具有相同形状的图(大小不一定相同). 3.相似多边形的特征“对应边成比例,对应角相等”既是相似多边形的识别方法又是性质. 4.相似比相似比是把一个图形放大或缩小的倍数,其具有顺序性,全等是相似比为 1 时的特殊情况.5.相似三角形的性质(1)对应边成比例,对应角相等;(2)对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)周长的比等于相似比,面积的比等于相似比的平方. 6.相似图形的画法是新课标中新增添的内容,要求掌握用多种方法将一个图形放大或缩小. 7.图形与坐标是新课程中新增添的内容,应注意把“形”与“数”紧密地联系在一起. 四、中考题型例析1.列比例式例1 (2002·北京怀柔)已知三个数请你再添上一个(只填一个)数, 使它们能构成一个比例式,则这个数是_________.分析:这是一道开放型试题,由于题中没有告知构成比例的各数顺序, 故应考虑各种可能位置.答案2.相似三角形的识别例2 (2004·昆明)如图,在△ABC 中,AC>AB,点D 在AC 边上(点D 不与A 、C 重合),若再增加上条件就能使△ABD ∽△ACB,则这个条件可以是_______.解析:由于所识别的两三角形隐含着一个公共角∠A,因此依照识别方法,只要再附加条件∠ABD=∠C,∠ADB=∠ABC,或AD ABAB AC =即可. 答案:∠ABD=∠C,∠ADB=∠ABC,AD ABAB AC=。
人教备战中考数学相似的综合复习及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。
中考数学复习 图形的相似 专项复习练习题 含答案与部分解析
中考数学复习 图形的相似 专项复习练习1. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 的反向延长线上,下面的比例式中,不能判断ED∥BC 的是( )A .BA BD =CA CEB .EA EC =DA DB C .ED BC =EA AC D .EA AD =AC AB 2. 矩形的两边长分别为a ,b ,下列数据能构成黄金矩形的是( ) A .a =4,b =5+2 B .a =4,b =5-1 C .a =2,b =5+2 D .a =2,b =5-1 3. 已知2x =3y(y≠0),则下面结论成立的是( ) A.x y =32 B.x 3=2y C.x y =23 D.x 2=y 34. 如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B ,AD =1,AC =2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .45. 已知△ABC 与△A 1B 1C 1相似,且相似比为1∶3,则△ABC 与△A 1B 1C 1的面积比为( )A .1∶1B .1∶3C .1∶6D .1∶96. 如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD 与四边形A′B′C′D′的面积比为( )A .4∶9B .2∶5C .2∶3 D.2∶ 37. 如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2 m ,测得AB =1.6 m ,BC =12.4 m ,则建筑物CD 的高是( )A .9.3 mB .10.5 mC .12.4 mD .14 m 8. 若a b =23,则a +b b= .9.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ;直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .10. 如图,已知△ABC 和△DEC 的面积相等,点E 在BC 边上,DE ∥AB 交AC 于点F ,AB =12,EF =9,则DF 的长是 .11. 如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连结BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF∽△ACD,其中一定正确的是12. 如图,已知直线a∥b∥c,直线m 分别交直线a ,b ,c 于点A ,B ,C ;直线n 分别交直线a ,b ,c 于点D ,E ,F.若AB BC =12,则DEEF=13. 如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB∶BC=1∶2,DE=3,则EF的长为_______.14. 如图,△ABC是⊙O的内接三角形,AD⊥BC于点D,AB=8,AD=5,AC=6,则⊙O的半径长是__________.15. 如图,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A ′B ′O ,已知点B′的坐标是(3,0),则点A′的坐标是____________.16. 如图,在△ABC 中,点D ,E 分别在AB ,AC 上,∠AED =∠B,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DFCG.(1)求证:△ADF∽△ACG; (2)若AD AC =12,求AFFG 的值.17. 如图,△ABC 中,D ,E 分别为AB ,BC 上的点,AE ,CD 相交于点O.AD DB =23,BE EC =54,求AO OE 和DOOC的值.18. 如图,在Rt△ABC与Rt△ADC中,∠ACB=∠ADC=90°,AC=6,AD =2,问:当AB的长为多少时,这两个直角三角形相似?19. 如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的直线距离,选择测量点A,B,C,点B,C分别在AM,AN上,现测得AM=1 km,AN=1.8 km,AB=54 m,BC=45 m,AC= 30 m,求M,N两点之间的直线距离.20. 如图,▱ABCD的对角线相交于点O,点E在BC边的延长线上,且OE=OB,连结DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.答案与解析: 1. C 2. D 3. A 4. C 5. D 6. A 7. B 8. 539. 210. 7 解析: ∵DE∥AB,∴△CFE ∽△CAB ,∴S △CFE S △CAB =⎝ ⎛⎭⎪⎫EF AB 2=⎝ ⎛⎭⎪⎫9122=916.∵△ABC 和△DEC 的面积相等,∴S △CFE S △CDE =916. 又△CFE,△CDE 在DE 边上的高相同,结合三角形的面积公式,得EF DE =916.∵EF=9,∴DE =16,从而DF =DE -EF =16-9=7. 11. ①②③ 12. 1213. 6 14. 4.8 15. (1,2)16. (1)证明:∵∠AED=∠B,∠DAE =∠CAB ,∴∠ADF =∠C . 又∵AD AC =DFCG,∴△ADF ∽△ACG.(2)解:∵△ADF∽△ACG,∴AD AC =AF AG =12,∴AFFG=1解析:(1)先利用∠AED=∠B 和公共角相等,由内角和可得∠ADF=∠C,再利用“两边对应成比例且夹角相等的两个三角形相似”,即可证得△ADF∽△ACG; (2)利用上面证明的△ADF∽△ACG,得到对应边成比例,于是AD AC =AF AG =12,从而有AFFG=1. 17. 解:过点E 作EG ∥CD 交AB 于点G ,则△BEG ∽△BCD ,∴BG GD =BE EC =54,∴BG +GD GD =5+44,即BD GD =94.∴AD GD =23DBGD =23×94=32.又∵△ADO ∽△AGE ,∴AO OE=ADDG=32.∴DOGE=ADAG=35,GEDC=BEBC=59,∴DOGE×GEDC=35×59=13,即DODC=13.∴DOOC=12.18. 解:在Rt△ADC中,∵AC=6,AD=2,∴CD=AC2-AD2= 2.要使这两个三角形相似,有ACAD=ABAC或ACCD=ABAC.∴AB=AC2AD=(6)22=3,或AB=AC2CD=(6)22=3 2.故当AB的长为3或32时,这两个直角三角形相似.19. 解:连结MN,1 km=1 000 m,1.8 km=1 800 m,∵ACAM=301 000=3100,ABAN=541 800=3100,∴ACAM=ABAN.又∠BAC=∠NAM,∴△BAC∽△NAM,∴BCMN=3100,即45MN=3100.∴MN=1 500,∴M ,N 两点之间的直线距离为1 500 m.解析:先根据相似三角形的判定得出△ABC 与△ANM 相似,再利用相似三角形的性质解答即可.20. (1) 证明:∵OB=OE ,∴∠OEB =∠OBE.∵四边形ABCD 是平行四边形,∴OB =OD .∴OD=OE ,∴∠OED =∠ODE.在△BED 中,∠OEB +∠OBE+∠ODE+∠OED=180°,∴2(∠OEB+∠OED)=180°,∴∠OEB +∠OED=90°,即∠BED=90°,∴DE ⊥BE.(2) 证明:如图,设OE 交CD 于点H. ∵OE⊥CD,∴∠CHE =90°,∴∠CEH +∠HCE =90°.∵∠CED =90°,∴∠CDE +∠DCE=90°,∴∠CDE =∠CEH.∵∠OEB=∠OBE,∴∠OBE =∠CDE.在△CED 与△DEB 中,∵⎩⎪⎨⎪⎧∠CED=∠DEB,∠CDE =∠DBE,∴△CED ∽△DEB .∴CE DE =CD DB,∴BD ·CE =CD·DE.。
中考数学专题复习卷:图形的相似(含解析)
图形的相像一、选择题1.已知,以下变形错误的选项)是(A. B. C. D.【答案】 B【分析】由得,3a=2b,A. 由得,所以变形正确,故不切合题意;B. 由得3a=2b,所以变形错误,故切合题意;C. 由可得,所以变形正确,故不切合题意;D.3a=2b 变形正确,故不切合题意.故答案为: B.【剖析】依据已知比率式可得出3a=2b,再依据比率的基天性质对各选项逐个判断即可。
2.如图,已知直线a∥ b∥ c,直线m 分别交直线a、b、c 于点A,B,C ,直线n 分别交直线a、b、c 于点D,E,F,若,,则的值应当()A. 等于B. 大于C. 小于D. 不可以确立【答案】 B【分析】:如图,过点 A 作 AN ∥DF,交 BE 于点 M,交 CF 于点 N∵a∥ b∥ c∴ AD=ME=NF=4 (平行线中的平行线段相等)∵AC=AB+BC=2+4=6∴设 MB=x ,CN=3x∴BE=x+4 , CF=3x+4∵∵ x> 0∴故答案为:B【剖析】过点 A 作AN ∥DF ,交BE于点M,交CF 于点N,依据已知及平行线中的平行线段相等,可得出AD=ME=NF=4,再依据平行线分线段成比率得出BM和CN的关系,设MB=x, CN=3x ,分别表示出BE 、CF ,再求出它们的比,利用求差法比较大小,即可求解。
3.在平面直角坐标系中,线段AB两个端点的坐标分别为 A ( 6, 8), B( 10,2),若以原点O 为位似中心,在第一象限内将线段AB缩短为本来的后获得线段CD ,则点 A 的对应点 C 的坐标为()A. (5,1)B. ( 4,3)C. (3, 4)D. (1,5)【答案】C【分析】:∵以原点O 为位似中心,在第一象限内将线段AB减小为本来的后获得线段CD,∴端点 C 的横坐标和纵坐标都变成 A 点的横坐标和纵坐标的一半,又∵ A (6, 8),∴端点 C 的坐标为( 3, 4).故答案为: C.【剖析】依据位似图形的性质,位似图形上一个点的坐标等于原图形上对应点的横纵坐标分别乘以位似比,或位似比的相反数。
中考数学《图形的相似》专题练习含真题分类汇编解析
中考数学专题练习《图形的相似》(时间:100分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分)A.2 000 cmB.2 000 mC.320 cmD.320 m2.若△ABC ∆的每条边长增加各自的2 0 得到'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A.增加了20 B.减少了20 C.增加了(1 +20 ) D.没有改变3.已知如图1所示的两个四边形相似.则α∠的度数是( )A.60ºB.75ºC.87 ºD.120º4.如图2,已知ABCDEF ∆∆,:1:2AB DE =,则下列等式一定成立的是( )A.12ABC DEF ∆=∆的周长的周长 B. 12ABC DEF ∆=∆的面积的面积C.12A D ∠=∠的度数的度数 D. 12BC DF =5如图3,在钝角ABC ∆中,6AB =cm ,12AC =cm ,动点D 从A 点出发到B 点止,动点E 从点C 出发到A 点止,点D 的运动速度为1 cm/s ,点E 的运动速度为2 cm/s.如果,D E 两点同时出发,那么当以点,,A D E 为顶点的三角形与ABC ∆相似时,运动的时间是( )A.3 sB.4.5 sC.3 s 或4.8 sD.4.5 s 或4.8 s6.如图4,在矩形ABCD 中,对角线,AC BD 相交于点,G E 为AD 的中点,连接BE 交AC 于点F ,连接FD .若90BFA ∠=︒,则下列四对三角形:①BEA ∆与ACD ∆;②FED ∆与DEB ∆;③CFD ∆与ABC ∆;④ADF ∆与CFB ∆.其中相似的有( )A.1对B.2对C.3对D.4对二、填空题(本大题共9小题,每小题3分,共27分)7.已知两个相似多边形的面积之比是1:9,其周长之差为12,则面积较大的多边形的周长为 .8.如图5,路灯距离地面8米,身高为1.6米的小明(AB )站在距离灯的底部(点O )20米的A 处,则小明的影子AM 的长为 米.9.如图6,在ABC ∆中,已知艺40A ∠=︒,75B ∠=︒,则图中所示的各个三角形与ABC ∆不相似的是 .10.如图7,四边形ABCD 与四边形EFGH 位似,位似中心是点O ,32OE EA =,则FGBC= .11.在ABC ∆中,6AB =,8AC =,在DEF ∆中,4DE =,3DF =,要使ABC ∆与DEF ∆相似,需添加的一个条件是 (写出一种情况即可).12.如图8,小明为了测量一个凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (0.5DE BC ==米,A ,B ,C 三点共线),把一面镜子水平放置在平台上的点G 处,测得15CG =米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得3EG =米,小明的身高为1.6米,则凉亭的高度AB 为 米.图813.如图9,在ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F .若5CD =,8BC =,2AE =,则DF = .14.在平面直角坐标系中,点C ,D 的坐标分别为(2,3)C ,(1,0)D ,现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且3OB =,则点C 的对应点A 的坐标为 .15.如图10,在Rt ABC ∆中,90ABC ∠=︒,3AB =,4BC =,在Rt MPN ∆中,90MPN ∠=︒,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,:AP PC = .三、解答题(本大题共9小题,共75分)16. ( 8分)(1)如图111,连接三角形三边的中点把任意三角形分成四个小三角形,它们的形状、大小完全相同,并且与原三角形相似.请把图11中的②,③,④同样分成四块,使它们形状、大小相同,且都和原图形相似.(注:图11②为正方形,图11③为矩形,图11④为菱形)(2)如图12,ABC ∆与'''A B C ∆是位似图形,请在图中画出位似中心口.若它们的位似比是1:2,且''4A B =cm ,则'''A B C ∆与ABC ∆的位似比是多少?AB 的长度是多少?17.(8分)如图13,已知////a b c ,直线m ,n 与a ,b ,c 分别相交于点A ,B ,C 和点D ,E ,F .(1)若3AB =,5BC =,4DE =,求EF 的长. (2)若:2:5AB BC =,10DF =,求EF 的长.18.(8分)如图14,在正方形网格中,TAB ∆的顶点坐标分别为(1,1)T ,(2,3)A ,(4,2)B .(1)以点(1,1)T 为位似中心,按3:1的比例在位似中心的同侧将TAB ∆放大为''TA B ∆,放大后点A ,B 的对应点分别为'A ,'B ,画出''TA B ∆,并写出点'A ,'B 的坐标.(2)在(1)中,若'(,)C a b 为线段''A B 上任一点,请写出点'C 变化前的对应点C 的坐标.19.(8分)如图15,已知弦AB 和CD 相交于⊙O 内一点P (P 与O 不重合),连接AC ,BD ,过A 作AE CP ⊥于E ,过D 作DF PB ⊥于F .(1)请找出图中两对相似三角形: , .(2)请你从图中选择一对相似三角形来探索PA PB 与PC PD 之间的关系.20. ( 8分)如图16,在ABC ∆中,AC BC >,D 是AC 边上一点,连接BD .(1)要使CBD CAB ∆∆,还需要补充一个条件,请分别从角和边两个方面各写出一个可以添加的条件.(2)若CBDCAB ∆∆,且2AD =,BC =,求CD 的长.21. (8分)如图17,有一块三角形铁片ABC ,12BC =cm ,高8AD =cm ,要把它加工成一个矩形铁片,使矩形的长边在BC 上,其余两个顶点分别在AB ,AC 上,且要求矩形的长QN 是宽QP 的2倍.(1)求加工成的矩形铁片的长与宽.(2)求ANQ ∆的面积.22. ( 8分)如图18,在矩形ABCD 中,2AB =,5AD =,直角尺的直角顶点P 在AD 上滑动时(点P 与A ,D 不重合),一条直角边经过点C ,另一条直角边与AB 交于点E . (1)当30CPD ∠=︒时,求AP 和AE 的长.(2)是否存在这样的点P ,使DPC ∆的面积等于AEP ∆面积的4倍?若存在,求出DP 的长,并说明点E 的位置;若不存在.请说明理由.23.(9分)如图19,在四边形ABCD 中,AC 平分DAB ∠,90ADC ACB ∠=∠=︒,E 为AB 的中点.(1)求证:2AC AB AD =.(2)求证://CE AD . (3)若4AD =,6AB =,求ACAF的值.24.(10分)已知在以O 为原点的平面直角坐标系中,抛物线的顶点为(1,4)A --,且经过点(2,3)B --,与x 轴分别交于C ,D 两点.(1)求直线OB 和该抛物线相应的函数表达式.(2)如图20,点M 是抛物线上的一个动点,且在直线OB 的下方,过点M 作x 轴的平行线与直线OB 交于点N ,求MN 的最大值.(3)如图21,过点A 的直线交x 轴于点E ,且//AE y 轴,点P 是抛物线上A ,D 之间的一个动点,直线PC ,PD 与AE 分别交于F ,G ,当点P 运动时EF EG +是否为定值?若是,试求出该定值;若不是,请说明理由。
2016中考数学图形的相似
【2016·山东烟台】1、若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为(D)A.﹣1 B.0C.2D.3【2016·山东烟台】2、【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.24.解:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QA T+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB,∴=,∴=;(2)如图2,∵EF⊥GH,AM⊥BN,∴由(1)中的结论可得=,=,∴==.故答案为;(2)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.【2016·山东东营】3、如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( D. )A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【2016·四川达州】4.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=2016.【2016·山东东营】5、如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.5、(1)解:BD=CF成立.证明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF.(2)①证明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,在△HFN与△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°,∴HD⊥HF,即BD⊥CF.②解:如图,连接DF,延长AB,与DF交于点M.在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°.在Rt△BMD与Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD.∴AB=2,AD=3,四边形ADEF是正方形,∴MA=MD==3.【2016·山东淄博】6、如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.(1)求证: =;(2)求证:AF⊥FM;(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,∠ABC=90°,∵∠MAN=45°,∴∠MAF=∠MBE,∴A、B、M、F四点共圆,∴∠ABM+∠AFM=180°,∴∠AFM=90°,∴∠FAM=∠FMA=45°,∴AM=AF,∴=.(2)由(1)可知∠AFM=90°,∴AF⊥FM.(3)结论:∠BAM=22.5时,∠FMN=∠BAM理由:∵A、B、M、F四点共圆,∴∠BAM=∠EFM,∵∠BAM=∠FMN,∴∠EFM=∠FMN,∴MN∥BD,∴=,∵CB=DC,∴CM=CN,∴MB=DN,在△ABM和△ADN中,,∴△ABM≌△ADN,∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠BAM=22.5°.【2016·四川宜宾】7.如右图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连结MA,NA.则以下结论中正确..的有①②⑤(写出所有正确结论的序号).①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为25;⑤当△ABP≌△ADN时,BP=42–4.【2016·重庆】8.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是.【2016·成都】9.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【2016·山东东营】10、如图右,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有(B①②③)A.4个B.3个C.2个D.1个【2016·安徽】11.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【2016·四川达州】12.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为24+9.【2016·四川达州】13.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)成立,∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,CF=BD∴∠ACB+∠ACF=90°,即CF⊥BD;∵BC=BD+CD,∴BC=CF+CD;(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.【2016·安徽】14.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.【2016·山东淄博】15.如右图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为(B)A.B.2C.D.10﹣5【2016·山东济宁】16.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB²=BD²,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN ,∠ACN=∠BCN ,∴∠BAF=∠OCM , ∵四边形ABCD 是正方形,∴AC ⊥BD , ∴∠ABF=∠COM=90°,∴△ABF ∽△COM , ∴=,∴==,即CN=CM .【2016·山东枣庄】17.已知关于x 的方程有一个根为-2,则另一个根为(B ) A .5 B .-1 C .2 D .-5【2016·山东枣庄】18.一列数1a ,2a ,3a ,……满足条件:112a =,111n n a a -=-(n≥2,且n 为整数),则2016a = -1 .【2016·山东菏泽】19.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m=6. 【2016·山东德州】20.方程2x 2﹣3x ﹣1=0的两根为x 1,x 2,则x 12+x 22=.【2016·四川内江】21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图21所示),设这个苗圃园垂直于墙的一边长为x 米. (1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.解:(1)苗圃园与墙平行的一边长为(30-2x )米.依题意可列方程 x (30-2x )=72,即x 2-15x +36=0. 解得x 1=3,x 2=12.(2)依题意,得8≤30-2x ≤18.解得6≤x ≤11.面积S =x (30-2x )=-2(x -152)2+2252(6≤x ≤11). ①当x =152时,S 有最大值,S 最大=2252;②当x =11时,S 有最小值,S 最小=11×(30-22)=88.(3)令x (30-2x )=100,得x 2-15x +50=0. 解得x 1=5,x 2=10.∴x 的取值范围是5≤x ≤10.【2016·四川内江】22.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2016B 2016C 2016D 2016的边长是( D ) A .(12)2015B .(12)2016C .)2016D .)2015【2016·重庆B 卷】23.近期猪肉价格不断走高,引起市民与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月230x x a ++=21题图20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日猪肉价格为每千克40元,5月21日,某市决定投入储备猪肉,并规定其销售价格在5月20日每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的43,两种猪肉销售的总金额比5月20日提高了%101a ,求a 的值. 解:(1)5月20日每千克猪肉的价格为100÷2.5=40(元), 则年初猪肉价格的最低价为40÷(1+60%)=25(元). (2)设5月20日的总销量为1,由题意,得%)1011(4040%)1(41%)1(40%)1(43a m a m a a m +=⨯++-⨯+ 令t=a %,方程可化为5t 2-t=0, 解得t1=0(舍去),t2=0.2, 所以a %=0.2,即a=20.【2016·山东滨州】24.如图,矩形ABCD 中,AB=,BC=,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,则=.【2016·山东滨州】25.如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接ED ,DG .(1)请判断四边形EBGD 的形状,并说明理由; (2)若∠ABC=30°,∠C=45°,ED=2,点H 是BD 上的一个动点,求HG+HC 的最小值.解:(1)四边形EBGD 是菱形.理由:∵EG 垂直平分BD ,∴EB=ED ,GB=GD ,∴∠EBD=∠EDB , ∵∠EBD=∠DBC ,∴∠EDF=∠GBF ,在△EFD 和△GFB 中,,∴△EFD ≌△GFB ,∴ED=BG ,∴BE=ED=DG=GB , ∴四边形EBGD 是菱形.(2)作EM ⊥BC 于M ,DN ⊥BC 于N ,连接EC 交BD 于点H ,此时HG+HC 最小, 在RT △EBM 中,∵∠EMB=90°,∠EBM=30°,EB=ED=2, ∴EM=BE=,∵DE ∥BC ,EM ⊥BC ,DN ⊥BC , ∴EM ∥DN ,EM=DN=,MN=DE=2,在RT △DNC 中,∵∠DNC=90°,∠DCN=45°, ∴∠NDC=∠NCD=45°,∴DN=NC=, ∴MC=3,在RT △EMC 中,∵∠EMC=90°,EM=.MC=3, ∴EC===10.∵HG+HC=EH+HC=EC , ∴HG+HC 的最小值为10.【2016·山东泰安】26.一元二次方程(x+1)2﹣2(x ﹣1)2=7的根的情况是(C ) A .无实数根B .有一正根一负根C .有两个正根D .有两个负根【2016·山东泰安】27.如图,矩形ABCD 中,已知AB=6,BC=8,BD 的垂直平分线交AD 于点E ,交BC 于点F ,则△BOF 的面积为 . 【2016·山东泰安】28.如图,在四边形ABCD 中,AC 平分∠BCD ,AC ⊥AB ,E 是BC 的中点,AD ⊥AE .(1)求证:AC 2=CD ·BC ;(2)过E 作EG ⊥AB ,并延长EG 至点K ,使EK=EB .①若点H 是点D 关于AC 的对称点,点F 为AC 的中点,求证:FH ⊥GH ; ②若∠B=30°,求证:四边形AKEC 是菱形.证明:(1)∵AC 平分∠BCD ,∴∠DCA=∠ACB .又∵AC ⊥AB ,AD ⊥AE , ∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB . 又∵E 是BC 的中点,∴AE=BE ,∴∠EAB=∠ABC , ∴∠DAC=∠ABC ,∴△ACD ∽△BCA , ∴=,∴AC 2=CD ·BC ;(2)①证明:连接AH .∵∠ADC=∠BAC=90°,点H 、D 关于AC 对称,∴AH ⊥BC .∵EG ⊥AB ,AE=BE ,∴点G 是AB 的中点, ∴HG=AG ,∴∠GAH=GHA .∵点F 为AC 的中点,∴AF=FH ,∴∠HAF=∠FHA ,∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH ⊥GH ;②∵EK ⊥AB ,AC ⊥AB , ∴EK ∥AC ,又∵∠B=30°,∴AC=BC=EB=EC . 又EK=EB ,∴EK=AC , 即AK=KE=EC=CA ,∴四边形AKEC 是菱形.【2016·四川攀枝花】29.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4,其中正确的结论个数为(B ①④⑤) A .2 B .3 C .4 D .5【2016·四川攀枝花】30.已知关于x 的分式方程+=1的解为负数,则k 的取值范围是k >﹣且k ≠0 .A .62B .6C .32D .332【2016·南充节选】33.已知正方形ABC D 的边长为1,点P 为正方形内一动点,若点M在AB 上,且满足△PBC ∽△PAM ,延长BP 交AD 于N ,连接CM . (1)如图一,若点M 在线段A 耻,求证:AP ⊥BN ,AM=AN ;PMD A CBN【2016·福建福州】35.如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.【2016·山东临沂】36.如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断并予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【2016·山东潍坊】37.B 【2016·山东潍坊】38.【2016·山东威海】39.【2016·山东聊城】40.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
中考数学小学相识图形复习专题
附参考答案
一、填空题:(每题3分,共36分)
1、若3a =5b ,则a
b
=_____。
2、若线段a 、b 、c 、d 成比例且a =3cm ,b =6cm ,c =5cm ,则d =____cm 。
3、已知,线段AB =15,点C在AB 上,且AC ∶BC =3∶2,则BC =_____。
4、甲、乙两地的实际距离20千米,则在比例尺为 1∶1000000 的地图上两地间的距离应为____厘米。
5、已知△ABC ∽△A'B'C',AB =21cm ,A'B'=18cm ,则△ABC 与△A'B'C'的相似比 k =____。
6、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,则图中有____对相似三角形。
7、如图,△ABC 中,DE ∥BC ,已知DE BC =25,则AE
AC
=____。
8、两个相似三角形对应高的比为 2∶3,且已知较小的三角形的面积为 4,则较大的三角形的面积为____。
9、如图,已知:∠BAC =∠DAE ,当______时,△ABC ∽△ADE 。
10、如图,□ ABCD 中,E 为DC 边的中点,AE 交BD 于O ,若DO =4cm ,BO =__cm 。
第6题 第7题 第9题 第10题 第12题
11、在同一时刻物高与影长成比例,小华量得综合楼的影长为 6米,同一时刻她量得身高 1.6米的同学的影长为 0.6 米,则可知综合楼高为____。
12、在长 8cm ,宽 4cm 的矩形中截去一个矩形(图中阴影部分)使留下的矩形与矩形相似,
那么留下的矩形的面积为____cm 2。
二、选择题:(每题 4 分,共 24 分)
1、以下列长度(同一单位)为长的四条线段中,不成比例的是( )
A 、2,5,10,25
B 、4,7,4,7
C 、2,12,1
2
,4 D 、2,5,25,52
2、两地的距离是 500 米,而地图上的距离为 10 厘米,则这张地图的比例尺为( )
A 、1∶50
B 、1∶500
C 、1∶5000
D 、1∶50000 3、下列各组图形不一定相似的是( )
A 、两个等边三角形
B 、各有一个角是100°的两个等腰三角形
C 、两个正方形
D 、各有一个角是45°的两个等腰三角形
4、△ABC 的三边之比为 3∶4∶5,若 △ABC ∽△A'B'C' ,且△A'B'C' 的最短边长为 6,则
△A'B'C'的周长为 ( ) A 、36 B 、24 C 、18 D 、12 5、如图,D 是BC 上的点,∠ADC =∠BAC ,则下列结论正确的是( ) A 、△ABC ∽△DAC B 、△ABC ∽△DAB C 、△ABD ∽△ACD D 、以上都不对
6、如图,△ABC 中,AB 、AC 边上的高CE 、BD 相交于P 点,图中
所有的相似三角形共有( )
A 、2 个
B 、3 个
C 、4 个
D 、5 个 三、解答题:(每题 9 分,共 54 分)
A D E
C B O
1、在△ABC和△A'B'C'中,已知AB=3cm,BC=4cm,AC=5cm,
A'B'=18cm,B'C'=24cm,A'C'=30cm,试说明△ABC∽△A'B'C'。
2、如图,DE∥AB,AD∥BC,求证:△EAD∽△ACB。
3、如图,∠1=∠2,AE=12,AD=15,AC=20,AB=25。
证明:△ADE∽△ABC。
4、如图,以O点为位似中心,把四边形ABCD放大到原来的2 倍(不写画法)。
5、利用方格将三角形放大两倍。
6、已知:AB
AE
=
AC
AD
,AD=3,BD=5,AC=6,求CE的长。
A
B
C
D
A E C
B
2 九年级数学15-2(共4页)
3
四、(12分)为了测量水塘边A 、B 两点之间的距离,在可以看到A 、B 的E 处,取AE 、BE 延长线上的C 、D 两点,使CD ∥AB ,如果测量得CD =5米,AD =15米,ED =3米,你能求出AB 两点之间的距离吗?
五、(12分)如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚 60cm ,梯上点D 距离50cm ,BD 长55cm ,求出梯子的长。
六、(12分)如图,在边长为 1的正方形网格上有P 、A 、B 、C 四点。
(1)求证:△PAB ∽△PCA
(2)求证:∠APB +∠PBA =45°
A P
B
C A E C
B D ┌ ┌
答案:
(十五)
一、1、5
3
2、10
3、6
4、2
5、
7
6
6、3
7、
2
5
8、99、∠ADE=∠B10、8
11、16米12、8
二、1、C2、C3、D4、B5、A6、C
三、1、∵AB
AB
=
1
6
,
BC
B'C'
=
1
6
,
AC
A'C'
=
1
6
∴
AB
A'B'
=
BC
B'C'
=
AC
A'C'
∴△ABC∽△A'B'C'
2、∵DE∥AB∴∠DEA=∠CAB又∵AD∥BC∴∠DAE=∠BCA∴△EAD∽△ACB
3、∵∠1=∠2∴∠DAE=∠BAC又∵AD
AB
=
AE
AC
∴△ADE∽△ABC
4-5、略6、∵AB
AE
=
AC
AD
∴
3+5
6-x
=
6
3
∴x=2
四、∵AB
CD
=
AE
ED
∴
AB
5
=
12
3
∴AB=20米五、∵
AD
AB
=
DE
BC
∴
x-55
x
=
50
60
x=330cm
六、①PC=1PA=5PB=5∴PA
PC
=
BP
PA
又∵∠APC=∠BPA∴△PAB∽△PCA
②∵∠B=∠PAC∴∠APB+∠PBA=∠APB+∠PAC=∠ACB=45°
4
九年级数学15-4(共4页)。