1-3-1 定义新运算.学生用
【精品】第03讲定义新运算与找规律(学生版)A4
f (a3) ,…
则 a3 ______, a1 a2 a3
a2014 ______________
题模二:图形类
例 2.2.1 如图,图①是一块边长为 1,周长记为 P1 的正三角形纸板,沿图①的底边剪去一块边长为
1 的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前 2
a、 b,都有 a
A. 25
B. m2 1
C. 5
b
2
b
1 ,例如 7
D. 26
2
2
2
1
5,
随练 1.3 定义一种新运算:观察下列式:
1⊙ 3=1× 4+3=7 3 ⊙(﹣ 1) =3× 4﹣1=11 5 ⊙ 4=5× 4+4=24 4 ⊙(﹣ 3) =4× 4﹣
3=13
( 1)请你想一想: a⊙ b=
n 果为 2k (其中
k 是使得
n 2k 为奇数的正整数),并且运算重复进行.例如,取
n 6 ,则:
6
F② 第 1次
3
F① 第 2次
10
F② 第 3次
5,若 n 1 ,则第 2 次“ F 运算”的结果是 _______ ;若 n 13 ,则
;
( 2)若 a≠ b,那么 a⊙ b
b⊙ a(填入“ =”或“≠”)
( 3)若 a⊙(﹣ 2b) =4,请计算 ( a﹣ b)⊙( 2a+b)的值.
随练 1.4 符号 f 表示一种新运算,它对一些数的运算结果如下: (1) f 1 0, f 2 1 , f 3 2 , f 4 3 ,
(2) f 1 2 , f 1 3 , f 1 4 , f 1 5,
初中数学新定义运算教案
教案:初中数学新定义运算教学目标:1. 理解并掌握新定义的运算方法及其应用。
2. 能够运用新定义运算解决实际问题。
3. 培养学生的逻辑思维能力和创新意识。
教学内容:1. 新定义运算的定义及运算规则。
2. 新定义运算在实际问题中的应用。
教学过程:一、导入(5分钟)1. 引入新定义运算的概念,让学生猜测新定义运算的可能形式。
2. 引导学生思考新定义运算的实际意义和应用场景。
二、新课讲解(20分钟)1. 给出新定义运算的具体定义和运算规则。
2. 通过示例题目,解释新定义运算的运算过程和结果。
3. 引导学生总结新定义运算的规律和特点。
三、课堂练习(15分钟)1. 布置一些有关新定义运算的练习题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和分析,指出其中的错误和不足。
四、应用拓展(10分钟)1. 给出一些实际问题,让学生运用新定义运算进行解决。
2. 引导学生思考新定义运算在实际问题中的应用价值和意义。
五、课堂小结(5分钟)1. 回顾本节课所学的新定义运算的概念和运算规则。
2. 强调新定义运算在实际问题中的应用方法和注意事项。
六、作业布置(5分钟)1. 布置一些有关新定义运算的练习题目,让学生巩固所学知识。
2. 鼓励学生自主探索新定义运算的其他应用场景。
教学反思:本节课通过引入新定义运算,让学生了解了新定义运算的概念和运算规则,并通过练习和应用拓展,使学生掌握了新定义运算的实际应用方法。
在教学过程中,要注意引导学生思考新定义运算的实际意义和应用场景,培养学生的逻辑思维能力和创新意识。
同时,要加强课堂练习的讲解和分析,及时发现和纠正学生的错误,提高学生的学习效果。
定义新运算小学生练习题
定义新运算小学生练习题一、基础运算题1. 若a△b表示a与b的和,那么5△3等于多少?2. 如果a☆b表示a减去b,那么7☆4等于多少?3. 假设a□b表示a乘以b,那么6□3等于多少?4. 设a○b表示a除以b,那么9○3等于多少?5. 若a⊕b表示a与b的差,那么8⊕5等于多少?二、进阶运算题1. 已知aΦb表示a的2倍与b的和,求5Φ7的值。
2. 如果ab表示a的3倍减去b,求94的值。
3. 假设ab表示a的4倍与b的差,求73的值。
4. 设a%b表示a的5倍除以b,求10%2的值。
5. 若a&b表示a的6倍与b的和,求6&5的值。
三、混合运算题1. 已知a×b表示a与b的乘积,a÷b表示a除以b,求(5×3)÷(2×1)的值。
2. 如果a+b表示a与b的和,ab表示a减去b,求(7+4)÷(52)的值。
3. 假设a□b表示a乘以b,a△b表示a与b的和,求6□(4△2)的值。
4. 设a○b表示a除以b,a☆b表示a减去b,求(9○3)☆(7○1)的值。
5. 若a⊕b表示a与b的差,aΦb表示a的2倍与b的和,求(8⊕5)Φ(4⊕2)的值。
四、应用题1. 小明有5个苹果,小华有3个苹果,如果用a△b表示小明和小华的苹果总数,求a△b的值。
2. 假设小红有7个糖果,她给了小刚4个,如果用a☆b表示小红剩下的糖果数,求a☆b的值。
3. 一箱橙子有12个,小丽分给同学们,每人3个,如果用a□b表示分给的同学人数,求a□b的值。
4. 小王有9元钱,他买了一个本子花了3元,如果用a○b表示小王剩下的钱数,求a○b的值。
5. 小刚有8个球,他丢了5个,如果用a⊕b表示小刚剩下的球数,求a⊕b的值。
五、逻辑推理题1. 如果ab表示a与b的较小值,那么4b等于多少,当b=7时?2. 假设a+b表示a与b的较大值,那么5+a等于多少,当a=9时?3. 若a!b表示a与b的乘积,且结果为偶数,那么6!b等于多少,当b为偶数时?4. 设ab表示a与b的差,且结果为正数,那么8a等于多少,当a<8时?5. 若a//b表示a与b的和,且结果为10,那么3//b等于多少,当a=7时?六、图形与位置题1. 若a→b表示从点a到点b的直线距离,求点(1,2)→点(4,6)的距离。
定义新运算教案
定义新运算教案教案标题:定义新运算教案教学目标:1. 了解新运算的概念和定义。
2. 掌握使用新运算进行计算的方法。
3. 培养学生的逻辑思维和问题解决能力。
教学重点:1. 掌握新运算的定义和特点。
2. 理解新运算与传统运算的区别。
3. 运用新运算进行实际计算。
教学准备:1. 教师准备:- 确定教学目标和重点。
- 准备教案、教具和示例题。
- 预先了解学生对于运算的基本理解。
2. 学生准备:- 准备纸和铅笔。
- 复习传统运算的基本概念。
教学过程:引入(5分钟):1. 教师可以通过提问或展示一道有趣的数学题目引起学生的兴趣和思考,例如:“如果我们有一种新的运算方法,能够让两个数相乘的结果变成它们的和,你们觉得这种运算有什么特别之处?”探究(15分钟):1. 教师向学生介绍新运算的定义和符号表示,例如:“我们把这种运算叫做加乘运算,用符号@表示。
对于任意两个数a和b,a@b的结果等于a和b的和。
”2. 教师通过示例题引导学生理解新运算的具体应用,例如:“请计算3@4的结果。
”3. 学生独立或小组合作完成几道练习题,巩固对新运算的理解和应用。
拓展(15分钟):1. 教师提出一些拓展问题,鼓励学生运用新运算解决实际问题,例如:“如果我们有三个数a、b和c,你们能否通过加乘运算找到一个表达式来计算a、b和c 的和?”2. 学生个别或小组合作讨论、解决拓展问题,并向全班展示他们的解决思路和答案。
总结(5分钟):1. 教师对本节课的内容进行总结,强调新运算的定义和应用。
2. 学生回答教师提出的总结问题,巩固对新运算的理解。
作业(5分钟):1. 布置适量的作业,要求学生运用新运算解决一些实际问题。
2. 强调作业的重要性和及时性,鼓励学生独立思考和解决问题。
教学延伸:1. 针对学生的学习情况,可以设计更多的练习题和拓展问题,提供不同难度的挑战。
2. 引导学生思考新运算与传统运算的联系和区别,拓宽他们的数学思维。
教学评估:1. 教师通过观察学生在课堂上的表现和回答问题的情况,评估他们对新运算的理解和应用能力。
【小学奥数题库系统】1-3-1定义新运算.学生版(精)
【巩固】规定:6 2 ※ =6+66=72 2 1 7 ※5= ※3=2+22+222=246,※4=1+11+111+1111=1234. 【例 16】有一个数学运算符号⊗,使下列算式成立:2⊗4= 8,5⊗3 = 13 , 3 ⊗ 5 = 11 , 9 ⊗ 7 = 25 ,求 7 ⊗ 3 = ? 【巩固】规定 a △ b = a × (a + 2 − (a + 1 − b , 计算:((11 △1 ) = ______. △10 )【例 17】一个数 n 的数字中为奇数的那些数字的和记为 S ( n ,为偶数的那些数字的和记为E ( n ,例如 S (134 =1 + 3 = 4 , E (134 = 4 .; E (1 + E=.模块四、综合型题目【例 18】已知:10 △3=14 , 8△7=2△, 3 4 1 = 1 ,根据这几个算式找规律,如果 4 . 5 △ x =1,那么 x = 8 【例19】如果 a 、 b 、 c 是 3 个整数,则它们满足加法交换律和结合律,即⑴ a + b = b + a ;⑵ (a + b + c =a + (b + c 。
现在规定一种运算"*",它对于整数 a、 b、c 、d 满足:(a, b *(c, d = (a × c + b × d , a × c − b × d 。
例: (4,3 *(7,5 = (4 × 7 + 3 × 5, 4 ×7 − 3 × 5 = (43,13 请你举例说明,"*"运算是否满足交换律、结合律。
1-3-1.定义新运算.题库学生版 page 6 of 9【例 20】用 {a} 表示 a 的小数部分, [a] 表示不超过 a 的最大整数。
例如:记 = = = = {0.3} 0.3, {4.5} 0.5, [0.3] 0; [ 4.5] 4 f ( x = x+2 2x +1 ,请计算的值。
定义新运算教案
定义新运算教案教案:定义新运算一、教学目标:1. 理解运算的概念和基本属性;2. 通过引入新运算,培养学生的逻辑思维和运算能力;3. 掌握使用新运算进行简单计算的方法。
二、教学重点:1. 掌握新运算的定义和特征;2. 能够运用新运算进行简单的数值计算。
三、教学内容:1. 运算的基本概念回顾:a. 运算是数学中的一种基本操作,包括加法、减法、乘法和除法;b. 运算具有封闭性、结合律、交换律和分配律等基本属性。
2. 引入新运算:a. 介绍新运算的概念:新运算是指在数学运算中引入全新的运算符号和规则;b. 引入新运算的目的:通过新运算的引入,培养学生的逻辑思维和运算能力。
3. 新运算的定义和特征:a. 定义:新运算是指将两个数相加并加上它们的乘积的运算,用符号“@”表示;b. 特征:新运算满足封闭性和结合律。
4. 使用新运算进行计算:a. 通过示例演示如何使用新运算进行简单计算;b. 培养学生使用新运算进行计算的能力。
四、教学方法:1. 教师讲解法:通过示例演示和讲解,引导学生理解新运算的定义和特征;2. 练习与讨论法:设计一些实际问题,供学生在课堂上进行练习和讨论。
五、教学过程:1. 导入新课:a. 引入了运算的概念和基本属性;b. 介绍了新运算的概念和目的。
2. 新运算的定义和特征:a. 定义:新运算是将两个数相加并加上它们的乘积的运算,用符号“@”表示;b. 特征:新运算满足封闭性和结合律。
3. 示例演示:a. 讲解新运算的使用方法;b. 设计一些简单的示例,演示如何使用新运算进行计算。
4. 练习与讨论:a. 分发练习题,要求学生用新运算计算;b. 学生自主完成练习题,并与同桌讨论解题思路和答案。
六、巩固与拓展:1. 巩固:a. 整理新运算的定义和特征,并与学生讲解;b. 师生共同总结使用新运算进行计算的方法和技巧,并进行归纳。
2. 拓展:a. 引导学生思考和讨论:是否存在其他类似的新运算?b. 引导学生运用已学知识,尝试定义其他新运算,并进行计算。
定义新运算教案
定义新运算教案概述:本教案旨在引入一种新的数学运算,以丰富学生的数学知识和提高他们的逻辑思维能力。
通过学习和应用这种新运算,学生将能够发展出创造性和灵活性,并增强他们的解决问题的能力。
第一部分:新运算的介绍1.1 概念及背景新运算是一种经过精心设计的数学计算方法,旨在扩展传统四则运算的范围。
它结合了不同数学概念和原则,使学生能够更全面地思考和解决问题。
1.2 定义和符号在本教案中,新运算被定义为“***”。
它使用特定的符号(例如“$”)表示运算符,在数学表达式中起到连接和操作数的作用。
1.3 运算规则和性质新运算遵循一定的规则和性质,其中包括:- 交换律:$a$ $b$ = $b$ $a$,对于任意的$a$和$b$- 结合律:$(a$ $b)$ $c$ = $a$ $(b$ $c)$,对于任意的$a$、$b$和$c$ - 元素的单位元:$a$ $e$ = $a$,对于任意的$a$,其中$e$表示新运算的单位元- 元素的逆元:$a$ $a^{-1}$ = $e$,对于任意的$a$,其中$a^{-1}$表示$a$的逆元素第二部分:新运算的应用2.1 简单加法与减法通过使用新运算,学生将能够更轻松地执行加法和减法运算。
例如:- $5$ $+$ $3$ = $8$- $7$ $-$ $4$ = $3$2.2 复杂运算与算式简化新运算不仅适用于简单的运算,还可以用于更复杂的计算。
例如,在求解下列算式时,使用新运算可以更简化:- $(2$ $+$ $3)$ $×$ $4$ = $20$- $(6$ $-$ $2)$ $×$ $3$ = $12$2.3 混合运算学生还可以将新运算与传统的四则运算混合使用,以解决更具挑战性的问题。
例如,在下面的例子中,我们同时使用了新运算和传统运算:- $(3$ $+$ $2)$ $×$ $4$ $-$ $10$ = $18$第三部分:新运算的挑战与应用3.1 探索未知数字通过使用新运算,学生可以更灵活地推理和研究未知数字。
小学数学《定义新运算》教案
《定义新运算》教案教学内容:五年级下教学目标:1、让学生认识新运算,掌握新运算。
2、开拓学生的思维,让学生学会用新的思维考虑问题教学重点:在定义新运算的问题中,让学生认真审题,明确“新运算”的定义,严格遵照规定的法则来完成计算。
教学难点:让学生正确理解新运算的定义。
教学方法:自主探究、合作交流。
教学准备:多媒体课件教学过程:一、快速抢答:(课件出示)1、我们以前学过哪些运算符号?加、减、乘、除、括号2、那些符号有什么运算法则?在四则运算中,有括号先算括号里面的,再算乘除,最后算加减二、导入新课:1、导入新课,板书课题。
我们以前学过加减乘除,也学会了它们的运算法则,同学们很熟练的掌握了,可是今天老师跟你们带来了一种新的运算符号,相信大家很期待老师给大家展示一下,今天我们就来学习一下这个新的运算符号及规律。
教师板书课题:定义新运算。
2、什么是定义新运算?“定义新运算”是针对已有的常规运算而言的,例如常见的加、减、乘、除运算,有一定的运算定义,一定的运算符号,一定的运算法则,这些都是约定俗成的;而定义新运算是指人为规定用一个符号和已知运算表达式表示一种新的运算,新运算的定义是题目规定的,只能在对应的题目里有效,相同的符号在不同的题目里面可能会有不同的含义解答这类问题时,要认真审题,根据题目的具体特点,仔细分析,深入思考,灵活、辨证地选择解法。
三、自主探究(一):1、出示例1:【例1】已知a&b=( a+b)-( a-b),求5&22、引导学生读题,分析题意:3、学生自主探究。
4、交流汇报,教师点拨。
思路点拨:这是一道比较简单的定义新运算题,我们只要把5和2运算式,把定义中的a,b分别换成5和2可以了。
【解】a&b=( a+b)-( a-b)= ( 5+2)-(5-2)=7-3=4四、巩固练习:a&b=(a+2b) ÷2,求18&10答案:a&b=(a+2b) ÷2=(18+2×10)÷2=38÷2=19五、自主探究(二):1、出示例2:【例2】定义新运算A!B=A×A-B×B,求8!52、引导学生读题,分析题意:3、学生自主探究。
小学数学奥赛1-3-1 定义新运算.学生版
定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等. 如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
6△(3△4) 例题精讲知识点拨教学目标定义新运算【巩固】 设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.【巩固】 P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。
数学有趣有用好玩——定义新运算
课堂小结
解决新定义运算问题,首先理解新定义符号的含义,严格按新的规则操 作,在操作过程中,不能按原来的+、-、×、÷运算法则合并使用,但可
以根据不同的定义归纳出相对应的运算规律,因此解决新定义问题的关键是
同学们对问题的理解及适应能力。
【当堂测试】
答案:40
答案:15
回顾总结
学习了什么内容?有哪些收获?
山大附中等济南名校在初中招生中常考的题型之一。
这类题的主要目的是培养学生的观察能力、数学阅读
理解能力。
3、进行“定义新运算”时要注意什么?
在定义新运算中的※,〇,△……与+、-、×、÷是有
严格区别的。解答定义新运算问题,必须先理解先定义的
含义,遵循新定义的关系式把问题转化为一般的+、-、
×、÷运算问题。
【学习导航】
①什么是“定义新运算?”
②为什么要学习“定义新运算?” ③进行“定义新运算”时要注意什么?
1、什么是“定义新运算”?
定义新运算是指用某些特殊的符号,表示特定的意义,从 而解答某些特殊算式的运算,它表示一种新的运算。
2、为什么要学习“定义新运算”?
“定义新运算”是近年来济南外国语学校、稼轩中学和
55555553075课堂小结解决新定义运算问题首先理解新定义符号的含义严格按新的规则操作在操作过程中不能按原来的运算法则合并使用但可以根据不同的定义归纳出相对应的运算规律因此解决新定义问题的关键是同学们对问题的理解及适应能力
数学王国 ------定义新运算
学大教育济南分公司 孔庆国
新鲜
培养 能力
有用
6△(3△4 ) =6△1
=(6+1)÷1 =7
例【3】 如果1※2=1+11 2※3=2+22+222 3※4=3+33+333+333+3333 计算:(3※2)×5。 分析:通过观察发现:a※b中的b表示加数的个数,每个加数数
定义新运算(讲义)-2023-2024学年一年级下册数学苏教版
教学内容定义新运算教学目标理解定义新运算的概念1.掌握定义新运算的运算顺序教学重点2.理解定义新运算的新的运算规律教学难点定义新运算的新的运算规律教学准备教案教学过程知识详解1.含义:定义新运算是一种人为的、临时性的运算方式,它使用的是一些特殊的运算符号,如:*、△、○等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化时,是不适合于各种运算定律的。
2.简单认识特殊字符:Ααalpha a:lf 阿尔法Ββbeta bet 贝塔Γγgamma ga:m 伽马Δδdelta delt 德尔塔Θθthet θit 西塔∧λlambda lambd 兰布达Μμmu mju 缪Χχchi phai 西模块一:基础定义新运算【例1】定义一种运算◎:a◎b=4×a+3×b,1)求5◎4,4◎5;解答:这里的5可以看成字母“a”,4可以看成字母“b”,然后带入新的定义:5◎4=4×5+3×4=20+12=324◎5=4×4+3×5=16+15=31【例2】定义数a、b的两种运算“®”“©”如下:a®b=6×a+5×b,a©b=3×a×b, 求(2®3)©4的值。
模块二:定义新运算找规律与结合方程求解【例题3】定义一种运算◇:a◇b=a×b-(a+b),(1)求15◇14;(2)若12◇X=43,求X的值。
【例题4】规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111。
请根据给出的三个式子,求8※5的值?真题在线1.规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值2.设a、b都表示数,规定a△b=3×a—2×b,1)求 3△2, 2△3;2)求(17△6)△2,17△(6△2);3)如果已知4△b=2,求b.3.定义a*b表示a的3倍减去b的两倍,即a*b=3a-2b,计算,已知X*(4*1)=1,求x的值。
3-3-定义新运算 -学生版
……3-3-定义新运算【1】如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为x 21输出输入xx +3x 为偶数x 为奇数(第11题)(A)6(B)3(C)200623(D)10033231003⨯+【2】如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.【3】已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =,则2010S =(用含a 的代数式表示).【4】已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【5】符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,……(2)1111()()()()23452,3,4,5f f f f ====……利用以上规律计算:1(2010)()2010f f -=【6】如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是.【7】观察图中每一个大三角形中白色三角形的排列规律,则第4个大三角形中白色三角形有个.【8】第7题图中黑三角的分型是由规律的,第4个大三角形中的黑三角有()个。
第一个(第18题)第二个…第三个【9】(北师大附中)阅读下面的一段文字:问题:∙70.能化为分数形式吗?探求:步骤(1)设∙=70.x ,步骤(2)∙⨯=70.1010x ,步骤③∙=77.10x ,则∙+=70.710x ,步骤④x x +=710,解的:97=x 。
小学数学竞赛:定义新运算.学生版解题技巧 培优 易错 难
定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等. 如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
6△(3△4) 例题精讲知识点拨教学目标定义新运算【巩固】 设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.【巩固】 P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。
定义新运算
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
学科培优数学“定义新运算”学生姓名授课日期教师姓名授课时长知识定位定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
知识梳理定义新运算分类1、简单的四则运算中定义新运算2、与方程联系的定义新运算(一个未知数,二个未知数)3 、不告诉规律,需要观察出规律的新运算4 、与个数和大小相关的定义新运算5 、与数论联系的定义新运算6 、其他类型,分数类,程序之类定义新运算是用某些特殊的符号,表示特定的意义,从而解答某些特殊算式的运算。
在定义新运算中的※,〇,△……与+、-、×、÷是有严格区别的。
解答定义新运算问题,必须先理解先定义的含义,遵循新定义的关系式把问题转化为一般的+、-、×、÷运算问题关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
1.正确理解新运算的规律。
2.把不熟悉的新运算变化成我们熟悉的运算。
3.新运算也要遵守运算规律。
4.与数论相联系的知识是考试的热点和难点。
5.与实际问题相联系,比如编程计算,计算机等。
例题精讲【试题来源】【题目】若A*B表示(A+3B)×(A+B),求5*7的值【答案】312【解析】A*B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
(完整版)定义新运算
第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。
2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。
3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。
一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
6△(3△4)例题精讲知识点拨教学目标定义新运算【巩固】 设a △2b a a b =⨯−⨯,那么,5△6=______,(5△2) △3=_____.【巩固】 P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8)【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=−,那么[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。
那么,(2☆3)+(4☆4)+(7☆5)= 。
【例 2】 “△”是一种新运算,规定:a △b =a ×c +b ×d (其中c ,d 为常数),如5△7=5×c +7×d 。
如果1△2=5,2△3=8,那么6△1OOO 的计算结果是________。
【巩固】 对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b⨯+⨯⨯(m 是一个确定的整数)。
如果1⊗4=2⊗3,那么3⊗4等于________。
【例 3】 对于任意的整数x 与y 定义新运算“△”:6=2x y x y x y ⨯⨯∆+,求2△9。
【巩固】 “*”表示一种运算符号,它的含义是:()()111x y xy x y A *=+++ ,已知()()11221212113A *=+=⨯++,求19981999*。
【例 4】[A]表示自然数A的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算: ([18][22])[7]+÷= .【巩固】x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是.【巩固】定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .【例 5】我们规定:符号Θ表示选择两数中较大数的运算,例如:5Θ3=3Θ5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:1523(0.6)(0.625)23353411(0.3)( 2.25)996••Θ+∆∆+Θ的结果是多少?【巩固】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
计算下式:[(7◎3)& 5]×[ 5◎(3 & 7)]【巩固】我们规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数。
则()()108651120=−⨯△△○13+15△【例 6】如果规定a※b =13×a-b ÷8,那么17※24的最后结果是______。
【巩固】若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G (6)=4,则G(36)+G(42)= 。
【巩固】如果&10a b a b=+÷,那么2&5=。
【例 7】“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________.【例 8】羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼,以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了。
小朋友总是希望羊能战胜狼.所以我们规定另一种运算,用符号☆表示:羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼,这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了。
对羊或狼,可以用上面规定的运算作混合运算,混合运算的法规是从左到右,括号内先算.运算的结果或是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼)【例 9】一般我们都认为手枪指向谁,谁好像是有危险的,下面的规则同学们能看懂吗规定:警察小偷=警察,警察小偷=小偷.那么:(猎人小兔)(山羊白菜)=.模块二、反解未知数型【例 10】如果a△b表示(2)−⨯,例如3△4(32)44a b=−⨯=,那么,当a△5=30时, a= .【巩固】规定新运算※:a※b=3a-2b.若x※(4※1)=7,则x= .【巩固】如果a⊙b表示32−,例如4⊙5=3×4-2×5=2,那么,当x⊙5比5⊙x大5时, x=a b【巩固】对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
【例 11】定义新运算为1aa bb+=,⑴求2(34)的值;⑵若4 1.35x=则x的值为多少?【巩固】对于任意的两个自然数a和b,规定新运算*:(1)(2)(1)a b a a a a b*=+++−,其中a、b表示自然数.如果(3)23660x**=,那么x等于几?【例 12】定义a b*为a与b之间(包含a、b)所有与a奇偶性相同的自然数的平均数,例如:714=(7+9+11+13)4=10*÷,1810=(18+16+14+12+10)5=14*÷.在算术(1999)=80**的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?【巩固】如有a#b新运算,a#b表示a、b中较大的数除以较小数后的余数.例如;2#7=1,8#3=2,9#16=7,21#2=1.如(21#(21#x))=5,则x可以是________(x小于50)【例 13】已知x、y满足[]2009x y+=,{}20.09y y+=;其中[]x表示不大于x的最大整数,{}x表示x的小数部分,即{}[]x x x=−,那么x=。
【例 14】规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+ A△3)=96,且A、B均为大于0的自然数,A×B的所有取值为.(8级)模块三、观察规律型【例 15】如果1※2=1+112※3=2+22+222 3※4=3+33+333+333+3333计算 (3※2)×5。
【巩固】 规定:6※2=6+66=722※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5=【例 16】 有一个数学运算符号⊗,使下列算式成立:248⊗=,5313⊗=,3511⊗=,9725⊗=,求73?⊗=【巩固】 规定a △b (2)(1)a a a b =⨯+−+−, 计算:(2△1)++(11△10)=______.【例 17】 一个数n 的数字中为奇数的那些数字的和记为()S n ,为偶数的那些数字的和记为()E n ,例如()134134S =+=,()1344E =. ()()12(100)S S S +++= ;()(1)(2)100E E E +++= .模块四、综合型题目【例 18】 已知:10△3=14, 8△7=2, 43△141=,根据这几个算式找规律,如果 85△x =1,那么x = .【例 19】 如果a 、b 、c 是3个整数,则它们满足加法交换律和结合律,即⑴a b b a +=+;⑵()()a b c a b c ++=++。
现在规定一种运算"*",它对于整数 a 、 b 、c 、d 满足:(,)*(,)(,)a b c d a c b d a c b d =⨯+⨯⨯−⨯。
例:(4,3)*(7,5)(4735,4735)(43,13)=⨯+⨯⨯−⨯=请你举例说明,"*"运算是否满足交换律、结合律。
【例 20】 用{}a 表示a 的小数部分,[]a 表示不超过a 的最大整数。
例如:{}[]{}[]0.30.3,0.30;4.50.5,4.54====记2()21x f x x +=+, 请计算(){}()11,;1,133f f f f ⎧⎫⎡⎤⎛⎫⎛⎫⎡⎤⎨⎬ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎩⎭⎣⎦的值。
【例 21】 在计算机中,对于图中的数据(或运算)的读法规则是:先读第一分支圆圈中的,再读与它相连的第二分支左边的圆圈中的,最后读与它相连的第二分支右边的圆圈中的,也就是说,对于每一个圆圈中的数据(或运算)都是按"中→左→右"的顺序。