广州市海珠区八年级上册期末数学试卷(含答案)(2019级)
海珠区期末八年级数学试卷
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √9B. √-16C. √2D. π2. 已知x^2 + 2x + 1 = 0,则x的值为()A. 1B. -1C. 0D. 23. 在直角坐标系中,点A(2,3)关于y轴的对称点为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. 若a、b、c是等差数列的前三项,且a+b+c=9,则c的值为()A. 3B. 6C. 9D. 125. 下列函数中,是二次函数的是()A. y = 2x^2 + 3x + 1B. y = x^2 + 3C. y = 2x + 3D. y = 3x^2 + 2x + 1二、填空题(每题5分,共25分)6. 若a、b、c成等比数列,且a=2,b=4,则c=______。
7. 已知sinα = 0.6,则cosα的值为______。
8. 在等腰三角形ABC中,底边AB=8,腰AC=10,则三角形ABC的面积为______。
9. 若x^2 - 5x + 6 = 0,则x^2 - 5x的值为______。
10. 在平面直角坐标系中,点P(-3,4)关于原点的对称点为______。
三、解答题(每题10分,共30分)11. (10分)已知函数y = -2x^2 + 3x + 1,求:(1)函数的对称轴;(2)函数的最大值;(3)函数的增减性。
12. (10分)已知数列{an}的前三项分别为a1=1,a2=3,a3=7,且满足an+1 = 2an + 1,求:(1)数列的通项公式;(2)数列的前10项和。
13. (10分)已知直角三角形ABC中,∠C=90°,∠A=30°,斜边AB=10,求:(1)三角形ABC的面积;(2)∠B的正弦值。
四、附加题(20分)14. (10分)在平面直角坐标系中,已知点P(3,4),点Q(-2,5),求:(1)线段PQ的中点坐标;(2)线段PQ的长度。
海珠区八上期末数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √9B. πC. √-4D. 2.52. 下列各式中,正确的是()A. a² = b²,则a = bB. a² = b²,则a = -bC. a² = b²,则a = ±bD. a² = b²,则a = 03. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |0|D. |2|4. 若m = 2,n = -1,则m - n的值为()A. 3B. -3C. 1D. -15. 在等腰三角形ABC中,若AB = AC,则∠BAC的度数为()A. 45°B. 90°C. 120°D. 135°6. 已知一次函数y = kx + b,若k > 0,b > 0,则函数图像位于()A. 第一、二、四象限B. 第一、二、三象限C. 第一、三、四象限D. 第一、二、四象限7. 已知正方形的对角线长为10cm,则该正方形的边长为()A. 5cmB. 10cmC. 20cmD. 25cm8. 若等腰三角形ABC的底边AB = 8cm,腰AC = BC = 10cm,则三角形ABC的面积为()A. 32cm²B. 40cm²C. 48cm²D. 64cm²9. 若直角三角形的两条直角边分别为3cm和4cm,则斜边的长度为()A. 5cmB. 6cmC. 7cmD. 8cm10. 已知二次函数y = ax² + bx + c(a ≠ 0),若 a > 0,则函数图像开口()A. 向上B. 向下C. 向左D. 向右二、填空题(每题3分,共30分)11. 有理数-3的相反数是________。
12. 若x² = 16,则x的值为________。
2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷(解析版)
2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y63.第24届冬季奥运会,将于2022年由北京市和张家口市联合举办.下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.4.如图,已知△ABC≌△ADC,∠B=30°,∠BAC=23°,则∠ACD的度数为()A.120°B.125°C.127°D.104°5.多项式8m2n+2mn的公因式是()A.2mn B.mn C.2D.8m2n6.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.7.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S=()△ABDA.28B.21C.14D.78.一个多边形的内角和是540°,这个多边形的边数是()A.4B.5C.6D.以上都不可能9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE 的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x +n ,则有:x 2+2x ﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt △PGN 中,PN ==,在Rt △BCN 中,CN == ∵∠B =∠E =90°,∠ANE =∠BNC∴△ANE ∽△CNB∴∴∴AE =,NE =∵PE =EN +PN∴PE =+= ∴AE =PE ,且AE ⊥PE∴∠APN =45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN 的长.。
2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷
2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列图案中是轴对称图形的是()A.B.C.D.2.(3分)如果分式x−12x−y的值为0,那么x,y应满足的条件是()A.x≠1,y≠2B.x≠1,y=2C.x=1,y=2D.x=1,y≠2 3.(3分)下列运算中,正确的是()A.a+a=a2B.x4÷x=x3C.(2x2)3=6x6D.(a﹣b)2=a2﹣b24.(3分)下列各式从左到右的变形,是因式分解的是()A.3x2+2x=x(3x+2)B.x2﹣x﹣2=x(x﹣1)﹣2C.(a+b)(a﹣b)=a2﹣b2D.a2b=ab•a5.(3分)已知三角形两边的长分别是2和5,则此三角形第三边的长可能是()A.1B.2C.3D.46.(3分)一个多边形的内角和与外角和之比为3:1,则这个多边形的边数是()A.7B.8C.9D.107.(3分)把点A(x,﹣5)沿着y轴翻折与点B(﹣2,y)重合,则x+y的值为()A.7B.﹣7C.﹣3D.28.(3分)点P在∠AOB的平分线上,点P到OA边的距离等于m,点Q是OB边上的一个动点,则PQ与m的大小关系是()A.PQ<m B.PQ>m C.PQ≤m D.PQ≥m9.(3分)如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.610.(3分)如图,△ABC的面积为S,AD平分∠BAC,AD⊥BD于D,连接CD,则△ACD 的面积为()A .2S 3B .S3C .S2D .S二、填空题(本题有6个小题,每题3分,满分18分,将答案填在答题纸上) 11.(3分)因式分解:a 3﹣ab 2= .12.(3分)在△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于D ,S △ABC =12,AD =4,则BC = .13.(3分)如图,在△ABC 中,∠A =50°,若剪去∠A 得到四边形BCDE ,则∠1+∠2= .14.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,AB =4,△ABD 的周长为12,则BC = .15.(3分)a 、b 、c 是等腰△ABC 的三边长,其中a 、b 满足a 2+b 2﹣4a ﹣10b +29=0,则△ABC 的周长为 16.(3分)观察下列各等式: x ﹣2=x ﹣2(x ﹣2)(x +2)=x 2﹣22 (x ﹣2)(x 2+2x +4)=x 3﹣23 (x ﹣2)(x 3+2x 2+4x +8)=x 4﹣24 ……请你猜想:若A•(x+y)=x5+y5,则代数式A=.三、解答题:本题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:(1)2ab(a2b﹣3ab)(2)(2020﹣π)0+2﹣118.(8分)计算:(1)y22x2÷y2 4x(2)x2x+2−4 x+219.(8分)(1)计算:(﹣4ab2)3÷a3b4+(8b﹣a)(8b+a)(2)已知x+1=√3,求(x﹣1)2+4(x﹣1)+4的值.20.(8分)如图,点B、E、C、F在一条直线上,AC与DE交于点G,∠A=∠D=90°,AC=DF,BE=CF.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠F=30°,GE=2,求CE.21.(8分)某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2700元购买了一批给班级使用的小号垃圾桶,再用3600元购买了一批放在户久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求每个小号垃圾桶的价格是多少元?22.(10分)如图,△ABC是等边三角形,点D在线段AC上且不与点A、点C重合,延长BC至点E使得CE=AD,连接DE.(1)如图①,若D为AC中点,求∠E;(2)如图②,连接BD,求证:∠DBE=∠E.23.(12分)已知,关于x的分式方程a2x+3−b−xx−5=1.(1)当a=1,b=0时,求分式方程的解;(2)当a=1时,求b为何值时分式方程a2x+3−b−xx−5=1无解;(3)若a=3b,且a、b为正整数,当分式方程a2x+3−b−xx−5=1的解为整数时,求b的值.24.(12分)已知:在平面直角坐标系中,点A(﹣3,0),点B(﹣2,3).(1)在图①中的y轴上求作点P,使得P A+PB的值最小;(2)若△ABC是以AB为腰的等腰直角三角形,请直接写出点C的坐标;(3)如图②,在△ABC中,∠ABC=90°,AB=BC,点D(不与点A重合)是x轴上一个动点,点E是AD中点,连结BE,把BE绕着点E顺时针旋转90°得到FE(即∠BEF=90°,BE=FE),连结BF、CF、CD,试猜想∠FCD的度数,并给出证明.2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列图案中是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形; B 、不是轴对称图形; C 、是轴对称图形; D 、不是轴对称图形; 故选:C . 2.(3分)如果分式x−12x−y的值为0,那么x ,y 应满足的条件是( )A .x ≠1,y ≠2B .x ≠1,y =2C .x =1,y =2D .x =1,y ≠2【解答】解:由题意可知:{x −1=02x −y ≠0,解得:x =1,y ≠2, 故选:D .3.(3分)下列运算中,正确的是( ) A .a +a =a 2 B .x 4÷x =x 3C .(2x 2)3=6x 6D .(a ﹣b )2=a 2﹣b 2【解答】解:A .a +a =2a ,故本选项不合题意; B .x 4÷x =x 3,正确,故本选项符合题意; C .(2x 2)3=8x 6,故本选项不合题意;D .(a ﹣b )2=a 2﹣2ab +b 2,故本选项不合题意; 故选:B .4.(3分)下列各式从左到右的变形,是因式分解的是( ) A .3x 2+2x =x (3x +2) B .x 2﹣x ﹣2=x (x ﹣1)﹣2 C .(a +b )(a ﹣b )=a 2﹣b 2D .a 2b =ab •a【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、没把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、左边不是多项式,也不符合因式分解的定义,故D错误;故选:A.5.(3分)已知三角形两边的长分别是2和5,则此三角形第三边的长可能是()A.1B.2C.3D.4【解答】解:设三角形第三边长为x,则5﹣2<x<5+2,即3<x<7,故选:D.6.(3分)一个多边形的内角和与外角和之比为3:1,则这个多边形的边数是()A.7B.8C.9D.10【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×3,解得:n=8,故选:B.7.(3分)把点A(x,﹣5)沿着y轴翻折与点B(﹣2,y)重合,则x+y的值为()A.7B.﹣7C.﹣3D.2【解答】解:∵点A(x,﹣5)沿着y轴翻折与点B(﹣2,y)重合,∴x=2,y=﹣5,∴x+y=﹣3,故选:C.8.(3分)点P在∠AOB的平分线上,点P到OA边的距离等于m,点Q是OB边上的一个动点,则PQ与m的大小关系是()A.PQ<m B.PQ>m C.PQ≤m D.PQ≥m【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于m,∴点P到OB的距离等于m,∵点Q是OB边上的一个动点,∴PQ≥m.。
广州市海珠区2019-2020年八年级上期末数学试卷及答案解析
广州市海珠区2019-2020年八年级上期末数学试卷及答案解析一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( )A.B.C.D.2.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2) B.(﹣1,﹣2)C.(1,﹣2) D.(2,﹣1)3.已知三角形两边长分别为7、11,那么第三边的长可以是( )A.2 B.3 C.4 D.54.下列计算正确的是( )A.(a3)2=a6B.a•a2=a2C.a3+a2=a6D.(3a)3=9a35.一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.106.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°B.255°C.155°D.150°7.下列从左到右的运算是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy8.若等腰三角形的两边长分别为6和8,则周长为( )A.20或22 B.20 C.22 D.无法确定9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为( )A.8 B.16 C.24 D.32二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为__________微米.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是__________.13.计算(π﹣3.14)0+=__________.14.若x2+mx+4是完全平方式,则m=__________.15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=__________.16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤)17.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.18.解下列分式方程:(1)=(2)+1=.19.(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)20.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.21.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.22.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)23.先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.24.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(14分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.-学年八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点评】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2) B.(﹣1,﹣2)C.(1,﹣2) D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.已知三角形两边长分别为7、11,那么第三边的长可以是( )A.2 B.3 C.4 D.5【考点】三角形三边关系.【分析】根据三角形的三边关系可得11﹣7<第三边长<11+7,再解可得第三边的范围,然后可得答案.【解答】解:设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.4.下列计算正确的是( )A.(a3)2=a6B.a•a2=a2C.a3+a2=a6D.(3a)3=9a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】A、根据幂的乘方的定义解答;B、根据同底数幂的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.5.一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.10【考点】多边形内角与外角.【专题】计算题.【分析】多边形的外角和是360°,又有多边形的每个外角都等于36°,所以可以求出多边形外角的个数,进而得到多边形的边数.【解答】解:这个多边形的边数是:=10.故答案是D.【点评】本题考查多边形的外角和,以及多边形外角的个数与其边数之间的相等关系.6.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°B.255°C.155°D.150°【考点】多边形内角与外角;三角形内角和定理.【分析】先由三角形内角和定理得出∠B+∠C=180°﹣∠A=105°,再根据四边形内角和定理即可求出∠1+∠2=360°﹣105°=255°.【解答】解:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.【点评】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)•180°(n≥3且n为整数)是解题的关键.7.下列从左到右的运算是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.【点评】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.8.若等腰三角形的两边长分别为6和8,则周长为( )A.20或22 B.20 C.22 D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长与底边两种情况分情况讨论,再利用三角形的三边关系判断是否能组成三角形.【解答】解:若6是腰长,则三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,若6是底边长,则三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,三角形的周长为20或22.故选A.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【考点】全等三角形的判定.【专题】压轴题.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为( )A.8 B.16 C.24 D.32【考点】等边三角形的性质.【专题】规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.【解答】解:如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16;故选:B.【点评】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题关键.二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为4.3×10﹣3微米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0043=4.3×10﹣3.故答案为4.3×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是90°.【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的最大角的度数.【解答】解:设三个内角的度数分别为k,2k,3k.则k+2k+3k=180°,解得k=30°,则2k=60°,3k=90°,这个三角形最大的角等于90°.故答案为:90°.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.13.计算(π﹣3.14)0+=10.【考点】负整数指数幂;零指数幂.【分析】根据零指数幂、负整数指数幂进行计算即可.【解答】解:原式=1+9=10,故答案为10.【点评】本题考查了负整数指数幂、零指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.14.若x2+mx+4是完全平方式,则m=±4.【考点】完全平方式.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【解答】解:中间一项为加上或减去x和2积的2倍,故m=±4,故填±4.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=3.【考点】角平分线的性质;含30度角的直角三角形.【分析】过点P作PE⊥OA于E,根据角平分线定义可得∠AOP=∠BOP=15°,再由两直线平行,内错角相等可得∠BOP=∠OPC=15°,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:如图,过点P作PE⊥OA于E,∵∠AOB=30°,OP平分∠AOB,∴∠AOP=∠BOP=15°.∵PC∥OB,∴∠BOP=∠OPC=15°,∴∠PCE=∠AOP+∠OPC=15°+15°=30°,又∵PC=6,∴PE=PC=3,∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,∴PD=PE=3,故答案为3.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30°的直角三角形是解题的关键.16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.【考点】完全平方公式.【专题】规律型.【分析】先认真观察适中的特点,得出a的指数是从1到0,b的指数是从0到5,系数一次为1,﹣5,10,﹣10,5,﹣1,得出答案即可.【解答】解:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5,故答案为:a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.【点评】本题考查了完全平方公式的应用,解此题的关键是能读懂图形,有一点难度.三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤)17.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【考点】整式的混合运算.【分析】(1)根据幂的乘方、同底数幂的乘法进行计算即可;(2)根据单项式乘以多项式以及完全平方公式进行计算即可.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.【点评】本题考查了整式的混合运算,熟记完全平方公式和幂的运算性质公式是解题的关键.18.解下列分式方程:(1)=(2)+1=.【考点】解分式方程.【专题】计算题.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=1,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3(x+1)+x2﹣1=x2,去括号得:3x+3+x2﹣1=x2,移项合并得:3x=﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)作点B关于x轴的对称点B',然后连接AB',与x轴的交点即为点P.【解答】解:(1)(2)所作图形如图所示:.【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.【考点】分式方程的应用.【分析】设小鹏的速度为x米/分,爸爸的速度为2x米/分,根据题意可得,走1600米爸爸比小鹏少用10分钟,据此列方程求解.【解答】解:设小鹏的速度为x米/分,爸爸的速度为2x米/分,由题意得,﹣=10,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:小鹏的速度为80米/分.【点评】本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)【考点】线段垂直平分线的性质;等腰三角形的判定与性质.【分析】(1)先由AB=AC,∠A=36°,可求∠B=∠AC B==72°,然后由DE 是AC的垂直平分线,可得AD=DC,进而可得∠ACD=∠A=36°,然后根据外角的性质可求:∠CDB=∠ACD+∠A=72°,根据等角对等边可得:CD=CB,进而可证△BCD是等腰三角形;(2)由(1)知:AD=CD=CB=b,由△BCD的周长是a,可得AB=a﹣b,由AB=AC,可得AC=a﹣b,进而得到△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵DE是AC的垂直平分线,∴AD=DC,∴∠ACD=∠A=36°,∵∠CDB是△ADC的外角,∴∠CDB=∠ACD+∠A=72°,∴∠B=∠CDB,∴CB=CD,∴△BCD是等腰三角形;(2)解:∵AD=CD=CB=b,△BCD的周长是a,∴AB=a﹣b,∵AB=AC,∴AC=a﹣b,∴△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.23.先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.【考点】分式的化简求值.【专题】计算题.【分析】原式第二项约分后,两项通分并利用同分母分式的加法法则计算得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=+===﹣,当x=0时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE,容易得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=BC=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠ABD=120°,再证明△ABD≌△ACE,得出∠ABD=∠ACE=120°,即可得出结论;【解答】解:(1)∠BAD=∠CAE;理由:∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD=∠CAE;(2)∠DCE=60°,不发生变化;理由如下:∵△ABC是等边三角形,△ADE是等边三角形,∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE.∴∠ABD=120°,∠BAC﹣∠BAE=∠DAE﹣∠BAE∴∠DAB=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=120°.∴∠DCE=∠ACE﹣∠ACB=120°﹣60°=60°.【点评】本题考查了全等三角形的判定与性质以及等边三角形的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.25.(14分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
海珠区期末数学八年级试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 若实数a,b满足a+b=0,则ab的值为()A. 1B. -1C. 0D. 无法确定2. 下列函数中,是反比例函数的是()A. y=2x+1B. y=x²C. y=2/xD. y=x³3. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若点A、B的坐标分别为(1,0)和(0,-2),则该一次函数的解析式为()A. y=2x-2B. y=-2x+2C. y=2x+2D. y=-2x-24. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°5. 已知一元二次方程x²-5x+6=0的解为x₁和x₂,则x₁+x₂的值为()A. 5B. 6C. 7D. 86. 下列各式中,能被3整除的是()A. 456B. 567C. 678D. 7897. 若等腰三角形底边长为8,腰长为10,则该等腰三角形的周长为()A. 18B. 24C. 26D. 288. 在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)9. 下列图形中,是轴对称图形的是()A. 等边三角形B. 平行四边形C. 矩形D. 正五边形10. 若a²+b²=100,且a+b=10,则ab的值为()A. 50B. 40C. 30D. 20二、填空题(每题3分,共30分)11. 若x²-6x+9=0,则x的值为______。
12. 已知函数y=3x-2,当x=4时,y的值为______。
13. 在△ABC中,若AB=AC,则∠ABC和∠ACB的关系是______。
14. 若等腰三角形底边长为6,腰长为8,则该等腰三角形的周长为______。
2019-2020学度广东广州海珠区初二(上)年末数学试卷
2019-2020学度广东广州海珠区初二(上)年末数学试卷【一】选择题〔本大题共10小题,每题2分,共20分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1.〔2分〕〔2007•盐城〕以下图案属于轴对称图形的是〔〕A、B、C、D、2.〔2分〕〔2019秋•海珠区期末〕点M〔1,2〕关于y轴对称点的坐标为〔〕A、〔﹣1,2〕B、〔﹣1,﹣2〕C、〔1,﹣2〕D、〔2,﹣1〕3.〔2分〕〔2019秋•海珠区期末〕三角形两边长分别为7、11,那么第三边的长可以是〔〕A、2 B、3 C、4 D、54.〔2分〕〔2019•梅列区校级质检〕以下计算正确的选项是〔〕A、〔a3〕2=a6B、a•a2=a2C、a3+a2=a6D、〔3a〕3=9a35.〔2分〕〔2019秋•海珠区期末〕一个多边形每个外角都等于36°,那么这个多边形是几边形〔〕A、7B、8C、9D、106.〔2分〕〔2019秋•海珠区期末〕如图,△ABC中,∠A=75°,那么∠1+∠2=〔〕A、335°B、255°C、155°D、150°7.〔2分〕〔2019秋•海珠区期末〕以下从左到右的运算是因式分解的是〔〕A、2a2﹣2a+1=2a〔a﹣1〕+1B、〔x﹣y〕〔x+y〕=x2﹣y2C、9x2﹣6x+1=〔3x﹣1〕2D、x2+y2=〔x﹣y〕2+2xy8.〔2分〕〔2019秋•海珠区期末〕假设等腰三角形的两边长分别为6和8,那么周长为〔〕A、20或22 B、20 C、22 D、无法确定9.〔2分〕〔2018•宿迁〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA10.〔2分〕〔2019秋•海珠区期末〕如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,假设OA1=2,那么△A5B5A6的边长为〔〕A、8B、16C、24D、32【二】填空题〔此题共18分,每题3分,共18分〕11.〔3分〕〔2019秋•海珠区期末〕科学家发现一种病毒的直径为0.0043微米,那么用科学记数法表示为微米.12.〔3分〕〔2019秋•海珠区期末〕假设一个三角形三个内角的度数之比为1:2:3,那么这个三角形中的最大的角度是.13.〔3分〕〔2019秋•海珠区期末〕计算〔π﹣3.14〕0+=.14.〔3分〕〔2018•丹阳市校级模拟〕假设x2+mx+4是完全平方式,那么m=.15.〔3分〕〔2019秋•海珠区期末〕如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,假设PC=6,那么PD=.16.〔3分〕〔2019秋•海珠区期末〕下面的图表是我国数学家发明的〝杨辉三角〞,此图揭示了〔a+b〕n〔n为非负整数〕的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:〔a﹣b〕5=.【三】解答题〔此题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤〕17.〔10分〕〔2019秋•海珠区期末〕计算:〔1〕〔﹣a2〕3•4a〔2〕2x〔x+1〕+〔x+1〕2.18.〔10分〕〔2019秋•海珠区期末〕解以下分式方程:〔1〕=〔2〕+1=.19.〔10分〕〔2019秋•海珠区期末〕〔1〕画出△ABC关于y轴对称的图形△A,B,C,;〔2〕在x轴上找出点P,使得点P到点A、点B的距离之和最短〔保留作图痕迹〕20.〔10分〕〔2019•武汉〕如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C、求证:∠A=∠D、21.〔12分〕〔2019秋•海珠区期末〕小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,爸爸的速度是小鹏速度的2倍,求小鹏的速度.22.〔12分〕〔2019秋•海珠区期末〕如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.〔1〕求证:△BCD是等腰三角形;〔2〕△BCD的周长是a,BC=b,求△ACD的周长〔用含a,b的代数式表示〕23.〔12分〕〔2019秋•海珠区期末〕先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.24.〔12分〕〔2019秋•海珠区期末〕△ABC是等边三角形,点D是直线BC上一点,以AD 为一边在AD的右侧作等边△ADE、〔1〕如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;〔2〕如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.假设不变请求出其大小;假设变化,请说明理由.25.〔14分〕〔2018•安徽〕:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC、〔1〕如图1,假设点O在边BC上,求证:AB=AC;〔2〕如图2,假设点O在△ABC的内部,求证:AB=AC;〔3〕假设点O在△ABC的外部,AB=AC成立吗?请画出图表示.2019-2019学年广东省广州市海珠区八年级〔上〕期末数学试卷参考答案【一】选择题〔本大题共10小题,每题2分,共20分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1.C 2.A 3.D 4.A 5.D 6.B 7.C 8.A 9.B 10.B【二】填空题〔此题共18分,每题3分,共18分〕11.4.3×10-312.90°13.10 14.±4 15.3 16.a5-5a4b+10a3b2-10a2b3+5ab4-b5【三】解答题〔此题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤〕17.18.19.20.21.22.23.24.25.。
初二海珠区期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 已知a=3,b=-2,则a²+b²的值为()A. 1B. 5C. 9D. 133. 下列代数式中,同类项是()A. x²yB. 2xyC. x²D. y²4. 在直角坐标系中,点A(-2,3)关于x轴的对称点坐标是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)5. 下列图形中,轴对称图形是()A. 正方形B. 长方形C. 平行四边形D. 梯形6. 若|a|>|b|,则下列不等式中正确的是()A. a+b>0B. a-b<0C. a+b<0D. a-b>07. 已知一元二次方程x²-5x+6=0的两个根为m和n,则m+n的值为()A. 5B. 6C. 7D. 88. 下列函数中,是反比例函数的是()A. y=x²B. y=2xC. y=2/xD. y=3x+29. 在三角形ABC中,∠A=90°,∠B=30°,则∠C的度数是()A. 60°B. 90°C. 120°D. 150°10. 下列各数中,不是有理数的是()A. 0.5B. -3/4C. √2D. 3二、填空题(每题2分,共20分)11. 若a=2,b=-3,则a-b的值为_________。
12. 若x²-4x+4=0,则x的值为_________。
13. 已知函数y=2x+1,当x=3时,y的值为_________。
14. 在直角坐标系中,点P(-1,2)关于y轴的对称点坐标是_________。
15. 若a=3,b=-2,则|a-b|的值为_________。
16. 若a²=4,则a的值为_________。
17. 若∠A=60°,则∠A的补角的度数是_________。
2019-2020学年广州市海珠区八年级上册期末数学试卷(含答案)
广东省广州市海珠区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)用科学记数法表示0.000002017=()A.20.17×10﹣5B.2.017×10﹣6C.2.017×10﹣7D.0.2017×10﹣73.(3分)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm4.(3分)若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形 B.锐角三角形 C.等边三角形 D.等腰三角形5.(3分)(x2y)2的结果是()A.x6y B.x4y2 C.x5y D.x5y26.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.扩大4倍D.不变7.(3分)计算4x3yz÷2xy正确的结果是()A.2xyz B. xyz C.2x2z D. x2z8.(3分)如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB的依据是()A.ASA B.AAS C.SSS D.SAS9.(3分)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.2 B.4 C.6 D.810.(3分)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2 B.2C.4 D.4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如果10m=12,10n=3,那么10m+n= .12.(3分)若一个多边形每个外角都是30°,则这个多边形的边数有条.13.(3分)已知分式的值为零,那么x的值是.14.(3分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.15.(3分)已知a2+b2=12,a﹣b=4,则ab= .16.(3分)对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1= .三、解答题(本大题共9小题,共102分)17.(8分)计算:(1)5a(2a﹣b)(2)÷.18.(10分)解下列问题(1)因式分解:12b2﹣3(2)解方程:﹣=1.19.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.(10分)如图,已知△ABC的顶点都在图中方格的格点上.(1)画出△ABC关于x轴对称的△A′B′C′,并直接写出A′、B′、C′三点的坐标.(2)在y轴上找一点P使得PA+PB最小,画出点P所在的位置(保留作图痕迹,不写画法)21.(10分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.22.(10分)在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.23.(15分)已知△ABC是等边三角形.(1)射线BE是∠ABC的平分线,在图1中尺规作∠DAC=∠ABE,使AD与射线BE交于点D,且点D在边AC下方.(2)在(1)的条件下,如图2连接DC,求证:DA+DC=DB.(3)如图3,∠ADB=60°,若射线BE不是∠ABC的平分线.(2)中的结论是否依然成立?请说明理由.24.(15分)阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4= .(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.25.(15分)在平面直角坐标系中,已知点A(8,0),B(0,﹣8),连接AB.(1)如图①,动点C在x轴负半轴上,且AH⊥BC交BC于点H、交OB于点P,求证:△AOP ≌△BOC;(2)如图②,在(1)的条件下,连接OH,求证:2∠OHP=∠AHB;(3)如图③,E为AB的中点,动点G在y轴上,连接GE,作EF⊥GE交x轴于F,猜想GB,OB、AF三条线段之间的数量关系,并说明理由.2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)用科学记数法表示0.000002017=()A.20.17×10﹣5B.2.017×10﹣6C.2.017×10﹣7D.0.2017×10﹣7【解答】解:0.000002017=2.017×10﹣6,故选:B.3.(3分)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.4.(3分)若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形 B.锐角三角形 C.等边三角形 D.等腰三角形【解答】解:∵△ABC有一个外角为锐角,∴与此外角相邻的内角的值为180°减去此外角,故相邻的内角大于90度,故△ABC是钝角三角形.故选:A.5.(3分)(x2y)2的结果是()A.x6y B.x4y2 C.x5y D.x5y2【解答】解:(x2y)2=x4y2.故选:B.6.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.扩大4倍D.不变【解答】解:把分式中的x和y都扩大3倍,分子扩大了9倍,分母扩大了3倍,分式的值扩大3倍,故选:A.7.(3分)计算4x3yz÷2xy正确的结果是()A.2xyz B. xyz C.2x2z D. x2z【解答】解:4x3yz÷2xy=2x2z,故选:C.8.(3分)如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB的依据是()A .ASAB .AASC .SSSD .SAS【解答】解:由题意AF=AE ,FD=ED ,AD=AD , ∴△ADF ≌△ADE (SSS ), ∴∠DAF=∠DAE , 故选:C .9.(3分)如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .8【解答】解:∵AD 是△ABC 的中线,∴S △ABD =S △ACD =S △ABC , ∵点E 是AD 的中点,∴S △ABE =S △ADE =S △ABD ,S △CDE =S △CAE =S △ACD ,∵S △ABE =S △ABC ,S △CDE =S △ABC ,∴S △ABE +S △CDE =S △ABC =×8=4; ∴阴影部分的面积为4, 故选:B .10.(3分)如图,已知点P 是∠AOB 角平分线上的一点,∠AOB=60°,PD ⊥OA ,M 是OP 的中点,DM=4cm ,如果点C 是OB 上一个动点,则PC 的最小值为( )A.2 B.2C.4 D.4【解答】解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2DM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如果10m=12,10n=3,那么10m+n= 36 .【解答】解:10m+n=10m•10n=12×3=36.故答案为:36.12.(3分)若一个多边形每个外角都是30°,则这个多边形的边数有12 条.【解答】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为12.13.(3分)已知分式的值为零,那么x的值是 1 .【解答】解:根据题意,得x2﹣1=0且x+1≠0,解得x=1.故答案为1.14.(3分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.15.(3分)已知a2+b2=12,a﹣b=4,则ab= ﹣2 .【解答】解:∵a﹣b=4,∴a2﹣2ab+b2=16,∴12﹣2ab=16,解得:ab=﹣2.故答案为:﹣2.16.(3分)对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1= 16 .【解答】解:由题意可得:[2☆(﹣4)]☆1=2﹣4☆1=☆1=()﹣1=16.故答案为:16.三、解答题(本大题共9小题,共102分)17.(8分)计算:(1)5a(2a﹣b)(2)÷.【解答】解:(1)5a(2a﹣b)=10a2﹣5ab;(2)÷=•(x+1)=.18.(10分)解下列问题(1)因式分解:12b2﹣3(2)解方程:﹣=1.【解答】解:(1)原式=3(4b2﹣1)=3(2b+1)(2b﹣1);(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.19.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.20.(10分)如图,已知△ABC的顶点都在图中方格的格点上.(1)画出△ABC关于x轴对称的△A′B′C′,并直接写出A′、B′、C′三点的坐标.(2)在y轴上找一点P使得PA+PB最小,画出点P所在的位置(保留作图痕迹,不写画法)【解答】解:(1)如图所示,△A′B′C′即为所求,A′(﹣2,﹣4)、B′(﹣4,﹣1)、C′(1,2);(2)如图,点P即为所求.21.(10分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.【解答】解:原式=﹣=﹣=,由﹣1≤x≤2,且x为整数,得到x=2时,原式=.22.(10分)在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.【解答】解:(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,()×10=1解得,x=15∴2x=30即甲、乙两车单独完成任务分别需要15天,30天;(2)设甲车的租金每天a元,则乙车的租金每天(a﹣1500)元,[a+(a﹣1500)]×10=65000解得,a=4000∴a﹣1500=2500当单独租甲车时,租金为:15×4000=60000,当单独租乙车时,租金为:30×2500=75000,∵60000<65000<75000,∴单独租甲车租金最少.23.(15分)已知△ABC是等边三角形.(1)射线BE是∠ABC的平分线,在图1中尺规作∠DAC=∠ABE,使AD与射线BE交于点D,且点D在边AC下方.(2)在(1)的条件下,如图2连接DC,求证:DA+DC=DB.(3)如图3,∠ADB=60°,若射线BE不是∠ABC的平分线.(2)中的结论是否依然成立?请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∵BE是∠ABC的平分线,∴∠ABE=30°,当∠DAC=∠ABE时,∠BAD=90°,∴过点A作AB的垂线交BE于D,则点D即为所求;(2)∵∠BAD=90°,∠ABE=30°,∴DA=BD,同理,DC=BD,∴DA+DC=DB;(3)(2)中的结论依然成立,证明:在BD上取点F,是DF=DA,连接AF,∵∠ADB=60°,∴△ADF为等边三角形,∴∠FAD=60°,FA=AD,∴∠BAF=∠CAD,在△BAF和△CAD中,,∴△BAF≌△CAD,∴BF=CD,∴BD=DF+BF=DA+DC.24.(15分)阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4= (a﹣2)2.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.【解答】解:(1)∵a2﹣4a+4=(a﹣2)2,故答案为:(a﹣2)2;(2)∵a2+2a+b2﹣6b+10=0,∴(a+1)2+(b﹣3)2=0,∴a=﹣1,b=3,∴a+b=2;(3)△ABC为等边三角形.理由如下:∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,∴(a﹣b)2+(c﹣1)2+3(b﹣1)2=0,∴a﹣b=0,c﹣1=0,b﹣1=0∴a=b=c=1,∴△ABC为等边三角形.25.(15分)在平面直角坐标系中,已知点A(8,0),B(0,﹣8),连接AB.(1)如图①,动点C在x轴负半轴上,且AH⊥BC交BC于点H、交OB于点P,求证:△AOP ≌△BOC;(2)如图②,在(1)的条件下,连接OH,求证:2∠OHP=∠AHB;(3)如图③,E为AB的中点,动点G在y轴上,连接GE,作EF⊥GE交x轴于F,猜想GB,OB、AF三条线段之间的数量关系,并说明理由.【解答】(1)证明:如图①中,∵AH⊥BC即∠AHC=90°,∠COB=90°∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC.在△OAP与△OBC中,,∴△OAP≌△OBC(ASA),(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图②.在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠CHA=45°,∵∠AHB=90°,∴2∠OHP=∠AHB.(3)结论:当点G在y轴的正半轴上时,BG﹣BO=AF.当点G在线段OB上时,OB=BG+AF.当点G在线段OB的延长线上时,AF=OB+BG.当点G在y轴的正半轴上时,理由如下:连接OE,如图3.∵∠AOB=90°,OA=OB,E为AB的中点,∴OE⊥AB,∠BOE=∠AOE=45°,OE=EA=BE,∴∠OAD=45°,∠GOE=90°+45°=135°,∴∠EAF=135°=∠GOE.∵GE⊥EF即∠GEF=90°,∴∠OEG=∠AEF,在△GOE与△FAE中,,∴△GOE≌△FAE,∴OG=AF,∴BG﹣BO=GO=AF,∴BG﹣BO=AF.其余两种情形证明方法类似.。
广州市海珠区2019-2020学年八年级上期末数学试卷含答案解析
广州市海珠区2019-2020学年八年级上期末数学试卷含答案解析一、选择题(共10小题,每小题3分,满分30分)1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣33.下列计算正确的是()A.a2a3=a6B.(a2)3=a6C.a2+a2=a3D.a6÷a2=a34.下列多项式能用完全平方公式进行因式分解的是()A.a2+1 B.a2+2a﹣1 C.a2﹣6a+9 D.a2+8a+64 5.如图,已知△ABC≌△EDF,下列结论正确的是()A.∠A=∠E B.∠B=∠DFE C.AC=ED D.BF=DF6.多边形每个外角为45°,则多边形的边数是()A.8 B.7 C.6 D.57.下面因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2﹣8x+16=(x﹣4)2C.2x2﹣2xy=2x(x﹣y)D.x2+y2=(x+y)28.如图,已知AD=AB,那么添加下列一个条件后,则无法判定△AED≌△ACB的是()A.AE=AC B.DE=BC C.∠E=∠C D.∠ABC=∠ADE9.把分式方程+2=化为整式方程,得()A.x+2=2x(x+2)B.x+2(x2﹣4)=2x(x+2)C.x+2(x﹣2)=2x(x﹣2)D.x+2(x2﹣4)=2x(x﹣2)10.如图,设(a>b>0),则有()A.B.C.1<k<2 D.k>2二、填空题(共6小题,每小题3分,共18分)11.计算:()﹣1+(2﹣π)0=.12.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.13.计算: +=.14.如图,四边形ABCD中,AD∥BC,BC=5,∠BAD的平分线AE交BC于点E,CE=2,则线段AB的长为.15.若a>0,且a x=2,a y=3,则a x+y的值等于.16.已知实数a,b,c满足a2+5b2+c2+4(ab﹣b+c)﹣2c+5=0,则2a﹣b+c的值为.三、解答题(共9小题,满分102分)17.计算(1)(a+6)(a﹣2)﹣a(a+3)(2)÷.18.如图所示,在△ABC中,AB=AC,∠B=30°,D为BC上一点,且∠DAB=45°(1)求:∠DAC的度数.(2)证明:△ACD是等腰三角形.19.先化简,再求值:(x+2)2+(3﹣x)(x+3),其中x=﹣.20.如图,B、F、C、E在同一直线上,AC=DF,∠B=∠E,∠A=∠D,求证:BE=FC.21.已知:如图,在△ABC中,∠B=30°,∠C=90°.(1)作AB的垂直平分线DE,交AB于点E,交BC于点D;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)连接DA,若BD=6,求CD的长.22.某厂准备加工700个零件,在加工完毕200个零件以后,采取了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,求该厂原来每天生产多少个零件?23.如图,B、C两点关于y轴对称,点A的坐标是(0,b),点C的坐标为(﹣a,a﹣b).(1)直接写出点B的坐标为.(2)用尺规作图,在x轴上作出点P,使得AP+PB的值最小;(3)求∠OAP的度数.24.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.25.如图,长方形ABCD中,AB=x2+4x+3,设长方形面积为S.=2x+6,x取正整数,且长方形ABCD的长、宽均为整数,求x的值;(1)若S长方形ABCD=x2+8x+15,x取正整数,且长方形ABCD的长、宽均为整数,求x的(2)若S长方形ABCD值;=2x3+ax2+bx+3,对于任意的正整数x,BC的长均为整数,求(a﹣b)(3)若S长方形ABCD的值.-学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣3【考点】分式有意义的条件.【专题】计算题.【分析】本题主要考查分式有意义的条件:分母≠0,即x﹣3≠0,解得x的取值范围.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.下列计算正确的是()A.a2a3=a6B.3=a6,正确;C、a2+a2=2a2,故错误;D、a6÷a2=a4,故错误;故选:B.【点评】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项,解决本题的关键是熟记同底数幂的乘法和除法、幂的乘方、合并同类项.4.下列多项式能用完全平方公式进行因式分解的是()A.a2+1 B.a2+2a﹣1 C.a2﹣6a+9 D.a2+8a+64【考点】因式分解-运用公式法.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【解答】解:A、a2+1不符合完全平方公式法分解因式的式子特点,故错误;B、a2+2a﹣1不符合完全平方公式法分解因式的式子特点,故错误;C、a2﹣6a+9=(a﹣3)2,故正确;D、a2+8a+64=(a+4)2+48,不符合完全平方公式法分解因式的式子特点,故错误.故选:C.【点评】本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.5.如图,已知△ABC≌△EDF,下列结论正确的是()A.∠A=∠E B.∠B=∠DFE C.AC=ED D.BF=DF【考点】全等三角形的性质.【分析】根据全等三角形的性质对各个选项进行判断即可.【解答】解:∵△ABC≌△EDF,∴∠A=∠E,A正确;∠B=∠FDE,B错误;AC=EF,C错误;BF=DC,D错误;故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.6.多边形每个外角为45°,则多边形的边数是()A.8 B.7 C.6 D.5【考点】多边形内角与外角.【分析】利用多边形外角和除以外角的度数即可.【解答】解:多边形的边数:360÷45=8,故选:A.【点评】此题主要考查了多边形的外角,关键是掌握正多边形每一个外角度数都相等.7.下面因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2﹣8x+16=(x﹣4)2C.2x2﹣2xy=2x(x﹣y)D.x2+y2=(x+y)2【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】分别利用完全平方公式以及平方差公式分解因式,进而判断得出答案.【解答】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2﹣8x+16=(x﹣4)2,正确,不合题意;C、2x2﹣2xy=2x(x﹣y),正确,不合题意;D、x2+y2=(x+y)2,此选项错误,符合题意.故选:D.【点评】此题主要考查了公式法以及提取公因式法分解因式,熟练应用乘法公式是解题关键.8.如图,已知AD=AB,那么添加下列一个条件后,则无法判定△AED≌△ACB的是()A.AE=AC B.DE=BC C.∠E=∠C D.∠ABC=∠ADE 【考点】全等三角形的判定.【分析】分别利用全等三角形的判定方法判断得出即可.【解答】解:A、添加AE=AC,利用SAS证明△ADE≌△ACB,故此选项错误;B、添加DE=BC,不能证明△ADE≌△ACB,故此选项正确;C、添加∠E=∠C,利用AAS证明△ADE≌△ACB,故此选项错误;D、添加∠ABC=∠ADE,利用ASA证明△ADE≌△ACB,故此选项错误;故选B.【点评】本题考查三角形全等的判定方法,两角及其夹边分别对应相等的两个三角形全等.9.把分式方程+2=化为整式方程,得()A.x+2=2x(x+2)B.x+2(x2﹣4)=2x(x+2)C.x+2(x﹣2)=2x(x﹣2)D.x+2(x2﹣4)=2x(x﹣2)【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程两边乘以(x+2)(x﹣2)去分母得到结果,即可做出判断.【解答】解:去分母得:x+2(x2﹣4)=2x(x+2).故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图,设(a>b>0),则有()A.B.C.1<k<2 D.k>2【考点】平方差公式的几何背景;约分.【分析】先分别表示出甲乙图中阴影部分的面积,再利用因式分解进行化简即可.【解答】解:甲图中阴影部分的面积=a2﹣b2,乙图中阴影部分的面积=a(a﹣b),=,∵a>b>0,∴,∴1<k<2.故选:C.【点评】本题主要考查了平方差公式以及求图形的面积.二、填空题(共6小题,每小题3分,共18分)11.计算:()﹣1+(2﹣π)0=4.【考点】负整数指数幂;零指数幂.【分析】分别根据零指数幂,负整数指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1=4.故答案为:4.【点评】本题主要考查了零指数幂,负整数指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.12.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=2.【考点】等边三角形的性质.【分析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD 的长.【解答】解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.【点评】本题考查了等边三角形的性质,等腰三角形三线合一的性质是解题的关键.13.计算: +=.【考点】分式的加减法.【分析】首先进行通分,然后再根据同分母的分式相加减,分母不变,把分子相加减进行计算,最后化简即可.【解答】解:原式=+==.故答案为:.【点评】此题主要考查了分式的加减法,关键是掌握异分母分式加减法计算法则.14.如图,四边形ABCD中,AD∥BC,BC=5,∠BAD的平分线AE交BC于点E,CE=2,则线段AB的长为3.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义求出∠DAE=∠BAE,根据平行线的性质得出∠DAE=∠AEB,推出∠BAE=∠AEB,根据等腰三角形的判定得出AB=BE,即可得出答案.【解答】解:∵∠BAD的平分线AE交BC于点E,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵BC=5,CE=2,∴AB=BE=5﹣2=3,故答案为:3.【点评】本题考查了角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,能求出AB=BE是解此题的关键.15.若a>0,且a x=2,a y=3,则a x+y的值等于6.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则求解.【解答】解:a x+y=a x a y=2×3=6.故答案为:6.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.16.已知实数a,b,c满足a2+5b2+c2+4(ab﹣b+c)﹣2c+5=0,则2a﹣b+c的值为﹣11.【考点】配方法的应用;非负数的性质:偶次方.【分析】通过对式子整理,利用非负数的性质得到a、b、c的值,代入解答即可.【解答】解:因为a2+5b2+c2+4(ab﹣b+c)﹣2c+5=0,可得:(a+2b)2+(b﹣2)2+(c+1)2=0,解得:b=2,c=﹣1,a=﹣4,把b=2,c=1,a=﹣4代入2a﹣b+c=﹣8﹣2﹣1=﹣11,故答案为:﹣11.【点评】此题考查因式分解的运用,非负数的性质,掌握完全平方公式是解决问题的关键.三、解答题(共9小题,满分102分)17.计算(1)(a+6)(a﹣2)﹣a(a+3)(2)÷.【考点】整式的混合运算;分式的乘除法.【分析】(1)利用多项式乘以多项式以及单项式乘以多项式运算法则去括号合并同类项即可;(2)首先分解因式,进而化简求出答案.【解答】解:(1)(a+6)(a﹣2)﹣a(a+3)=a2+4a﹣12﹣a2﹣3a=a﹣12;(2)÷=×=.【点评】此题主要考查了整式的混合运算以及分式的乘除法,正确分解因式是解题关键.18.如图所示,在△ABC中,AB=AC,∠B=30°,D为BC上一点,且∠DAB=45°(1)求:∠DAC的度数.(2)证明:△ACD是等腰三角形.【考点】等腰三角形的判定与性质;三角形内角和定理.【分析】(1)根据等腰三角形性质求出∠C,根据三角形内角和定理求出∠BAC,即可求出答案;(2)根据三角形内角和定理求出∠ADC,推出∠DAC=∠ADC,根据等腰三角形的判定定理得出即可.【解答】(1)解:∵在△ABC中,AB=AC,∠B=30°,∴∠C=∠B=30°,∴∠BAC=180°﹣∠B﹣∠C=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAC=75°,∠C=30°,∴∠ADC=180°﹣∠C﹣∠DAC=75°,∴∠DAC=∠ADC,∴AC=CD,∴△ACD是等腰三角形.【点评】本题考查了三角形内角和定理,等腰三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.19.先化简,再求值:(x+2)2+(3﹣x)(x+3),其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4+9﹣x2=4x+13,当x=﹣时,原式=﹣2+13=11.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,B、F、C、E在同一直线上,AC=DF,∠B=∠E,∠A=∠D,求证:BE=FC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据ASA推出△ABC≌△DEF,再利用全等三角形的性质证明即可.【解答】证明:∵∠B=∠E,∠A=∠D,∴∠ACB=∠DFE,在△ABC与△DEF中,,∴△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,∴BE=FC.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等.21.已知:如图,在△ABC中,∠B=30°,∠C=90°.(1)作AB的垂直平分线DE,交AB于点E,交BC于点D;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)连接DA,若BD=6,求CD的长.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,两弧交于两点,过两点画直线,交AB于点E,交BC于点D;(2)根据线段垂直平分线的性质可得AD=BD=6,再根据等边对等角可得∠DAB=∠B=30°,然后再计算出∠CAB的度数,进而可得∠CAD的度数,再根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD=3.【解答】解:(1)如图所示:(2)∵ED是AB的垂直平分线,∴AD=BD=6,∵∠B=30°,∴∠DAB=∠B=30°,∵∠B=30°,∠C=90°,∴∠CAB=60°,∴∠CAD=60°﹣30°=30°,∴CD=AD=3,【点评】此题主要考查了线段垂直平分线的作法和性质,以及直角三角形的性质,关键是正确掌握垂直平分线的作法,线段垂直平分线上任意一点,到线段两端点的距离相等.22.某厂准备加工700个零件,在加工完毕200个零件以后,采取了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,求该厂原来每天生产多少个零件?【考点】分式方程的应用.【分析】设该厂原来每天加工x个零件,采取了新技术后每天加工2x个零件,根据加工200个零件用时+加工700﹣200=500个零件用时=9列出方程解答即可.【解答】解:设该厂原来每天加工x个零件,采取了新技术后每天加工2x个零件,根据题意得:+=9解得:x=50,经检验得x=50是原方程的解,答:该厂原来每天加工50个零件.【点评】此题考查分式方程的实际应用,掌握工作总量、工作时间、工作效率三者之间的关系是解决问题的关键.23.如图,B、C两点关于y轴对称,点A的坐标是(0,b),点C的坐标为(﹣a,a﹣b).(1)直接写出点B的坐标为(a,a﹣b).(2)用尺规作图,在x轴上作出点P,使得AP+PB的值最小;(3)求∠OAP的度数.【考点】轴对称-最短路线问题.【分析】(1)根据关于y轴对称的点的特点即可得到结论;(2)如图所示,作点A 关于x轴的对称点A′,连接A′B交x轴于P,点P即为所求;(3)过B作BD⊥y轴于D,D(0,a﹣b),则BD=a,OD=a﹣b,由(2)知A与A′关于x轴对称,于是得到A′O=AO=b,推出A′D=BD,在Rt△A′DB中,∠A′DB=90°,A′P=AP,于是得到∠BA′D=∠B=45°,即可得到结论.【解答】解:(1)B(a,a﹣b);故答案为:(a,a﹣b).(2)如图所示,点P即为所求;(3)过B作BD⊥y轴于D,D(0,a﹣b),则BD=a,OD=a﹣b,由(2)知A与A′关于x轴对称,∴A′O=AO=b,∴A′D=BD,在Rt△A′DB中,∠A′DB=90°,A′P=AP,∴∠BA′D=∠B=45°,∵A与A′关于x轴对称,∴∠OAP=∠DA′P=45°.【点评】本题考查了轴对称﹣最短距离问题,作图﹣轴对称变换,熟知两点之间线段最短是解答此题的关键.24.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到∠ACB=∠DCE=90°,由角的和差得到∠BCD=∠ACE,即可得到结论;(2)根据全等三角形的性质得到∠CBD=∠CAE,根据对顶角的性质得到∠BGC=∠AGE,由三角形的内角和即可得到结论;(3)过C作CH⊥AE于H,CI⊥BF于I,根据全等三角形的性质得到AE=BD,S△ACE=S△BCD,根据三角形的面积公式得到CH=CI,于是得到CF平分∠BFH,推出△ABC是等腰直角三角形,即可得到结论.【解答】证明:(1)∵BC⊥CA,DC⊥CE,∴∠ACB=∠DCE=90°,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE;(2)∵△BCD≌△ACE,∴∠CBD=∠CAE,∵∠BGC=∠AGE,∴∠AFB=∠ACB=90°,∴BF⊥AE;(3)∠CFE=∠CAB,过C作CH⊥AE于H,CI⊥BF于I,∵△BCD≌△ACE,∴AE=BD,S△ACE=S△BCD,∴CH=CI,∴CF平分∠BFH,∵BF⊥AE,∴∠BFH=90°,∠CFE=45°,∵BC⊥CA,BC=CA,∴△ABC是等腰直角三角形,∴∠CAB=45°,∴∠CFE=∠CAB.【点评】本题考查了全等三角形的判定和性质,角平分线的定义,角平分线的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.25.如图,长方形ABCD中,AB=x2+4x+3,设长方形面积为S.=2x+6,x取正整数,且长方形ABCD的长、宽均为整数,求x的值;(1)若S长方形ABCD=x2+8x+15,x取正整数,且长方形ABCD的长、宽均为整数,求x的(2)若S长方形ABCD值;=2x3+ax2+bx+3,对于任意的正整数x,BC的长均为整数,求(a﹣b)(3)若S长方形ABCD的值.【考点】因式分解的应用;分式的混合运算.【分析】(1)首先求出长方形的边长BC为,然后根据长宽均为整数,即可求出x的值;(2)首先求出长方形的边长BC为1+,然后根据长宽均为整数,即可求出x的值;(3)首先根据题意得到BC==mx+n,进而得到(mx+n)(x2+4x+3)=mx3+(4m+n)x2+(3m+4n)x+3,再根据对应关系求出a和b的值,最后求出(a﹣b)的值.=2x+6,【解答】解:(1)∵AB=x2+4x+3,S长方形ABCD∴BC===,∵BC的长为整数,∴x+1=1或2,∴x=0或1,∵x为正整数,∴x=1;=x2+8x+15,(2)∵AB=x2+4x+3,S长方形ABCD∴BC====1+,∵BC的长为整数,∴x+1=1或2或4,∴x=0或1或3,∵x为正整数,∴x=1或3;=2x3+ax2+bx+3,(3)∵AB=x2+4x+3,S长方形ABCD∴BC==mx+n,即2x3+ax2+bx+3=(mx+n)(x2+4x+3),∵(mx+n)(x2+4x+3)=mx3+(4m+n)x2+(3m+4n)x+3,∴,∴,∴mx+n=2x+1,对于任意正整数x,其值均为整数,∴(a﹣b)=﹣1.【点评】本题主要考查了因式分解的应用以及分式的混合运算的知识,解答本题本题的关键是掌握多项式除以多项式的方法,此题有一定的难度.。
2019-2020学年广东省广州市海珠区八年级上期末数学试卷及答案解析
(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)
25.(14分)如图,△ABC中,AB=BC=AC=24cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
17.(10分)计算:
(1) +(π﹣2019)0﹣(﹣2a4)2÷a3
18.(10分)化简下列各式:
(1)(2a﹣1)2﹣4(a+1)(a﹣1)
(2)
19.(10分)如图,AC与BD相交于点O,∠DBA=∠CAB,∠1=∠2.求证:∠CDA=∠DCB.
20.(10分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)求证:AN⊥CN
(2)若AB=5,tanB=3,求四边形AMCN的面积.
24.(14分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)
(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;
2019-2020学年广东省广州市海珠区八年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
2.下列运算:其中结果正确的个数为( )
①a2•a3=a6
②(a3)2=a6
③(ab)3=a3b3
广州市海珠区2019-2020年八年级上期末考试数学试题及答案
广州市海珠区2019-2020年八年级上期末考试数学试题及答案-学年第一学期期末调研测试八年级数学试卷本试卷分第1卷和第2卷两部分,共三大题25小题,共4页,满分100+50分,考试时间为120分钟,不可以使用计算器. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用墙皮擦干净后,再选涂其它答案,答案不能答在问卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须卸写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( ).2.点M (1,2)关于Y 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,1) 3.已知三角形两边长分别为7、11,那么第三边的长可以是( ). A .2 B .3 C .4 D .5 4.下列计算正确的是( ). A .()236aa = B . 22a a a =• C .326a a a += D .()3339a a =5.一个多边形的每一个外角都等于36°,则这个多边形的边数是( ). A .8 B .9 C .10 D .11 6.如图,已知△ABC 中,75A ∠=︒,则12∠+∠=( ).A .335°B .255°C .155°D .150° 第6题图 7.下列从左到右的运算是因式分解的是( ).A .22212(1)1a a a a -+=-+ B .()()22x y x y x y -+=-C .()2296131x x x -+=-D .()2222x y x y xy +=-+ 8.若等腰三角形的两边长分别为6和8,则周长为( ).A .20或22B .20C .22D .无法确定 9.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( ). A .AB=AC B .BD=CD C .∠B=∠C D .∠BDA=∠CDA10.如图,已知∠MON=30°,点A 1,A 2,A 3,……在射线ON 上,点B 1,B 2,B 3,……在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,……均为等边三角形,若OA 1=2,则△A 5B 5A 6( ).A .8B .16C .24D .32第10题图 二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学计数法表示为 微米. 12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是 .13.计算()213.143-⎛⎫π-+= ⎪⎝⎭.14.若多项式24x mx ++是完全平方式,则m= .15.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC//OB 交OA 于C ,若PC=6,则PD= .16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b )n (n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:()5a b -= .第15题图 第16题图三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤)17.(本题满分10分,每小题5分)计算:(1)a a 4)(32•- (2)()()2211x x x ++-18.(本题满分10分,每小题5分)解下列分式方程:(1)1122xx x-=--(2)223111xx x+=--19.(本题满分10分)(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)20.(本题满分10分)如图,已知点E、F在线段BC上,BE=CF,AB=CD,∠B=∠C.求证:∠A=∠D.21.(本题满分12分)小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.第二卷(共50分)22.(本题满分12分)如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)AB D CEB C DAED B CEA第24题图①第24题图②第24题图③23.(本题满分12分) 先化简代数式:4312112-⨯--+-x x x x ,然后再从22x -≤≤的范围内选取一个合适的整数代入求值.24.(本题满分12分)已知△ABC 是等边三角形,点D 是直线BC 上一点,以AD 为一边在AD 的右侧作等边△ADE. (1)如图①,点D 在线段BC 上移动时,直接写出∠BAD 和∠CAE 的大小关系;(2)如图②,点D 在线段BC 的延长线上移动时,猜想∠DCE 的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(本题满分14分)已知点D 到△ABC 的两边AB 、AC 所在直线的距离相等,且DB=DC. (1)如图①,若点D 在BC 上,求证AB=AC ;(2)如图②,若点D 在△ABC 的内部,求证:AB=AC ;(3)若点D 在△ABC 的外部,且点D 与点A 分别在线段BC 的两侧,AB=AC 成立吗?请说明理由.。
2018-2019广州市海珠区八年级上学期期末试卷
2018-2019学年海珠八年级上数学期末试卷(满分150分,时间120分钟)第Ⅰ卷(共100分)一、选择题(每小题3分,共30分)1、如图所示的图案是我国几家银行标志,其中不是轴对称图形的是( )A .B. C . D .2、下列运算中,正确的是( )A .842a a a =⋅B .2510a a a =÷C .()1025a a =D .()448a 2a =3、下列变形属于因式分解的是( )A .4x+x=5xB .()44x x 2x 22++=+C .()11x x 1x x 2++=++D .()3-x x 3x -x 2=4、石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅是0.00000000034米,将这个数字用科学计数法表示为( ) A .-9100.34⨯ B .-9103.4⨯C .-10103.4⨯D .-11103.4⨯5、已知图中的两个三角形全等,图中的字母 表示三角形的边长,则1∠等于( )A .72°B .60°C .50°D .58°6、如图,等腰ABC ∆的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BEC ∆的周长为( )A .13B .16C .8D .107、下列各式成立的是( )A .1-2y 2y-=xxB .()()22b a b -a -+=B .C .()222b -a b -a = D .()()2ab b -a -b a 22=+8、如图,在ABC ∆和DEF ∆中,DEF B ∠=∠,AB=DE ,添加下列一个条件后,仍然不能证明≅∆ABC DEF ∆,这个条件是( )A .D A ∠=∠B .BC=EFC .F ACB ∠=∠D .AC=DF9、下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形。
(汇总3份试卷)2019年广州市八年级上学期期末综合测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,为估计池塘岸边 A 、B 两点的距离,小方在池塘的一侧选取一点 O , 测得 OA =8 米,OB =6 米,A 、B 间的距离不可能是( )A .12 米B .10 米C .15 米D .8 米【答案】C 【解析】试题分析:根据两边之和大于第三边,两边之差小于第三边,AB 的长度在2和14之间,故选C .考点:三角形三边关系.A2.已知ABC ∆的三边长分别为a b c 、、,且()()()M a b c a b c a b c =+++---那么( ) A .0M >B .0M ≥C .0M =D .0M <【答案】D【分析】根据三角形的三边关系即可求解.【详解】∵ABC ∆的三边长分别为a b c 、、∴a b c ++>0,a b c +->0,a b c --<0∴()()()M a b c a b c a b c =+++---<0故选D.【点睛】此题主要考查三角形的三边关系的应用,解题的关键是熟知两边之和大于第三边.3.在33⨯的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是( ) A . B . C . D .【答案】D【解析】直接利用轴对称图形的定义判断得出即可.【详解】解:A.是轴对称图形, 不合题意;B.是轴对称图形,不合题意;C.是轴对称图形,不合题意;D. 不是轴对称图形, 符合题意;故选:D.【点睛】本题主要考查轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.4.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为( )A .20°B .50°C .60°D .70°【答案】B【分析】根据三角形的外角性质得出∠2=∠A +∠1,代入求出即可.【详解】解:如图:∠2=∠A +∠1=30°+20°=50°,故选:B .【点睛】本题考查了三角形的外角性质,能根据三角形的外角性质得出∠2=∠A +∠1是解此题的关键. 5.如图,点D 、E 在△ABC 的边BC 上,△ABD ≌△ACE ,下列结论不一定成立的是( )A .AC CD =B .BE CD =C .ADE AED ∠=∠ D .BAE CAD ∠=∠【答案】A 【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可.【详解】∵△ABD ≌△ACE ,∴BD=CE ,∴BE=CD ,故B 成立,不符合题意;∠ADB=∠AEC ,∴∠ADE=∠AED ,故C 成立,不符合题意;∠BAD=∠CAE ,∴∠BAE=∠CAD,故D成立,不符合题意;AC不一定等于CD,故A不成立,符合题意.故选:A.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.6.对甲、乙、丙、丁四人进行射击测试,结果平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是()A.丁B.丙C.乙D.甲【答案】A【分析】先比较四位选手的方差的大小,根据方差的性质解答即可.【详解】∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:A.【点睛】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.已知一个等腰三角形的腰长是5,底边长是8,这个等腰三角形的面积是()A.24B.20C.15D.12【答案】D【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据勾股定理求出AD的长,进而可得出结论.【详解】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=5,BC=8,∴BD =12BC=4,∴2222543AB BD,∴S△ABC=12BC•AD=12×8×3=1.故选D.【点睛】本题考查的是勾股定理和等腰三角形的性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.下列坐标点在第四象限内的是( )A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)【答案】D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题的关键.9.以下四组数中的三个数作为边长,不能构成直角三角形的是()A.123B.5,12,13 C.32,42,52D.8,15,17.【答案】C【解析】分别求出两小边的平方和和长边的平方,看看是否相等即可.【详解】A、∵12+22=32,∴以123B、∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项不符合题意;C、∵92+162≠52,∴以32,42,52为边不能组成直角三角形,故本选项符合题意;D、∵82+152=172,∴8、15、17为边能组成直角三角形,故本选项不符合题意;故选C.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形10.王老师乘公共汽车从A地到相距50千米的B地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时所花的时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .50350204x x=⨯+ B .50350420x x =⨯+ C .50150204x x +=+ D .50501204x x =-+ 【答案】A 【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是50x 小时, 回来时的时间是5020x +, ∵回来时所花的时间比去时节省了14, ∴50350204x x=⨯+, 故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.二、填空题11.如图,已知函数y =x+1和y =ax+3图象交于点P ,点P 的横坐标为1,则关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是_____.【答案】12x y =⎧⎨=⎩【分析】先把x =1代入y =x+1,得出y =2,则两个一次函数的交点P 的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把1x =代入1y x =+,得出2y =,函数1y x =+和3y ax =+的图象交于点(1,2)P ,即1x =,2y =同时满足两个一次函数的解析式,所以关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是12x y =⎧⎨=⎩. 故答案为12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.12.若分式211y y -+的值为0,则y 的值等于_______. 【答案】1【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【详解】根据题意,得10y -=且210y +≠.所以1y =.故答案是:1.【点睛】本题主要考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.13.在平面直角坐标系中,若点()1,31P m m ++和点()23,7Q m m ++关于x 轴对称,则m 的值为_______.【答案】2-【分析】由关于x 轴对称横坐标相同可列出关于m 的一元一次方程,求解即可.【详解】解:由点()1,31P m m ++和点()23,7Q m m ++关于x 轴对称可得点P 与点Q 的横坐标相同即123m m +=+,解得2m =-.所以m 的值为2-.故答案为:2-.【点睛】本题考查了平面直角坐标系中的轴对称,灵活利用点关于坐标轴对称的特点是解题的关键.14.如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB 的长度等于____________.【答案】4+【解析】根据角平分线的性质可知2CD DE ==,由于∠C=90°,故45B BDE ∠=∠=︒,BDE ∆是等腰直角三角形,由勾股定理可得BD,AC 的值.由Rt △ACD 和Rt △AED 全等,可得AC=AE ,进而得出AB 的值.【详解】∵AD 是△ABC 的角平分线,DC ⊥AC,DE ⊥AB,∴DE=CD=2,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∠B=∠BDE=45°,∴BE=DE=2.在等腰直角三角形BDE 中,由勾股定理得,BD =∴AC=BC=CD+BD=2+.在Rt △ACD 和Rt △AED 中,AD AD CD ED =⎧⎨=⎩∴Rt △ACD ≌Rt △AED (HL ).∴AC=AE=2+,∴AB=BE+AE=224++=+故答案为4+..【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质,比较简单.15.使分式2341x x -+的值是负数x 的取值范围是______. 【答案】x >34 【分析】根据平方的非负性可得210x ,然后根据异号相除得负,即可列出不等式,解不等式即可得出结论.【详解】解:∵20x ≥∴210x ∵分式2341x x -+的值是负数 ∴340x -<解得:34x > 故答案为:34x >. 【点睛】此题考查的是分式的值为负的条件,掌握平方的非负性和异号相除得负是解决此题的关键.16.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)【答案】y 轴【解析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x 轴,两点到y 轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y 轴对称,故答案为:y 轴.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x 轴对称;横坐标互为相反数,纵坐标相等的两点关于y 轴对称”是解题的关键.17.勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含30角的直角三角形按一定规律长成的勾股树,树的主干自下而上第一个正方形和第一个直角三角形的面积之和为1S ,第二个正方形和第二个直角三角形的面积之和为2S ,…,第n 个正方形和第n 个直角三角形的面积之和为n S .设第一个正方形的边长为1.请解答下列问题:(1)1S =______.(2)通过探究,用含n 的代数式表示n S ,则n S =______.【答案】31+ 13314n -⎛⎛⎫⋅ ⎪ ⎝⎭⎝⎭(n 为整数) 【分析】根据正方形的面积公式求出面积,再根据直角三角形三条边的关系运用勾股定理求出三角形的直角边,求出S 1,然后利用正方形与三角形面积扩大与缩小的规律推导出公式.【详解】解:(1)∵第一个正方形的边长为1,∴正方形的面积为1,又∵直角三角形一个角为30°,∴三角形的一条直角边为12=∴三角形的面积为1122⨯,∴S 1=1(2)∵第二个正方形的边长为2,它的面积就是34,也就是第一个正方形面积的34, 同理,第二个三角形的面积也是第一个三角形的面积的34,∴S 2=(1+•34,依此类推,S 3=(1)•34•34,即S 3=(1•234⎛⎫ ⎪⎝⎭,S n =1314n -⎛⎛⎫+⋅ ⎪ ⎝⎭⎝⎭(n 为整数).故答案为:(1)1 ;(2)13184n -⎛⎫⎛⎫+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭(n 为整数) 【点睛】本题考查勾股定理的运用,正方形的性质以及含30°角的直角三角形的性质.能够发现每一次得到的新的正方形和直角三角形的面积与原正方形和直角三角形的面积之间的关系是解题的关键.三、解答题18.已知,如图所示,在Rt ABC ∆中,90C =∠.(1)作B 的平分线BD 交AC 于点D ;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若6CD =,10AD =,求AB 的长.【答案】(1)答案见解析;(2)1【解析】(1)根据角平分线的尺规作图步骤,画出图形即可;(2)过点D作DE⊥AB于点E,先证明DE=DC=6,BC=BE,再根据AD=10,求出AE,设BC=x,则AB=x+8,根据勾股定理求出x的值即可.【详解】(1)作图如下:(2)过点D作DE⊥AB于点E,∵DC⊥BC,BD平分∠ABC,∴DE=DC=6,∵AD=10,∴22-=,1068∵∠DBC=∠DBE,∠C=∠BED=90°,BD=BD,∴∆DBC≅∆DBE(AAS),∴BE=BC,设BC=x,则AB=x+8,∴在Rt△ABC中,由勾股定理得:x2+162=(x+8)2,解得:x=12,∴AB=12+8=1.【点睛】本题主要考查尺规作角平分线,角平分线的性质定理以及勾股定理,添加辅助线,构造直角三角形,利用勾股定理列方程,是解题的关键.19.如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.【答案】24m2【分析】连接AC,利用勾股定理和逆定理可以得出△ACD和△ABC是直角三角形,△ABC的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC,由勾股定理可知:AC=2222435AD CD+=+=,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=12×5×12﹣12×3×4=24(米2).【点睛】本题考查了勾股定理以及勾股定理的逆定理的应用,解题的关键是作出辅助线得到直角三角形. 20.如图,,,AE DF EC BF AB CD ===.求证:ACE DBF ≌.【答案】证明见解析【分析】只需要通过AB=CD 证得AC=BD 利用SSS 即可证明ACE DBF ≌.【详解】解:∵AB=CD ,BC=BC∴AC=BD∵AE=DF ,CE=BF∴△ACE ≌△DBF (SSS ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.已知,如图,Rt ABC ∆中,90B ∠=︒,6AB =,4BC =,以斜边AC 为底边作等腰三角形ACD ,腰AD 刚好满足AD BC ∥,并作腰上的高AE .(1)求证:AB AE =;(2)求等腰三角形的腰长CD .【答案】(1)见解析;(2)132【分析】(1)由等腰三角形的性质得出DAC DCA ∠=∠,由平行线的性质得出DAC BCA ∠=∠,得出ACB DCA ∠=∠,由AAS 证明ABC AEC ∆∆≌,得出AB AE =;(2)由(1)得:6AE AB ==,4CE CB ==,设DC x =,则DA x =,4DE x =-,由勾股定理得出方程,解方程即可.【详解】(1)证明:DA DC =,DAC DCA ∴∠=∠,AD BC ∵∥,DAC BCA ∴∠=∠,ACB DCA ∴∠=∠,又AE CD ⊥,90AEC ∴∠=︒,90A AEC ∴∠=∠=︒,在ABC ∆和AEC ∆中,B AEC ACB DCA AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC AEC AAS ∴∆∆≌,AB AE =∴;(2)解:由(1)得:6AE AB ==,4CE CB ==,设DC x =,则DA x =,4DE x =-,由勾股定理得:222DE AE DA +=,即()22246x x -+=, 解得:132x =, 即132CD =. 【点睛】此题考查等腰三角形的性质、全等三角形的判定与性质、勾股定理;熟练掌握等腰三角形的性质,并能进行推理论证与计算是解题的关键.22.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .【答案】证明见解析.【解析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF ,∴BE+EF=CF+EF ,∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE (SAS ),∴∠GEF=∠GFE ,∴EG=FG .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.23.如图,△ABC 中,∠BAC=90°,∠ABC=∠ACB ,又∠BDC=∠BCD ,且∠1=∠2,求∠3的度数.【答案】75°【解析】试题分析:根据已知求得∠ACB=45°,进而求得∠BDC=∠BCD=45°+∠1,根据三角形内角和定理求得2(45°+∠1)+∠1=180°,即可求得∠1=30°,然后根据三角形内角和180°,从而求得∠3的度数. 试题解析:∵∠BAC=90°,∠ABC=∠ACB ,∴∠ACB=45°,∵∠BDC=∠BCD ,∠BCD=∠ACB+∠2,∴∠BDC=∠BCD=45°+∠2,∵∠1=∠2,∴∠BDC=∠BCD=45°+∠1,∵∠BDC+∠BCD+∠1=180°,∴2(45°+∠1)+∠1=180°∴∠1=30°,∴∠3=280013︒-︒=75°. 24.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,B 的坐标分别为()2,4,()1,2-.(1)请在图中画出平面直角坐标系;(2)请画出ABC ∆关于x 轴对称的A B C '''∆;(3)线段BC '的长为_______.【答案】(1)见解析;(2)见解析;(3)13. 【分析】(1)利用点B 、C 的坐标画出直角坐标系;(2)利用关于y 轴对称的点的坐标特征写出A ′、B ′、C ′的坐标,然后描点即可得到△A ′B ′C ′ (3)根据勾股定理即可求出线段BC '的长.【详解】(1)如图所示,(2)如图,△A ′B ′C ′为所作;(3)BC '=2232=13+故答案为:13.【点睛】本题考查了作图−轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.25.如图,点C 、D 都在线段AB 上,且AD BC =,AE BF =,CE DF =,CE 与DF 相交于点G .(1)求证:ACE BDF ∆∆≌;(2)若12CE =,5DG =,求EG 的长.【答案】(1)见解析;(2)7【分析】(1)根据“SSS ”证明△ACE ≌△BDF 即可;(2)根据全等三角形对应角相等得到∠ACE=∠BDF ,根据等角对等边得到DG=CG ,然后根据线段的和差即可得出结论.【详解】∵AD BC =,∴AD DC BC DC +=+,∴AC BD =.在ACE ∆与BDF ∆中,∵AC BD AE BF CE DF =⎧⎪=⎨⎪=⎩,∴ACE BDF ∆∆≌;(2)由(1)得:ACE BDF ∆∆≌,∴ACE BDF ∠=∠,∴5CG DG ==,∴EG CE CG =-125=-7=.【点睛】本题考查了全等三角形的判定与性质以及等腰三角形的判定.证明△ACE ≌△BDF 是解答本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列算式中,结果与93x x ÷相等的是( )A .33x x +B .23x x ⋅C .()23xD .122x x ÷ 【答案】C【分析】已知936x x x ÷=,然后对A 、B 、C 、D 四个选项进行运算,A 根据合并同类项的法则进行计算即可;B 根据同底数幂的乘法法则进行计算即可;C 根据幂的乘方法则进行计算即可;D 根据同底数幂除法法则进行计算即可.【详解】∵936x x x ÷=A .3332x x x +=,不符合题意B .235x x x ,不符合题意 C .()236x x =,符合题意D .12210x x x ÷=,不符合题意故C 正确故选:C【点睛】本题考查了合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、同底数幂除法法则. 2.关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定 【答案】C【解析】方程两边都乘以x -5,去分母得:m =x -5,解得:x =m +5,∴当x -5≠0,把x =m +5代入得:m +5-5≠0,即m ≠0,方程有解,故选项A 错误;当x >0且x ≠5,即m +5>0,解得:m >-5,则当m >-5且m ≠0时,方程的解为正数,故选项B 错误;当x <0,即m +5<0,解得:m <-5,则m <-5时,方程的解为负数,故选项C 正确;显然选项D 错误.故选C .3.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.217B.25C.42D.7 【答案】A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBE AB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC=25+9=34,在Rt△ABC中,根据勾股定理,得AC=342=217⨯.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.4.如图,在△ABC 中,点D 是边BC 上的点(与B、C 两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC 于E、F 两点,下列说法正确的是()A.若AD 平分∠BAC,则四边形AEDF 是菱形B.若BD=CD,则四边形AEDF 是菱形C .若 AD 垂直平分 BC ,则四边形 AEDF 是矩形D .若 AD ⊥BC ,则四边形 AEDF 是矩形【答案】A【分析】由矩形的判定和菱形的判定即可得出结论.【详解】解:A 选项:若AD 平分∠BAC ,则四边形AEDF 是菱形;正确;B 选项:若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;错误;C 选项:若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;错误;D 选项:若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;错误;故选A .【点睛】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.5.已知22a b6ab +=,且ab 0≠,则()2a b ab +的值为( ) A .2B .4C .6D .8 【答案】D【分析】通过完全平方公式222()2a b a b ab +=++得出2()a b +的值,然后根据分式的基本性质约分即可.【详解】222()2628a b a b ab ab ab ab +=++=+=∵0ab ≠ ()288a b ab ab ab+∴== 故选:D .【点睛】本题主要考查分式的化简求值,掌握完全平方公式和分式的基本性质是解题的关键.6.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是( )A .2802801421x x +=- B .2802801421x x +=+ C .1401401421x x +=- D .1401401421x x +=+ 【答案】D 【解析】试题解析:根据读前一半时,平均每天读x 页,即读140页时,用时表示为140x天,后一半平均每天要多读21页,得读后一半时平均每天读()21x +页,用时14021x + 天,根据两周借期内读完列分式方程为: 14014014.21x x +=+ 故选D.7.已知一次函数y =kx+b 的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b >0的解集是( ) A .x <﹣2 B .x >﹣2C .x <﹣1D .x >﹣1【答案】A【分析】写出一次函数图象在x 轴上方所对应的自变量的范围即可. 【详解】解:∵一次函数y =kx+b 的图象经过点(0,﹣1)与(﹣1,0), ∴不等式kx+b >0的解集为x <﹣1. 故选:A . 【点睛】本题考查关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式之间的内在联系,理解一次函数的增减性是解题的关键.8.在实数23-0,π, 3.1414- ) A .2个 B .3个C .4个D .5个【答案】B【分析】根据无理数即为无限不循环小数逐一分析即可.【详解】解:23-是分数,属于有理数,0是有理数;π3=是有理数; 3.1414-3个无理数 故选B . 【点睛】此题考查的是无理数的判断,掌握无理数即为无限不循环小数是解决此题的关键. 9.若不等式(3)2a x ->的解集是23x a <-,则a 的取值范围是( ) A .3a ≠ B .3a >C .3a <D .3a ≤【答案】C【分析】由不等式(3)2a x ->的解集是23x a <-,知30a -<,从而求出a 的取值范围. 【详解】由不等式(3)2a x ->的解集是23x a <-,知不等号方向发生变化, 则30a -<, 解得:3a <, 故选C.【点睛】本题是对不等式知识的考查,熟练掌握不等式中同乘或同除一个负数时,不等号方向发生变化是解决本题的关键.10.若a+b=5,则代数式(2b a﹣a )÷(a b a -)的值为( )A .5B .﹣5C .﹣15D .15【答案】B【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】∵a+b=5,∴原式()()()225a b a b b a aa ab a a b a a b+--=⋅=-⋅=-+=---, 故选:B. 【点睛】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用. 二、填空题11.某单位定期对员工按照专业能力、工作业绩、考勤情况三方面进行考核(每项满分100分),三者权重之比为3:5:2,小明经过考核后三项分数分别为90分,86分,83分,则小明的最后得分为_________分. 【答案】82.2【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分. 【详解】解:小明的最后得分=352908683101010⨯+⨯+⨯=27+43+1.2=82.2(分), 故答案为:82.2. 【点睛】此题主要考查了加权平均数,关键是掌握加权平均数的计算方法.若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则112212n nnx w x w x w w w w ++⋯+++⋯+叫做这n 个数的加权平均数.12.等腰三角形的一个角是50°,则它的顶角等于 °. 【答案】50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况. 【详解】(1)当50°为顶角,顶角度数即为50°; (2)当50°为底角时,顶角=18025080︒-⨯︒=︒. 故答案为:50°或80︒.考点:等腰三角形的性质.13.将长方形纸片ABCD沿EF折叠,得到如图所示的图形,若148∠=,则∠=AEF__________度.【答案】114【分析】由折叠的性质得出∠BFE=∠GFE=12∠BFG,再由∠1得出∠BFE,然后即可得出∠AEF.【详解】由折叠,得∠BFE=∠GFE=12∠BFG∵148∠=∴∠BFG=180°-∠1=180°-48°=132°∴∠BFE=132°÷2=66°∵∠A=∠B=90°∴∠AEF=360°-90°-90°-66°=114°故答案为:114.【点睛】此题主要考查根据矩形和折叠的性质求角度,熟练掌握,即可解题. 14.比较大小:35211【答案】>【分析】根据二次根式的性质,对35、211【详解】∵3545,211444544,∴35211故答案是:>.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.15.已知a+b=5,ab=3,b aa b+=_____.【答案】193.【解析】将a+b=5、ab=3代入原式=()2222a b ab b a ab ab+-+=,计算可得. 【详解】当a+b=5、ab=3时,原式=22b a ab+ =()22a b ab ab+-=25233-⨯=193. 故答案为193. 【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式. 16.在△ABC 中,∠A=60°,∠B=∠C ,则∠B=______. 【答案】60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C ,进而得到∠B 的度数.【详解】解:∵∠A 、∠B 、∠C 是△ABC 的三个内角, ∴∠A+∠B+∠C=180°. ∵∠A=60°,∠B=∠C , ∴∠B=60°, 故答案为:60°. 【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.17.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =.给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ∆≅∆;④CD DN =.其中正确结论的序号是__________.【答案】①②③【分析】根据三角形的内角和定理求出∠EAB=∠FAC ,即可判断①;根据AAS 证△EAB ≌△FAC ,即可判断②;推出AC=AB ,根据ASA 即可证出③;不能推出CD 和DN 所在的三角形全等,也不能用其它方法证出CD=DN .【详解】∵∠E=∠F=90∘,∠B=∠C ,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘, ∴∠EAB=∠FAC ,∴∠EAB−CAB=∠FAC−∠CAB , 即∠1=∠2,∴①正确; 在△EAB 和△FAC 中AF AE B C E F =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△EAB ≌△FAC ,∴BE=CF ,AC=AB ,∴②正确; 在△ACN 和△ABM 中C B CAN BAM AC AB =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACN ≌△ABM ,∴③正确; ∵根据已知不能推出CD=DN , ∴④错误; 【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断. 三、解答题18.已知:如图,ABC △和ADE △均为等腰直角三角形,90BAC DAE ∠=∠=︒,连结AC ,BD ,且D 、E 、C 三点在一直线上,2AD =,2DE EC =.(1)求证:ADB AEC △≌△; (2)求线段BC 的长.【答案】(1)详见解析;(2)BC =【分析】(1)根据等式的基本性质可得∠DAB=∠EAC ,然后根据等腰直角三角形的性质可得DA=EA ,BA=CA ,再利用SAS 即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE ,从而求出EC 和DC ,再根据全等三角形的性质即可求出DB ,∠ADB=∠AEC ,从而求出∠BDC=90°,最后根据勾股定理即可求出结论. 【详解】证明:(1)∵90BAC DAE ∠=∠=︒ ∴∠DAE -∠BAE=∠BAC -∠BAE ∴∠DAB=∠EAC∵ABC ∆和ADE ∆均为等腰直角三角形 ∴DA=EA ,BA=CA 在△ADB 和△AEC 中DA EA DAB EAC BA CA =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC(2)∵ADE △是等腰直角三角形,AD AE ==∴2=,∵2DE EC = ∴EC=112DE =, ∴DC=DE +EC=3 ∵△ADB ≌△AEC∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE +∠BDC ,∠AEC=∠ADE +∠DAE=∠ADE +90° ∴∠BDC=90° 在Rt △BDC中,BC ==【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.19.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别为11A (,),4(3)B ,,42C (,).(1)在图中画出ABC ∆关于x 轴对称的111A B C ∆;(2)通过平移,使1C 移动到原点O 的位置,画出平移后的222A B C ∆.(3)在ABC ∆中有一点P m n (,),则经过以上两次变换后点P 的对应点2P 的坐标为 .【答案】(1)图见解析;(2)图见解析;(3)()4,2m n --+【分析】(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C 即可; (2)先判断1C 移动到原点O 的位置时的平移规律,然后分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C 即可;(3)根据关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到1P ,然后根据(2)中的平移规律即可得到2P 的坐标.【详解】解:(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C ,如下图所示:111A B C ∆即为所求(2)∵42C (,) ∴()142C ,-∴()142C ,-到点O (0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C ,如图所示,222A B C ∆即为所求;(3)由(1)可知,()P m n ,经过第一次变化后为()1,P m n - 然后根据(2)的平移规律,经过第二次变化后为()24,2P m n --+ 故答案为:()4,2m n --+. 【点睛】此题考查的是画已知图形关于x 轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x 轴对称图形画法、平移后的图形画法、关于x 轴对称两点坐标规律和坐标的平移规律是解决此题的关键. 20.如图,已知点B 、E 、C 、F 在一条直线上,且AB =DE ,BE =CF ,AB ∥DE .求证:AC ∥DF【答案】见解析【分析】根据SAS 证明△ABC ≌△DEF 全等,从而得到∠ACB =∠F ,再得到AC//DF . 【详解】∵AB ∥DE , ∴∠B =∠DEF , ∵BE =CF ,∴BE+EC =CF+EC ,即BC =EF , 在△ABC 和△DEF 中AB DE B DEF BC EF =⎧⎪∠∠⎨⎪=⎩= , ∴△ABC ≌△DEF , ∴∠ACB =∠F , ∴AC//DF . 【点睛】考查了全等三角形的判定和性质以及平行线的判定和性质,解题关键是利用SAS 证明△ABC ≌△DEF . 21.某列车平均提速vkm/h ,用相同的时间,列车提速前行驶150km ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?(用含v 的式子表示) 【答案】3vkm/h【分析】设提速前列车的平均速度为x /km h ,则依题意可得等量关系:提速前行驶150千米所用的时间=提速后行驶(15050)+千米所用的时间,根据等量关系列出方程即可.。
(2019秋)广州市海珠区八年级上期末数学试卷(有答案)【精校】.doc
2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)用科学记数法表示0.000002017=()A.20.17×10﹣5 B.2.017×10﹣6 C.2.017×10﹣7 D.0.2017×10﹣73.(3分)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm4.(3分)若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形B.锐角三角形C.等边三角形D.等腰三角形5.(3分)(x2y)2的结果是()A.x6y B.x4y2C.x5y D.x5y26.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.扩大4倍D.不变7.(3分)计算4x3yz÷2xy正确的结果是()A.2xyz B.xyz C.2x2z D.x2z8.(3分)如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB的依据是()A.ASA B.AAS C.SSS D.SAS9.(3分)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A .2B .4C .6D .810.(3分)如图,已知点P 是∠AOB 角平分线上的一点,∠AOB=60°,PD ⊥OA ,M 是OP 的中点,DM=4cm ,如果点C 是OB 上一个动点,则PC 的最小值为( )A .2B .2C .4D .4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如果10m =12,10n =3,那么10m +n = .12.(3分)若一个多边形每个外角都是30°,则这个多边形的边数有 条.13.(3分)已知分式的值为零,那么x 的值是 .14.(3分)如图,在△ABC 中,∠B 与∠C 的平分线交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .若AB=5,AC=4,则△ADE 的周长是 .15.(3分)已知a 2+b 2=12,a ﹣b=4,则ab= .16.(3分)对实数a 、b ,定义运算☆如下:a ☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1= .三、解答题(本大题共9小题,共102分)17.(8分)计算:(1)5a (2a ﹣b )(2)÷.18.(10分)解下列问题(1)因式分解:12b2﹣3(2)解方程:﹣=1.19.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.(10分)如图,已知△ABC的顶点都在图中方格的格点上.(1)画出△ABC关于x轴对称的△A′B′C′,并直接写出A′、B′、C′三点的坐标.(2)在y轴上找一点P使得PA+PB最小,画出点P所在的位置(保留作图痕迹,不写画法)21.(10分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.22.(10分)在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.23.(15分)已知△ABC是等边三角形.(1)射线BE是∠ABC的平分线,在图1中尺规作∠DAC=∠ABE,使AD与射线BE交于点D,且点D在边AC下方.(2)在(1)的条件下,如图2连接DC,求证:DA+DC=DB.(3)如图3,∠ADB=60°,若射线BE不是∠ABC的平分线.(2)中的结论是否依然成立?请说明理由.24.(15分)阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.25.(15分)在平面直角坐标系中,已知点A(8,0),B(0,﹣8),连接AB.(1)如图①,动点C在x轴负半轴上,且AH⊥BC交BC于点H、交OB于点P,求证:△AOP ≌△BOC;(2)如图②,在(1)的条件下,连接OH,求证:2∠OHP=∠AHB;(3)如图③,E为AB的中点,动点G在y轴上,连接GE,作EF⊥GE交x轴于F,猜想GB,OB、AF三条线段之间的数量关系,并说明理由.2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)用科学记数法表示0.000002017=()A.20.17×10﹣5 B.2.017×10﹣6 C.2.017×10﹣7 D.0.2017×10﹣7【解答】解:0.000002017=2.017×10﹣6,故选:B.3.(3分)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.4.(3分)若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形B.锐角三角形C.等边三角形D.等腰三角形【解答】解:∵△ABC有一个外角为锐角,∴与此外角相邻的内角的值为180°减去此外角,故相邻的内角大于90度,故△ABC是钝角三角形.故选:A.5.(3分)(x2y)2的结果是()A.x6y B.x4y2C.x5y D.x5y2【解答】解:(x2y)2=x4y2.故选:B.6.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.扩大4倍D.不变【解答】解:把分式中的x和y都扩大3倍,分子扩大了9倍,分母扩大了3倍,分式的值扩大3倍,故选:A.7.(3分)计算4x3yz÷2xy正确的结果是()A.2xyz B.xyz C.2x2z D.x2z【解答】解:4x3yz÷2xy=2x2z,故选:C.8.(3分)如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB的依据是()A .ASAB .AASC .SSSD .SAS【解答】解:由题意AF=AE ,FD=ED ,AD=AD ,∴△ADF ≌△ADE (SSS ),∴∠DAF=∠DAE ,故选:C .9.(3分)如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .8【解答】解:∵AD 是△ABC 的中线,∴S △ABD =S △ACD =S △ABC ,∵点E 是AD 的中点,∴S △ABE =S △ADE =S △ABD ,S △CDE =S △CAE =S △ACD ,∵S △ABE =S △ABC ,S △CDE =S △ABC ,∴S △ABE +S △CDE =S △ABC =×8=4;∴阴影部分的面积为4,故选:B .10.(3分)如图,已知点P 是∠AOB 角平分线上的一点,∠AOB=60°,PD ⊥OA ,M 是OP 的中点,DM=4cm ,如果点C 是OB 上一个动点,则PC 的最小值为( )A.2 B.2 C.4 D.4【解答】解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2DM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如果10m=12,10n=3,那么10m+n=36.【解答】解:10m+n=10m•10n=12×3=36.故答案为:36.12.(3分)若一个多边形每个外角都是30°,则这个多边形的边数有12条.【解答】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为12.13.(3分)已知分式的值为零,那么x的值是1.【解答】解:根据题意,得x2﹣1=0且x+1≠0,解得x=1.故答案为1.14.(3分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.15.(3分)已知a2+b2=12,a﹣b=4,则ab=﹣2.【解答】解:∵a﹣b=4,∴a2﹣2ab+b2=16,∴12﹣2ab=16,解得:ab=﹣2.故答案为:﹣2.16.(3分)对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=16.【解答】解:由题意可得:[2☆(﹣4)]☆1=2﹣4☆1=☆1=()﹣1=16.故答案为:16.三、解答题(本大题共9小题,共102分)17.(8分)计算:(1)5a(2a﹣b)(2)÷.【解答】解:(1)5a(2a﹣b)=10a2﹣5ab;(2)÷=•(x+1)=.18.(10分)解下列问题(1)因式分解:12b2﹣3(2)解方程:﹣=1.【解答】解:(1)原式=3(4b2﹣1)=3(2b+1)(2b﹣1);(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.19.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.20.(10分)如图,已知△ABC的顶点都在图中方格的格点上.(1)画出△ABC关于x轴对称的△A′B′C′,并直接写出A′、B′、C′三点的坐标.(2)在y轴上找一点P使得PA+PB最小,画出点P所在的位置(保留作图痕迹,不写画法)【解答】解:(1)如图所示,△A′B′C′即为所求,A′(﹣2,﹣4)、B′(﹣4,﹣1)、C′(1,2);(2)如图,点P即为所求.21.(10分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.【解答】解:原式=﹣=﹣=,由﹣1≤x≤2,且x为整数,得到x=2时,原式=.22.(10分)在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.【解答】解:(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,()×10=1解得,x=15∴2x=30即甲、乙两车单独完成任务分别需要15天,30天;(2)设甲车的租金每天a元,则乙车的租金每天(a﹣1500)元,[a+(a﹣1500)]×10=65000解得,a=4000∴a﹣1500=2500当单独租甲车时,租金为:15×4000=60000,当单独租乙车时,租金为:30×2500=75000,∵60000<65000<75000,∴单独租甲车租金最少.23.(15分)已知△ABC是等边三角形.(1)射线BE是∠ABC的平分线,在图1中尺规作∠DAC=∠ABE,使AD与射线BE交于点D,且点D在边AC下方.(2)在(1)的条件下,如图2连接DC,求证:DA+DC=DB.(3)如图3,∠ADB=60°,若射线BE不是∠ABC的平分线.(2)中的结论是否依然成立?请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∵BE是∠ABC的平分线,∴∠ABE=30°,当∠DAC=∠ABE时,∠BAD=90°,∴过点A作AB的垂线交BE于D,则点D即为所求;(2)∵∠BAD=90°,∠ABE=30°,∴DA=BD,同理,DC=BD,∴DA+DC=DB;(3)(2)中的结论依然成立,证明:在BD上取点F,是DF=DA,连接AF,∵∠ADB=60°,∴△ADF为等边三角形,∴∠FAD=60°,FA=AD,∴∠BAF=∠CAD,在△BAF和△CAD中,,∴△BAF≌△CAD,∴BF=CD,∴BD=DF+BF=DA+DC.24.(15分)阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=(a﹣2)2.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.【解答】解:(1)∵a2﹣4a+4=(a﹣2)2,故答案为:(a﹣2)2;(2)∵a2+2a+b2﹣6b+10=0,∴(a+1)2+(b﹣3)2=0,∴a=﹣1,b=3,∴a+b=2;(3)△ABC为等边三角形.理由如下:∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,∴(a﹣b)2+(c﹣1)2+3(b﹣1)2=0,∴a﹣b=0,c﹣1=0,b﹣1=0∴a=b=c=1,∴△ABC为等边三角形.25.(15分)在平面直角坐标系中,已知点A(8,0),B(0,﹣8),连接AB.(1)如图①,动点C在x轴负半轴上,且AH⊥BC交BC于点H、交OB于点P,求证:△AOP ≌△BOC;(2)如图②,在(1)的条件下,连接OH,求证:2∠OHP=∠AHB;(3)如图③,E为AB的中点,动点G在y轴上,连接GE,作EF⊥GE交x轴于F,猜想GB,OB、AF三条线段之间的数量关系,并说明理由.【解答】(1)证明:如图①中,∵AH⊥BC即∠AHC=90°,∠COB=90°∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC.在△OAP与△OBC中,,∴△OAP≌△OBC(ASA),(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图②.在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠CHA=45°,∵∠AHB=90°,∴2∠OHP=∠AHB.(3)结论:当点G在y轴的正半轴上时,BG﹣BO=AF.当点G在线段OB上时,OB=BG+AF.当点G在线段OB的延长线上时,AF=OB+BG.当点G在y轴的正半轴上时,理由如下:连接OE,如图3.∵∠AOB=90°,OA=OB,E为AB的中点,∴OE⊥AB,∠BOE=∠AOE=45°,OE=EA=BE,∴∠OAD=45°,∠GOE=90°+45°=135°,∴∠EAF=135°=∠GOE.∵GE⊥EF即∠GEF=90°,∴∠OEG=∠AEF,在△GOE与△FAE中,,∴△GOE≌△FAE,∴OG=AF,∴BG﹣BO=GO=AF,∴BG﹣BO=AF.其余两种情形证明方法类似.。
2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷 及答案解析
2019-2020 学年广东省广州市海珠区八年级(上)期末数学试卷一、选择题(本大题共 10 小题,共 30.0 分) 1. 下列图案是轴对称图形的有( )A. B. C. C. D. D. (1)(3)(1)(2) (2)(4) 2 (2)(3)32. 若分式的值为 0,则 的值是( )x A. B.23. 下列运算正确的是( )B. D.A. C.=÷=32 23 56 ) ==23 262 24. 下列因式分解正确的是( )A. 1 = 1B. 2) = 2 2C.D.= 1)3 22 2=2 5. 已知三角形两边的长分别是 4 和 10,则此三角形第三边的长可能是( ) A. B. C. D.165 6 116. 如果一个正多边形的内角和等于外角和 2 倍,则这个正多边形是( )A. B. C. D. 正方形 正五边形 正六边形翻折后,点 恰好与点C正八边形沿A = 5,B DA. B. C. D.41 2 38. 点 在的平分线上,点 到 P边的距离等于 5,点 是 边上的任意一点,下列选项O B P O A Q 正确的是( )A.B.C.D.≥ 5> 5< 5≤ 59. 已知一个长方形的长为 ,宽为 ,它的面积为 6,周长为 10,则 + 的值为()a b 2 2 A. B. C. D.1337 3025的平分线,的面积为于⊥B.C. D. A.672222二、填空题(本大题共 6 小题,共 18.0 分) 11. 因式分解:=______.12. 如图,已知在△于 ,若−3 2中, = 90°,=, 平分 C D, ⊥=,则△的周长为___________ .cmE 13. 四边形 中,若 中 ,DE + = 180°,且 : : 的垂直平分线,= 4= 1:2:3,则 ,△=.AB C D 是的周长为______.15. 、 、 是等腰△ a b c 三边长,若+ − − + 29 = 0,则△周长为_________.2 2 16. ) − 2 3÷ =______.25 三、计算题(本大题共 1 小题,共 6.0 分) 17. 计算:√9 − (−1)2019 + (3.14 −− ( ) 1 0 −22四、解答题(本大题共7小题,共66.0分)218.化简:(+4)÷.19.先化简,再求值:(√+√(√√√+√,其中=3,=4.2和△中,==90°,=,=.21.多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克元9出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多千克,以每千克元售出2010千克后,因出现高温天气,水果100不易保鲜,为减少损失,便降价45%售完剩余的水果.(1)求第一次水果的进价是每千克多少元.(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?2 23. 若关于 的分式方程x − 1 = 无解,求 的值.m24. 如图 1,在△D ,中, 于 . = 90°, = , = 45°.是经过点 的直线, ⊥于.A ⊥E (1)求证:=.(2)若将 绕点 旋转,使A 与 M NB C相交于点 如图2),其他条件不变,求证: = M N (3)在(2)的情况下,若 的延长线过 的中点 如图3),连接 GF ,求证:∠1 = ∠2.C E AB-------- 答案与解析 --------1.答案:D解析:解:(1)不是轴对称图形,(2)是轴对称图形,(3)是轴对称图形,(4)不是轴对称图形.是轴对称图形的为(2)(3).故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.答案:A−2=0+3≠0解析:解:由题意可知:{,解得:=2,故选:A.根据分式的值为零的条件即可求出答案.本题考查分式的值为零的条件,解题的关键是熟练运用分式的值为零的条件,本题属于基础题型.3.答案:C解析:解:A、原式不能合并,本选项错误;B、÷=,本选项错误;363C、)=,本选项正确;326D、+故选C=++,本选项错误,222A、原式不能合并,本选项错误;B、利用同底数幂的除法法则计算得到结果,即可作出判断;C、利用积的乘方及幂的乘方运算法则计算得到结果,即可作出判断;D、利用完全平方公式展开得到结果,即可作出判断.此题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.4.答案:C解析:本题主要考查因式分解的知识,解答本题的关键是知道因式分解的方法. 解: + + + 1 =+ + + 1,右边不是积的形式,错误,不符合题意;+ 2,右边不是积的形式 ,错误,不符合题意; + 1),正确,符合题意; B.++ 2) = + = +2 C. + +3 22 D.−= 2+−,计算错误,不符合题意.2故选 C .5.答案:C解析:解:设此三角形第三边的长为x , 则10 − 4 < < 10 + 4,即6 < < 14,四个选项中只有11符合条件. 故选:C .设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可. 本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.6.答案:C解析:本题考查多边形内角和定理及外角和定理,根据正多边形内角和=外角和× 2,列方程解答即可. 解:设多边形边数为 n . 则− 2) ⋅ 180° = 360°× 2, 解得 = 6. 故选 C .7.答案:D解析:解:∵将△ 沿 B D 翻折后,点 A 恰好与点 C 重合,∴△ ,∴ = = 90°,在 △中,.= √5 − 3 = 4222= −2 故选:D .由翻折的性质可得:△ 理求得 B D 的长即可.,得出 = = 90°,进一步在 △ 中利用勾股定本题考查了翻折的性质:翻折是一种对称变换,它属于轴对称,根据轴对称的性质,翻折前后图形 的形状和大小不变,位置变化,对应边和对应角相等;以及勾股定理的运用.8.答案:A解析: 解:∵点 P 在的平分线上,点 P 到 OA 边的距离等于 ,5∴点 P 到 OB 边的距离为 , 5 ∵点 Q 是 OB 边上的任意一点, ∴≥ 5.故选 A .本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关 键.根据角平分线上的点到角的两边距离相等可得点P 到 OB 边的距离为 ,再根据垂线段最短解答.5 9.答案:D解析:本题考查了完全平方公式应用、长方形的周长以及长方形的面积,利用长方形的周长及面积公式找 出 = 6、 + = 5是解题的关键.由长方形的周长及面积可得出= 6、 + = 5,代入 2 + 2 =+−中即可求出结论.解:根据题意得: = 6, + = 5,= 13.2 ∴+= +−2 2 2 故选 D .10.答案:B解析:解:延长交于,∵平分,∴=,∵⊥,∴==90°,中,在△和△=={=,∴△∴,=,∴=,=,∴=1=1×10=2),22故选:.B根据已知条件证得△,根据全等三角形的性质得到,代入求出即可.=,得出=,=12=,推出本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底同高的三角形的面积相等.11.答案:+−解析:此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.首先提取公因式2,再利用平方差公式分解因式得出答案.a解:3−2=2−2)=+−.故答案为+−.12.答案:20解析:本题考查的是角平分线的性质和等腰直角三角形的性质,掌握角的平分线上的点到角的两边的距离 相等是解题的关键. 根据角平分线的性质得到 = ,根据三角形的周长公式计算即可. 解:∵ 平分 ,, ⊥ ,= 90°,=,∴ == , ∴△ =的周长= =+ + =+ +++= = .故答案为 20.13.答案:90°解析:本题利用四边形的内角和即可解决问题.因为四边形的内角和等于 360 度, + = 180°, :: = 1:2:3,所以+= 180°,所以= 180 × = 45°,进而可求出,从而求出1 4答案. 解:∵ += 180°,: := 1:2:3,∴ ∴ ∴+= 180°,= 180 × 1 = 45°,4= 2 × 45° = 90°, = 180° − 90° = 90°.故答案为90°.14.答案:21解析:本题考查的是线段的垂直平分线的性质,根据线段的垂直平分线的性质得到,根据三角形的周长公式计算即可.=和==解:∵ 是 的垂直平分线,A C∴ = , = = , ∵△ ∴△的周长= 的周长=+ ++ += + +=+=,=,故答案为:21.15.答案:12解析:本题主要考查因式分解的应用、三角形的三边关系、等腰三角形的性质,解答本题的关键是明确题 意,找出所求问题需要的条件,利用分类讨论的数学思想解答.根据 2 + 2−+ 29 = 0,的周长.−可以求得 、 的长,然后根据 、 、 是等腰△ 的三边长,即可求得△ a b a b c 解:∵ 2 + 2 −− + 29 = 0,∴ ∴− + 4) + − 10 + 25) = 0,2 2 − 2) + − 5)= 0, 2 2 ∴ − 2 = 0, − 5 = 0, 解得, = 2, = 5,∵ 、 、 是等腰△b c 的三边长, ∴当 = = 2时,2 + 2 < 5,此时不能构成三角形, 当 = = 5时,此时 = 2,则△ 故答案为 12.的周长为:5 + 5 + 2 = 12,16.答案:6 −3解析:解: 2)3 −5 ÷ 2 =6 −3,故答案为:6 −3.根据整式的混合运算法则计算即可.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.答案:解:原式= 3 + 1 + 1 − 4= 1.解析:直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.2 ⋅18.答案:解:原式= = .解析:根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.答案:解:原式=2√==2√ ,当 = 3, = 4时,原式= 8 4 3.√ 解析:根据完全平方公式和平方差公式进行化简,再把 , 的值代入进行计算即可.a b本题考查了二次根式的混合运算,熟练掌握完全平方公式和平方差公式是解题的关键.20.答案:证明:在 △和 △ 中,= = 90°= ={∴ △ △∴ ∴== 又 = , .∴=解析:由“ ”可得 △H L△ ,可得 = ,可得 = ,即可进而证得结论.本题考查了全等三角形的判定和性质,等腰三角形的性质,证明 = 是本题的关键.元,21.答案:解:(1)设第一次水果的进价是每千克 元,则第二次水果的进价是每千克x 根据题意,得:16941500= 20,解得: = 2,经检验, = 2是原方程的解,且符合题意.答:第一次水果的进价是每千克2元.(2)第一次购买水果1500÷2=750(千克),第一次利润为750×(9−2)=5250(元).第二次购买水果750+20=770(千克),第二次利润为100×(10−2.2)+(770−100)×(10×55%−2.2)=2991(元).5250+2991=8241(元).答:该水果店在这两次销售中,总体上是盈利了,盈利了8241元.解析:(1)设第一次水果的进价是每千克元,则第二次水果的进价是每千克元,根据数量=总x价÷单价结合第二次比第一次多购进20千克,即可得出关于的分式方程,解之经检验后即可得出x结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.22.答案:证明:(1)∵△是等边三角形,=60°,∴=,=∴∠1=∠2,∴=∠2+∠3=∠1+∠3==60°,(3)∵⊥,∴∴=90°−=90°−60°=30°,=.解析:此题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图求出△是含30°角的直角三角形是解题的关键.(1)由 = , = , = ,即可证明; (2)根据三角形的外角的性质,= ∠2 + ∠3 = ∠1 + ∠3 == 60°,即可证明;(3)利用含有30°角的直角三角形的性质即可解决问题.23.答案:解:去分母:+ 3) = + 3);= 6,+ −即−∴ (1)当有增根时,是 = 0或 = −3; 3 分别代入上式, = −3时, = ;2= 0时,m 无解. (2)当− 5 = 0时方程无解;得 = 5;23 5 综上可得: = 或 .22解析:此题考查了分式方程根的情况,注意掌握分类讨论思想的应用是解此题的关键.首先去分母,把分式方程变为整式方程,然后分别从分式方程有增根或整式方程无解,去分析求解 即可求得答案.24.答案:证明:(1)如图 1,∵⊥ , ⊥ ,∴ ∵= = 90°,= 90°,∴ ∠1 + ∠2 = 90°, 又∵ ∠3 + ∠2 = 90°, ∴ ∠1 = ∠3, =在△ 和△中,{∠3 = ∠1,=∴△ ∴,=; (2)如图 2,∵ ⊥ , ⊥ ,∴ ∵= + = 90°, = 90°, += 90°,∴=,(3)如图3,过作交于,PB M N∵∴∵∴,+=180°,=90°,=90°,=由(2)得:=,==∴在△和△中,{=,∴△,∴,1=,=∵==,,∴∵△∴是等腰直角三角形,=45°,=90°,=45°,∴=,==在△和△中,{=,∴△∴,=∠2,=∠1,∵∴∠1=∠2.解析:(1)首先证明∠1=∠2,再证明△,然后根据全等三角形的性质可得,根据全等三角形对应边相等可得=;;(2)首先证明=,再证明△=(3)首先证明△,然后再证明△,再根据全等三角形对应角相等可得=,再根据等量代换可得结论∠1=∠2.此题主要考查了几何变换综合题,其中涉及到了全等三角形的判定与性质,关键是熟练掌握全等三角形的判定方法与性质定理当知识点,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.∴=,在△和△,=∴△∴,=;(3)如图3,过作交于,PB M N∵∴∵∴,+=180°,=90°,=90°,=由(2)得:=,==∴在△和△中,{=,∴△,∴,1=,=∵==,,∴∵△∴是等腰直角三角形,=45°,=90°,=45°,∴=,==在△和△中,{=,∴△∴,=∠2,=∠1,∵∴∠1=∠2.解析:(1)首先证明∠1=∠2,再证明△,然后根据全等三角形的性质可得,根据全等三角形对应边相等可得=;;(2)首先证明=,再证明△=(3)首先证明△,然后再证明△,再根据全等三角形对应角相等可得=,再根据等量代换可得结论∠1=∠2.此题主要考查了几何变换综合题,其中涉及到了全等三角形的判定与性质,关键是熟练掌握全等三角形的判定方法与性质定理当知识点,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.。
广东省广州海珠区四校联考2019年数学八上期末质量跟踪监视试题
广东省广州海珠区四校联考2019年数学八上期末质量跟踪监视试题一、选择题1.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为( )A .2.5×106B .2.5×10﹣6C .0.25×10﹣6D .0.25×107 2.要使分式52x x +有意义,则x 的取值满足的条件是( ) A.2x =-B.2x ≠-C.0x =D.0x ≠ 3.化简22a b b a +-的结果是( ) A.1a b - B.1b a - C.a ﹣b D.b ﹣a4.下列运算正确的是( )A .a+a= a 2B .a 6÷a 3=a 2C .(a+b)2=a 2+b 2D .(a b 3) 2= a 2 b 65.下列由左边到右边的变形,属于因式分解的是( ).A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x(x -2)+1C .a 2-b 2=(a +b)(a -b)D .mx +my +nx +ny =m(x +y)+n(x +y)6.下列计算中,正确的是( )A .336x x x +=B .623a a a ÷=C .3a 5b 8ab +=D .333(ab)a b -=- 7.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是( )A .喜B .迎C .冬D .奥8.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥BC ,若AB=5,AC=6,则△AMN 的周长为( )A .7B .9C .11D .169.如图,过边长为1的等边ABC △的边AB 上一点,作PE AC ⊥于,E Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 于D ,则DE 的长为( )A .13B .12C .23D .3410.如图,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,DE 平分∠ADC ,以下结论:①∠AED =90°;②点 E 是 BC的中点;③DE=BE;④AD=AB+CD;其中正确的是()A.①②③B.①②④C.①③④D.②③④11.如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,∠DBC=15°,则∠A的度数是()A.50°B.45°C.55°D.60°12.如图,ΔABC中,∠B=550,∠C=300,分别以点A和C为圆心,大于½ AC的长为半径画弧,两弧交于点M、N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )A.650B.600C.550D.50013.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1014.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=40°,求∠ABD+∠ACD=()A.30°B.40°C.50°D.60°15.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.14cm2 D.12cm2二、填空题16.一根头发丝的直径约为0.000075米,用科学记数法表示这个数为__________米.17.若()()234x x ax bx c +-=++,则abc =______. 【答案】1218.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,BD :DC=3:2,点D 到AB 的距离为4,则BC 等于_____.19.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________。
2023-2024学年广东省广州市海珠区八年级(上)期末数学试卷及答案解析
2023-2024学年广东省广州市海珠区八年级(上)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.(3分)第19届亚运会在杭州顺利举行,下列体育运动图标中是轴对称图形的是()A.B.C.D.2.(3分)若分式有意义,则实数x的取值范围是()A.x=3B.x≠﹣4C.x≠3D.x=﹣43.(3分)下列运算中,计算结果正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a8÷a4=a2 4.(3分)计算2﹣2的结果是()A.B.﹣C.4D.﹣45.(3分)为估计池塘两岸A、B间的距离,如图,小明在池塘一侧选取了一点O,测得OA =10m,OB=6m,那么AB的距离可能是()A.4m B.15m C.16m D.20m6.(3分)计算0.52024×(﹣2)2024的值为()A.﹣2B.﹣0.5C.1D.27.(3分)如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件()A.AB=CD B.∠B=∠D C.AD=CB D.∠BAC=∠DCA 8.(3分)如图,CM是△ABC的中线,BC=8cm,若△BCM的周长比△ACM的周长大2cm,则AC的长为()A.3cm B.4cm C.5cm D.6cm9.(3分)如图,正五边形ABCDE和正方形CDFG的边CD重合,连接EF,则∠AEF的度数为()A.27°B.28°C.29°D.30°10.(3分)我国宋代数学家杨辉所著《详解九章算法》中记载了用如图所示的三角形解释了二项和的乘方展开式中的系数规律,我们把这种数字三角形叫做“杨辉三角”.请你利用杨辉三角,计算(a+b)6的展开式中,含b5项的系数是()A.15B.10C.9D.6二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)如图,∠ACD=75°,∠A=30°,则∠B=°.12.(3分)将2a(b+c)﹣3(b+c)分解因式的结果是.13.(3分)若分式的值为0,则x的值为.14.(3分)式子和的最简公分母是.15.(3分)如图,在△ABC中,点E在AB的垂直平分线上,且AC=AE,AD平分∠EAC.若AC=3,CD=1,则BC=.16.(3分)如图,OC平分∠AOB,且∠AOB=60°,点P为OC上任意点,PM⊥OA于M,PD∥OA,交OB于D,若OM=3,则PD的长为.三、解答题(本题有9个小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.(4分)计算:(1)3a(5a﹣2b);(2)(12a3﹣6a2+3a)÷3a.18.(6分)如图点A,B,C,D依次在同一条直线上,AB=CD,AE=DF,∠A=∠D,BF 与CE相交于点M.求证:CE=BF.19.(6分)已知.(1)化简A;(2)当x满足时,A的值是多少?20.(6分)如图,已知△ABC和直线m(直线m上各点的横坐标都为2).(1)画出△ABC关于直线m的对称图形△A1B1C1;(2)A1的坐标是,若点P(a,b)在△ABC内部,P,P1关于直线m对称,则P1的坐标是;(3)请通过画图直接在直线m上找一点Q,使得QB+QC最小.21.(8分)恒等式的探究及应用.(1)已知图1、图2的阴影部分面积相等,由此可以得到恒等式.(用式子表达)(2)运用(1)中的结论,计算下列各题:①13×7;②(m+2n﹣3)(m+2n+3).22.(8分)春节即将到来,家家户户贴春联,挂中国结,欢天喜地迎新年.某百货超市计划购进春联和中国结这两种商品.已知每个中国结的进价比每副春联的进价多25元,超市用350元购进的中国结数量和用100元购进的春联数量相同.求每个中国结的进价和每副春联的进价各是多少元?23.(10分)如图,已知A(0,m),B(n,0),且m,n满足(m﹣n)2+|n﹣6|=0.点D 是线段AB中点,动点E,F分别在线段OA,OB上运动,且始终有AE=OF.(1)请直接写出点A和点B的坐标;(2)请判断△DEF的形状并说明理由;(3)下列结论:①四边形OEDF周长为定值;②四边形OEDF面积为定值;③∠OEF+∠DFE为定值.请选择一个正确的结论并说明理由.24.(12分)阅读理解:条件①:无论代数式A中的字母取什么值,A都不小于常数M;条件②:代数式A中的字母存在某个取值,使得A等于常数M;我们把同时满足上述两个条件的常数M叫做代数式A的下确界.例如:x2+2x+5=x2+2•x•1+12﹣12+5=(x+1)2+4,∵(x+1)2≥0,∴x2+2x+5≥4(满足条件①),当x=﹣1时,x2+2x+5=4(满足条件②),∴4是x2+2x+5的下确界.又例如:x2+2|x|+5=|x|2+2•|x|•1+12﹣12+5=(|x|+1)2+4,由于|x|≠﹣1,所以x2+2|x|+5≠4,(不满足条件②)故4不是x2+2|x|+5的下确界.请根据上述材料,解答下列问题:(1)求x2﹣4x+1的下确界.(2)若代数式2x2+mx+3的下确界是1,求m的值.(3)求代数式x2+2y2+2xy﹣2x﹣4y+10的下确界.25.(12分)如图,△ABC是等边三角形,AB=2,BD=3,BD⊥AC,延长BC至E,使BD=DE,连接DE.(1)求证:CD=CE;(2)求△CDE的面积;(3)点M,N分别是线段BC,BD上的动点,连接MN,求MN+DN的最小值.2023-2024学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D的图形不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项A的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据题意得x+4≠0,进行计算即可得.【解答】解:∵分式有意义,∴x+4≠0,∴x≠﹣4,故选:B.【点评】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件,正确计算.3.【分析】根据同底数幂的乘除法法则、合并同类项的方法、幂的乘方与积的乘方法则进行逐项计算即可.【解答】解:A、a2•a3=a5,故该项不正确,不符合题意;B、a3与a2不是同类项,不能进行合并,该项不正确,不符合题意;C、(a2)3=a6,该项正确,符合题意;D、a8÷a4=a4,该项不正确,不符合题意;故选:C.【点评】本题考查同底数幂的乘除法、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.【分析】根据负整数指数幂的运算法则计算即可.【解答】解:2﹣2==.故选:A.【点评】本题考查了负整数指数幂的知识,属于基础题,掌握其运算法则是解题关键.5.【分析】由三角形三边关系定理得到4<AB<16,即可得到答案.【解答】解:∵OA=10m,OB=6m,∴10﹣6<AB<10+6,∴4<AB<16,∴AB的距离可能是15m.故选:B.【点评】本题考查三角形三边关系,关键是由三角形三边关系定理得到4<AB<16.6.【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:0.52024×(﹣2)2024=0.52024×22024=(0.5×2)2024=1.故选:C.【点评】本题考查幂的乘方与积的乘方,掌握运算法则是解题的关键.7.【分析】根据平行线的性质得出∠DAC=∠BCA,再根据全等三角形的判定定理SAS推出即可.【解答】解:添加的条件是AD=CB,理由是:∵AD∥BC,∴∠DAC=∠BCA,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),故选:C.【点评】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.8.【分析】根据CM是△ABC的中线可知AM=BM,再由BC=8cm,△BCM的周长比△ACM 的周长大2cm即可得出结论.【解答】解:∵CM是△ABC的中线,BC=8cm,∴AM=BM,∴△BCM的周长=BC+BM+CM,△ACM的周长=AC+AM+CM,∵△BCM的周长比△ACM的周长大2cm,∴BC+BM+CM﹣(AC+AM+CM)=2,即BC﹣AC=2,∴8﹣AC=2,解得AC=6(cm).故选:D.【点评】本题考查的是三角形的中线,熟知三角形一边的中点与此边所对顶点的连线叫做三角形的中线是解题的关键.9.【分析】利用多边形的内角和及正多边形的性质可求得∠AED,∠CDE,∠CDF的度数,DE=DF=CD,然后求得∠EDF的度数,再利用等腰三角形的性质及三角形的内角和求得∠DEF的度数,最后利用角的和差列式计算即可.【解答】解:∵五边形ABCDE是正五边形,四边形CDFG是正方形,∴∠AED=∠CDE==108°,∠CDF==90°,DE =DF=CD,∴∠EDF=108°﹣90°=18°,∴∠DEF==81°,∴∠AEF=108°﹣81°=27°,故选:A.【点评】本题考查啊多边形的内角和及正多边形的性质,结合已知条件求得∠AED,∠CDE,∠CDF的度数及DE=DF=CD是解题的关键.10.【分析】根据题干已知条件总结规律即可.【解答】解:(a+b)5的展开式中各项的系数分别为1,5,10,10,5,1,(a+b)6的展开式中各项的系数分别为1,6,15,20,15,6,1,则含b5项的系数是6,故选:D.【点评】本题考查规律探索问题及数学常识,结合已知条件总结出规律是解题的关键.二、填空题(本题有6个小题,每小题3分,共18分)11.【分析】直接利用三角形的外角性质即可求解.【解答】解:∵∠ACD=75°,∠A=30°,∠ACD是△ABC的外角,∴∠B=∠ACD﹣∠A=45°.故答案为:45.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角等于与其不相邻的两个内角之和.12.【分析】利用提公因式法因式分解即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.13.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由x﹣4=0,得x=4,由x+2≠0,得x≠﹣2.综上,得x=4,即x的值为4.故答案为:4.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:两个分式的分母分别为(x+y)2,(x+y)(x﹣y),所以分式的最简公分母为(x+y)2(x﹣y),故答案为:(x+y)2(x﹣y).【点评】本题考查了最简公分母,确定最简公分母的方法一定要掌握.15.【分析】根据等腰三角形的性质求出EC,根据线段垂直平分线的性质得到EB=EA,求出EB,计算即可.【解答】解:∵AC=AE,AD平分∠EAC,CD=1,∴EC=2CD=2,∵点E在AB的垂直平分线上,∴EB=EA,∵AE=AC=3,∴EB=3,∴BC=BE+EC=3+2=5,故答案为:5.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的三线合一,线段的垂直平分线上的点到线段的两个端点的距离相等.16.【分析】过点P作PN⊥OB于N,根据角平分线上的点到角的两边距离相等可得PN=PM,根据角平分线的定义求出∠AOC=30°,然后求出PM,再根据两直线平行,同位角相等可得∠PDN=60°,求出∠DPN=30°,再求解即可.【解答】解:如图,过点P作PN⊥OB于N,∵OC平分∠AOB,PM⊥OA,∴PN=PM,∵OC平分∠AOB,且∠AOB=60°,∴∠AOC=AOB=×60°=30°,∵OM=3,∴PM=3×=,∵PD∥OA,∴∠PDN=∠AOB=60°,∴∠DPN=90°﹣60°=30°,∴PD=÷=2.故答案为:2.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,解直角三角形以及平行线的性质,熟记各性质并准确识图是解题的关键.三、解答题(本题有9个小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.【分析】(1)直接利用单项式乘多项式运算法则化简,进而得出答案;(2)利用整式的除法运算法则计算得出答案.【解答】解:(1)原式=3a•5a﹣3a•2b=15a2﹣6ab;(2)原式=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1.【点评】此题主要考查了整式的除法以及单项式乘多项式,正确掌握相关运算法则是解题关键.18.【分析】根据SAS证明△ACE≌△DBF,根据全等三角形的性质即可得证.【解答】证明:∵AB=CD,∴AC=BD,在△ACE和△DBF中,,∴△ACE≌△DBF(SAS),∴CE=BF.【点评】此题考查的是全等三角形的判定与性质,掌握其性质定理是解决此题的关键.19.【分析】(1)先化简分式,再计算减法即可;(2)解分式方程求出x的值,再代入计算即可.【解答】解:(1)原式=﹣=﹣=;(2)方程两边都乘以2(x﹣1),得:2x=3﹣4(x﹣1),解得x=,则原式==6.【点评】本题主要考查分式的化简求值和解分式方程,解题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的能力.20.【分析】(1)根据轴对称的性质作图即可.(2)由图可直接的得出点A1的坐标;根据轴对称的性质可得点P1的纵坐标为b,横坐标为2×2﹣a=4﹣a,即可得出答案.(3)连接BC1,交直线m于点Q,则点Q即为所求.【解答】解:(1)如图,△A1B1C1即为所求.(2)由图可得,A1的坐标是(5,5).∵点P(a,b)与P1关于直线m对称,∴点P1的纵坐标为b,横坐标为2×2﹣a=4﹣a,∴P1的坐标是(4﹣a,b).故答案为:(5,5);(4﹣a,b).(3)如图,连接BC1,交直线m于点Q,连接CQ,此时QB+QC=QB+QC1=BC1,为最小值,则点Q即为所求.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.21.【分析】(1)用代数式表示图1、图2中阴影部分的面积即可;(2)①将13×7化为(10+3)(10﹣3),再利用平方差公式进行计算即可;②将原式化为[(m+2n)﹣3][(m+2n)],再利用平方差公式进行计算即可.【解答】解:(1)图1中阴影部分可以看作两个正方形的面积差,即a2﹣b2,图2是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由图1、图2阴影部分面积相等可得,a2﹣b2(a+b)(a﹣b),故答案为:a2﹣b2(a+b)(a﹣b);(2)①13×7=(10+3)(10﹣3)=102﹣32=100﹣9=91;②(m+2n﹣3)(m+2n+3)=[(m+2n)﹣3][(m+2n)]=(m+2n)2﹣32=m2+4mn+4n2﹣9.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的关键.22.【分析】设每副春联的进价是x元,则每个中国结的进价是(x+25)元,根据超市用350元购进的中国结数量和用100元购进的春联数量相同.列出分式方程,解方程即可.【解答】解:设每副春联的进价是x元,则每个中国结的进价是(x+25)元,根据题意得:=,解得:x=10,经检验,x=10是所列方程的解,且符合题意,∴x+25=10+25=35,答:每个中国结的进价是35元,每副春联的进价是10元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【分析】(1)由(m﹣n)2+|n﹣6|=0可得,m﹣n=0,n﹣6=0,因A(0,m),B(n,0),即得点A、B的坐标;(2)先证△ADE≌△ODF,可得DE=DF,∠ADE=∠ODF,由∠ADE+∠EDO=90°,可得∠EDF=90°,即△DEF是等腰直角三角形;=S△ODF,又因△OAB是等腰直角三角(3)②因(2)中△ADE≌△ODF,可得S△ADE形,点D是线段AB中点,可得四边形OEDF面积为,是一个定值,可求得定值.【解答】解:(1)∵(m﹣n)2+|n﹣6|=0,∴m﹣n=0,n﹣6=0,即m=n=6,∵A(0,m),B(n,0),∴A(0,6),B(6,0);(2)连接OD、EF,,在Rt△ABO中,AB==6,∵点D是线段AB中点,∴OD=AB=AD=BD=3,∵OA=OB=6,∴△OAB是等腰直角三角形,∴∠BAO=∠ABO=45°,OD⊥AB,∵AD=BD=OD,∴∠BAO=∠AOD=45°,∠ABO=∠BOD=45°,∵AE=OF,AD=OD,∠DAO=∠DOF,∴△ADE≌△ODF(SAS),∴DE=DF,∠ADE=∠ODF,∴△DEF是等腰三角形,∵∠ADE+∠EDO=90°,∴∠EDF=∠EDO+∠ODF=90°,∴△DEF是等腰直角三角形;(3)∵△ADE≌△ODF,∴AE=OF,DE=DF,四边形OEDF周长=OE+OF+DE+DF=OE+AE+DE+DF=AO+2DE,∵E是线段AO上的动点,∴DE不是一个定值,即四边形OEDF周长不为定值,故①结论不正确,∵△OAB是等腰直角三角形,点D是线段AB中点,=S△OBD=S△ABO==9,∴S△OAD=S△ADE+S△EDO=9,∵=S△ADO=S△ODF,由(2)中△ADE≌△ODF可得,S△ADE+S△ODF==9,∴S△EDO即四边形OEDF面积为,定值为9.故②结论正确,∵DE=DF,∴∠DEF=∠DFE,∠OEF+∠DFE=∠OEF+∠DEF=∠DEO,∵E是线段AO上的动点,∴∠DEO不是一个定值,即∠OEF+∠DFE不为定值,故③结论不正确.【点评】本题考查了勾股定理、全等三角形,关键是掌握全等三角形的证明.24.【分析】(1)根据代数式的下确界的规定,利用配方法解答即可;(2)根据代数式的下确界的规定,利用配方法解答即可;(3)将字母x看成常数,根据代数式的下确界的规定,利用配方法解答即可.【解答】解:(1)x2﹣4x+1=x2﹣2•x•2+22﹣22+1=(x﹣2)2﹣3,∵(x﹣2)2≥0,∴﹣3是x2﹣4x+1的下确界;(2)∵2x2+mx+3=2(x+)2+3﹣,代数式2x2+mx+3的下确界是1,∴3﹣=1,∴m2=16,∴m=±4.(3)x2+2y2+2xy﹣2x﹣4y+10=2y2+2(x﹣2)y+x2﹣2x+10=2[y2+(x﹣2)y+﹣]+x2﹣2x+10=2﹣2×+x2﹣2x+10=2﹣+2x﹣2+x2﹣2x+10=2++8,∵2≥0,≥0,∴x2+2y2+2xy﹣2x﹣4y+10的下确界为8.【点评】本题主要考查了求代数式的值,配方法,本题是新定义型,正确理解新定义的规定并熟练应用是解题的关键.25.【分析】(1)由等边三角形性质可得∠ACB=60°,∠CBD=30°,再由等腰三角形性质可得∠E=∠CBD=30°,进而推出∠CDE=∠E,再运用等腰三角形的判定即可证得结论;(2)过点D作DH⊥BC于H,利用等边三角形的性质可得CE=CD=,再由含30°锐角直角三角形的性质可得DH=BD=,利用三角形面积公式即可求得答案;(3)过点D作DF∥BC,过点N作NF⊥DF于F,可得当且仅当F、N、M在同一条直线上时,MN+DN=MN+FN的值最小,再利用直角三角形性质即可解决问题.【解答】(1)证明:∵△ABC是等边三角形,BD⊥AC,∴∠ACB=60°,∠CBD=30°,∵BD=DE,∴∠E=∠CBD=30°,∵∠ACB=∠CDE+∠E,∴∠CDE=∠ACB﹣∠E=60°﹣30°=30°,∴∠CDE=∠E,∴CD=CE;(2)解:如图,过点D作DH⊥BC于H,∵△ABC是等边三角形,BD⊥AC,AB=2,∴∠DCH=60°,∠CBD=30°,CD=AC=AB=,∴BC=2CD=2,CE=CD=,∵∠BHD=90°,∠DBH=30°,∴DH=BD=×3=,=CE•DH=××=;∴S△CDE(3)过点D作DF∥BC,过点N作NF⊥DF于F,则∠NDF=∠CBD=30°,∵∠F=90°,∴FN=DN,∴MN+DN=MN+FN,当且仅当F、N、M在同一条直线上时,MN+DN=MN+FN的值最小,∵NF⊥DF,DF∥BC,∴MN⊥BC,∵∠CBD=30°,∴MN=BN,∴MN+DN=BN+DN=BD=×3=,∴MN+DN的最小值为.【点评】本题是三角形综合题,考查了等边三角形的性质,含30°角的直角三角形的性质,三角形面积,两点之间线段最短等知识,熟练掌握直角三角形性质是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市海珠区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)用科学记数法表示0.000002017=()A.20.17×10﹣5 B.2.017×10﹣6C.2.017×10﹣7D.0.2017×10﹣73.(3分)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm4.(3分)若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形 B.锐角三角形C.等边三角形 D.等腰三角形5.(3分)(x2y)2的结果是()A.x6y B.x4y2C.x5y D.x5y26.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.扩大4倍D.不变7.(3分)计算4x3yz÷2xy正确的结果是()A.2xyz B.xyz C.2x2z D.x2z8.(3分)如图所示,小李用直尺和圆规作∠CAB的平分线AD,则得出∠CAD=∠DAB的依据是()A.ASA B.AAS C.SSS D.SAS9.(3分)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.2 B.4 C.6 D.810.(3分)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP 的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如果10m=12,10n=3,那么10m+n= .12.(3分)若一个多边形每个外角都是30°,则这个多边形的边数有条.13.(3分)已知分式的值为零,那么x的值是.14.(3分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.15.(3分)已知a2+b2=12,a﹣b=4,则ab= .16.(3分)对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=.三、解答题(本大题共9小题,共102分)17.(8分)计算:(1)5a(2a﹣b)(2)÷.18.(10分)解下列问题(1)因式分解:12b2﹣3(2)解方程:﹣=1.19.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.(10分)如图,已知△ABC的顶点都在图中方格的格点上.(1)画出△ABC关于x轴对称的△A′B′C′,并直接写出A′、B′、C′三点的坐标.(2)在y轴上找一点P使得PA+PB最小,画出点P所在的位置(保留作图痕迹,不写画法)21.(10分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.22.(10分)在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.23.(15分)已知△ABC是等边三角形.(1)射线BE是∠ABC的平分线,在图1中尺规作∠DAC=∠ABE,使AD与射线BE交于点D,且点D在边AC下方.(2)在(1)的条件下,如图2连接DC,求证:DA+DC=DB.(3)如图3,∠ADB=60°,若射线BE不是∠ABC的平分线.(2)中的结论是否依然成立?请说明理由.24.(15分)阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4= .(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.25.(15分)在平面直角坐标系中,已知点A(8,0),B(0,﹣8),连接AB.(1)如图①,动点C在x轴负半轴上,且AH⊥BC交BC于点H、交OB于点P,求证:△AOP≌△BOC;(2)如图②,在(1)的条件下,连接OH,求证:2∠OHP=∠AHB;(3)如图③,E为AB的中点,动点G在y轴上,连接GE,作EF⊥GE交x轴于F,猜想GB,OB、AF三条线段之间的数量关系,并说明理由.2019-2020学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)用科学记数法表示0.000002017=()A.20.17×10﹣5B.2.017×10﹣6C.2.017×10﹣7D.0.2017×10﹣7【解答】解:0.000002017=2.017×10﹣6,故选:B.3.(3分)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.4.(3分)若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形 B.锐角三角形C.等边三角形 D.等腰三角形【解答】解:∵△ABC有一个外角为锐角,∴与此外角相邻的内角的值为180°减去此外角,故相邻的内角大于90度,故△ABC是钝角三角形.故选:A.5.(3分)(x2y)2的结果是()A.x6y B.x4y2C.x5y D.x5y2【解答】解:(x2y)2=x4y2.故选:B.6.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.扩大4倍D.不变【解答】解:把分式中的x和y都扩大3倍,分子扩大了9倍,分母扩大了3倍,分式的值扩大3倍,故选:A.7.(3分)计算4x3yz÷2xy正确的结果是()A.2xyz B.xyz C.2x2z D.x2z【解答】解:4x 3yz ÷2xy=2x 2z ,故选:C .8.(3分)如图所示,小李用直尺和圆规作∠CAB 的平分线AD ,则得出∠CAD=∠DAB 的依据是( )A .ASAB .AASC .SSSD .SAS【解答】解:由题意AF=AE ,FD=ED ,AD=AD ,∴△ADF ≌△ADE (SSS ),∴∠DAF=∠DAE ,故选:C .9.(3分)如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .8【解答】解:∵AD 是△ABC 的中线,∴S △ABD =S △ACD =S △ABC ,∵点E 是AD 的中点,∴S △ABE =S △ADE =S △ABD ,S △CDE =S △CAE =S △ACD ,∵S △ABE =S △ABC ,S △CDE =S △ABC ,∴S △ABE +S △CDE =S △ABC =×8=4;∴阴影部分的面积为4,故选:B .10.(3分)如图,已知点P 是∠AOB 角平分线上的一点,∠AOB=60°,PD ⊥OA ,M 是OP 的中点,DM=4cm ,如果点C 是OB 上一个动点,则PC 的最小值为( )A .2B .2C .4D .4【解答】解:∵P 是∠AOB 角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD ⊥OA ,M 是OP 的中点,DM=4cm ,∴OP=2DM=8,∴PD=OP=4,∵点C 是OB 上一个动点,∴PC 的最小值为P 到OB 距离,∴PC 的最小值=PD=4.故选:C .二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如果10m =12,10n =3,那么10m+n = 36 .【解答】解:10m+n =10m •10n =12×3=36.故答案为:36.12.(3分)若一个多边形每个外角都是30°,则这个多边形的边数有 12 条.【解答】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为12.13.(3分)已知分式的值为零,那么x的值是 1 .【解答】解:根据题意,得x2﹣1=0且x+1≠0,解得x=1.故答案为1.14.(3分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.15.(3分)已知a2+b2=12,a﹣b=4,则ab= ﹣2 .【解答】解:∵a﹣b=4,∴a2﹣2ab+b2=16,∴12﹣2ab=16,解得:ab=﹣2.故答案为:﹣2.16.(3分)对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=16 .【解答】解:由题意可得:[2☆(﹣4)]☆1=2﹣4☆1=☆1=()﹣1=16.故答案为:16.三、解答题(本大题共9小题,共102分)17.(8分)计算:(1)5a(2a﹣b)(2)÷.【解答】解:(1)5a(2a﹣b)=10a2﹣5ab;(2)÷=•(x+1)=.18.(10分)解下列问题(1)因式分解:12b2﹣3(2)解方程:﹣=1.【解答】解:(1)原式=3(4b2﹣1)=3(2b+1)(2b﹣1);(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.19.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.20.(10分)如图,已知△ABC的顶点都在图中方格的格点上.(1)画出△ABC关于x轴对称的△A′B′C′,并直接写出A′、B′、C′三点的坐标.(2)在y轴上找一点P使得PA+PB最小,画出点P所在的位置(保留作图痕迹,不写画法)【解答】解:(1)如图所示,△A′B′C′即为所求,A′(﹣2,﹣4)、B′(﹣4,﹣1)、C′(1,2);(2)如图,点P即为所求.21.(10分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.【解答】解:原式=﹣=﹣=,由﹣1≤x≤2,且x为整数,得到x=2时,原式=.22.(10分)在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.【解答】解:(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,()×10=1解得,x=15∴2x=30即甲、乙两车单独完成任务分别需要15天,30天;(2)设甲车的租金每天a元,则乙车的租金每天(a﹣1500)元,[a+(a﹣1500)]×10=65000解得,a=4000∴a﹣1500=2500当单独租甲车时,租金为:15×4000=60000,当单独租乙车时,租金为:30×2500=75000,∵60000<65000<75000,∴单独租甲车租金最少.23.(15分)已知△ABC是等边三角形.(1)射线BE是∠ABC的平分线,在图1中尺规作∠DAC=∠ABE,使AD与射线BE交于点D,且点D在边AC下方.(2)在(1)的条件下,如图2连接DC,求证:DA+DC=DB.(3)如图3,∠ADB=60°,若射线BE不是∠ABC的平分线.(2)中的结论是否依然成立?请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∵BE是∠ABC的平分线,∴∠ABE=30°,当∠DAC=∠ABE时,∠BAD=90°,∴过点A作AB的垂线交BE于D,则点D即为所求;(2)∵∠BAD=90°,∠ABE=30°,∴DA=BD,同理,DC=BD,∴DA+DC=DB;(3)(2)中的结论依然成立,证明:在BD上取点F,是DF=DA,连接AF,∵∠ADB=60°,∴△ADF为等边三角形,∴∠FAD=60°,FA=AD,∴∠BAF=∠CAD,在△BAF和△CAD中,,∴△BAF≌△CAD,∴BF=CD,∴BD=DF+BF=DA+DC.24.(15分)阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4= (a﹣2)2.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.【解答】解:(1)∵a2﹣4a+4=(a﹣2)2,故答案为:(a﹣2)2;(2)∵a2+2a+b2﹣6b+10=0,∴(a+1)2+(b﹣3)2=0,∴a=﹣1,b=3,∴a+b=2;(3)△ABC为等边三角形.理由如下:∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,∴(a﹣b)2+(c﹣1)2+3(b﹣1)2=0,∴a﹣b=0,c﹣1=0,b﹣1=0∴a=b=c=1,∴△ABC为等边三角形.25.(15分)在平面直角坐标系中,已知点A(8,0),B(0,﹣8),连接AB.(1)如图①,动点C在x轴负半轴上,且AH⊥BC交BC于点H、交OB于点P,求证:△AOP≌△BOC;(2)如图②,在(1)的条件下,连接OH,求证:2∠OHP=∠AHB;(3)如图③,E为AB的中点,动点G在y轴上,连接GE,作EF⊥GE交x轴于F,猜想GB,OB、AF三条线段之间的数量关系,并说明理由.【解答】(1)证明:如图①中,∵AH⊥BC即∠AHC=90°,∠COB=90°∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC.在△OAP与△OBC中,,∴△OAP≌△OBC(ASA),(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图②.在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠CHA=45°,∵∠AHB=90°,∴2∠OHP=∠AHB.(3)结论:当点G在y轴的正半轴上时,BG﹣BO=AF.当点G在线段OB上时,OB=BG+AF.当点G在线段OB的延长线上时,AF=OB+BG.当点G在y轴的正半轴上时,理由如下:连接OE,如图3.∵∠AOB=90°,OA=OB,E为AB的中点,∴OE⊥AB,∠BOE=∠AOE=45°,OE=EA=BE,∴∠OAD=45°,∠GOE=90°+45°=135°,∴∠EAF=135°=∠GOE.∵GE⊥EF即∠GEF=90°,∴∠OEG=∠AEF,在△GOE与△FAE中,,∴△GOE≌△FAE,∴OG=AF,∴BG﹣BO=GO=AF,∴BG﹣BO=AF.其余两种情形证明方法类似.。