2017-2018学年度第二学期人教版八年级第三次月考数学试卷
常州市2017~2018学年度第二学期期中质量调研八年级数学试卷及答案(可编辑修改word版)
2017~2018 学年度第二学期期中质量调研2018.4八年级数学试题一、选择题(每小题 2 分,共 16 分)1.下列图形中,是中心对称图形的是【】A.B.C.D.2.一个不透明的盒子中装有2 个红球、3 个白球和2 个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大【】A.红色B.白色C.黄色D.红色和黄色3.下列调查中,适宜采用抽样调查方式的是【】A.学校在给学生订制校服前尺寸大小的调查B.调查某品牌白炽灯的使用寿命C.调查乘坐飞机的旅客是否携带了违禁物品D.调查八年级某班学生的视力情况4.为了了解我市2017 年中考数学学科各分数段成绩分布情况,从中抽取180 名考生的中考数学成绩进行统计分析.在这个问题中,样本是指【】A.180 B.被抽取的180 名考生C.被抽取的180 名考生的中考数学成绩D.我市2017 年中考数学成绩1 2x x2+1 1 25.在,,,m +,- 中分式的个数有2 x 23 x -y【】A.2 个B.3 个C.4 个D.5 个6.矩形具有而菱形不具有的性质是【】A.对边相等B.对角线互相平分C.对角线互相垂直D.对角线相等7.若分式 6的值是正整数,则 m 可取的整数有 -------------------------------------------------------------------m - 2A .4 个B .5 个C .6 个D .10 个8如图,在平面直角坐标系中,四边形 ABCD 是平行四边形,A (-1,3)、B(1,1)、C (5,1).规定“把□ABCD 先沿 x 轴翻折,再向左平移 1 个 单位”为一次变换.如此这样,连续经过 2018 次变换后,□ABCD 的顶 点D 的 坐 标 变 为【】A .(-2015,3)B .(-2015,-3)C .(-2016,3)D .(-2016,-3)二、填空题(每小题 2 分,共 20 分)42ab 3c9.约分: 7a 2bc2 = .10.在整数 20180419 中,数字“1”出现的频率是. 11.若分式 xx - 1 有意义,则 x 满足的条件是.12.计算: a - b÷(b - a ) = .a + b13. “平行四边形的对角线互相平行”是 事件.(填“必然”、“随机”、“不可能”)14. 如下图,将△ABC 绕点 C 逆时针旋转 50°得到△A 'B 'C ,则∠B 'CB 的大小为°. 15.若等式 3x - 5= 3 + x + 1 n x + 1对于任意 x (x ≠-1)都成立,则 n 的值是.16. 如图,□ABCD 中, AF 、BE 分别平分∠BAD 与∠ABC ,分别交 AD 、BC 于点 E 、F ,则 AF与 BE 之间的位置关系是:.A'AAEDAG BB CB'BFCDEC第 14 题 第 16 题 第 18 题17. 菱形 ABCD 的周长为 32cm ,则菱形 ABCD 的面积的最大值是 cm 2.18. 如图,矩形 ABCD 中,AB =14,AD =8,点 E 是 CD 的中点,DG 平分∠ADC 交 AB 于点 G ,过点 A 作 AF ⊥DG 于点 F ,连接 EF ,则 EF 的长为 .三、计算与化简(共 14 分)F2b a + ba - 2 a 2 - 419.⑴ (4 分) -a -b a - b⑵ (4 分)1 -a÷ a 2 + a⑶ (6 分)先化简,再求值: 1+x - 1 x 2 -3xx 2 - 1,其中 x = -2 .四、解方程(每小题 4 分,共 8 分)20.⑴2 = x - 2 3x + 3⑵ 34 - x + 2 = 1 - x x - 4五、作图题(6 分)2(1.6 分如)图平,面直角坐标系 x O y 中A ,(-2-,1)B ,(-4,-3),C (-1,-3),A '(2,1).⑴ 若△A 'B 'C '与△ABC 成中心对称(点 A 、B 分别与 A '、B '对应). 试在图中画出△A 'B 'C '.'⑵ 将⑴中△A 'B 'C '绕点C 顺时针旋转 90°,得到△ A ' B 'C ' .试在图中画出△ A ' B 'C ' .⑶ 若△ A ' B 'C ' 可由△ABC 绕点 G 旋转 90°则点 G 的坐标为.六、解答题(共 36 分,其中第 22、23、24 题各 6 分,第 25 题 8 分,第 26 题 10 分) 22.(6 分)某校在大课间中开设了 A (体操),B (跑操),C (舞蹈),D (健美操)四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题: ⑴ 这次被调查的学生共有 人.⑵ 请将统计图 2 补充完整.⑶ 已知该校共有学生 3400 人,请根据调查结果估计该校喜欢健美操的学生人数.图 1图 2项目23.(6 分)如图,□ABCD 中,点E、F 分别在BC、AD 上,且BE=DF.求证:AE∥F C.A F DB E C24.(6 分)A、B 两港口分别位于长江的上、下游,相距s km,若一艘游轮在静水中航行的速度为a km/h,水流速度为b km/h(b<a).⑴该游轮从A 港口航行到B 港口的速度为km/h,从B 港口航行到A 港口所用的时间为h;⑵ 该游轮从A 港口航行到 B 港口的时间比从B 港口航行到A 港口所用的时间少用多少?25.(8 分)如图,正方形ABCD 的边长为6,点E 是边AB 上一点,点P 是对角线BD 上一点,且PE⊥PC.⑴ 求证:PC=PE; A D⑵ 若BE=2,求PB 的长.PEB C26.(10 分)如图1,在平面直角坐标系xOy 中,A(0,4),B(8,0),C(8,4).⑴ 试说明四边形AOBC 是矩形.⑵ 在x 轴上取一点D,将△DCB 绕点C 逆时针旋转90°得到△D'CB'(点D'与点D 对应).① 若OD=3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.图 1八年级数学参考答案及评分意见一、选择题(每小题 2 分,共 16 分)二、填空题(每小题 2 分,共 20 分)6b 2 1 19.10.11.x ≠ 1 12.- 13.不可能ac14.50 15.- 8 4 a +b16.互相垂直平分(垂直或平分可得1 分)17.64 18.5三、计算与化简(共 14 分)19.(共14 分)⑴2ba -b-a +ba -b=2b - (a +b)a -b=-a +ba -b--------------------- 2 分3 分=﹣14 分⑵ 1 - a - 2a÷a 2- 4a 2+a= 1 -a - 2⋅ a= 1 -a +1a + 2a(a + 1)(a + 2)(a -2)--------- 2 分3分=1 a + 2⑶1+x 2-3x=x+14分+x 2-3x ------------------------------------------- 2 分x -1x 2-1(x +1)(x -1) (x + 1)(x - 1)1 +x 2- 2x=(x +1)(x -1)(x -1)2=(x +1)(x -1)x - 13 分4 分- 2 - 1= , 当x=-2 时,原式= =3 ----------------------------------------------------- 6 分x +1 - 2+1四、解方程(每小题 4 分,共 8 分)20.(共 8 分) ⑴2= x - 2 3x + 3解 得 :x=12 2 分经检验 x=12 是原方程的解 ---------- 3 分 ∴ 原方程的解是 x=12. --------------- 4 分 ⑵3 4 - x + 2 = 1 - xx - 4解 得 :x=4 2 分经检验 x=4 是原方程的增根 -------- 3 分 ∴ 原方程无解. ------------------------- 4 分 五、作图题(共 6 分)21.⑴ 如图 --------------------------------------- 2 分 ⑵ 如图 --------------------------------------- 4 分⑶ G (﹣3,1) ------------------------------ 6 分六、解答题(共 36 分)22.⑴ 5002 分⑵ 如图所示: --------------------------------------- 4 分⑶ 3400⨯245=1666 人 ---------------------------- 5 分500答:估计该校喜欢健美操的学生人数为 1666 人 ---------------------------------- 6 分23. ∵ 四边形 ABCD 是平行四边形人数(人)∴ AD=BC ,AD ∥BC ----------------------------------- 2 分 ∵ DF=BE∴ AD -DF=BC -BE 即:AF=CE 4 分∵ AF ∥EC∴四边形AECF 是平行四边形 ------------------------- 5分∴AE∥FC 6 分24.⑴ a+b,sa -b2 分⑵sa -b-sa +b =2sbh 5 分(a -b)(a +b)答:时间少用2sb(a -b)(a +b)h. 6 分25.⑴ 过点P 作PF⊥AB,PG⊥BC,垂足分别为点F、G.∴ ∠PFB=∠PGB=∠PGC=90°∵ 四边形ABCD 是正方形∴ ∠A=∠ABC=90°,AB=AD=BC∴∠ABD=∠ADB=45°,四边形FBGP 是矩形 ------------------------------------------- 1 分∴ ∠FPB=90°-∠ABD=90°-45°=45°∴ ∠ABD=∠FPB∴FP=FB∴ 矩形FBGP 是正方形 2 分∴PF=PG,∠FPG=90° 3 分∴ ∠FPG+∠EPG=90°∵EP⊥PC ∴ ∠EPC=90°∴ ∠GPC+∠EPG=90°∴ ∠FPG=∠GPC 4 分∵ ∠FPG=∠GPC ,PF=PG,∠PFE=∠PGC∴ △PFE≌△PGC (ASA)∴PE=PC 5 分(方法不唯一,酌情给分)⑵ 设EF=x∵△PFE≌△PGC ∴GC=EF=x由BE=2 得:BF=x+2由正方形FBGP 得:BG=x+2∵BC=6 ∴BG+GC=6∴(x+2)+x=6 解得:x=2 6 分∴PF=BF=2+2=4 7 分△PFB 中,∠PFB=90°,由勾股定理得:PB 2= 42+ 42= 32八年级数学 第 11 页 (共 11 页) 32 2 59237 80 5 ∵ PB >0 ∴ PB = (或4 ) --------------------------------------------------------- 8 分 答:PB 的长为 32 .26.⑴ ∵ A (0,4),B (8,0),C (8,4)∴ OA=4,BC=4,OB=8,AC=8∴ OA=BC ,AC=OB∴ 四边形 AOBC 是平行四边形1 分 ∵ ∠AOB=90°∴ □AOBC 是 矩形 2 分 八年级最后一题第⑵题,答案作如下修正:第①题的答案:D '(12,-1)或 D '(12,-7)第②题的答案:最小值为 或 4 ,此时点 D '(12,2)评分标准与原先类似.⑵ ∵ □AOBC 是矩形∴ ∠ACB=90°,∠OBC=90°∵ △D 'CB '将△DCB 绕点 C 逆时针旋转 90°得到(点 D ' 与点 D 对应) ∴ ∠D 'B 'C = ∠DBC = 90︒ , B 'C = BC = 4 , D 'B ' = DB --------------------- 4 分∠BCB ' = 90︒ ,即:点 B ' 在 AB 边上 -------------------------------------------------- 5 分 ∴ D 'B ' ⊥AC6 分 ①如图 1,当点 D 在原点右侧时: D 'B ' = DB = 8 - 3 = 5∴ 点 D ' 的坐标为(4,9) -------------------------------------------------------------------- 7 分 ②如图 2,当点 D 在原点左侧时: D 'B ' = DB = 8 + 3 = 11∴ 点 D ' 的坐标为(4,15)8 分综上所述:点 D ' 的坐标为(4,9)或(4,15).图 1图 2 AD '+OD '的最小值是 (或4 ) ------------------------------------------------------ 9 分 点 D '的坐标是(4,2).10 分。
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
长春XX学校2017-2018学年八年级下第一次月考数学试卷(有答案)
2017-2018学年吉林省长春XX学校八年级(下)第一次月考数学试卷一、选择题(每题三分)1.(3分)下列各式是分式的是()A.B.C.x+1 D.2.(3分)若分式无意义,则x的取值是()A.x=2或x=﹣2 B.x=2 C.x=﹣2 D.x=03.(3分)如果把中的x、y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍4.(3分)把分式方程﹣=2化为整式方程正确的是()A.1﹣x﹣2=2 B.1﹣(x﹣2)=2(x﹣1) C.1+(x﹣2)=2(x﹣1)D.1+(x﹣2)=2 5.(3分)已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,则m的值为()A.2 B.﹣4 C.﹣2或﹣4 D.2或﹣46.(3分)已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.7.(3分)如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠AEF=()A.60°B.70°C.75°D.80°8.(3分)某工厂计划每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.B.C.D.二、填空题(每题3分)9.(3分)若分式的值为0,则x=.10.(3分)在显微镜下一个球形细菌的直径是0.0000053米,则用科学记数法可表示为米.11.(3分)若关于x的方程有增根,则a=.12.(3分)平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是.13.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是.14.(3分)已知一次函数y=2x+b的图象与坐标轴围成一个三角形,这个三角形的面积是4,则b的值是.三、解答题15.(12分)计算:(1)(2)(3)(4)+16.(8分)解下列方程:(1)=(2)17.(6分)先化简﹣,且在﹣3,0,1,2中选择一个数代入求值.18.(6分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.19.(8分)某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?20.(8分)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作BC的平行线交BE 的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论.21.(8分)已知方程x+=2+的解是x1=2,x2=方程x+=3+的解是x1=3,x2=方程x+=4+的解是x1=4,x2=……观察上述方程及方程的解,回答下列问题:(1)关于x的方程x+=a+的解是什么?并用方程解的概念验证你的猜想是否正确;(2)根据结论求出关于x的方程x+=b+的解.22.(10分)某化妆品公司每月付给销售人员的工资有两种方案:方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.;设x(件)是销售商品的数量,y(元)是销售人员的月工资.如右图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题):(1)方案一每件商品提成是元;方案二每件商品提成是元;(2)求y1和y2的函数关系式;(3)如果该公司销售人员小丽这个月销售了60件的商品,那么她采用哪种方案获得的报酬会更多一些?23.(12分)如图,在平面直角坐标系中,直线BE⊥x轴,交x轴与点D,点D坐标是(﹣4,0)直线y=﹣x﹣1与x轴和直线BE交于点C、E,点A在y轴上,且坐标为(0,m),且(m >0),连接AC,交直线BE于点B.(1)当m=4时,求直线AC的函数表达式及C、B坐标;(2)当m为何值时,△ACO≌△FCO,并说明理由;=S△CDB,则点A坐标是多少?(3)若S四边形DEFO2017-2018学年吉林省长春外国语学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题三分)1.(3分)下列各式是分式的是()A.B.C.x+1 D.【考点】61:分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、分母中不含有字母,因此它是整式,而不是分式.故本选项错误;B、的分母中含有字母,因此它是分式.故本选项正确;C、x+1的分母中均不含有字母,因此它是整式,而不是分式.故本选项错误;D、的分母中均不含有字母,因此它是整式,而不是分式.故本选项错误;故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.2.(3分)若分式无意义,则x的取值是()A.x=2或x=﹣2 B.x=2 C.x=﹣2 D.x=0【考点】62:分式有意义的条件.【分析】当分母为0时分式无意义,令x2﹣4=0即可求出x.【解答】解:分式无意义,则可知x2﹣4=0,解得x=±2;故选:A.【点评】考查了分式有意义的条件.分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零.3.(3分)如果把中的x、y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍【考点】65:分式的基本性质.【分析】把x,y分别换为5x,5y,化简后即可作出判断.【解答】解:根据题意得:=,则分式的值不变,故选:B.【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.(3分)把分式方程﹣=2化为整式方程正确的是()A.1﹣x﹣2=2 B.1﹣(x﹣2)=2(x﹣1) C.1+(x﹣2)=2(x﹣1)D.1+(x﹣2)=2【考点】B3:解分式方程.【分析】方程两边都乘以x﹣1即可得.【解答】解:方程两边都乘以x﹣1,得:1+(x﹣2)=2(x﹣1),故选:C.【点评】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤.5.(3分)已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,则m的值为()A.2 B.﹣4 C.﹣2或﹣4 D.2或﹣4【考点】F5:一次函数的性质;F8:一次函数图象上点的坐标特征.【分析】根据一次函数的性质求解.【解答】解:∵一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,∴m>0,|m+1|>0,把点(0,3)代入y=mx+|m+1|得:3=|m+1|=m+1,m=2.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.(3分)已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【考点】F3:一次函数的图象.【分析】函数的解析式可化为y=K(x+1),易得其图象与x轴的交点为(﹣1,0),分析选项可得答案.【解答】解:函数的解析式可化为y=K(x+1),即函数图象与x轴的交点为(﹣1,0),分析可得,A符合,故选:A.【点评】本题考查一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.7.(3分)如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠AEF=()A.60°B.70°C.75°D.80°【考点】LB:矩形的性质.【分析】根据矩形的性质,求出∠EAF=15°,从而得出∠AEF的度数即可.【解答】解:∵∠EAF是∠DAE折叠而成,∴∠EAF=∠DAE,∠ADC=∠AFE=90°,∠EAF===15°,在△AEF中∠AFE=90°,∠EAF=15°,∠AEF=180°﹣∠AFE﹣∠EAF=180°﹣90°﹣15°=75°.故选:C.【点评】本题考查了矩形的性质,图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,复合的部分就是对应量.8.(3分)某工厂计划每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】根据实际生产180吨与原计划生产120吨的时间相等,可以建立方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出方程.二、填空题(每题3分)9.(3分)若分式的值为0,则x=2.【考点】63:分式的值为零的条件.【分析】分式值为零的条件:分子等于零且分母不等于零,所以,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴解得x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零.10.(3分)在显微镜下一个球形细菌的直径是0.0000053米,则用科学记数法可表示为 5.3×10﹣6米.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000053米,则用科学记数法可表示为5.3×10﹣6米.故答案为:5.3×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(3分)若关于x的方程有增根,则a=1.【考点】B5:分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入整式方程算出未知字母的值.【解答】解;方程两边都乘(x﹣2),得a=x﹣1﹣3(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,即x=2,把x=2代入整式方程,得a=1.故答案为1.【点评】本题考查了分式方程的增根问题,对于此问题可按如下步骤进行:①让最简公分母为0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.(3分)平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是0.5<m<3.【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【解答】解:∵点P(m﹣3,1﹣2m)在第三象限,∴,解得:0.5<m<3,故答案为:0.5<m<3【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是24.【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC、BD,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OB=OD=3,OA=OC,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA=,∴AC=2OA=8,=×AC×BD=×6×8=24.∴S菱形ABCD故答案为:24【点评】本题考查了菱形的周长公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比较简单,熟记性质是解题的关键.14.(3分)已知一次函数y=2x+b的图象与坐标轴围成一个三角形,这个三角形的面积是4,则b的值是±4.【考点】F8:一次函数图象上点的坐标特征.【分析】利用一次函数y=2x+b的图象与x轴交点和与y轴交点的特点求出坐标,以及图象与坐标轴所围成的三角形是直角三角形求解.【解答】解:当y=0时,0=2x+b,∴x=﹣;当x=0时,y=b,∴一次函数y=2x+b的图象与坐标轴所围成的三角形面积:×|﹣|×|b|=4,解得b=±4,故答案为:±4【点评】本题考查了一次函数图象上点的坐标特征,本题利用了直线与x轴的交点的纵坐标为0,直线与y轴的交点的横坐标为0求解.三、解答题15.(12分)计算:(1)(2)(3)(4)+【考点】6C:分式的混合运算.【分析】(1)根据分式的除法可以解答本题;(2)根据幂的乘方和分式乘法可以解答本题;(3)根据分式的除法可以解答本题;(4)根据分式的加法可以解答本题.【解答】解:(1)==;(2)==;(3)==;(4)+=====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.16.(8分)解下列方程:(1)=(2)【考点】B3:解分式方程.【分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:(1)方程两边乘以(x+1)(2x﹣1)得:2(2x﹣1)=5(x+1),解得:x=﹣7,检验:当x=﹣7时,(x+1)(2x﹣1)≠0,即x=﹣7是原方程的解,所以原方程的解为x=﹣7;(2)方程两边乘以x﹣2得:1﹣x=﹣1﹣2(x﹣2),解得:x=2,检验:当x=2时,x﹣2=0,即x=2不是原方程的解,所以原方程无解.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.17.(6分)先化简﹣,且在﹣3,0,1,2中选择一个数代入求值.【考点】6D:分式的化简求值.【分析】将分子、分母因式分解后约分,再通分、计算分式的减法,继而约分即可化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x=1时,原式=﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.(6分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.【考点】FF:两条直线相交或平行问题.【分析】根据两平行直线的解析式的k值相等求出k,然后把经过的点的坐标代入解析式计算求出b值,即可得解.【解答】解:∵一次函数y=kx+b的图象平行于直线y=3x,∴k=3,∴y=3x+b把点(﹣1,1)代入得,3=﹣1×3+b,解得b=6,所以,一次函数的解析式为,y=3x+6,当x=5时,y=3×5+6=21.【点评】本题考查了两直线平行的问题,根据平行直线解析式的k值相等求出k值是解题的关键,也是本题的突破口.19.(8分)某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?【考点】B7:分式方程的应用.【分析】首先设钢笔单价x元/支,则毛笔单价1.5x元/支,根据题意可得:1500元购买的钢笔数量﹣1800元购买的毛笔数量=30支,根据等量关系列出方程,再解即可.【解答】解:设钢笔单价x元/支,由题意得:﹣=30,解得:x=10,经检验:x=10是原分式方程的解,1.5x=1.5×10=15.答:钢笔、毛笔的单价分别为10元,15元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.20.(8分)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作BC的平行线交BE 的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;(2)利用等腰三角形的性质以及矩形的判定得出即可;【解答】(1)证明:∵AF∥BC,∴∠FAE=∠EDB,∠AFE=∠EBD.在△AEF和△DEB中,,∴△AEF≌△DEB(AAS),∴AF=DB,又∵BD=DC,∴AF=DC,∴四边形ADCF为平行四边形;(2)四边形ADCF为矩形;理由:连接AB,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADC=90°∴平行四边形AFCD为矩形【点评】此题主要考查了矩形的判定和全等三角形的判定等知识,利用了全等三角形的判定与性质,平行四边形的判定,矩形的判定是解题关键.21.(8分)已知方程x+=2+的解是x1=2,x2=方程x+=3+的解是x1=3,x2=方程x+=4+的解是x1=4,x2=……观察上述方程及方程的解,回答下列问题:(1)关于x的方程x+=a+的解是什么?并用方程解的概念验证你的猜想是否正确;(2)根据结论求出关于x的方程x+=b+的解.【考点】B3:解分式方程.【分析】(1)本题可根据给出的方程的解的概念,来求出所求的方程的解.(2)本题要求的方程和题目给出的例子中的方程形式不一致,可先将所求的方程进行变形.变成式子中的形式后再根据给出的规律进行求解.【解答】解:(1)根据题意知x=a或x=,当x=a时,左边=a+=右边,所以x=a是分式方程的解;当x=时,左边=+=+a=右边,所以x=是分式方程的解;综上,x=a或x=是分式方程的解;(2)∵x+=b+,∴x﹣3+=b﹣3+,则x﹣3=b﹣3或x﹣3=,解得:x=b或x=.【点评】本题考查了分式方程的解,要注意给出的例子中的方程与解的规律,还要注意套用列子中的规律时,要保证所求方程与例子中的方程的形式一致.22.(10分)某化妆品公司每月付给销售人员的工资有两种方案:方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.;设x(件)是销售商品的数量,y(元)是销售人员的月工资.如右图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题):(1)方案一每件商品提成是14元;方案二每件商品提成是7元;(2)求y1和y2的函数关系式;(3)如果该公司销售人员小丽这个月销售了60件的商品,那么她采用哪种方案获得的报酬会更多一些?【考点】FH:一次函数的应用.【分析】(1)根据题意和函数图象可以求得方案一和方案二的每件商品提成;(2)根据函数图象中的数据可以求得y1和y2的函数关系式;(3)根据(2)中的函数解析式可以分别求得两种方案的报酬,然后比较大小即可解答本题.【解答】解:(1)由图象可得,方案一每件商品提成是:420÷30=14(元),方案二每件商品提成是:(560﹣350)÷30=7(元),故答案为:14,7;(2)设y1与x的函数关系式是y1=kx,30k=420,得k=14,即y1与x的函数关系式是y1=14x,设y2与x的函数关系式是y2=ax+b,,得,即y2与x的函数关系式是y2=7x+350;(3)当x=60时,y1=14×60=840,y2=7×60+350=770,∵840>770,∴她采用方案一获得的报酬会更多一些.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用函数的性质解答.23.(12分)如图,在平面直角坐标系中,直线BE⊥x轴,交x轴与点D,点D坐标是(﹣4,0)直线y=﹣x﹣1与x轴和直线BE交于点C、E,点A在y轴上,且坐标为(0,m),且(m >0),连接AC,交直线BE于点B.(1)当m=4时,求直线AC的函数表达式及C、B坐标;(2)当m为何值时,△ACO≌△FCO,并说明理由;=S△CDB,则点A坐标是多少?(3)若S四边形DEFO【考点】FI:一次函数综合题.【分析】(1)利用待定系数法求出直线AC的解析式,根据坐标轴上点的坐标特征求出C、B 坐标;(2)根据一次函数解析式求出点F的坐标,得到OF的长,根据全等三角形的性质解答;,根据题意列出算式,(3)根据相似三角形的性质求出DE,根据梯形面积公式求出S四边形DEFO计算即可.【解答】解:(1)对于直线y=﹣x﹣1,当y=0时,0=﹣x﹣1,解得,x=﹣8,则点C的坐标为(﹣8,0),当m=4时,点A坐标为(0,4),设直线AC的解析式为:y=kx+b,则,解得,k=,b=4,则直线AC的解析式为:y=x+4,直线AC交直线BE于点B,点D坐标是(﹣4,0),直线BE⊥x轴,当x=﹣4时,y=2,∴点B的坐标为(﹣4,2);(2)当x=0时,y=﹣x﹣1=﹣1,∴点F的坐标为(0,﹣1),即OF=1,当△ACO≌△FCO时,OA=OF=1,∴m=1;(3)∵DE∥OF,CD=DO,∴DE=OF=,=×(+1)×4=3,∴S四边形DEFO由题意得,×BD×4=3,解得,BD=,∵BD∥OA,CD=DO,∴AO=2BD=3,∴m=3,即点A坐标是(0,3).【点评】本题考查的是一次函数的知识、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.。
虹口区2017-2018学年度第二学期期末质量抽测 八年级(初二)数学真题卷
1.下列方程中,有实数解的方程是 ( )
(A) x 2 2 x 1;
(B) x 2 0 x2 2x
(C) x 1 x
(D) x 4 3 0
2.已知点 A(-1,m)和点 B(1,n)在函数 y 1 x k 的图像上,则下列结论中正确 3
的( )
1
-1 O 1
x
-1
(第 24 题图)
25.如图,一次函数 y 2x 4 的图像与 x 、 y 轴分别相交于点 A、B,四边形 ABCD 是
正方形.
(1)求点 A、B、D 的坐标;
y
(2)求直线 BD 的表达式. B
AO
C x
D
26.如图,已知在△ABC 中,AB = AC,点 D、E 在边 BC 上,且 AD = AE. 试说明 BD = CE 的理由.
22.有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一 个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球, (1) 用树形图或列表法展现可能出现的所有结果; (2) 求摸到一个红球和一个白球的概率.
四、解答题:(本大题共 5 题,每题 8 分,满分 40 分) 23.如图,已知 C 是线段 AB 的中点,CD // BE,且 CD = BE,试说明∠D =∠E 的理由.
(A) m n ;
(B) m n ; (C) k 0 ;
(D) k 0 .
3.甲、乙两同学同时从学校出发,步行 10 千米到某博物馆,已知甲每小时比乙多走 1
千米,结果乙比甲晚 20 分钟,设乙每小时走 x 千米,则所列方程正确的是( )
(A) 10 10 20 ; x 1 x
河南省实验中学2017——2018学年上期第二次月考试卷 八年级数学
八年级数学 命题人:雍贻凡 审题人:吴淑芳
(时间:100 分钟,满分:120 分)
一、选择题:(本大题共 10 小题,每小题 3 分,共 30 分) 1.在下列长度的四组线段中,不能组成直角三角形的是( )
A. a=9 b=41 c=40
B. a=b=5 c = 5 2
值及此时点 P 的坐标.
八年级 数学 第 6 页 (共 6 页)
边,作等边三角形 ABD 和等边三角形 ACE,连接 CD,BE.
①请找出图中与 BE 相等的线段,并说明理由;
②直接写出线段 BE 长的最大值.
(3)拓展:如图 3,在平面直角坐标系中,点 A 坐标为(2,0),点 B 坐标为(5,0),
点 P 为线段 AB 外一动点,且 PA=2,PM=PB,∠BPM=90°,请直接写出线段 AM 长的最大
C.a=3,b=﹣1
D.a=﹣3,b=﹣1
八年级 数学 第 1 页 (共 6 页)
(第 9 题图)
8.如果 a + a2 − 2a +1 =1,那么 a 的取值范围是( )
A. a = 0
B. a = 1
C. a 1
D. a=0或a=1
9.如图,两条直线 l1 和 l2 的交点坐标可以看作下列方程组中( )的解.
(第 5 题图)
Α.xx+=y2=y7
.
x+ y y=
=7 2x
x + 2y = 7
C.
x = 2y
2x + y = 7
D.
y = 2x
7.若单项式 2x2 ya+b 和 - 1 xa-b y4 是同类项,则 a,b 的值分别为( ) 3
山东省烟台市2017-2018年初三数学第二学期期中考试试题及答案
山东省烟台市2017-2018年初三数学第二学期期中考试试题及答案一、选择题(每题3分,共36分)1、下列各式中,一定是二次根式的是( ) A.4- B.32a C. 24x + D. 1x -2、下列计算结果正确的是( ) A.8182-=- B. 22a b a b -=- C. 527+= D.68322+=+ 3、下列关于x 的一元二次方程中,一定是一元二次方程的是( ) A. x -1=0 B. x 3+x =3 C. x 2+3x -5=0 D. ax 2+bx+c =0 4、下列一元二次方程中,两实根之和为1的是( ) A. x 2-x +1=0 B. x 2+x -3=0 C. 2x 2-x -3=0 D. x 2-x -5=0 5、在二次根式322216,,0.5,,2a x a b x--中,最简二次根式有( )个 A. 1 B. 2 C. 3 D. 4 6、若x<0,则23x x +的结果为( )A. -4xB. 4xC. -2xD. 2x7、某村2015年人均纯收入为26200元,2017年人均纯收入为38500元,设该村年人均纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A. 26200(1+x 2)=38500B. 26200(1+2x )=38500C. 26200(1+x )=38500D. 26200(1+x )2=38500 8、在下列各组二次根式中,不是同类二次根式的是( ) A.4520和 B.1118352和C. 1218和D. -2454和 9、若方程x 2-2x -1=0 的两根为x 1,x 2,则-x 1-x 2+x 1x 2的结果是( )A. -1B. 1C. -3D. 310、用配方法解方程2x 2+6=7x 时,配方后所得的方程为( )A. 2737+=24x ⎛⎫ ⎪⎝⎭B.2737-=24x ⎛⎫ ⎪⎝⎭C.271+=416x ⎛⎫ ⎪⎝⎭ D.271-=416x ⎛⎫ ⎪⎝⎭ 11、使代数式1433x x +-+有意义的整数x 有( ) A. 5个 B. 4个 C. 3个 D. 2个12、如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( ) A .10m B .9m C .8m D .7m 二、填空题(每题3分,共18分)13、已知a<b ,化简二次根式22a b -的结果是 .14、已知n 是一个正整数,48n 是整数,则n 的最小值是 .15、已知实数m 满足m 2-3m +1=0,则代数式2219+2m m +的值等于 . 16、关于x 的一元二次方程x 2+2x +k +1=0实数解是x 1和x 2,若x 1+x 2-x 1x 2<-1,则k 的取值范围是 . 17、把小圆形场地的半径r m 增加5m 得到大圆形场地,场地面积增加了一倍,则小圆形场地的半径为 ..18、已知x=0是一元二次方程(22+320m x x m+-=的一个根,则m 的值为 .三、解答题(66分) 19、(6分)计算:(1) (2)-20、(6分)解方程:(1)2x 2-3x -3=0 (2)(x -1)(x +2)=4.21、(6分)若x 1和x 2是关于x 的方程x 2-2(m +1)x +m 2+2=0的两实数根,且x 1、x 2满足(x 1+1)(x 2+1)=8,求m 的值.22、(6分)(1)是否存在实数m ,使最简二次根式m 的值;若不存在,说明理由.(2x=时的值.23、(6分)(1)若a=,求4a2-8a-3的值.(2)若一元二次方程ax2=b(ab>0)的两个根分别是m+1和2m-4,求ba的值.24、(8分)把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,该怎么剪?(2)这两个正方形的面积之和能等于44cm2吗?请说明理由.25、(8分)水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现要保证每天盈利6000元,同时又要让顾客尽可能多得到实惠,那么每千克应涨价多少元?(1)设每千克应涨价x元,根据问题中的数量关系,用含x的代数式填表:每千克盈利(元)每天销售量(千克)每天盈利(元)涨价前10 500 5000涨价后6000(2)列出方程,并求出问题的解.26、(10分)某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?27、(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为ts(0<t<2),连接PQ.当△CPQ是以PC为腰的等腰三角形时,求t的值.2017-2018学年度第二学期期中学业水平考试初三数学答案一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的). CACDB CDCCD BD二、填空题(本题共6个小题,每小题3分,满分18分)13. b a 2-- 14. 3 15. 9 16.02≤<-k 17. m)255(+ 18.2- 三、解答题(本大题共8个小题,满分66分,解答应写出文字说明,证明过程或演算步骤) 19.解:(1)23322233272833-=-+-=-+-┄┄ 3分 (2)原式=632232233322=++-- ┄┄┄┄┄┄┄┄ 6分 20. 解(1)43331+=x ,43332-=x ┄┄┄┄┄┄┄┄ 3分 (2)21=x ,32-=x ┄┄┄┄┄┄┄┄ 6分21.解:由题意知 )1(221+=+m x x ,2221+=m x x又8)1)(1(21=++x x , 即812121=+++x x x x 得812)1(22=++++m m 31-=m ,12=m ┄┄┄┄┄┄┄┄ 3分 ()0)2(4)1(222>+-+-=∆m m 解之得21>m ,31-=m 舍去 所以1=m ┄┄┄┄┄┄┄┄ 6分22.(1)解:存在,若1122-=-m m ,9=m ┄┄ 2分(2)解:4)1(4)1(22-+-+-xx x x 22221212xx x x +--++=|1||1|)1()1(22x x x x x x x x --+=--+=┄┄┄┄┄┄ 4分 23)23)(23(23231+=+-+=-=x231-=x 321=+x x ,221=-xx原式2232-=┄┄┄┄┄┄ 3分 23.(1)解:,12)12)(12(12121+=+-+=-=a7)1(47)12(4384222--=-+-=--a a a a a 将12+=a 代入得原式=1┄┄┄┄┄┄ 3分 (2)解:因为)0( 2>=ab b ax 0421=-++m m 解得1=m ,则方程)0( 2>=ab b ax 的两个根分别是2、2- 所以b a =4,4=ab┄┄┄┄┄┄ 6分 24. 解:设剪成的较短的这段为x cm ,较长的这段就为)40(x -cm , 由题意,得52)440()4(22=-+x x ; 解得:24,1621==x x , 当16=x 时,较长的为)(241640cm =-,当24=x 时,较长的为24162440<=-(舍去) ∴较短的这段为cm 16,较长的这段就为cm 24;┄┄┄┄┄┄ 4分(2)设剪成的较短的这段为m )(cm ,较长的这段就为)40(m -cm 由题意得:44)440()4(22=-+m m , 变形为:0448402=+-m m ,0192<-=∆方程无解 这两个正方形的面积之和不可能等于44cm 2.┄┄┄┄┄┄ 8分25. 解:(1)由题意,得涨价后的盈利为:)10(x +元,每天的销量为:)20500(x -千克; 故答案为:)10(x +,)20500(x - ┄┄┄┄┄┄ 4分 (2)设每千克应涨价x 元,则现在的利润为)10(x +元, 销量为)20500(x -, 由题意,得60)20500)(10(=-+x x解得:51=x ,102=x要使顾客得到实惠,5=x答:每千克应涨价5元.┄┄┄┄┄┄ 8分26. 解:(1)设渠深为xm ,则上口宽为(x+2)m , •渠底为(x+0.4)m根据梯形的面积公式可得:(x+2+x+0.4)=1.6整理,得:5x2+6x-8=0解得x1===0.8,x2=-2(舍)∴上口宽为2.8m ,渠底为1.2m ;(2)如果计划每天挖土48m3,需要=25(天)才能把这条渠道挖完答:渠道的上口宽与渠底深各是2.8m 和1.2m ;需要25天才能挖完渠道.27. 解:如图,作CBPM ⊥于点M . ①若PQ PC =,则t BP 5=,t BM 28-=因为ACPM //,所以108528=-t t ,解得34=t ┄┄┄┄┄┄ 4分 ②若CQ PC =,则t PC 4=,t BP 5=,t BM 4=,t PM 3=,从而有t CM 48-=┄┄┄┄┄┄ 6分在PMC Rt ∆中,222CMPM PC += 即222)4()3()48(t t t =+- 0646492=+-t t 解之得:97832±=t . 而297832>+不合题意;2978320<-<,符合题意 所以34=t 或97832-=t 时, CPQ ∆是以PC 为腰的等腰三角形┄┄┄┄┄┄ 10分ABCPQM。
2022-2023学年人教版八年级英语第二学期期末质量监测题含答案
2022—2023学年度第二学期期末质量监测八年级英语说明:1.全卷共8页,满分120分,考试用时90分钟。
2.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名、考生号、考场号、考场座号,填写在答题卡相应位置上,并用2B铅笔在答题卡“考场号”、“考场座号”栏涂上自己的考场号和考场座号。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、听力理解(本大题分为A、B、C、D四部分,共30小题,每小题1分,共30分)A.听单句(本题有5小题,每小题1分,共5分)根据所听句子的内容和所提的问题,选择符合题意的图画回答问题。
每小题听一遍。
( )1. What was wrong with the speaker yesterday evening?( )2. What should we protect?( )3. Who is the speaker talking about?八年级英语期末——1(共8页)( )4. Where did the speaker's family go last weekend?( )5. Where did Tim go?B.听对话(本题有10小题,每小题1分,共10分)根据所听内容,回答每段对话后面的问题,在每小题所给的三个选项中选出一个最佳答案。
每段对话听两遍。
听第一段对话,回答第6小题。
( )6. What's the matter with Nancy?A. She has a toothache.B. She has a sore throat.C. She has a fever.听第二段对话,回答第7小题。
八年级下第三次月考数学试卷(解析版)
八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
2017—2018学年度人教版七年级上数学月考试卷含答案
试卷第 2 页,总 4 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… …………○…………外…………○…………装…………○…………订…………○…………线…………○…………
绝密★启用前
2017-2018 学年度第一学期 10 月月考试卷
命题人:李政铭
一、选择题 (每小题 3 分,共 30 分)
1.在下列选项中,具有相反意义的量是( )
A. 收入 20 元与支出 20 元 B. 6 个老师与 6 个学生
C. 走了 100 米与跑了 100 米 D. 向东行 30 米与向北行 30 米
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a,b,c 三数之
④
2③ ,读作“ 2 的圈3 次方”, 3 3 3 3 记作3 ,读作“ 3 的
圈 4 次方”.一般地,把 a a a ... a ( a 0 )记作 a⑧ 读作“ a 的圈 n 次方”
4
四、解答题 (每小题 7 分,共 21 分)
3
4 4 5 5
7.若 ,则 a 与 b 的关系是( )
A.a=b B.a=b C.a=b=0 D.a=b 或 a=-b
(2)李师傅将最后一名乘客送抵目的地时,他距离出发点多少米?
(3)如果汽车耗油量为 0.3 升/千米,那么这天下午汽车共耗油多少升?
25.【概念学习】
规定:求若干个相同的有理数(均不等 0 )的除法运算叫做除方,如
2÷2÷2, 3 3 3 3 等.类比有理数的乘方,我们把 2 2 2 记作
安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877
裕安中学2017-2018学年春学期月考一八年级数学学科试卷一、选择题(本题共10小题,每小题4分,满分40分)1、如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠82、在下列方程中,一元二次方程的个数是()①3x2+7=0,②ax2+bx+c=0,③(x+2)(x﹣3)=x2﹣1,④x2﹣x+4=0,⑤x2﹣(+1)x+=0,⑥3x2﹣+6=0A.1个B.2个C.3个D.4个3、下列各式属于最简二次根式的是()A.B.C.D.4、用配方法解方程x2﹣5x=4,应把方程的两边同时()A.加上B.加上C.减去D.减去5、方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=06、小明的作业本上有以下四题:②;①;③;④.做错的题是()A.①B.②C.③D.④7、已知(m﹣1)x2+2mx+(m﹣1)=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<且m≠1 C.m>且m≠1 D.<m<18、某县为发展教育事业,加强了对教育经费的投入,2017年投入3000万元,预计2019年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=50009、已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣10、利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0二、填空题(本题共4小题,每小题5分,满分20分)11、方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=12、已知,则a+b=13.若一元二次方程x2+kx+6=0的一个根是3,那么k=,另一个根是.14、已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.八年级数学学科月考一考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________ 12._________________________ 13. k=_ ___, __________ 14._________________________ 三、解答题(本大题共9小题,共90分)15、计算:(1)818214+-(2)()()20-52-6-π6101⨯+-⎪⎪⎭⎫⎝⎛-16、解方程:(1)2x ²-5x+1=0(用配方法) (2)(x+4)²=2x+817、化简求值:(2x+1)(2x-1)-(x+1)(3x-2),其中x=12-.18、已知a ,b ,c 在数轴上如图所示,化简:.19、已知1x 、2x 是关于x 的一元二次方程x ²-(2k+1)x+k ²+1=0的两个不相等的实数根,且52221=+x x ,求k 的值.20、已知x=13-,y=13+,求下列代数式的值:(1)x ²-xy+y ²;(2)x ²-y ².21、阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯; )321432(3132⨯⨯-⨯⨯=⨯;)432543(3143⨯⨯-⨯⨯=⨯;由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完以上材料,请你计算下列各题:(1)1×2 + 2×3 + 3×4 + …… + 10×11= ; (2)1×2 + 2×3 + 3×4 + …… + n(n+1)(写出过程);(3)1×2×3 + 2×3×4 + 3×4×5 + …… + 7×8×9(写出过程)。
2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)
2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。
江苏省淮安市周恩来红军中学2023-2024学年八年级下学期3月月考数学试题(解析版)
2023-2024学年度第二学期三月份素养调研八年级平行班数学试题(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分)1. 下列图案中,不是中心对称图形的是( )A B. C. D.【答案】B【解析】【分析】利用中心对称图形的性质,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而判断得出即可.【详解】A 、是中心对称图形,故A 选项错误;B 、不是中心对称图形,故B 选项正确;C 、是中心对称图形,故C 选项不正确;D 、是中心对称图形,故D 选项错误;故选B .【点睛】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.2. 为了解某市八年级学生的体重情况,相关人员抽查了该市1000名八年级学生,则下列说法中错误的是( )A. 该市八年级学生的全体是总体B. 每个八年级学生的体重是个体C. 抽查的1000名学生的体重是总体的一个样本D. 这次调查样本的容量是1000【答案】A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A 、该市八年级学生的体重情况是总体,故A 错误;B 、每个八年级学生的体重是个体,故B 正确;.C 、抽查的1000名学生的体重是总体的一个样本,故C 正确;D 、这次调查样本的容量是1000,故D 正确;故选:A .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3. 下列事件中属于必然事件的是( )A. 抛出一枚硬币,落地后正面向上B. 明天太阳从西边升起C. 篮球队员罚球线投篮次,至少投中一次D. 实心铁球投入水中会沉入水底【答案】D【解析】【分析】本题考查的是随机事件,不可能事件,必然事件的含义,掌握“必然事件的含义”是解本题的关键. 在一定条件下,必然发生的事件是必然事件,在一定条件下,不可能发生的事件是不可能事件,在一定条件下,可能发生,也可能不发生的事件是随机事件,根据定义逐一分析即可.根据定义分析即可.【详解】解:抛出一枚硬币,落地后正面朝上,是随机事件,故A 不符合题意;明天太阳从西边升起,是不可能事件,故B 不符合题意;篮球队员在罚球线投篮次,至少投中一次,是随机事件,故C 不符合题意;实心铁球投入水中,会沉入水底,是必然事件,故D 符合题意;故选:D .4. 投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是( )A. 两枚骰子向上一面的点数和大于1B. 两枚骰子向上一面的点数和等于3C. 两枚骰子向上一面的点数和等于7D. 两枚骰子向上一面的点数和大于12【答案】A【解析】【分析】本题考查了事件的分类,根据必然事件,不可能事件,随机事件的概念判断即可.【详解】解:A 选项是必然事件,符合题意;在22B选项是随机事件,不符合题意;C选项是随机事件,不符合题意;D选项是不可能事件,不符合题意;故选:A.5. 下面不可以判断四边形是平行四边形的是( )A. 两组对边相等的四边形B. 两组对角相等的四边形C. 一组对边平行,一组邻角互补的四边形D. 一组对边平行,一组对角相等的四边形【答案】C【解析】【分析】利用平行四边形的判定定理逐一判定即可.【详解】解:A.两组对边相等的四边形是平行四边形,故此选项不合题意;B.两组对角相等的四边形是平行四边形,故此选项不合题意;C.一组对边平行,一组邻角互补的四边形可以是等腰梯形,不一定是平行四边形,故此选项符合题意;D.一组对边平行,一组对角相等的四边形可证出是平行四边形,故此选项不合题意;故选:C.【点睛】本题考查了平行四边形的判定,掌握平行四边形的判定定理是解题的关键.6. 下列说法正确的是()A. 对角线互相垂直的四边形是矩形B. 菱形的对角线相等C. 平行四边形的对角线相等D. 对角线互相平分的四边形是平行四边形【答案】D【解析】的【分析】本题主要考查了菱形,平行四边形,矩形判定,熟知菱形,矩形和平行四边形的判定定理是解题的关键.【详解】解:A、对角线互相平分且相等的四边形是矩形,原说法错误,不符合题意;B、菱形的对角线不一定相等,原说法错误,不符合题意;C、平行四边形的对角线不一定相等,原说法错误,不符合题意;D、对角线互相平分的四边形是平行四边形,原说法正确,符合题意;故选:D.7. 如果小球在如图所示的地面上自由滚动,并随机停留在平行四边形内部,那么它最终停留在黑色区域的概率是().A. B. C. D. 【答案】C【解析】【分析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值.【详解】解:根据图示,黑色区域的面积等于平行四边形面积的,小球最终停留在黑色区域的概率是:,故选:C .【点睛】此题主要考查了几何概率问题,解题的关键是掌握:概率=黑色区域的面积与总面积之比.8. 如图,矩形ABCD 中,,,且BE 与DF之间的距离为3,则AE 的长是 A. B. C. D. 【答案】C【解析】【分析】如图,过点D 作,垂足为G ,则,首先证明≌,由全等三角形的性质可得到,设,则,在中依据勾股定理列方程求解即可.【详解】如图所示:过点D 作,垂足为G ,则,1213141614∴14AB 3=BC 4=EB //DF ()387858DG BE ⊥GD 3=AEB GED AE EG =AE EG x ==ED 4x =-Rt DEG DG BE ⊥GD 3=,,,≌,,设,则,在中,,,解得:,故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.二、填空题(本大题共有8小题,每小题3分,共24分)9. 某校为了解七年级学生对“七步洗手法”的掌握情况,现在800名七年级学生中随机抽取60名学生进行调查,则此次调查的样本容量是______.【答案】60【解析】【分析】根据样本容量:“抽取的样本中的数量”,作答即可.注意样本容量不带单位.【详解】解:由题意,此次调查的样本容量是60;故答案为:60.10. 一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个红球”是__________________事件.(填“必然”,“不可能”或“随机”)【答案】必然【解析】【分析】必然事件:在一定条件下,一定会发生的事件;不可能事件:在一定条件下,一定不会发生的事件;随机事件:在一定条件下,可能发生也可能不发生的事件 .【详解】解:∵袋中装有3个红球,1个黑球,∴从中任意摸出2球,必然会摸到红球,故“摸出的球至少有1个红球”是必然事件,故答案为:必然.A G ∠∠= AEB GED ∠∠=AB GD 3==AEB ∴ GED AE EG ∴=AE EG x ==ED 4x =-Rt DEG 222ED GE GD =+222x 3(4x)+=-7x 8=【点睛】本题考查事件的分类.掌握各类事件的定义是解题关键.11. 已知菱形的对角线,则菱形的面积为______.【答案】【解析】【分析】本题主要考查了菱形的性质,根据菱形的面积等于其对角线乘积的一半进行求解即可.【详解】解:∵菱形的对角线,∴菱形的面积为,故答案为:.12. 在一个不透明的箱子里装有红色、蓝色、黄色的球共个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在和,则箱子里蓝色球的个数很可能是______个.【答案】【解析】【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为和,则摸到蓝球的概率为,然后根据概率公式可计算出口袋中蓝色球的个数.【详解】解:根据题意得摸到红色、黄色球的概率为和,∴摸到蓝色球的概率为,∵(个),∴可估计袋中蓝色球的个数为个.故答案为.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13. 如图,在中,,平分且交于点E ,则_________.【答案】2【解析】ABCD 6,8AC BD ==ABCD 24ABCD 6,8AC BD ==ABCD 11682422AC BD ⋅=⨯⨯=242010%15%1510%15%75%10%15%75%2075%15⨯=1515ABCD Y 53AD AB ==,AE BAD ∠BC EC =【分析】根据平行四边形的性质可得,再根据角平分线的定义和平行线的性质推出,则,最后根据,即可求解.【详解】解:∵四边形是平行四边形,∴,∴,∵平分,∴,∴,∴,∴,故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的判定,角平分线的定义,解题的关键是掌握平行四边形对边平行且相等,以及等角对等边.14. 如图,在矩形中,,,对角线的垂直平分线分别交、于点、,垂足为,则的长为______.【答案】【解析】【分析】连接,设,则,在中,勾股定理,即可求解.【详解】解:连接,设,则,是的中垂线,,5AD BC AD BC ==,∥BEA BAE ∠=∠3AB BE ==EC BC BE =-ABCD 5AD BC AD BC ==,∥DAE BEA ∠=∠AE BAD ∠DAE BAE ∠=∠BEA BAE ∠=∠3AB BE ==2EC BC BE =-=ABCD 4=AD 3CD =AC AD BC E F O AE 258EC AE x =4ED x =-Rt EDC EC AE x =4ED x =-EF AC EC AE x ∴==在中,,,.【点睛】本题考查了矩形的性质,勾股定理,垂直平分线的性质,熟练掌握勾股定理是解题的关键.15. 如图,平行四边形的对角线和相交于点,过点的直线分别交和于点,且,那么图中阴影部分的面积为______.【答案】【解析】【分析】本题考查了勾股定理,含30度角的直角三角形的性质,平行四边形的性质.过点作于点,勾股定理求得,证明,进而可得阴影部分面积等于平行四边形面积的一半,即可求解.【详解】解:如图所示,过点作于点,∵四边形是平行四边形,∴,,∴,∴,∵平行四边形的对角线和相交于点,∴,∴,又∵,∴∴Rt EDC 2223(4)x x =+-258x=258AE CE ∴==ABCD ACBD O O CD AB E F 、7,4,30AB BC BCD ==∠=︒D DP AB ⊥P AP EOC FOA ≌D DP AB ⊥P ABCD 30DAB BCD ∠=∠=︒4AD BC ==122DP AD ==AP ===ABCD AC BD O AB CD AO CO =,∥ECO FAO ∠=∠EOC FOA ∠=∠()AAS EOC FOA ≌EOC FOAS S =同理:∴阴影部分面积面积,故答案为:16. 已知平行四边形的三个顶点的坐标分别为、、,则第四个顶点的坐标是 _____.【答案】或或【解析】【分析】本题考查了平行四边形的性质,先连接,,,已知平行四边形中三个顶点、、,则可以分为对角线,为对角线,为对角线三种情况求出点坐标即可,解题的关键是熟练掌握平行四边形的性质.【详解】解:如图,当,时,和的纵坐标相等,若选择为对角线,则;若选择为对角线,则;当,时,选择为对角线,则,故第四个顶点坐标是:,,,故答案为:或或.三、解答题(本大题共有11题,共102分)BOF DOES S = ABD S 11=722AB PD ⨯=⨯⨯=()0,0O ()2,0A ()1,1B C ()3,1()1,1-()1,1-AB OB OA ()0,0O ()2,0A ()1,1B ①AB ②OB ③OA C BC OA ∥BC OA =C B AB ()13,1C OB ()21,1C -AB OC ∥AB OC =OA ()31,1C -()13,1C ()21,1C -()31,1C -()3,1()1,1-()1,1-17. 如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,的顶点均在格点上.画出关于原点成中心对称的,并写出点坐标.【答案】画图见解析,【解析】【分析】本题主要考查了画中心对称图形,求关于原点对称的点的坐标,先根据关于原点对称的点横纵坐标都互为相反数得到A 、B 、C 对应点的坐标,再描出,最后顺次连接即可.【详解】解:如图所示,即为所求,点坐标为. 18. 已知:如图,E ,F 为□ABCD 对角线AC 上两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .【答案】证明见解析.【解析】【分析】利用SAS 证明△AEB ≌△CFD ,再根据全等三角形的对应边相等即可得.【详解】∵四边形ABCD是平行四边形,的ABC ABC O 111A B C △1C ()41,111A B C 、、111A B C 、、111A B C 、、111A B C △1C ()41,∴AB //DC ,AB =DC ,∴∠BAE =∠DCF ,在△AEB 和△CFD 中,,∴△AEB ≌△CFD (SAS ),∴BE =DF .【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.19. 某校举办了“学党史、知党恩、跟党走”手抄报设计大赛,从八年级学生中随机抽取部分学生进行问卷调查,要求每名学生从4个获奖作品中选择一个自己最喜欢的作品,根据调查结果绘制成如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)参加此次问卷调查的学生人数是 ;(2)在扇形统计图中,选择“作品1”的学生所对应扇形的圆心角的度数是 ;(3)将条形统计图补充完整:(4)若该校八年级学生共有450名,请估计八年级学生中选择“作品3”的人数.【答案】(1)50 (2) (3)图见解析 (4)162人【解析】【分析】(1)用选择“作品4”的人数除以其所占百分比即可求出此次问卷调查的学生人数;(2)用360度乘以选择“作品1”的百分比即可得;(3)先求出选择“作品2”的人数,然后即可补全统计图;(4)用选择“作品3”所占的百分比乘以450即可得.【小问1详解】AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩64.8︒参加此次问卷调查的学生人数是人;故答案为:50;【小问2详解】在扇形统计图中,选择“作品1”的学生所对应扇形的圆心角的度数是;故答案为:;【小问3详解】选择“作品2”的人数为人;补全统计图如下:【小问4详解】;答:估计八年级学生中选择“作品3”的人数为162人.【点睛】本题考查了条形统计图、扇形统计图、以及利用样本估计总体等知识,属于常考题型,熟练掌握统计图的相关知识是解题的关键.20. 在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 1001502005008001000摸到白球的次数m 5996b 295480601摸到白球的频率a0.640.580.590.600.601(1)上表中的a =________,b =________;(2)“摸到白球的”的概率的估计值是________(精确到0.1);(3)如果袋中有18个白球,那么袋中除了白球外,还有多少个其它颜色的球?【答案】(1)0.59,116 (2)0.6(3)除白球外,还有大约12个其它颜色的小球.714%50÷=936064.850⨯︒=︒64.8︒50918716---=1845016250⨯=m n【解析】【分析】(1)利用频率=频数÷样本容量直接求解即可;(2)根据统计数据,当n 很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算其它颜色的球的个数.【小问1详解】解:a =59÷100=0.59,b =200×0.58=116.故答案为:0.59,116;【小问2详解】解:“摸到白球的”的概率的估计值是0.6;故答案为:0.6;【小问3详解】解:18÷0.6-18=12(个).答:除白球外,还有大约12个其它颜色的小球.【点睛】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.21. 如图,在菱形中,对角线,分别为和,于点,则______.【答案】【解析】【分析】设与的交点为,根据菱形的性质得出,在中,勾股定理求得,进而根据等面积法即可求解.【详解】解:如图,设与的交点为,ABCD AC BD 1612DE AB ⊥E DE =485AC BD O ,,OA BO AC BD ⊥Rt ABO △AB AC BD O∵四边形是菱形,,,,,,,,故答案为:.【点睛】本题考查了勾股定理,菱形的性质,掌握菱形的性质是解题的关键.22. 如图,平行四边形中,的平分线交于的平分线交于点.求证:.【答案】证明见解析【解析】【分析】本题主要考查了平行四边形的性质,等角对等边,由平行四边形的性质得到,再由角平分线的定义和平行线的性质得到,则,同理可得,由此即可证明结论.【详解】证明:∵四边形是平行四边形,∴,∴,∵平分,∴,∴,ABCD 8AO CO ∴==6DO BO ==AC BD ⊥∴10AB === ABCD S =菱形AC BD AB DE ⋅=⋅∴11612102DE ⨯⨯=⨯∴485DE =485ABCD BCD ∠AD ,E ABC ∠ED F AE DF =AB CD AD BC =,∥DCE DEC ∠=∠DE CD =AFAB =ABCD AB CD AD BC =,∥BCE DEC ∠=∠CE BCD ∠BCE DCE ∠=∠DCE DEC ∠=∠同理可得,∴,∴,即.23. 如图,在矩形中,对角线相交于点.(1)求证:四边形为菱形;(2)连接,若,求的长.【答案】(1)证明见解析 (2)6【解析】【分析】本题主要考查了矩形的性质,菱形的性质与判定,平行四边形的性质与判定:(1)先证明四边形是平行四边形,再由矩形的性质得到,由此即可证明四边形为菱形;(2)由菱形的性质得到,进而证明四边形是平行四边形,则.【小问1详解】证明:,,四边形是平行四边形,矩形的对角线相交于点O ,,四边形是菱形;【小问2详解】解:如图,连接,交于点F ,由(1)知,四边形是菱形,AFAB =AF DE =AF EF DE EF -=-AE DF =ABCD ,AC BD ,,O DE AC CE BD ∥∥ODEC OE 6BC =OE OCED OC OD =ODEC OE CD ⊥AOED 6OE AD BC ===DE AC ∥ CE BD ∥∴OCED ABCD ,AC BD ∴OC OD =∴OCED OE CD OCED,,,四边形是平行四边形,.24. 如图,在菱形中,.连接交于点,过点作交延长线于点.,求的长.【答案】【解析】【分析】本题主要考查了菱形的性质,勾股定理,由菱形的性质得,,,再由勾股定理得,然后由菱形面积公式得,即可解决问题.【详解】解:∵四边形是菱形,∴,,∴,∴,∵,∴,∴,∴25. 如图,在菱形中,对角线相交于点.过点作,过点作交于点.,求四边形的面积.∴90ADC OFC ∠=∠=︒∴AD OE ∥ DE AC ∥∴AOED ∴6OE AD BC ===ABCD 5AD =BD AC O C CEAB ⊥AB E 4OA =CE 245AC BD ⊥28AC OA ==2BD OB =3OB =12ABCD S AB CE AC BD =⋅=⋅菱形ABCD 228AC BD BD OB AC OA ===⊥,,5AB AD ==3OB ==26BD OB ==CEAB ⊥12ABCD S AB CE AC BD =⋅=⋅菱形15682CE =⨯⨯245CE =ABCD ,AC BD O A AE BD D ∥D E A C AE E 2,60AB ABC =∠=︒AODE【解析】【分析】本题主要考查了矩形的性质与判定,菱形的性质,勾股定理,等边三角形的性质与判定等等,先证四边形为平行四边形,再由是菱形的性质得,即可证明平行四边形为矩形;再证明是等边三角形,得到,由勾股定理得出的长,再根据矩形面积公式即可解决问题.【详解】解:∵,,∴四边形是平行四边形,∵四边形是菱形,∴,,,,,∴,∴平行四边形为矩形;∵,∴是等边三角形,∴,∴,∴∴26. 在四边形中,,,,,点从出发以1cm/s 的速度向运动,点从点出发,以2cm/s 的速度向点运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t .AODE ABCD 90AOD ∠=︒AODE ABC 2AC AB ==OD AE BD ∥D E A C AODE ABCD AC BD ⊥OA OC =OB OD =AC BD ⊥AB BC =90AOD ∠=︒AODE 60ABC ∠=︒ABC 2AC AB ==112OA AC ==OD OB ===AODE S OA OD =⋅=矩形ABCD AD BC ∥BC CD ⊥6cm AD =10cm BC =E A D F B C(1)t 取何值时,四边形为矩形?(2)是上一点,且,t 取何值时,以、、、为顶点的四边形是平行四边形?【答案】(1)时,四边形为矩形; (2)4或【解析】【分析】(1)根据平行四边形的判定,当时,四边形为平行四边形,又由,平行四边形是矩形,列出方程求解即可;(2)是动点,点在点的左边和右边所构成的四边形都可能是平行四边形,分类讨论列方程求解即可.【小问1详解】解:由题意可知,,则,,则,∵,即,∴当时,四边形为平行四边形,又∵,∴平行四边形是矩形,则有,解得,答:时,四边形为矩形;小问2详解】解:∵,是上一点,即,①当点在线段上,时,以、、、为顶点的四边形是平行四边形,则有,解得,②当在线段上,时,以、、、为顶点的四边形是平行四边形,则有,解得,【EFCD M BC 4BM =A M E F 4t =EFCD 43DE CF =EFCD BC CD ⊥EFCD F F M AMEF (cm)AE t =(6)cm DE AD AE t =-=-2(cm)BF t =(102)cm CF BC BF t =-=-AD BC ∥DE CF ∥DE CF =EFCD BC CD ⊥EFCD 6102t t -=-4t =4t =EFCD AD BC ∥M BC AE FM ∥F BM AE FM =A M E F 42t t =-43t =F CM AE FM =A M E F 24t t =-4t =综上所述s或s 时,以、、、为顶点的四边形是平行四边形.【点睛】本题考查了平行四边形、矩形的判定,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.27. 数学实验:对矩形纸片进行折纸操作,可以得到一些特殊的角、特殊的三角形.如图1,①将矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕EF ,把纸片展平;②再一次折叠纸片,使点A 落在EF 上的点N 处,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .提出问题:(1)观察所得到的∠ABM ,∠MBN 和∠NBC ,猜想这三个角之间有什么关系?证明你的猜想.变式拓展:如图2,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕PQ ,把纸片展平.再一次折叠纸片,使点A 落在PQ 上的点A′处,并使折痕经过点B ,得到折痕BH 、线段BA′;提出问题:(2)已知AB=DC=PQ=10,AD=BC=16,求AH 的长.(3)若点G 是线段PQ 上一动点,当△ABG 周长最小时,QG=________.【答案】(1).(2).(3).【解析】【分析】(1)根据翻折的性质、等边三角形的判定和性质证明即可;4t =43A M E F 30ABM MBN NBC ∠=∠=∠=︒5AH =5(2)由折叠可知:,,再证明四边形是矩形,可得,,根据勾股定理列出等式即可求出.(3)由垂直平分,可得,即,当、、三点共线时,最小,此时周长最小,再证明,得出,即可求得答案.【详解】解:(1)猜想:,理由如下:如图,连接,四边形是矩形,,将矩形纸片对折,使与重合,得到折痕,垂直平分,,再一次折叠纸片,使点落在上的点处,并使折痕经过点,得到折痕,同时得到线段,,,,是等边三角形,,,,.(2)如图2,QP AD ⊥1116822AP DP AD ===⨯=ABQP 8BQ AP ==10AB PQ ==AH PQ BC GB GC =AG GB AG GC +=+A G C AG GB AG GC AC +=+=ABG ()APG CQG AAS ≌PG QG =30ABM MBN NBC ∠=∠=∠=︒1AN ABCD 90ABC ∴∠=︒ ABCD AD BC EF EN ∴AB AN BN ∴= A EF N B BM BN BA BN ∴=ABM MBN ∠=∠BA BN AN ∴==ABN ∴ 60ABN ∴∠=︒30NBC ABC ABN ∴∠=∠-∠=︒1302ABM MBN ABN ∠=∠=∠=︒30ABM MBN NBC ∴∠=∠=∠=︒由折叠可知:,,,四边形是矩形,,,,,,,由折叠可知:,,在中,根据勾股定理得:,,.(3)如图3,连接,由(2)知:垂直平分,QP AD ⊥1116822AP DP AD ∴===⨯=90BAP ABQ APQ ∠=∠=∠=︒ ∴ABQP 8BQ AP ∴==10AB PQ ==∴90BQA '∠=︒10BA BA '==∴6QA '===1064PA PQ QA ''∴=-=-=AH A H '=8PH AP AH AH =-=- Rt PHA ' 222A H PH A P ''=+∴()22284AH AH =-+5AH ∴=CG PQ BC,,当、、三点共线时,最小,此时周长最小,在和中,,,,,故答案为:.【点睛】本题考查了矩形的判定和性质,翻折变换,等边三角形的判定与性质,勾股定理,全等三角形的判定和性质,轴对称求最短路径等知识,解题的关键是掌握翻折的性质.GB GC ∴=AG GB AG GC ∴+=+A G C AG GB AG GC AC +=+=ABG APG CQG 908AGP CGQ APG CQG AP CQ ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩()APG CQG AAS ∴ ≌PG QG ∴=1110522QG PQ ∴==⨯=5。
2017-2018学年度第二学期八年级生物第一次月考考试试卷新人教版AqqMKl
2017-2018学年度第二学期第一次月考考试试卷八年级生物(考试时间60分钟,满分100分)一、选择题(每空2分,共60分,把答案填在表格里)1.地瓜是农民把地瓜的一段藤(茎) 插在土壤中繁殖新个体,这种繁殖方式属于()A .扦插B .嫁接C .压条D .组织培养2.下列属于有性生殖方式的是 ( ) A .秋海棠用叶生殖 B .水稻的种子生殖 C .细菌的分裂生殖 D .洋葱的鳞茎生殖3.在一棵苹果树上结出红富士、金帅、小国光三个品种的苹果,采用的繁殖方式是( ) A .扦插 B .嫁接 C .压条 D .组织培养4.有性生殖是以下哪两种细胞相结合 ( ) A .精子+中央细胞 B .卵细胞+中央细胞 C .精子+卵细胞 D .卵细胞+卵细胞5.无性生殖原理被广泛应用生产实践中,是因为无性生殖能 ( ) A .使后代具有两个亲本的遗传特征 B .明显增加作物产量C .保持亲本遗传特性D .使后代有更强的生活力和变异性 6.有性生殖与无性生殖的本质区别是 ( ) A .能否由母体直接产生新个体 B .能否进行细胞分裂C .能否形成生殖细胞D .有无两性生殖细胞的产生与结合7. “春蚕到死丝方尽”是古代人的错误理解,其实,蚕吐尽丝时并未死亡,只是发育成( ) A .卵 B .幼虫 C .蛹 D .成虫8. “毛毛虫”与“蝴蝶”分别是昆虫发育的哪两个时期 ( ) A .若虫、成虫 B .幼虫、成虫 C .卵、若虫 D .幼虫、卵9.下列四种昆虫中,哪种昆虫的发育过程与其他三种不同 ( )10.成语“金蝉脱壳”中,“壳”指的是 ( )题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 16 17 18 19 20 答案 题号 21 22 23 24 25 26 27 28 29 30 答案A.外骨骼B.角质层C.贝壳D.角质鳞片11.有位同学捉到一只青蛙,他将它放在有较多水的鱼缸中,准备精心饲养,观察蛙的活动,可是第二天蛙就死掉了,其死亡的原因是()A.无法呼吸到充足的氧气B.饥饿C.受到惊吓D.水质有问题12.两栖动物不能成为完全适于陆地生活的主要原因是()A.体温不恒定B.心室中有混合血C.肺不发达D.生殖发育离不开水13.下列关于青蛙的叙述错误的是()A.青蛙是体外受精、变态发育B.青蛙的生殖和发育都离不开水C.幼体生活在水中,用鳃呼吸D.成体既能用鳃呼吸,也能用肺呼吸14.下列昆虫中,属于完全变态发育的一组是()A.蜻蜓和蚂蚁B.家蚕和蝗虫C.蚊子和苍蝇D.蝴蝶和蟋蟀15.蝗虫生活史中不具有的时期是()A.成虫B.蛹C.幼虫D.受精卵16.下列动物不属于两栖动物的是()A.蟾蜍B.青蛙C.龟D.大鲵17.受精的鸟卵在雌鸟体内开始发育,但鸟卵产出后就停止发育,原因是()A.外界具有阳光B.外界具有空气C.外界温度太高D.外界温度低18.小红的姥姥在笼子里养了两只母鸡,它们能生蛋并孵出小鸡吗()A.不能生蛋,也就孵不出小鸡B.能生蛋,但只孵出小母鸡C.能生蛋,但孵不出小鸡D.能生蛋,也能孵出小鸡19.如果你留心观察鸡卵,可以在卵黄上看到一个小白点,称为()A.卵白B.胚盘C.卵壳D.气室20.家鸽的生殖发育比青蛙的高等,表现在()①体内受精②卵生③体外受精④卵外有卵壳保护⑤亲鸟有孵卵、育雏行为A.①④⑤B.②③⑤C.①③⑤D.③④⑤21.所有鸟类都具有的繁殖行为是()A.求偶、交配、产卵B.筑巢、交配、产卵C.求偶、产卵、孵卵D.产卵、孵卵、育雏22.下列不属于生物相对性状的是()A.玉米的甜性和非甜性B.花生仁的椭圆形与紫红色C.绵羊的黑毛与白毛D.人的直发与卷发23.下列不属于遗传现象的是()A.种瓜得瓜,种豆得豆B.狗的后代还是狗C.女儿的脸型与母亲相像D.父母不识字,儿子也不识字24.下列各句中与“龙生龙,凤生凤,老鼠生儿会打洞”所描述的特征不同的是()A.种瓜得瓜,种豆得豆B.虎父无犬子C.桂实生桂,桐实生桐D.一猪生九子,连母十个样25.下列不属于人的性状的是()A.皮肤的颜色B.血型C.眨眼反射D.牙齿的龈齿26.同一株碧桃上的花,有的是白色,有的是粉色,这体现了生物的哪一特性?()A.生长B.繁殖C.遗传D.变异27.进行有性生殖时,亲子代之间传递遗传物质的“桥梁”是()A.性状B.体细胞C.染色体D.生殖细胞28.亲代的许多性状之所以在子代的身上体现,原因是()A.精子和卵细胞中携带着亲代的性状B.总在一起生活,长相就会相像C.精子与卵细胞中携带着控制性状的基因D.父母所有的性状都遗传给子代29.如图,同一株水毛茛,裸露在空气中的叶和浸在水中的叶,表现出两种不同的形态,前者呈扁平状,后者深裂而呈丝状,这种现象说明()A.生物的性状不受基因影响B.生物性状是基因和环境相互作用的结果C.生物的性状只受基因影响D.生物的性状只受环境影响30.牛的体细胞中含30对染色体,那么牛的卵细胞中和受精卵中分别含有的染色体数是()A.30对,30对B.30条,30对C.30条,30条D.30对,30条二、非选择题(共40分)31.如图是植物两种不同的生殖方式,请结合农业生产实际,分析并回答下列相关问题:(每空1分,共9分)(1)菊花既能进行无性生殖,又能进行有性生殖,如果要保持菊花的优良特性,易用来繁殖;(2)某果园的苹果树大都产量较低、果实品质欠佳.若要尽快更新为优质苹果树,你认为最快捷的生物技术是;如图①是该技术的示意图,其中a是、b是;图①的关键步骤是要确保a、b两部分的紧密结合.(3)假设图①中a是黄花月季枝条,b是红花月季,该技术完成后,a和b分别长出一枝条,请问a长出的枝条开花(答红或黄),b长出的枝条开花.(4) 番茄的生殖方式属于,图②是番茄的受精过程,该过程中c与d结合形成.32.菜粉蝶是一种危害蔬菜的害虫,下列是它发育过程形态图.(每空1分,共13分)(1)菜粉蝶的发育顺序是→→→,它的发育过程属于发育.(2)与菜粉蝶相比,蝗虫不经过的发育时期是.(3)针对菜粉蝶的发育过程,你认为消灭菜粉蝶的最佳时期是.(4)人们常说“作茧自缚”,说的是蚕发育过程的哪个时期(填序号)A.卵B.幼虫C.蛹D.成虫(5)青蛙、家蚕、蝗虫个体发育的起点都是,它们的生殖方式都属于(填:无性生殖;有性生殖).(6)青蛙的发育过程中,蝌蚪和成蛙的形态结构和生活习性都有明显的差异,例如蝌蚪用呼吸、在水中生活,而青蛙主要用呼吸、能够在陆地生活.这种发育称为.33.如图是鸟卵的结构示意图,据图回答:(每空1分,共10分)(1)写出图中下列标号所示结构的名称:③;⑤.(2)卵细胞的细胞核存在于[ ] 中,受精卵将在这里发育成.(3)含营养物质最丰富的结构是[ ] ,其次在中也含有营养物质和水分.它使鸟的生殖过程能完全摆脱水环境的限制.(4)结构②对卵具有作用,其上还有许多气孔,鸡卵在发育时可以通过它与外界进行.34.如图为染色体与DNA、基因的关系示意图, 据图回答下列问题:(每空1分,共8分)(1)A是,B是,C是.(2)C上决定人体性状的功能片段是.图中的A由和组成. (3)基因的数目DNA的数目染色体的数目.(均填“>”“<”或“=”)。
2017-2018学年度第二学期八年级数学期中试题
都匀三中2017-2018学年度第二学期八年级期中考试数学试题出题人: 邓登江 审题人:杨媛一、选择题:(本大题有10小题,每小题3分,共30分) 1.下列图形中,不是轴对称图形的是( ) A.B.C.D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A .5或7 B .7或9 C .7D .93.如果n 边形的内角和是它外角和的3倍,则n 等于( ) A .6 B .7 C .8 D .94.将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置, 则图中∠AOB 的度数为( ) A .75° B .95° C .105° D .120°5.如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画出射线OB ,则∠AOB=( ) A .30° B .45° C .60° D .90° 6.如图,∠1=60°,则∠A +∠B +∠C +∠D +∠E +∠F=( ) A .240° B .280° C .360° D .540°7.某地地震过后,河沿村中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们由此确信房梁是水平的,他们判定的依据是( ) A .等边对等角 B .等角对等边 C .等腰三角形顶角平分线与底边上的中线重合 D .等腰三角形底边上的中线和底边上的高重合8.如图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BC ,交AB 于E ,∠A=60°,∠BDC=95°,则∠BED 的度数是( )A .35°B .70°C .110°D .130°9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=10,DE=3,则△BCE 的面积等于( )A .13B .15C .30D .6010.如图,在△ABC 中,AB=AC ,AD 是△ABC 的中线,E 是AB 上一点,P 是AD 上的一个动点,则下列线段的长等于BP +EP 的最小值的是( ) A .BC B .AD C .AC D .CE 二、填空题:(本大题有8小题,每小题3分,共24分) 11.一辆汽车的车牌号在水中的倒影是,那么它的实际车牌号是: .12.已知M (a ,3)和N (4,b )关于y 轴对称,则a+b 的值为 .13.如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC= .14.在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是 . 15.如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数 .16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADF 的 面积为S 1,△CEF 的面积为S 2,若S △ABC =12,则S 1﹣S 2的值为 .第4题第5题第6题第7题第8题 第10题第13题 第16题第9题17.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBA 和△EDC 一定是全等三角形;②△EBD 是等腰三角形,EB =ED ;③折叠后得到的图形是轴对称图形;④折叠后∠ABE 和∠CBD 一定相等;其中正确的有 。
人教版八年级数学上第一次月考试题含答案
初中数学试题2山东省莒县第三协作区2017-2018学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分) 1.下列图标中,是轴对称图形的是( )A .(1)(4)B .(2)(4)C .(2)(3)D .(1)(2)2.△ABC ≌△A ′B ′C ′,其中∠A ′=50°,∠B ′=70°,则∠C 的度数为( ) A .55° B .60° C .70° D .75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去 4.和点P(-3,2)关于y 轴对称的点是( )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)5.已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠; ④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( ) A. 4个B. 3个C. 2个D. 1个(第3题)) (第7题) (第5题) 6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为( ) A .50° B .65° C .80° D .50°或80°7.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD8.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度3向正北方向航行,2小时后到达位于灯塔P 的北偏东40°方向的N 处,则N 处与灯塔P 的距离为( )A .40海里B .60海里C .70海里D .80海里(第8题) (第9题) (第11题) (第12题)9.在平面直角坐标系xOy 中,已知点A(2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个10.如图,在Rt△ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .6011.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC ≌△CDEB .CE =AC C .AB ⊥CD D .E 为BC 的中点12.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 的面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每题4分,共16分)13.已知点A(a ,-2)和B(3,2),当满足条件________时,点A 和点B 关于x 轴对称. 14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第14题)(第16题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.16、如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.三、解答题(共64分)17.(8)如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第17题)18(10).如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.419.(10)如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE =DC,求证:AB=AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)521.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.67八年级数学月考答案一、选择题1.D 2.B 3.C 4.A5.B 6.D 7.A 8.D 9.D 10.B 1 1.D 12.D 二、填空 13.a =3 14.135 15.w5236499 16.19cm 三、17.解:(1)如图.(第17题)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)718.(1)证明:∵BF=CE ,∴BF +FC =FC +CE ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS ) (2)结论:AB∥DE,AC ∥DF.理由:∵△ABC≌△DEF,∴∠ABC =∠DEF,∠ACB =∠DFE,∴AB ∥DE ,AC ∥DF19a.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED≌△ACD(SAS ).∴∠E=∠C.又∵∠E=∠B,∴∠B=∠C.∴AB=AC.20.解:(1)∵DE 垂直平分AC , ∴AE=CE ,∴∠ECD=∠A=36°. (2)∵AB=AC ,∠A=36°, ∴∠ABC=∠ACB=72°. ∵∠BEC=∠A+∠ACE=72°, ∴∠B=∠BEC,∴BC=CE =5.21.(1)证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ),∴BD =CE (2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,8∴∠B =∠C,在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C=∠B,AC =AB ,∠CAM =∠BA N ,∴△ACM ≌△ABN(ASA ),∴∠M =∠N 22.解:(1)BD =CE ,BD ⊥CE.证明:延长BD 交CE 于点M ,易证△ABD ≌△ACE(SAS ),∴BD =CE ,∠ABD =∠ACE ,∵∠BME =∠MBC +∠BCM =∠MBC +∠ACE +∠ACB =∠MBC +∠ABD +∠ACB =∠ABC +∠ACB =90°,∴BD ⊥CE (2)仍有BD =CE ,BD ⊥CE ,理由同(1)研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。
湖南省衡阳市船山实验中学2017-2018学年八年级上第三次月考数学试卷(解析版)
湖南省衡阳市船山实验中学2017-2018学年八年级上第三次月考数学试卷一.单选题(共12题;共36分)1.已知等腰三角形的一个底角是50°,则它的顶角为()A. 50°B. 80°C. 65°D. 130°2.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A. 5mB. 12mC. 13mD. 18m3.如图,在□ABCD中,O是AC,BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长20厘米,则△CDE的周长为()A. 6厘米B. 8厘米C. 10厘米D. 12厘米4.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A. (2a2+5a)cm2B. (3a+15)cm2C. (6a+15)cm2D. (8a+15)cm25.下列命题中逆命题是真命题的是()A. 对顶角相等B. 若两个角都是45°,那么这两个角相等C. 全等三角形的对应角相等D. 两直线平行,同位角相等6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A. 2B. 3C. 4D. 无法确定7.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A. 35°B. 45°C. 60°D. 100°8.如图,实数3﹣在数轴上的大致位置是()A. 点AB. 点BC. 点CD. 点D9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形10.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A. 40°B. 50°C. 60°D. 80°11.下列运算正确的是()A. a﹣2=﹣a2B. a+a2=a3C.D. (a2)3=a612.飞人刘翔伤愈归来,在恢复训练中,大家十分关注他的训练成绩是否稳定,为此对他训练中的10次110米栏成绩进行统计分析,下列数据中最能反映成绩是否稳定的是A. 众数B. 中位数C. 平均数D. 方差二.填空题(共8题;共24分)13.如图,△ABD≌△ABC,∠C=100°,∠ABD=30°,则∠DAC=________.14.如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为________ cm.(容器厚度忽略不计)15.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为________16.用计算器计算:≈________(结果保留2个有效数字).17.用40cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3:2,则较长边的长度为________ cm.18.如图,要使宽为2米的矩形平板车ABCD通过宽为22米的等宽的直角通道,平板车的长不能超过________ 米.19.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:①BE=CD;②∠DGF=135°;③∠ABG+∠ADG=180°;④若=,则3S△BDG=13S△DGF.其中正确的结论是 ________(写所有正确结论的序号).20.如图,在△ABC中,∠C=90°,BD平分∠ABC,若AC=5cm,AD=3cm,则点D到AB的距离为________ cm.三.解答题(共6题;共30分)21.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果AC=43 ,求DE的长.22.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.23.作图题(不写作法,留下作图痕迹)(1)利用网格作图,请你先在作图的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.(2)在数轴上画出实数表示的点;24.在△ABC中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2﹣BD2=AC2.25.(1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:假(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.26.如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,M,F.若∠CAD=20°,求∠MCD的度数.四.综合题(共1题;共10分)27.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.湖南省衡阳市船山实验中学2017-2018学年八年级上第三次月考数学试卷答案与解析一.单选题1.【答案】B【考点】三角形内角和定理,等腰三角形的性质【解析】设△ABC为等腰三角形,AB=AC,∠B=50°,则∠B=∠C=50°,∠A=180°-∠B-∠C=80°。
黑龙江省哈尔滨市2017-2018学年八年级数学下册月考试卷(五四学制)(3月份)含答案解析
2017-2018学年黑龙江省八年级(下)月考数学试卷(3月份)一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的为()A. +x=1 B.3x(x+1)=3 C.x3﹣3x=4 D.=52.若关于x的方程x2﹣2x+c=0有一个根是1,那么c的值为()A.1 B.2 C.3 D.43.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤04.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对5.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为206.若线段a,b,c组成Rt△,则它们的比可能为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:77.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm28.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形9.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定10.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4二、填空题(每题3分,共30分)11.方程2x2﹣1=x的二次项系数是.12.方程(x﹣3)(x+1)=0的较小的根是x=.13.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是.14.直角三角形两直角边长分别为5和12,则它斜边上的高为.15.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为cm.16.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行cm.17.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是.18.在平面直角坐标系中,已知点A的坐标为(2,1),点B的坐标为(5,2),在x轴上找一点P,满足AP=BP,则P点的坐标为.19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,则图中标记为正方形A,B,C,D的面积之和为cm2.20.四边形ABCD中,∠BAC=∠BDC=90°,AB=AC,BD=2,DC=4,则AD=.三、解答题(其中21、22、23、24、25题各8分,26题10分,27题10分,共计60分)21.解方程:(1)(x+5)2=25(2)x2+10x+16=0(3)x2+4x+8=2x+11(4)(2x﹣1)2=(3﹣x)2.22.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:(1)在图1中画一个直角三角形ABC;(2)在图2中画一个钝角等腰三角形ABC;(3)图2中△ABC的周长为.(请直接写出答案)23.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.24.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.25.如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.26.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.27.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.(1)求A点的坐标;(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x 的值,并直接写出此时H点的坐标.参考答案与试题解析一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的为()A. +x=1 B.3x(x+1)=3 C.x3﹣3x=4 D.=5【考点】A1:一元二次方程的定义.【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、是分式方程,故A不符合题意;B、是一元二次方程,故B符合题意;C、是一元三次方程,故C不符合题意;D、是无理方程,故D不符合题意;故选:B.2.若关于x的方程x2﹣2x+c=0有一个根是1,那么c的值为()A.1 B.2 C.3 D.4【考点】A3:一元二次方程的解.【分析】把x=1代入已知方程,列出关于c的一元一次方程,通过解该方程来求c的值.【解答】解:∵关于x的方程x2﹣2x+c=0有一个根是1,∴12﹣2×1+c=0,即﹣1+c=0,解得c=1.故选:A.3.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤0【考点】A5:解一元二次方程﹣直接开平方法;AA:根的判别式.【分析】先根据3x2+k=0得出3x2=﹣k,再根据﹣k≥0即可得出答案.【解答】解:∵3x2+k=0∴3x2=﹣k,∴若方程3x2+k=0有实数根则﹣k≥0,∴k≤0,故选D.4.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对【考点】A1:一元二次方程的定义.【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.【解答】解:由一元二次方程的定义可知,解得m=﹣3.故选C.5.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为20【考点】KQ:勾股定理.【分析】利用勾股定理求出后直接选取答案.【解答】解:两直角边长分别为3和4,∴斜边==5;故选A.6.若线段a,b,c组成Rt△,则它们的比可能为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:7【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理,得:要能够组成一个直角三角形,则三边应满足:两条较小边的平方和等于最大边的平方.【解答】解:A、22+32=4+9=13≠42,故不是直角三角形.故错误;B、32+42=25≠62,故不是直角三角形.故错误;C、52+122=169=132,故是直角三角形,故正确;D、42+62=52≠72,故不是直角三角形.故错误.故选C.7.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】KQ:勾股定理;4C:完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选A.8.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形【考点】AA:根的判别式;KS:勾股定理的逆定理.【分析】方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,即△=0,结合直角三角形的判定和性质确定三角形的形状.【解答】解:原方程整理得(a+c)x2+2bx+a﹣c=0,因为两根相等,所以△=b2﹣4ac=(2b)2﹣4×(a+c)×(a﹣c)=4b2+4c2﹣4a2=0,即b2+c2=a2,所以△ABC是直角三角形.故选C9.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定【考点】KQ:勾股定理.【分析】因为是直角三角形,所以可以直接运用勾股定理,然后运用圆的面积公式来求解.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2又∵∴S1=π=π•,=()=π•=S1∴S1=S2,故选A.10.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】KQ:勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.二、填空题(每题3分,共30分)11.方程2x2﹣1=x的二次项系数是2.【考点】A2:一元二次方程的一般形式.【分析】先移项,即可得出答案.【解答】解:2x2﹣1=x,2x2﹣x﹣1=0,所以方程2x2﹣1=x的二次项系数是2,故答案为:2.12.方程(x﹣3)(x+1)=0的较小的根是x=﹣1.【考点】A8:解一元二次方程﹣因式分解法.【分析】根据方程即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1,所以方程较小的根是﹣1,故答案为:﹣1.13.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是12.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系;KH:等腰三角形的性质.【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【解答】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2(不合题意舍去),x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.14.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】KQ:勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.15.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为3cm.【考点】PB:翻折变换(折叠问题).【分析】由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE.【解答】解:由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8﹣CD)2,解得:CD=3cm.16.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行5cm.【考点】KV:平面展开﹣最短路径问题.【分析】要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O的周长为6cm,∴AC=3cm,∵高BC=4cm,∴AB==5cm.故答案为:5.17.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是32或42.【考点】KQ:勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.18.在平面直角坐标系中,已知点A的坐标为(2,1),点B的坐标为(5,2),在x轴上找一点P,满足AP=BP,则P点的坐标为(4,0).【考点】D5:坐标与图形性质.【分析】设点P(x,0),由AP=BP可得=,解之得出x的值即可.【解答】解:设点P(x,0),∵点A的坐标为(2,1),点B的坐标为(5,2),∴由AP=BP可得=,解得:x=4,∴点P的坐标为(4,0),故答案为:(4,0).19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,则图中标记为正方形A,B,C,D的面积之和为100 cm2.【考点】KQ:勾股定理.【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S E=S F+S G=S A+S B+S C+S D=10×10=100(cm2).即四个正方形A,B,C,D的面积之和为100cm2.故答案为:100.20.四边形ABCD中,∠BAC=∠BDC=90°,AB=AC,BD=2,DC=4,则AD=3.【考点】KD:全等三角形的判定与性质.【分析】过B作BF⊥AD于F,过C作CE⊥AD于E,得到∠AEC=∠AFB=90°,根据余角的性质得到∠BAF=∠ACE,推出△ABF≌△ACE,根据全等三角形的性质得到CE=AF,AE=BF,由∠BAC=∠BDC=90°,得到A,B,C,D四点共圆,根据圆周角定理得到∠ADB=∠ADC=45°,解直角三角形即可得到结论.【解答】解:过B作BF⊥AD于F,过C作CE⊥AD于E,∴∠AEC=∠AFB=90°,∵∠BAC=90°,∴∠BAF+∠CAE=∠CAE+∠ACE=90°,∴∠BAF=∠ACE,在△ABF与△ACE中,,∴△ABF≌△ACE,∴CE=AF,AE=BF,∵∠BAC=∠BDC=90°,∴A,B,C,D四点共圆,∴∠ADB=∠ADC=45°,∴BF=DF=BD=,CE=DE=CD=2,∴AD=AE+DE=BF+CE=3.故答案为:3.三、解答题(其中21、22、23、24、25题各8分,26题10分,27题10分,共计60分)21.解方程:(1)(x+5)2=25(2)x2+10x+16=0(3)x2+4x+8=2x+11(4)(2x﹣1)2=(3﹣x)2.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法.【分析】(1)直接开方即可求出x的值(2)利用十字相乘法即可求出x的值(3)先将原方程化为一般式,然后利用十字相乘法即可求出x的值(4)两边直接开方即可求出x的值.【解答】解:(1)x+5=±5∴x=0或x=﹣10(2)(x+2)(x+8)=0∴x=﹣2或x=﹣8(3)x2+2x﹣3=0(x+3)(x﹣1)=0∴x=1或x=﹣3(4)2x﹣1=±(3﹣x)∴x=或x=﹣222.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:(1)在图1中画一个直角三角形ABC;(2)在图2中画一个钝角等腰三角形ABC;(3)图2中△ABC的周长为10+4.(请直接写出答案)【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】(1)在图1中画出直角边为5和4的直角三角形即为所求;(2)在图2中画出腰长为5的钝角等腰三角形ABC即为所求;(3)先根据勾股定理得到AC的长,再根据周长的定义求解即可.【解答】解:(1)如图1所示:(2)如图2所示:(3)AC==4,△ABC的周长为5+5+4=10+4.故答案为:10+4.23.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.【考点】KU:勾股定理的应用;IH:方向角.【分析】根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD的长即可.【解答】解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=12×sin60°=20×=10(海里).答:海岛C到航线AB的距离CD长为10海里.24.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.【考点】KS:勾股定理的逆定理.【分析】根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,从而不难求得这块地的面积.【解答】解:连接AC.∵AD=4m,CD=3m,AD⊥DC∴AC=5m∵122+52=132∴△ACB为直角三角形∴S△ACB=×AC×BC=×5×12=30m2,S△ACD=AD•CD=×4×3=6m2,∴这块地的面积=S△ACB ﹣S△ACD=30﹣6=24m2.25.如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形;KW:等腰直角三角形.【分析】在直角△ABD中,先根据30°角所对的直角边等于斜边的一半得出BD=AD=4.5,再根据勾股定理求出AB=,然后解等腰直角△ABC就可以求出BC的长.【解答】解:在直角△ABD中,∵∠ABD=90°,∠DAB=30°,AD=9,∴BD=AD=4.5,∴AB==.在直角△ABC中,∵∠C=90°,CA=CB,∴BC=AB=×=.26.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.【考点】KY:三角形综合题.【分析】(1)利用四边形AEDF的内角和为360°,可求得∠AFD+∠AED=180°,再利用邻补角可得∠BED+∠AED=180°,根据等角的补角相等可求得∠BED=∠AFD;(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到三角形BED与三角形CPD全等,利用全等三角形对应边相等得到BE=CP,再利用SAS得到撒尿性EDF和三角形PDF全等,利用全等三角形对应边相等得到EF=FP,利用等角的余角相等得到∠FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证;(3)连接AD,由AB=AC,且D为BC的中点,利用三线合一得到AD垂直于BC,AD为角平分线,再由三角形ABC为等腰直角三角形,得到一对角相等,利用同角的余角相等得到一对角相等,再由AD=CD,利用ASA得到三角形AED 与三角形CFD全等,利用全等三角形对应边相等得到AE=CF=5,DE=DF,由AE+EB求出AB的长,即为AC的长,再由AC﹣CF求出AF的长,在直角三角形AEF中,利用勾股定理求出EF的长,再根据三角形DEF为等腰直角三角形求出DE与DF的长,即可确定出三角形DEF的面积.【解答】(1)证明:∵DE⊥DF,∴∠EDF=90°,∵∠BAC=90°,∴∠AFD+∠AED=180°,∵∠BED+∠AED=180°,∴∠BED=∠AFD;(2)证明:如图1,延长ED到P,使DP=DE,连接FP,CP,在△BED和△CPD中,,∴△BED≌△CPD(SAS),∴BE=CP,∠B=∠CPD,在△EDF和△PDF中,∴△EDF≌△PDF(SAS),∴EF=FP,∵∠B=∠DCP,∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCP=90°,即∠FCP=90°,在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,∵BE=CP,PF=EF,∴EF2=BE2+CF2;(3)如图2,连接AD,∵△ABC为等腰直角三角形,D为BC的中点,∴∠BAD=∠FCD=45°,AD=BD=CD,AD⊥BC,∵ED⊥FD,∴∠EDA+∠ADF=90°,∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF=5,DE=DF,即△EDF为等腰直角三角形,∴AB=AE+EB=5+12=17,∴AF=AC﹣FC=AB﹣CF=17﹣5=12,在Rt△EAF中,根据勾股定理得:EF==13,设DE=DF=x,根据勾股定理得:x2+x2=132,解得:x=,即DE=DF=,=DE•DF=.则S△DEF27.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.(1)求A点的坐标;(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x 的值,并直接写出此时H点的坐标.【考点】KY:三角形综合题.【分析】(1)作AH⊥OB于H,根据等边三角形的性质求出OH、AH,确定A 点的坐标;(2)作AE⊥OB于E,证明△BPH∽△BAE,根据相似三角形的性质计算即可;(3)当点P在线段AB上时,由△ABO是等边三角形,得到∠ABO=60°,推出△PBQ是等腰三角形,根据等腰三角形的性质列方程即可得到结论;当P在射线AB上时,连接PQ,由△ABO是等边三角形,得到∠PBQ=∠ABO=60°,推出△PQB是直角三角形,由直角三角形的性质列方程即可得到结论.【解答】解:(1)作AH⊥OB于H,∵△OAB是等边三角形,OB=4,∴OH=2,AH=2,∴A点的坐标为(2,2);(2)作AE⊥OB于E,则PH∥AE,∴△BPH∽△BAE,∴=,即=,解得,BH=2﹣t,∴HM=BH+BM=2﹣t+t=2;(3)当点P在线段AB上时,如图3,∵△ABO是等边三角形,∴∠ABO=60°,∵∠PQB=30°,∴∠BPQ=30°,∴∠PQB=∠BPQ,∴PB=BQ,即4﹣2t=2t,∴t=1,当P在射线AB上时,如图4,连接PQ,∵△ABO是等边三角形,∴∠ABO=60°,∴∠PBQ=∠ABO=60°,∵∠PQB=30°,∴∠BPQ=90°,∴BQ=2PB,即2t=2(2t﹣4),∴t=4,∴当t=1或4时,∠PQB=30°.2017年5月25日。
2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案
2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
○…………………○……学校:__………内……………装…………○…绝密★启用前2017-2018学年度第二学期 人教版八年级第三次月考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分 1.(本题3分)化简 27+ 3− 12的结果为( ) A. 0 B. 2 C. −2 3 D. 2 32.(本题3是整数,则自然数n 的值有( )个. A. 7 B. 8 C. 9 D. 103.(本题3分)一个直角三角形的两条直角边长分别为6 cm 和8 cm ,那么这个直角三角形的斜边长为( )A. 6 cmB. 8 cmC. 10 cmD. 24 cm 4.(本题3分)平行四边形的一条边长是12cm ,那么它的两条对角线的长可能是( )A. 8cm 和16cmB. 10cm 和16cmC. 8cm 和14cmD. 8cm 和12cm5.(本题3分)根据下图所示程序计算函数值,若输入的x 的值为25,则输出的函数值为( )A. 32B. 25C. 425D. 2546.(本题3分)某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:○……………订………………线※※内※※答※※题…………○9.(本题3分)如图,点A 表示的实数是( )BD 的中点,若∠MPN=130°,则∠NMP=( )A. 25°B. 30°C. 35°D. 50° 的取值范围是_____………订……○…………………○___________考号____………○…………○…………内………………装………15.(本题4分)如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =________.16.(本题4分)如图,A 、B 两处被池塘隔开,为了测量A 、B 两处的距离,在AB 外选一适当的点C ,连接AC 、BC ,并分别取线段AC 、BC 的中点E 、F ,测得EF=22m ,则AB=__________m .17.(本题4分)如果,3,那么x 2y+xy 2=________. 18.(本题4分)如图,在□ABCD 中,∠D =72°,BE 平分∠ABC ,则∠ABE 的度数是_______.三、解答题(计58分)19.(本题8分)计算:(1(2)((………○………※※在※※装※※订※※线……线20.(本题8分)已知: a =b = 21.(本题8分)从正面看一个底面直径为10cm 的圆柱体饮料杯子如图所示,在它的正中间竖直插入一根吸管(吸管在杯口一端的位置固定不动),吸管露出杯子外1cm ,当吸管伸向杯壁底部时,吸管顶端刚好与杯口高度平齐. (1)求杯子的高度;(2)若吸管伸出杯口的长度至少为0.5cm 时,才方便喝饮料,则吸管至少应设计为多长?○…………线………………内…………○…○…………装 22.(本题8分)如图,在□ABCD 中,对角线AC ⊥BD 于点O ,∠ABC=58º.求∠BAC 的度数.23.(本题8分)点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t (分)(1)蜡烛未点燃前的长度是多少厘米?(2)写出蜡烛的高度h(厘米)与燃烧时间t (分)之间的关系式; (3)求这根蜡烛能燃烧多长时间. 24.(本题9分)如图所示,E ,F 分别为平行四边形ABCD 中AD ,BC 的中点,G ,H 在BD 上,且 BG =DH ,求证四边形EGFH 是平行四边形.………○……答※※题※※……… 25.(本题9分)(2017四川自贡第21题)如图,点E ,F 分别在菱形ABCD 的边DC ,DA 上,且CE=AF . 求证:∠ABF=∠CBE .参考答案1.D【解析】解:原式=33+3−23=23.故选D.2.D【解析】由题意得:95−n⩾0,解得n⩽95,95−n是完全平方数,满足条件的自然数n为95,94,91,86,79,70,59,46,31,14,共10个. 故选:D.点睛:本题主要考察了二次根式的意义和性质及自然数的定义.先根据二次根式的定义求出x n的值再进行讨论即可.3.C【解析】根据勾股定理可以得出:斜边长故选:C.点睛:此题主要考查了勾股定理的应用,关键是灵活应用勾股定理的公式计算. 4.B【解析】试题解析:对于A,两条对角线的一半长分别为4cm,8cm,由于4+8=12,故不能构成三角形,故A不符合题意;对于B,两条对角线的一半长分别为5cm,8cm,由于5+8>12,故能构成三角形,故B符合题意;对于C,两条对角线的一半长分别为4cm,7cm,由于4+7<12,故不能构成三角形,故C不符合题意;对于D,两条对角线的一半长分别为4cm,6cm,由于4+6<12,故不能构成三角形,故D不符合题意.故选B.点睛:三角形三边关系:三角形任意两边之和大于第三边.5.C【解析】试题分析:∵x=25,∴0≤x<2,把x=25代入y=x2得y=225⎛⎫⎪⎝⎭=425,故选C.点睛:本题主要考查了分段函数,解答本题的关键就是弄清楚题图给出的计算程序.6.C【解析】从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可以知道烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克t 与x 的一次函数关系式为:,,计算得出所以.当千克时,.故选C.7【解析】试题解析:原式)))20132013111,=⨯))2013111,⎡⎤=⨯⎣⎦)201311,=⨯1.=故答案为: 1.8.D【解析】根据勾股定理即可得出答案.解:∵直角三角形的两条直角边长分别是3,4,∴该直角三角形的斜边长是: 5.= 故选D. 9.C【解析】由勾股定理得,OA = OB =, ∵A 点在数轴的负方向上,∴点A表示的实数是故选C.10.A【解析】∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=12AB,PN=12DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵∠MPN=130°,∴∠PMN=(180°-∠MPN)÷2=25°,故选A.11.1【解析】试题解析:0,=而0,1 2.a b∴==,∴原式11==故答案为:112. 58° 122°【解析】试题解析:如图所示:∵四边形ABCD是平行四边形,180A C A B∴∠=∠∠+∠=︒,,116A C∠+∠=︒,5818058122A B∴∠=︒∠=︒-︒=︒,;故答案为:58°;122°.13.两香蕉数量售价【解析】∵香蕉的售价随着香蕉数量的变化而变化∴上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价. 14.11cm≤a≤12cm【解析】试题解析:如图,当筷子与杯底垂直时h 最大,h 最大=24-12=12cm . 当筷子与杯底及杯高构成直角三角形时a 最小,如图所示:此时,cm , 故a=24-13=11cm .所以a 的取值范围是:11cm ≤a ≤12cm . 故答案是:11cm ≤a ≤12cm . 15.1.4【解析】试题解析:设CD =x ,则BC =5+x , 在Rt △ACD 中, 222225AC AD CD x =-=-, 在Rt △ABC 中, ()2222645AC AB BC x =-=-+, 所以, ()2225645x x -=-+,解得x =1.4, 即CD =1.4.故答案为:1.4. 16.44【解析】∵E 、F 是AC ,AB 的中点, ∴EF 是△ABC 的中位线,∴EF=12AB ,∵EF=22cm , ∴AB=44cm , 故答案为44.【点睛】本题考查了三角形的中位线定理在实际生活中的运用,解题的关键是熟知三角形中位线定理的内容.17.﹣【解析】试题解析:原式())33334xy x y =+==-⨯-故答案为: -18.36°【解析】∵四边形ABCD 是平行四边形, ∴∠ABC =∠D =72°. ∵BE 平分∠ABC ,∴∠ABE=12∠ABC=36°.19.(2).【解析】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2试题解析:(1)原式=(2)原式=(525﹣6)20.5【解析】试题分析:先分母有理化求出a、b的值,再求出a2+b2 +7的值,代入求出即可.试题解析:化简得:a2===,b2===,∴ab=1,∵22a b7++=(a+b)22-2+7=25,5=.点睛:本题主要考查的是有理化因式,能依据完全平方公式对所求的代数式进行变形是解题的关键.21.(1)12h=(2)13.5【解析】试题分析:(1)设杯子的高度为xcm,则吸管的长度为(x+1)cm,根据勾股定理可得出关于x的一元一次方程,解之即可得出结论;(2)结合(1)的结论,在吸管的原长度上加上0.5cm即可得出结论.试题解析:(1)设杯子的高度为xcm,则吸管的长度为(x+1)cm,根据题意得:(x+1)2=52+x2,整理得:2x-24=0,解得:x=12.答:杯子的高度为12cm.(2)12+1+0.5=13.5cm.答:吸管至少应设计为13.5cm.22.∠BAC=61º.【解析】试题分析:先根据平行四边形对角线互相平分可得AO=OC,因为AC⊥BD,根据三角形三线合一性质可得: AB=BC,根据等边对等角可得: ∠BAC=∠BCA,根据三角形内角和定理可得: ∠ABC+∠BAC+∠BCA=180º,所以58º+2∠BAC=180º,即可求解.试题解析:因为四边形ABCD是平行四边形,所以AO=OC,又AC⊥BD,所以AB=BC.所以∠BAC=∠BCA,因为∠ABC+∠BAC+∠BCA=180º,所以58º+2∠BAC=180º.所以∠BAC=61º. 23.(1)30厘米;(2)h=30-0.5t;(3)这根蜡烛能燃烧60分.【解析】试题分析:(1)观察表格可知时间为0时,蜡烛长度为30厘米,也就是没有点燃之前的长度;(2)观察表格可知每2分钟蜡烛燃烧1厘米,从而即可得出关系式;(3)把h=0代入(2)中的关系式即可求得.试题解析:(1)观察可知:当t=0时,h=30,所以蜡烛未点燃前的长度是30厘米;(2)观察表格可知蜡烛每2分钟燃烧1厘米,即1分钟燃烧0.5厘米,所以:h=30-0.5t;(3)当h=0时,得0=30-0.5t,解方程,得t=60,所以这根蜡烛能燃烧60分.24.答案见解析【解析】试题分析:由四边形ABCD是平行四边形,得到AD=BC,AD∥BC,由AD ∥BC,得到∠ADB=∠DBC,因为E、F分别为▱ABCD的边AD、BC的中点,得到DE=BF,由三角形全等证得EH=FG,∠EHD=∠FGB,得到EH∥FG,证出四边形FGEH是平行四边形.试题解析:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC.∵E、F分别为▱ABCD的边AD、BC的中点,∴DE=BF.在△DEH与△BFG 中,∵DE=BF,∠EDH=∠FBG,DH=BG,∴△DEH≌△BFG,∴EH=FG,∠EHD=∠FGB,∴∠EHG=∠FGH,∴EH∥FG,∴四边形FGEH是平行四边形.25.证明见解析.【解析】试题分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明ΔABF≌CBE,根据全等三角形的性质可得结论.试题解析:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠CAB=CB∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE.。