2020版高考数学大一轮复习第九章平面解析几何第4讲直线与圆圆与圆的位置关系分层演练理含解析新人教A版
浙江2020版高考数学第九章平面解析几何9.4直线与圆、圆与圆的位置关系讲义(含解析)
§9.4 直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有相离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(3)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) 题组二 教材改编2.[P128T4]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.3.[P130练习]圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切 B.相交 C.外切 D.相离答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.[P133A 组T9]圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2. 题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值范围是( ) A.[-2,2] B.[-22,22] C.[-2-1,2-1] D.[-22-1,22-1]答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.设圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( ) A.4B.42C.8D.8 2 答案 C解析 因为圆C 1,C 2和两坐标轴相切,且都过点(4,1),所以两圆都在第一象限内,设圆心坐标为(a ,a ),则|a |=(a -4)2+(a -1)2,解得a =5+22或a =5-22, 可取C 1(5+22,5+22),C 2(5-22,5-22), 故|C 1C 2|=(42)2+(42)2=8,故选C.7.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2), ∵|OA |=(3-1)2+(5-2)2=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1,∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.题型一 直线与圆的位置关系命题点1 位置关系的判断例1 在△ABC 中,若a sin A +b sin B -c sin C =0,则圆C :x 2+y 2=1与直线l :ax +by +c =0的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 A解析 因为a sin A +b sin B -c sin C =0, 所以由正弦定理得a 2+b 2-c 2=0.故圆心C (0,0)到直线l :ax +by +c =0的距离d =|c |a 2+b2=1=r ,故圆C :x 2+y 2=1与直线l :ax +by +c =0相切,故选A. 命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.思维升华 (1)判断直线与圆的位置关系的常见方法 ①几何法:利用d 与r 的关系. ②代数法:联立方程之后利用Δ判断.③点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2018·浙江名校联盟联考)已知直线l :y =ax +b (a >0),圆C :x 2+y 2-2x =0,且a 2+b 2=1-2ab ,则直线l 与圆C 的位置关系是( ) A.相离 B.不确定 C.相切 D.相交答案 D解析 联立直线l 的方程与圆的方程可得⎩⎪⎨⎪⎧y =ax +b ,x 2+y 2-2x =0,(a 2+1)x 2+(2ab -2)x +b 2=0,Δ=4-8ab -4b 2. ∵1-2ab =a 2+b 2,∴Δ=4a 2>0.故直线l 与圆C 相交.(2)(2018·浙江省台州市适应性考试)在直线l :y =kx +1截圆C :x 2+y 2-2x -3=0所得的弦中,最短弦的长度为____________. 答案 2 2解析 直线l 是直线系,过定点(0,1),定点(0,1)在圆C 内,要使直线l :y =kx +1截圆C :(x -1)2+y 2=4所得的弦最短,必须使圆心(1,0)和定点(0,1)的连线与弦所在直线垂直,此时定点和圆心的连线,圆心和弦的一个端点的连线与弦的一半围成一个直角三角形,因为圆心与定点之间的距离为(0-1)2+(1-0)2=2,半径为2,所以最短弦的长度为222-(2)2=2 2.(3)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________. 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.题型二 圆与圆的位置关系命题点1 位置关系的判断例4 分别求当实数k 为何值时,两圆C 1:x 2+y 2+4x -6y +12=0,C 2:x 2+y 2-2x -14y +k =0相交和相切.解 将两圆的一般方程化为标准方程,得C 1:(x +2)2+(y -3)2=1,C 2:(x -1)2+(y -7)2=50-k ,则圆C 1的圆心为C 1(-2,3),半径r 1=1; 圆C 2的圆心为C 2(1,7),半径r 2=50-k ,k <50. 从而|C 1C 2|=(-2-1)2+(3-7)2=5.当|50-k -1|<5<50-k +1,即4<50-k <6, 即14<k <34时,两圆相交.当1+50-k =5,即k =34时,两圆外切; 当|50-k -1|=5,即k =14时,两圆内切. 所以当k =14或k =34时,两圆相切. 命题点2 公共弦问题例5 已知圆C 1:x 2+y 2-2x -6y -1=0和C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.(1)证明 由题意将圆C 1和圆C 2一般方程化为标准方程,得(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=16,则圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4, 两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2, ∴圆C 1和C 2相交.(2)解 圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27. 思维升华(1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2(a >0), ∴圆心坐标为M (0,a ),半径r 1为a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.(2)圆x 2+y 2+4x -4y -1=0与圆x 2+y 2+2x -13=0相交于P ,Q 两点,则直线PQ 的方程为______________. 答案 x -2y +6=0解析 两个圆的方程两端相减,可得2x -4y +12=0. 即x -2y +6=0.1.(2018·杭州模拟)已知p :直线y =2x +m 与圆x 2+y 2=1至少有一个公共点,q :m ≤5,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 把y =2x +m 代入x 2+y 2=1中,得5x 2+4mx +m 2-1=0,由Δ=16m 2-20(m 2-1)≥0,解得-5≤m ≤5,所以p 是q 的充分不必要条件,故选A.2.(2014·浙江)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a 的值是( ) A.-2B.-4C.-6D.-8 答案 B解析 将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.3.(2018·杭州质检)设圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y +2)2=1,则圆C 1与圆C 2的位置关系是( )A.外离B.外切C.相交D.内含 答案 A解析 ∵|C 1C 2|=(2-0)2+(-2-0)2=22>1+1,∴两圆外离,故选A.4.(2018·金华模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A.y =-34 B.y =-12C.y =-32D.y =-14答案 B解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.5.(2019·台州调研)若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( )A.1条B.2条C.3条D.4条答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.由题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).6.直线x +2y +m =0(m >0)与⊙O :x 2+y 2=5交于A ,B 两点,若|OA →+OB →|>2|AB →|,则m 的取值范围是( )A.(5,25)B.(25,5)C.(5,5)D.(2,5) 答案 B解析 ∵直线x +2y +m =0与⊙O :x 2+y 2=5交于相异两点A ,B , ∴O 点到直线x +2y +m =0的距离d < 5.记OA →+OB →=OD →,则四边形OADB 是菱形,且|OD →|=2d . ∵|OA →+OB →|>2|AB →|,∴2d >2|AB →|, 即d >|AB →|=25-d 2,解得d >2.又d <5,∴2<d <5,即2<|m |5< 5.又m >0,解得m ∈(25,5).7.(2018·浙江省杭州市七校联考)过F (1,0)作直线l 与圆(x -4)2+y 2=4交于A ,B 两点,若|AB |=23,则圆心到直线l 的距离为________,直线l 的方程为________________________. 答案 1 y =±24(x -1) 解析 易知直线l 的斜率存在,故可设直线l :y =k (x -1),得圆心(4,0)到直线l 的距离d =|k (4-1)|k 2+1,又由圆的弦、半径、弦心距三者间的关系得d =4-(3)2=1,得|k (4-1)|k 2+1=1,即k =±24,故直线l 的方程为y =±24(x -1). 8.(2018·宁波模拟)已知直线l :mx -y =1.若直线l 与直线x -my -1=0平行,则m 的值为________;动直线l 被圆x 2+2x +y 2-24=0截得的弦长的最小值为______. 答案 -1 223解析 由直线mx -y =1与直线x -my -1=0平行得m 2-1=0,且m 1≠-1-1,解得m =-1.圆x 2+2x +y 2-24=0化为标准方程为(x +1)2+y 2=25,直线mx -y =1过定点(0,-1),因为点(0,-1)在圆(x +1)2+y 2=25内,则当直线l 垂直于点(0,-1)与圆心(-1,0)连线所在的直线时,直线被圆截得的弦长最短,此时圆心到直线mx -y =1的距离即为点(0,-1)与圆心(-1,0)连线的长度,即为12+(-1)2=2,则直线被圆截得的弦长的最小值为225-(2)2=223.9.已知圆E :x 2+y 2-2x =0,若A 为直线l :x +y +m =0上的点,过点A 可作两条直线与圆E 分别切于点B ,C ,且△ABC 为等边三角形,则实数m 的取值范围是______________.答案 [-22-1,22-1]解析 设圆E 的圆心为E ,半径为r ,圆E :x 2+y 2-2x =0,即(x -1)2+y 2=1,则圆心E (1,0),半径r 为1,由题意知直线l 上存在点A ,使得r |AE |=sin30°=12,即|AE |=2r . 又因为|AE |≥d (d 为圆心到直线l 的距离),故要使点A 存在,只需d ≤2r =2,可得|1+m |2≤2,解得m ∈[-22-1,22-1].10.已知圆C 1:x 2+y 2+2ay +a 2-4=0和圆C 2:x 2+y 2-2bx -1+b 2=0外切,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为____________.答案 49解析 x 2+y 2+2ay +a 2-4=0,即x 2+(y +a )2=4,x 2+y 2-2bx -1+b 2=0, 即(x -b )2+y 2=1.依题意可得a 2+b 2=2+1=3,即a 2+b 2=9,故a 2+b 29=1.所以1a 2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2a 2+b 29=19⎝ ⎛⎭⎪⎫1+b 2a 2+a 2b 2+1≥19⎝⎛⎭⎪⎫2+2b 2a 2×a 2b 2=49, 当且仅当a =±b 时取等号.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0,则|-k -2+3-k |1+k2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0. (2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围. 解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0). 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1. (2)∵k OA =2,∴可设l 的方程为y =2x +m ,即2x -y +m =0.又|BC |=|OA |=22+42=2 5.由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝⎛⎭⎪⎫|BC |22=25-5=2 5.即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15. ∴直线l 的方程为y =2x +5或y =2x -15.(3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又∵P ,Q 为圆M 上的两点,∴|PQ |≤2r =10. ∴|TA |=|PQ |≤10,即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221].13.已知直线l :(m +2)x +(m -1)y +4-4m =0上总存在点M ,使得过M 点作的圆C :x 2+y 2+2x -4y +3=0的两条切线互相垂直,则实数m 的取值范围是( ) A.m ≤1或m ≥2 B.2≤m ≤8 C.-2≤m ≤10 D.m ≤-2或m ≥8答案 C解析 如图,设切点分别为A ,B .连接AC ,BC ,MC ,由∠AMB =∠MAC =∠MBC =90°及|MA |=|MB |知,四边形MACB 为正方形,故|MC |=2+2=2,若直线l 上总存在点M 使得过点M 的两条切线互相垂直,只需圆心(-1,2)到直线l 的距离d =|-m -2+2m -2+4-4m |(m +2)2+(m -1)2≤2,即m 2-8m -20≤0,∴-2≤m ≤10,故选C. 14.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________. 答案 4解析 ⊙O 1与⊙O 在A 处的切线互相垂直,如图,可知两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5. 又A ,B 关于OO 1所在直线对称, ∴AB 长为Rt△OAO 1斜边上的高的2倍,∴|AB |=2×5×255=4.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89 B.⎝ ⎛⎭⎪⎫29,49 C.(1,2) D.(9,0)答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=(9-2m )2+m 24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0,即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点A ,B ,以线段AB 为直径的圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝ ⎛⎭⎪⎫-32,t ,求实数t 的取值范围.解 由题意可得直线AB 的方程为x =y +1,与y 2=4x 联立消去x ,可得y 2-4y -4=0,显然Δ=16+16>0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4,y 1y 2=-4,设E (x E ,y E ),则y E =y 1+y 22=2,x E =y E +1=3,又|AB |=x 1+x 2+2=y 1+1+y 2+1+2=8,所以圆E 是以(3,2)为圆心,4为半径的圆,所以点D 恒在圆E 外.圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝ ⎛⎭⎪⎫-32,t ,即圆E 上存在点P ,Q ,使得DP ⊥DQ ,设过D 点的两直线分别切圆E 于P ′,Q ′点,要满足题意,则∠P ′DQ ′≥π2,所以|EP ′||DE |=4⎝ ⎛⎭⎪⎫3+322+()2-t 2≥22,整理得t 2-4t -314≤0,解得2-472≤t ≤2+472,故实数t 的取值范围为⎣⎢⎡⎦⎥⎤2-472,2+472.。
(浙江专用)2020版高考数学大一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系练习(含
(浙江专用)2020版高考数学大一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系练习(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2020版高考数学大一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系练习(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2020版高考数学大一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系练习(含解析)的全部内容。
第4讲直线与圆、圆与圆的位置关系[基础达标]1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4 B.3C.2 D.1解析:选C.(直接法)集合A表示圆,集合B表示一条直线,又圆心(0,0)到直线x+y=1的距离d=错误!=错误!〈1=r,所以直线与圆相交.2.直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是( ) A.[-错误!,错误!]B.[-2错误!,2错误!]C.[-错误!-1,错误!-1]D.[-2错误!-1,2错误!-1]解析:选D。
圆C的标准方程为(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d=错误!=错误!,若直线l与圆C恒有公共点,则错误!≤2,解得-2错误!-1≤m≤2错误!-1,故选D。
3.若圆x2+y2=a2与圆x2+y2+ay-6=0的公共弦长为2错误!,则a的值为( )A.±2 B.2C.-2 D.无解解析:选A。
圆x2+y2=a2的圆心为原点O,半径r=|a|.将x2+y2=a2与x2+y2+ay-6=0左右分别相减,可得a2+ay-6=0,即得两圆的公共弦所在直线的方程为a2+ay-6=0。
2020高考数学大一轮复习第九章平面解析几何9-4直线与圆圆与圆的位置关系教师用书
A.[-1,1]B.[0,]
C.[0,1]D.[-,]
答案 B
解析 设直线l的方程为y-1=k(x-),则圆心到直线l的距离d=,因为直线l与圆x2+y2=1有公共点,所以d≤1,即≤1,得0≤k≤.
题型二 圆与圆的位置关系
(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,
即4x+3y-23=0,所以公共弦长为2=2.
题型三 直线与圆的综合问题
命题点1 求弦长问题
例3 (20xx·全国丙卷)已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=________.
题型一 直线与圆的位置关系的判断
例1 (1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( )
A.相切 B.相交 C.相离 D.不确定
(2)(20xx·江西吉安月考)圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )
A.相离 B.相切 C.相交 D.以上都有可能
考点分析 与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.
所以x1+x2=,x1x2=.
·=x1x2+y1y2
=(1+k2)x1x2+k(x1+x2)+1=+8.
(课标通用版)2020版高考数学大一轮复习 第九章 平面解析几何 第4讲 直线与圆、圆与圆的位置关系
判断正误(正确的打“√”,错误的打“×”) (1) 若 直 线 与 圆 组 成 的 方 程 组 有 解 , 则 直 线 与 圆 相 交 或 相 切.( ) (2)若两个圆的方程组成的方程组无解,则这两个圆的位置关系 为外切.( ) (3)“k=1”是“直线 x-y+k=0 与圆 x2+y2=1 相交”的必要 不充分条件.( ) (4)联立两相交圆的方程,并消掉二次项后得到的二元一次方程 是两圆的公共弦所在的直线方程.( ) 答案:(1)√ (2)× (3)× (4)√
直线 y=x+1 与圆 x2+y2=1 的位置关系为( )
A.相切
B.相交但直线不过圆心
C.直线过圆心
D.相离
解析:选
B.因为圆心(0,0)到直线
y=2
22,
而 0< 22<1,所以直线和圆相交,但不过圆心.
圆 Q:x2+y2-4x=0 在点 P(1, 3)处的切线方程为( )
d=|r1-r2| (r1≠r2)
0≤d<|r1-r2|(r1≠r2)
___一__组__实__数__解____ __无__解___
常用知识拓展 1.过圆 x2+y2=r2 上一点 P(x0,y0)的圆的切线方程为 x0x+y0y =r2. 2.过圆(x-a)2+(y-b)2=r2 上一点 P(x0,y0)的圆的切线方程为 (x0-a)(x-a)+(y0-b)(y-b)=r2. 3.过圆 x2+y2=r2 外一点 M(x0,y0)作圆的两条切线,则两切 点所在直线方程为 x0x+y0y=r2. 4.直线与圆相交时,弦心距 d,半径 r,弦长的一半12l 满足关 系式 r2=d2+12l2.
d
=
|cos θ-1-cos θ| sin2θ+cos2θ
超实用高考数学专题复习:第九章平面解析几何 第4节直线与圆圆与圆的位置关系
规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
角度 2 弦长问题 【例 1-2】 (2020·中原名校联盟联考)设圆 x2+y2-2x-2y-2=0 的圆心为 C,直
心(1,0)到直线 y=k(x-3)的距离应小于等于半径 1,即
1|2+k| k2≤1,解得-
3 3
≤k≤
3 3.
(2)由题意知圆的方程为 x2+(y+1)2=4,所以圆心坐标为(0,-1),半径为 2,则圆
心到直线 y=x+1 的距离 d=|1+21|= 2,所以|AB|=2 22-( 2)2=2 2.
当直线 l 的斜率存在时,设直线 l 的方程为 y=kx+3,由已知可得圆的标准方程为 (x-1)2+(y-1)2=4,其圆心为 C(1,1),半径 r=2,∴圆心 C(1,1)到直线 kx-y +3=0 的距离 d=|k-k21++13|= |kk+2+2|1,∵d2=r2-|A2B|2,∴(kk+2+21)2=4-22 32, 即(k+2)2=k2+1,解得 k=-34,∴直线 l 的方程为 y=-34x+3,即 3x+4y-12= 0.综上,满足题意的直线 l 的方程为 x=0 或 3x+4y-12=0,故选 D. 答案 D
A.(- 3, 3)
B.[- 3, 3]
C.(-
33,
3 3)
D.-
33,
3 3
(2)(角度 2)(2018·全国Ⅰ卷)直线 y=x+1 与圆 x2+y2+2y-3=0 交于 A,B 两点,则
浙江2020版高考数学第九章平面解析几何9.4直线与圆、圆与圆的位置关系课件
于半径,直线与圆相切,符合题意; 当直线的斜率存在时,设直线方程为y-4=k(x-2),即kx-y+4-2k=0,
∵直线与圆相切,∴圆心到直线的距离等于半径,
|k-1+4-2k| |3-k| 4 即 d= = 2 =1,解得 k=3, 2 2 k +-1 k +1
4 4 ∴所求切线方程为3x-y+4-2×3=0, 即4x-3y+4=0.
解析 圆C的标准方程为(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,
|2-1+m| |2-1+m| 圆心到直线的距离 d= ,若直线与圆恒有公共点,则 ≤2, 2 2
解得-2 2-1≤m≤2 2-1,故选 D.
1 2 3 4 5 6 7
6.设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于
2 2
=1=r,
故圆C:x2+y2=1与直线l:ax+by+c=0相切,故选A.
命题点2 弦长问题 例2 若a2+b2=2c2(c≠0),则直线ax+by+c=0被圆x2+y2=1所截得的弦长为
1 A.2 B.1 2 C. 2 D. 2 √
解析
|c| 2 因为圆心(0,0)到直线 ax+by+c=0 的距离 d= 2 = =2, 2 2| c | a +b
方法 位置关系 外离 外切 相交 内切 内含
几何法:圆心距d与r1,r2的关系
代数法:联立两圆方程 组成方程组的解的情况 无解 一组实数解
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
d=|r1-r2|(r1≠r2) 0≤d<|r1-r2|(r1≠r2)
两组不同的实数解
一组实数解
无解
高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新
§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。
2020版高考数学一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系课件理新人教A版
=0垂直,则a等于( )
A.-12
B.1
C.2
1 D.2
答案 C
答案
解析 圆心为C(1,0),由于P(2,2)在圆(x-1)2+y2=5上,∴P为切点, CP与过点P的切线垂直.∴kCP=22- -01=2.又过点P的切线与直线ax-y+1=0 垂直,∴a=kCP=2.故选C.
解析
3.(2019·山东省实验中学模拟)圆C1:(x+2)2+(y-2)2=4和圆C2:(x- 2)2+(y-5)2=16的位置关系是( )
第4讲
直线与圆、 圆与圆的位置关系
基础知识整合
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
2.圆与圆的位置关系(⊙O1,⊙O2 半径 r1,r2,d=|O1O2|)
1.直线与圆相交时,关注一个直角三角形. 由弦心距(圆心到相交弦的距离),弦长的一半及半径构成一个直角三角 形. 2.过切点M(x0,y0)的圆x2+y2=r2的切线方程为:x0x+y0y=r2. 3.两圆相交时相交弦所在直线方程 设圆C1:x2+y2+D1x+E1y+F1=0 ① 圆C2:x2+y2+D2x+E2y+F2=0 ②
B.相切
C.相交
D.以上三个选项均有可能
答案 C
答案
解析 直线y=kx-1恒经过点A(0,-1),圆x2+y2-2x-2=0的圆心为 C(1,0),半径为 3,而|AC|= 2< 3,点A在圆内,故直线y=kx-1与圆x2+ y2-2x-2=0相交.故选C.
解析
2.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1
答案 2 2
答案
解析 根据题意,圆的方程可化为x2+(y+1)2=4,所以圆的圆心为 (0,-1),且半径是2,根据点到直线的距离公式可以求得圆心到直线的距 离d= |102++1+-11|2= 2,所以|AB|=2 4-2=2 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 直线与圆、圆与圆的位置关系1.(2019·安徽江南十校联考)直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值范围是( ) A .[-2,2] B .[-22,22] C .[-2-1,2-1]D .[-22-1,22-1]解析:选D.圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2=|m +1|2,若直线l 与圆C 恒有公共点,则|m +1|2≤2,解得-22-1≤m ≤22-1,故选D.2.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( ) A .相交 B .相切 C .相离D .不确定解析:选A.因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1, 因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.3.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x -a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( ) A .{1,-1} B .{3,-3} C .{1,-1,3,-3}D .{5,-5,3,-3}解析:选C.因为两圆有且只有一个公共点,所以两个圆内切或外切,内切时,|a |=1,外切时,|a |=3,所以实数a 的取值集合是{1,-1,3,-3}.4.圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +4=0的公切线有( ) A .1条 B .2条 C .3条D .4条解析:选D.圆C 1:(x +1)2+(y +1)2=4,所以圆心C 1(-1,-1),半径长r 1=2; 圆C 2:(x -2)2+(y -1)2=1, 所以圆心C 2(2,1),半径长r 2=1.所以d =(-1-2)2+(-1-1)2=13,r 1+r 2=3, 所以d >r 1+r 2,所以两圆外离,所以两圆有4条公切线.5.(2019·兰州市诊断考试)已知圆C :(x -3)2+(y -1)2=1和两点A (-t ,0),B (t ,0),(t >0),若圆C 上存在点P ,使得∠APB =90°,则当t 取得最大值时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫32,322B.⎝ ⎛⎭⎪⎫322,32 C.⎝ ⎛⎭⎪⎫32,332 D.⎝⎛⎭⎪⎫332,32 解析:选D.设P (a ,b )为圆上一点,由题意知,AP →·BP →=0,即(a +t )(a -t )+b 2=0,a 2-t 2+b 2=0,所以t 2=a 2+b 2=|OP |2,|OP |max =2+1=3,即t 的最大值为3,此时k OP =33,OP 所在直线的倾斜角为30°,所以点P 的纵坐标为32,横坐标为3×32=332,即P ⎝ ⎛⎭⎪⎫332,32. 6.过原点且与直线6x -3y +1=0平行的直线l 被圆x 2+(y -3)2=7所截得的弦长为________.解析:由题意可得l 的方程为2x -y =0,因为圆心(0,3)到l 的距离d =33=1,所以所求弦长=2r 2-d 2=27-1=2 6. 答案:2 67.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析:因为∠AOB =90°,所以点O 在圆C 上.设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,所以点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,所以当且仅当O ,C ,D 共线时,圆的直径最小为|OD |.又|OD |=|2×0+0-4|5=45,所以圆C 的最小半径为25,所以圆C 面积的最小值为π⎝ ⎛⎭⎪⎫252=45π. 答案:45π8.如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.则圆C 在点B 处的切线在x 轴上的截距为________.解析:如图,先求出点B 的坐标,进而求出圆C 在点B 处的切线方程,再求切线在x 轴上的截距.令(x -1)2+(y -2)2=2中的x =0,解得y =2±1,故B (0,2+1).直线BC 的斜率为2+1-20-1=-1,故切线的斜率为1,切线方程为y =x+2+1.令y =0,解得x =-2-1,故所求截距为-2-1. 答案:-2-19.已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)过切点A (4,-1);(2)与直线l 2:x -2y +4=0垂直.解:(1)因为k AC =-2+11-4=13,所以过切点A (4,-1)的切线斜率为-3,所以过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.(2)设切线方程为2x +y +m =0,则|2-2+m |5=10,所以m =±52,所以切线方程为2x+y ±52=0.10.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心坐标为(2,1). (1)若圆O 1与圆O 2外切,求圆O 2的方程;(2)若圆O 1与圆O 2相交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解:(1)因为圆O 1的方程为x 2+(y +1)2=4, 所以圆心O 1(0,-1),半径r 1=2.设圆O 2的半径为r 2,由两圆外切知|O 1O 2|=r 1+r 2. 又|O 1O 2|=(2-0)2+(1+1)2=22, 所以r 2=|O 1O 2|-r 1=22-2.所以圆O 2的方程为(x -2)2+(y -1)2=12-8 2. (2)设圆O 2的方程为(x -2)2+(y -1)2=r 22, 又圆O 1的方程为x 2+(y +1)2=4,相减得AB 所在的直线方程为4x +4y +r 22-8=0. 设线段AB 的中点为H ,因为r 1=2,所以|O 1H |=r 21-|AH |2= 2. 又|O 1H |=|4×0+4×(-1)+r 22-8|42+42=|r 22-12|42,所以|r 22-12|42=2,解得r 22=4或r 22=20.所以圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.1.(2019·安徽芜湖六校联考)在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使MA =2MO ,则圆心C 的横坐标a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,125B .[0,1]C.⎣⎢⎡⎦⎥⎤1,125 D.⎝⎛⎭⎪⎫0,125解析:选A.因为圆心在直线y =2x -4上, 所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.由a 2+(2a -3)2≥1得5a 2-12a +8≥0,解得a ∈R ; 由a 2+(2a -3)2≤3得5a 2-12a ≤0,解得0≤a ≤125.所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.故选A.2.(2019·广东省五校协作体第一次诊断考试)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.解析:两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0配方得,(x +a )2+y 2=4,x2+(y -2b )2=1,依题意得两圆相外切,故a 2+4b 2=1+2=3,即a 2+4b 2=9,1a 2+1b2=⎝ ⎛⎭⎪⎫a 29+4b 29⎝ ⎛⎭⎪⎫1a 2+1b 2=19+a 29b 2+4b 29a 2+49≥59+2a 29b 2×4b 29a 2=1,当且仅当a 29b 2=4b 29a2,即a 2=2b 2时等号成立,故1a 2+1b2的最小值为1.答案:13.(2017·高考全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ),圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4.所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.4.(2019·湖南东部六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由. 解:(1)设圆心C (a ,0)(a >-52),则|4a +10|5=2⇒a =0或a =-5(舍).所以圆C :x 2+y2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB ,此时N 点的横坐标恒大于0即可.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4y =k (x -1)得,(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。