2019-2020学年高中数学 3.2.1复数代数形式的加减运算及其几何意义练习 新人教A版选修2-2.doc
3.2.1 复数代数形式的加减运算及其几何意义
课题
授课班级
高二(17)
授课时间
2020年月日
学习目标
知识与技能:
了解复数代数形式的加减运算,了解复数代数形式的加、减运算的几何意义.
过程与方法:
了解复数代数形式的加减运算,了解复数代数形式的加、减运算的几何意义.
情感态度与价值观:通过复数的代数形式的加减运算的学习,体会数集运算定义的完备性与一致性,增加对数学逻辑美的认识.
3、运用新知,体验成功
练习1:
1.计算:2.写出下列Fra bibliotek复数的相反数:
3.计算:
解:①2, , ,
②
③ , , ,
4、师生互动,继续探究
例1.计算:
解:原式=
= 。
分析:复数的加减法,相当于多项式中加减中的合并同类项的过程,两个复数相加减,就是把实部与实部,虚部与虚部分别加减。
例2.已知复数 ,若 ,证明复数 是纯虚数或0。
教学重点
复数代数形式的加减运算及其几何意义。
教学难点
复数代数形式的加减运算及其几何意义。
课型
新课
主要教学方法
自主学习、思考、交流、讨论、讲解
教学模式
合作探究,归纳总结
教学手段与教具
几何画板、智慧黑板.
教学过程设计
各环节教学反思
一、复习引入
1.同学们在学实数的时候有绝对值的概念,在复数里 叫做复数的模长,在实数集里有相反数的概念,那么复数 还有没有相反复数的概念呢?
2.实数与实数相加减得到的仍是实数,现在我们学习了复数这个数集,如果一个实数与一个纯虚数相加比如 等于多少呢?或者一个实数加上一个虚数比如 又等于什么呢?
3.2.1《复数代数形式的加减法运算及其几何意义》课件
1.复数的代数形式:通常用字母 z 表示,即
解:
(1).(2 3i) (5 i) (2 5) (3 1)i 3 2i
(2).(1 2i) (1 2i) (11) ( 2 2)i 0 (3).(2 3i) (5 2i) (2 5) (3 2)i 3 5i (4).(5 6i) (2 i) (3 4i) (5 2 3) (6 1 4)i
法则.
y
Z2(c,d)
Z(a+c,b+d)
Z1(a,b)
o
x
复数的减法法则
类比复数的加法法则,你能试着推导复数减 法法则吗?
1.复数的减法法则 我们规定,复数的减法是加法的逆运算,即把满足
(c di) (x yi) a bi
的复数x yi叫做复数a bi减去c di的差,
记作(a bi) (c di).根据复数相等的定义有
,
uuur BA
对应的复数,并指出
AB= 9 i第三u象uur限
其对应的复数位于第几象限.BA=9 i,第一象限
3 .复平面上三点 A, B,C 分别对应复数 1, 2i,5 2i ,则 由 A, B,C 所构成的三角形△ ABC 是 直角 三角形.
4 .求复数 2 i , 3 i 所对应的两点之间的距离. 5
(4)复平面内的两点间距离公式: d z1.—z2 两个复数差的模的几何意义是:两个复数所对应的 两个点之间的距离.
3.2.1复数代数形式的加、减运算及其几何意义(最新整理)
复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义预习课本P107~108,思考并完成下列问题(1)复数的加法、减法如何进行?复数加法、减法的几何意义如何?(2)复数的加、减法与向量间的加减运算是否相同?1.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i.2.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).3.复数加、减法的几何意义设复数z 1,z 2对应的向量为,,则复数z 1+z 2是以,为邻边的OZ 1――→ OZ 2――→ OZ 1――→ OZ 2――→ 平行四边形的对角线 所对应的复数,z 1-z 2是连接向量与的终点并指向OZ ――→ OZ 1――→ OZ 2――→的向量所对应的复数.OZ 1――→[点睛] 对复数加、减法几何意义的理解它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.1.判断(正确的打“√”,错误的打“×”)(1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( )答案:(1)× (2)× (3)×2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( )A .8i B .6C .6+8iD .6-8i答案:B3.已知复数z 满足z +i -3=3-i ,则z 等于( )A .0B .2iC .6D .6-2i 答案:D4.在复平面内,复数1+i 与1+3i 分别对应向量和,其中O 为坐标原点,OA ――→ OB ――→则||等于( )AB ――→A.B .22C. D .410答案:B复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以Error!解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|=.2[答案] (1)-2-i (2)2复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [活学活用]已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.解析:由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以Error!解得a =3.答案:3复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0,3+2i ,-2+4i.求:(1) 表示的复数;AO ――→(2)对角线表示的复数;CA ――→(3)对角线表示的复数.OB ――→[解] (1)因为=,所以表示的复数为-3-2i.AO ――→ -OA ――→ AO ――→(2)因为=-,所以对角线表示的复数为(3+2i)-(-2+4i)=5CA ――→ OA ――→ -OC ――→ CA ――→-2i.(3)因为对角线=+,所以对角线表示的复数为(3+2i)+(-2+OB ――→ OA ――→ OC ――→ OB ――→4i)=1+6i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R)是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[活学活用] 复平面内三点A ,B ,C ,A 点对应的复数为2+i ,向量对应的复数为1+2i ,BA ――→向量对应的复数为3-i ,求点C 对应的复数.BC ――→解:∵对应的复数为1+2i ,对应的复数为3-i.BA ――→ BC ――→∴=-对应的复数为(3-i)-(1+2i)=2-3i.AC ――→ BC ――→ BA ――→又∵=+,OC ――→ OA ――→ AC ――→∴C 点对应的复数为(2+i)+(2-3i)=4-2i.复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( )A .1 B.12C .2 D.5(2)若复数z 满足|z ++i|≤1,求|z |的最大值和最小值.3[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z1,Z2,Z3,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以点Z 的集合为线段Z1Z2.问题转化为:动点Z 在线段Z1Z2上移动,求|ZZ3|的最小值,因为|Z1Z3|=1.所以|z+i+1|min=1.[答案] A(2)解:如图所示, ||==2.OM ――→(-\r(3))2+(-1)2所以|z |max =2+1=3,|z |min =2-1=1.[一题多变]1.[变条件、变设问]若本例题(2)条件改为已知|z |=1且z ∈C ,求|z -2-2i|(i 为虚数单位)的最小值.解:因为|z |=1且z ∈C ,作图如图:所以|z -2-2i|的几何意义为单位圆上的点M 到复平面上的点P (2,2)的距离,所以|z -2-2i|的最小值为|OP |-1=2-1.22.[变条件]若题(2)中条件不变,求|z -|2+|z -2i|2的最大值和最小值.3解:如图所示,在圆面上任取一点P ,与复数z A =,z B =2i 对应点A ,B 相连,得向3量,,再以,为邻边作平行四边形.PA ――→ PB ――→ PA ――→ PB ――→P 为圆面上任一点,z P =z ,则2||2+2||2=||2+(2||)2=7+4||2,(平行四边形四条边的PA ――→ PB ――→ AB ――→ PO ′――→ PO ′――→平方和等于对角线的平方和),所以|z -|2+|z -2i|2=.312(7+4|z -32-i |2)而max =|O ′M |+1=1+,|z -32-i |432min =|O ′M |-1=-1.|z -32-i |432所以|z -|2+|z -2i|2的最大值为27+2,最小值为27-2.34343层级一 学业水平达标1.已知z =11-20i ,则1-2i -z 等于( )A .z -1 B .z +1C .-10+18iD .10-18i解析:选C 1-2i -z =1-2i -(11-20i)=-10+18i.2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4解析:选B z =1-(3-4i)=-2+4i ,故选B.3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限.4.若z 1=2+i ,z 2=3+a i(a ∈R),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1解析:选D z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.5.设向量,,对应的复数分别为z 1,z 2,z 3,那么( )OP ――→ PQ ――→ OQ ――→A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0解析:选D ∵+=,∴z 1+z 2=z 3,即z 1+z 2-z 3=0.OP ――→ PQ ――→ OQ ――→6.已知x ∈R ,y ∈R ,(x i +x )+(y i +4)=(y -i)-(1-3x i),则x =__________,y =__________.解析:x +4+(x +y )i =(y -1)+(3x -1)i∴Error!解得Error!答案:6 117.计算|(3-i)+(-1+2i)-(-1-3i)|=________.解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|= =5.32+42答案:58.已知z 1=a +(a +1)i ,z 2=-3b +(b +2)i(a ,b ∈R),若z 1-z 2=4,则a +b =3233________.解析:∵z 1-z 2=a +(a +1)i -[-3b +(b +2)i]=+(a -b -1)i =4,323(32a +33b )3由复数相等的条件知Error!解得Error!∴a +b =3.答案:39.计算下列各式.(1)(3-2i)-(10-5i)+(2+17i);(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i).解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i =1 008-1 009i.10.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,求z 1-z 2.解:∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i ,∴Error!解得Error!∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.层级二 应试能力达标1.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( )A .0 B .1C. D.2212解析:选C 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离即为.222.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量对应的复数Z 1Z 2――→为( )A .3+4iB .5-2iC .-2+6iD .2-6i解析:选D =-,即终点的复数减去起点的复数,∴(5-2i)-(3+Z 1Z 2――→ OZ 2――→ OZ 1――→4i)=2-6i.3.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量,对应OA ――→ OB ――→的复数分别是3+i ,-1+3i ,则对应的复数是( )CD ――→A .2+4iB .-2+4iC .-4+2iD .4-2i解析:选D 依题意有==-.而(3+i)-(-1+3i)=4-2i ,故CD ――→ BA ――→ OA ――→ OB ――→对应的复数为4-2i ,故选D.CD ――→5.设复数z 满足z +|z |=2+i ,则z =________.解析:设z =x +y i(x ,y ∈R),则|z |= .x 2+y 2∴x +y i +=2+i.x 2+y 2∴Error!解得Error!∴z =+i.34答案:+i 346.在复平面内,O 是原点,,,对应的复数分别为-2+i,3+2i,1+5i ,OA ――→ OC ――→ AB ――→那么对应的复数为________.BC ――→解析:=-=-(+)=3+2i -(-2+i +1+5i)=BC ――→ OC ――→ OB ――→ OC ――→ OA ――→ AB ――→(3+2-1)+(2-1-5)i =4-4i.答案:4-4i7.在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求向量,,对应的复数;AB ――→ AC ――→ BC ――→(2)判断△ABC 的形状.(3)求△ABC 的面积.解:(1)对应的复数为2+i -1=1+i ,AB ――→对应的复数为-1+2i -(2+i)=-3+i ,BC ――→对应的复数为-1+2i -1=-2+2i.AC ――→(2)∵||=,||=,||==2,AB ――→ 2BC ――→ 10AC ――→82∴||2+||2=||2,∴△ABC 为直角三角形.AB ――→ AC ――→ BC ――→(3)S △ABC =××2=2.12228.设z =a +b i(a ,b ∈R),且4(a +b i)+2(a -b i)=3+i ,又ω=sin θ-icos θ,求z 3的值和|z -ω|的取值范围.解:∵4(a +b i)+2(a -b i)=3+i ,∴6a +2b i =3+i ,33∴Error!∴Error!∴z =+i ,3212∴z -ω=-(sin θ-icos θ)(32+12i )=+i (32-sin θ)(12+cos θ)∴|z -ω|=(32-sin θ)2+(12+cos θ)2= 2-3sin θ+cos θ= = ,2-2(32sin θ-12cos θ)2-2sin (θ-π6)∵-1≤sin ≤1,(θ-π6)∴0≤2-2sin ≤4,∴0≤|z -ω|≤2,(θ-π6)故所求得z =+i ,|z -ω|的取值范围是[0,2].3212。
复数代数形式的加减运算及其几何意义
在信号处理中的应用
信号合成与分解
复数代数形式的加减运算可以用于信 号的合成与分解,例如在频谱分析和 滤波器设计中。通过加减运算,可以 将信号分解为不同的频率分量,便于 分析和处理。
调制与解调
在通信系统中,复数代数形式的加减 运算用于信号的调制和解调过程。通 过加减运算,可以实现信号的相位和 幅度调整,从而实现信号的传输和接 收。
复数减法的几何意义
复数减法可以理解为在复平面上的向量减法。给定两个复数 $z_1 = a + bi$ 和 $z_2 = c + di$,它们的差 $z_1 - z_2 = (a-c) + (b-d)i$ 可以看作是两个向量在复平面上的差分。
向量差分:在复平面上,将 $z_1$ 的向量起点固定,然后 平移至 $z_2$ 的起点,得到向量差。这个过程对应于复数 减法运算。
部对应横轴,虚部对应纵轴。
03
复数代数形式的几何意义
复数加法的几何意义
复数加法可以理解为在复平面上的向量加法。给定两个复数 $z_1 = a + bi$ 和 $z_2 = c + di$,它们的和 $z_1 + z_2 = (a+c) + (b+d)i$ 可以看作是两个向量在复平面上的合成。
向量合成:在复平面上,将 $z_2$ 的向量起点固定,然后平 移至 $z_1$ 的起点,得到向量和。这个过程对应于复数加法 运算。
复数代数形式的加减运算 及其几何意义
• 引言 • 复数代数形式的加减运算 • 复数代数形式的几何意义 • 复数代数形式的加减运算的应用 • 结论
Hale Waihona Puke 1引言复数的基本概念
01
复数是由实部和虚部构成的数,一 般形式为$z=a+bi$,其中$a$和 $b$是实数,$i$是虚数单位,满足 $i^2=-1$。
高中数学3.2.1 复数代数形式的加、减运算及其几何意义
-1-
3.2.1 复数代数形式的加、 减运算及其几何意义
课前篇自主预习 课堂篇探究学习
学习目标
思维脉络
1.掌握复数代数形式的加法、减法运算 法则. 2.理解复数代数形式的加法、减法运算
的几何意义.
3.能够利用复数代数形式的加法、减法 运算法则及几何意义解决问题.
-14-
3.2.1 复数代数形式的加、 减运算及其几何意义
课前篇自主预习 课课堂堂篇篇探探究究学学习习
探究一
探究二
探究三
思想方法 当堂检测
变式训练2如图所示,平行四边形OABC的顶点O,A,C分别对应复
数0,3+2i,-2+4i.求:
(1)向量������������ 对应的复数;(2)向量������������ 对应的复数;(3)向量������������ 对应 的复数.
解:(1)因为������������=-������������,所以向量������������对应的复数为-3-2i. (2)因为������������ = ������������ − ������������,所以向量������������对应的复数为 (3+2i)-(-2+4i)=5-2i. (3)因为������������ = ������������ + ������������,所以向量������������对应的复数为 (3+2i)+(-2+4i)=1+6i.
(方法二)因为z+1-3i=5-2i,
所以z=(5-2i)-(1-3i)=4+i. -8-
3.2.1 复数代数形式的加、 减运算及其几何意义
2019版高中数学 第三章 3.2.1 复数代数形式的加、减运算及其几何意义学案 新人教A版选修2-2
3.2.1 复数代数形式的加、减运算及其几何意义学习目标 1.熟练掌握复数代数形式的加、减运算法则.2.理解复数加减法的几何意义,能够利用“数形结合”的思想解题.知识点一 复数代数形式的加减法思考 类比多项式的加减法运算,想一想复数如何进行加减法运算?答案 两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +b i)±(c +d i)=(a ±c )+(b ±d )i. 梳理 (1)运算法则设z 1=a +b i ,z 2=c +d i 是任意两个复数,那么(a +b i)+(c +d i)=(a +c )+(b +d )i ,(a +b i)-(c +d i)=(a -c )+(b -d )i.(2)加法运算律对任意z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 知识点二 复数加减法的几何意义思考1 复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗? 答案 如图,设OZ 1→,OZ 2→分别与复数a +b i ,c +d i 对应,则OZ 1→=(a ,b ),OZ 2→=(c ,d ),由平面向量的坐标运算,得OZ 1→+OZ 2→=(a +c ,b +d ),所以OZ 1→+OZ 2→与复数(a +c )+(b +d )i 对应,复数的加法可以按照向量的加法来进行. 思考2 怎样作出与复数z 1-z 2对应的向量?答案 z 1-z 2可以看作z 1+(-z 2).因为复数的加法可以按照向量的加法来进行.所以可以按照平行四边形法则或三角形法则作出与z 1-z 2对应的向量(如图).图中OZ 1→对应复数z 1,OZ 2→对应复数z 2,则Z 2Z 1→对应复数z 1-z 2.梳理1.两个虚数的和或差可能是实数.( √ )2.在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加得虚部.( √ ) 3.复数的减法不满足结合律,即(z 1-z 2)-z 3=z 1-(z 2+z 3)可能不成立.( × )类型一 复数的加法、减法运算例1 (1)若z 1=2+i ,z 2=3+a i(a ∈R ),复数z 1+z 2所对应的点在实轴上,则a =________. (2)已知复数z 满足|z |i +z =1+3i ,则z =________. 考点 复数的加减法运算法则 题点 复数加减法的综合应用 答案 (1)-1 (2)1+43i解析 (1)z 1+z 2=(2+i)+(3+a i)=5+(a +1)i , 由题意得a +1=0,则a =-1.(2)设z =x +y i(x ,y ∈R ),则|z |=x 2+y 2, ∴|z |i +z =x 2+y 2i +x +y i =x +(x 2+y 2+y )i =1+3i ,∴⎩⎨⎧x =1,x 2+y 2+y =3,解得⎩⎪⎨⎪⎧x =1,y =43,∴z =1+43i.反思与感悟 (1)复数的加减运算就是实部与实部相加减,虚部与虚部相加减. (2)当一个等式中同时含有|z |与z 时,一般用待定系数法,设z =x +y i(x ,y ∈R ). 跟踪训练1 (1)若复数z 满足z +i -3=3-i ,则z =________. (2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ). (3)已知复数z 满足|z |+z =1+3i ,则z =________.考点 复数的加减法运算法则 题点 复数加减法的运算法则答案 (1)6-2i (2)-a +(4b -3)i (3)-4+3i 解析 (1)∵z +i -3=3-i ,∴z =6-2i. (2)(a +b i)-(2a -3b i)-3i=(a -2a )+(b +3b -3)i =-a +(4b -3)i. (3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2, ∴|z |+z =(x 2+y 2+x )+y i =1+3i ,∴⎩⎨⎧x 2+y 2+x =1,y =3,解得⎩⎪⎨⎪⎧x =-4,y =3,∴z =-4+3i.类型二 复数加、减法的几何意义例2 (1)如图所示,平行四边形OABC 的顶点O ,A ,C 分别对应的复数为0,3+2i ,-2+4i.求:①AO →表示的复数; ②CA →表示的复数; ③OB →表示的复数.考点 复数的加减法运算法则 题点 复数加减法与向量的对应解 ∵A ,C 对应的复数分别为3+2i ,-2+4i ,由复数的几何意义,知OA →与OC →表示的复数分别为3+2i ,-2+4i. ①因为AO →=-OA →,所以AO →表示的复数为-3-2i. ②因为CA →=OA →-OC →,所以CA →表示的复数为(3+2i)-(-2+4i)=5-2i. ③OB →=OA →+OC →,所以OB →表示的复数为(3+2i)+(-2+4i)=1+6i.(2)已知z 1,z 2∈C ,|z 1|=|z 2|=1,|z 1+z 2|=3,求|z 1-z 2|. 考点 复数加减法的几何意义及应用 题点 与加减法几何意义有关的模的问题解 根据复数加减法的几何意义,由|z 1|=|z 2|知,以OA →,OB →为邻边的平行四边形OACB 是菱形. 如图,OA →对应的复数为z 1,OB →对应的复数为z 2,∴|OA →|=|OB →|,OC →对应的复数为z 1+z 2,∴|OC →|= 3. 在△AOC 中,|OA →|=|AC →|=1,|OC →|=3, ∴∠AOC =30°.同理得∠BOC =30°,∴△OAB 为等边三角形,则|BA →|=1,BA →对应的复数为z 1-z 2,∴|z 1-z 2|=1. 引申探究若将本例(2)中的条件“|z 1+z 2|=3”改为“|z 1-z 2|=1”,求|z 1+z 2|. 解 如例2(2)图,向量BA →表示的复数为z 1-z 2, ∴|BA →|=1,则△AOB 为等边三角形,∴∠AOC =30°, 则|OD →|=32,∴|OC →|=3,OC →表示的复数为z 1+z 2,∴|z 1+z 2|= 3.反思与感悟 (1)常用技巧①形转化为数:利用几何意义可以把几何图形的变换转化成复数运算去处理;②数转化为形:对于一些复数运算也可以给予几何解释,使复数作为工具运用于几何之中. (2)常见结论:在复平面内,z 1,z 2对应的点分别为A ,B ,z 1+z 2对应的点为C ,O 为坐标原点. ①四边形OACB 为平行四边形;②若|z 1+z 2|=|z 1-z 2|,则四边形OACB 为矩形; ③若|z 1|=|z 2|,则四边形OACB 为菱形;④若|z 1|=|z 2|且|z 1+z 2|=|z 1-z 2|,则四边形OACB 为正方形.跟踪训练2 (1)已知复平面内的平面向量OA →,AB →表示的复数分别是-2+i,3+2i ,则|OB →|=________. (2)若z 1=2+i ,z 2=3+a i ,复数z 2-z 1所对应的点在第四象限上,则实数a 的取值范围是__________. 考点 复数的加减法运算法则 题点 复数的加减法与向量的对应 答案 (1)10 (2)(-∞,1) 解析 (1)∵OB →=OA →+AB →,∴OB →表示的复数为(-2+i)+(3+2i)=1+3i , ∴|OB →|=12+32=10.(2)z 2-z 1=1+(a -1)i ,由题意知a -1<0,即a <1.1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限考点 复数的加减法运算法则 题点 复数加减法与点的对应 答案 D解析 ∵z 1-z 2=5-7i ,∴z 1-z 2在复平面内对应的点位于第四象限.2.已知复数z 1=(a 2-2)-3a i ,z 2=a +(a 2+2)i ,若z 1+z 2是纯虚数,那么实数a 的值为( ) A .1 B .2 C .-2D .-2或1考点 复数的加减法运算法则 题点 复数加减法的运算法则 答案 C解析 由z 1+z 2=a 2-2+a +(a 2-3a +2)i 是纯虚数,得⎩⎪⎨⎪⎧a 2-2+a =0,a 2-3a +2≠0,得a =-2.3.在复平面内,O 是原点,OA →,OC →,AB →表示的复数分别为-2+i ,3+2i,1+5i ,则BC →表示的复数为( ) A .2+8i B .4-4i C .6-6iD .-4+2i考点 复数的加减法运算法则 题点 复数加减法与向量的对应 答案 B解析 BC →=OC →-OB →=OC →-(AB →+OA →)=4-4i.4.设f (z )=|z |,z 1=3+4i ,z 2=-2-i ,则f (z 1-z 2)等于( ) A.10 B .5 5 C. 2D .5 2考点 复数的加减法运算法则 题点 复数加减法的综合应用 答案 D解析 因为z 1-z 2=5+5i ,5.设平行四边形ABCD 在复平面内,A 为原点,B ,D 两点对应的复数分别是3+2i 和2-4i ,则点C 对应的复数是__________.考点 复数加减法的几何意义及应用 题点 与加减法几何意义有关的综合应用 答案 5-2i解析 设AC 与BD 的交点为E ,则E 点坐标为⎝ ⎛⎭⎪⎫52,-1,设点C 坐标为(x ,y ),则x =5,y =-2,故点C 对应的复数为5-2i.1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.2.复数加法的几何意义就是向量加法的平行四边形法则,复数减法的几何意义就是向量减法的三角形法则.一、选择题1.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3D .-4考点 复数的加减法运算法则 题点 复数加减法的运算法则 答案 B解析 ∵z +(3-4i)=1, ∴z =-2+4i ,故z 的虚部是4.2.实数x ,y 满足z 1=y +x i ,z 2=y i -x ,且z 1-z 2=2,则xy 的值是( ) A .1 B .2 C .-2D .-1考点 复数的加减法运算法则 题点 复数加减法的综合应用 答案 A解析 z 1-z 2=(y +x )+(x -y )i =2,即⎩⎪⎨⎪⎧x +y =2,x -y =0,∴x =y =1,则xy =1.3.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( ) A .3B .2精 品 试 卷C .1D .-1考点 复数加减法运算法则 题点 复数加减法与点的对应 答案 D解析 z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上, ∴1+a =0,∴a =-1.4.设复数z 满足关系式z +|z |=2+i ,那么z 等于( ) A .-34+iB.34-i C .-34-iD.34+i 考点 复数的加减法运算法则 题点 复数加减法的运算法则 答案 D解析 设z =a +b i(a ,b ∈R ), 则z +|z |=(a +a 2+b 2)+b i =2+i ,则⎩⎨⎧a +a 2+b 2=2,b =1,解得⎩⎪⎨⎪⎧a =34,b =1,∴z =34+i.5.已知复数z 对应的向量如图所示,则复数z +1所对应的向量正确的是( )考点 复数的加减法运算法则 题点 复数加减法与向量的对应 答案 A解析 由图知z =-2+i ,则z +1=-1+i ,由复数的几何意义可知,A 是正确的.6.复数z 1=a +4i ,z 2=-3+b i ,若它们的和z 1+z 2为实数,差z 1-z 2为纯虚数,则a ,b 的值为( ) A .a =-3,b =-4 B .a =-3,b =4 C .a =3,b =-4D .a =3,b =4考点 复数的加减法运算法则题点 复数加减法的综合应用 答案 A解析 因为z 1+z 2=(a -3)+(4+b )i 为实数, 所以4+b =0,b =-4.因为z 1-z 2=(a +4i)-(-3+b i)=(a +3)+(4-b )i 为纯虚数, 所以a =-3且b ≠4.故a =-3,b =-4.7.在复平面内点A ,B ,C 所对应的复数分别为1+3i ,-i ,2+i ,若AD →=BC →,则点D 表示的复数是( ) A .1-3i B .-3-i C .3+5iD .5+3i考点 复数加减法的几何意义及应用 题点 与加减法几何意义有关的综合应用 答案 C解析 ∵点A ,B ,C 对应的复数分别为1+3i ,-i,2+i , ∴BC →对应的复数为2+2i.设D (x ,y ), ∵AD →=BC →,∴(x -1,y -3)=(2,2), ∴⎩⎪⎨⎪⎧x -1=2,y -3=2,解得⎩⎪⎨⎪⎧x =3,y =5.∴点D 表示的复数为3+5i. 二、填空题8.已知z 1=(3x +y )+(y -4x )i(x ,y ∈R ),z 2=(4y -2x )-(5x +3y )i(x ,y ∈R ).设z =z 1-z 2,且z =13-2i ,则z 1=________,z 2=________.考点 复数的加减法运算法则 题点 复数加减法的综合应用 答案 5-9i -8-7i解析 ∵z =z 1-z 2=(3x +y -4y +2x )+(y -4x +5x +3y )i =(5x -3y )+(x +4y )i =13-2i ,∴⎩⎪⎨⎪⎧5x -3y =13,x +4y =-2,解得⎩⎪⎨⎪⎧x =2,y =-1.∴z 1=5-9i ,z 2=-8-7i.9.设z =3-4i ,则复数z -|z |+(1-i)在复平面内的对应点在第________象限. 考点 复数的加减法运算法则 题点 复数加减法与点的对应 答案 三解析 因为z =3-4i ,所以|z |=5,所以z -|z |+(1-i)=3-4i -5+(1-i)=-1-5i.复数z =-1-5i 在复平面内的对应点Z (-1,-5)位于第三象限. 10.已知|z |=4,且z +2i 是实数,则复数z =________. 考点 复数的加减法运算法则 题点 复数加减法的综合应用 答案 ±23-2i解析 因为z +2i 是实数,可设z =a -2i(a ∈R ), 由|z |=4得a 2+4=16, 所以a 2=12,所以a =±23, 所以z =±23-2i.11.如图所示,在复平面内的四个点O ,A ,B ,C 恰好构成平行四边形,其中O 为原点,A ,B ,C 所对应的复数分别是z A =4+a i ,z B =6+8i ,z C =a +b i(a ,b ∈R ),则z A -z C =________.考点 复数的加减法运算法则 题点 复数加减法与向量的对应 答案 2-4i解析 因为OA →+OC →=OB →, 所以4+a i +(a +b i)=6+8i. 因为a ,b ∈R ,所以⎩⎪⎨⎪⎧4+a =6,a +b =8,所以⎩⎪⎨⎪⎧a =2,b =6.所以z A =4+2i ,z C =2+6i ,所以z A -z C =(4+2i)-(2+6i)=2-4i. 三、解答题12.设m ∈R ,复数z 1=m 2+m m +2+(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m 的取值范围.考点 复数的加减法运算法则 题点 复数加减法的运算法则解 因为z 1=m 2+mm +2+(m -15)i ,z 2=-2+m (m -3)i ,所以z 1+z 2=⎝ ⎛⎭⎪⎫m 2+m m +2-2+[(m -15)+m (m -3)]i=m 2-m -4m +2+(m 2-2m -15)i.因为z 1+z 2是虚数,所以m 2-2m -15≠0且m ≠-2, 所以m ≠5且m ≠-3且m ≠-2,所以m 的取值范围是(-∞,-3)∪(-3,-2)∪(-2,5)∪(5,+∞). 13.(1)若f (z )=z +1-i ,z 1=3+4i ,z 2=-2+i ,求f (z 1-z 2);(2)若z 1=2cos θ-i ,z 2=-2+2isin θ(0≤θ≤2π),且z 1+z 2在复平面内对应的点位于第二象限,求θ的取值范围.考点 复数加减法的几何意义及应用 题点 与加减法几何意义有关的综合应用 解 (1)z 1-z 2=(3+4i)-(-2+i)=5+3i ,f (z 1-z 2)=f (5+3i)=(5+3i)+1-i =6+2i.(2)z 1+z 2=(2cos θ-2)+(2sin θ-1)i ,由题意得⎩⎨⎧2cos θ-2<0,2sin θ-1>0,即⎩⎪⎨⎪⎧cos θ<22,sin θ>12.又θ∈[0,2π],所以θ∈⎝ ⎛⎭⎪⎫π4,5π6. 四、探究与拓展14.复数z 1=1+icos θ,z 2=sin θ-i ,则|z 1-z 2|的最大值为( ) A .3-2 2 B.2-1 C .3+2 2D.2+1考点 复数加减法的几何意义及应用 题点 与加减法几何意义有关的模的问题 答案 D解析 |z 1-z 2|=|(1-sin θ)+(cos θ+1)i| =(1-sin θ)2+(1+cos θ)2=3+2(cos θ-sin θ) =3+22cos ⎝⎛⎭⎪⎫θ+π4.∵⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫θ+π4max =1,∴|z 1-z 2|max =3+22=2+1.15.已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,求:精 品 试 卷推荐下载 (1)点C ,D 对应的复数;(2)平行四边形ABCD 的面积.考点 复数加减法的几何意义及应用题点 与加减法几何意义有关的综合应用解 (1)因为向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,所以向量AC →对应的复数为(3-i)-(1+2i)=2-3i.又OC →=OA →+AC →,所以点C 对应的复数为(2+i)+(2-3i)=4-2i.因为AD →=BC →,所以向量AD →对应的复数为3-i ,即AD →=(3,-1).设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),所以⎩⎪⎨⎪⎧ x -2=3,y -1=-1,解得⎩⎪⎨⎪⎧ x =5,y =0.所以点D 对应的复数为5.(2)因为BA →·BC →=|BA →||BC →|cos B ,所以cos B =BA →·BC →|BA →||BC →|=3-25×10=210. 所以sin B =7210. 所以S =|BA →||BC →|sin B =5×10×7210=7, 所以平行四边形ABCD 的面积为7.。
高中数学3.2.1 复数代数形式的加、减运算及其几何意义
i
=1+i. (2)z1+z2=2+3i+(-1+2i)=1+5i, z1-z2=2+3i-(-1+2i)=3+i.
目录 退出
迁移与应用 1.若复数 z 满足 z+2-3i=-1+5i,则复数 z= . 解析:由 z+2-3i=-1+5i,得 z=(-1+5i)-(2-3i)=-3+8i. 答案:-3+8i 2.计算:(1)2i-[(3+2i)-(-1+3i)]; (2)a+bi+(2a-3bi)-4i(a,b∈R); (3)(10-9i)+(-8+7i)-(3+3i). 解:(1)原式=2i-[(3+1)+(2-3)i]=2i-(4-i)=-4+3i; (2)原式=(a+2a)+(b-3b)i-4i=3a+(-2b-4)i=3a-(2b+4)i; (3)原式=(10-8-3)+(-9+7-3)i=-1-5i.
目录
退出
预习导引
1.复数的加减法 设 z1=a+bi,z2=c+di(a,b,c,d∈R), 则 z1+z2=(a+c)+(b+d)i, z1-z2=(a-c)+(b-d)i. 2.复数加法的运算律 交换律:对任意的 z1,z2∈C,z1+z2=z2+z1; 结合律:对任意的 z1,z2,z3∈C,(z1+z2)+z3=z1+(z2+z3).
目录
退出
预习交流 2
(1)思考:①根据复数减法的几何意义,|z1-z2|表示什么? ②若 z1,z2 为复数,当 z1-z2>0 时,一定有 z1>z2 吗?为什么? 提示:①根据复数减法以及模的几何意义,|z1-z2|的含义是指在 复平面上,复数 z1,z2 所对应的点 Z1 与 Z2 之间的距离. ②不一定.当 z1-z2>0 时,z1 和 z2 不一定都是实数,例 如:z1=3+i,z2=1+i,虽有(3+i)-(1+i)=2>0,但不能推出 3+i>1+i. (2)做一做:在▱ ABCD 中,������������和������������对应的复数分别为 1-2i,-3+4i, 则对角线 AC 对应向量������������对应的复数为 . 提示:由复数加法几何意义知������������对应的复数为 (1-2i)+(-3+4i)=-2+2i.
高考数学 3.2.1复数代数形式的加减运算及几何意义
高考数学 §3.2.1复数代数形式的加减运算及几何意义(导学案)预习目标:1、 掌握复数代数式的加减运算法则,并能熟练地进行复数代数式形式的加减运算;2、 理解并掌握复数加法、减法的几何意义及其应用。
预习内容:设),,,(,21R d c b a di c z bi a z ∈+=+=(1))(__________21加法运算法则=+z z(2)为坐标原点,则对应的点分别为若复数O Z Z z z ,,,2121 ________,________________,_______,212121对应的复数为则若OZ OZ OZ OZ OZ OZ OZ OZ +==+==(3)__________________________________21的几何意义是z z + (4))__(____________________21复数减法运算法则=-z z(5)同(2),______________;2121对应的复数为Z Z OZ OZ =- _______________________||_____,||2121的几何意义是z z Z Z -=_________________________________21的几何意义是z z -提出疑惑:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标:1:掌握复数的加法运算及意义2:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义学习重点:复数加法运算,复数与从原点出发的向量的对应关系.学习难点:复数加法运算的运算率,复数加减法运算的几何意义。
学习过程:例1.计算(1)(14)(72)i i +-+(2)(72)(14)i i -++(3)[(32)(43)](5)i i i --++++(4)(32)(43)(5)]i i i --++++[探究:1.观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证?2.例1中的(1)、(3)两小题,分别标出(14),(72)i i +-,(32),(43),(5)i i i --++所对应的向量,再画出求和后所对应的向量,看有所发现?例3.计算(1)(14)(72)i i +--(2)(52)(14)(23)i i i --+--+(3)(32)(43)(5)]i i i --+-+-[当堂检测:1、的值为多少?则212121,,2,43z z z z i z i z +---=+=2、计算(1))43()42(i i -++ (2))23(5i +-(3))51()2()43(i i i --++-- (4)i i i 4)32()2(++--3、ABCD 是复平面内的平行四边行,A,B,C 三点对应的复数分别是 对应的复数求点D i i i ,2,,31+-+课后练习与提高:1.计算(1)()845i -+(2)()543i i --(3)()()232923i i i ++---- 2.若(310)(2)19i y i x i -++=-,求实数,x y 的取值。
高中数学第三章3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义讲义新人教A版选修2_2
3.2.1 复数代数形式的加、减运算及其几何意义1.复数的加法与减法 (1)复数的加减法运算法则(a +b i)±(c +d i)=□01(a ±c )+(b ±d )i. (2)复数加法的运算律复数的加法满足□02交换律、□03结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=□04z 2+z 1;(z 1+z 2)+z 3=□05z 1+(z 2+z 3). 2.复数加、减法的几何意义 (1)复数加法的几何意义若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是以OZ 1→,OZ 2→为邻边的平行四边形的对角线OZ →所对应的复数.(2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→,OZ 2→的□06终点,并指向被减向量的向量Z 2Z 1→所对应的复数. (3)复平面内的两点间距离公式:d =□07|z 1-z 2|. 其中z 1,z 2是复平面内的两点Z 1和Z 2所对应的复数,d 为Z 1和Z 2间的距离.1.两点间的距离公式结合模的知识可得复平面上两点间的距离公式,设z 1=x 1+y 1i ,z 2=x 2+y 2i ,则|Z 2Z 1→|=|z 1-z 2|=|(x 1+y 1i)-(x 2+y 2i)|=|(x 1-x 2)+(y 1-y 2)i|=x 1-x 22+y 1-y 22.2.复数模的两个重要性质(1)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|; (2)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.1.判一判(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案 (1)× (2)× (3)× 2.做一做(1)计算:(3+5i)+(3-4i)=________. (2)(5-6i)+(-2-2i)-(3+3i)=________.(3)已知向量OZ 1→对应的复数为2-3i ,向量OZ 2→对应的复数为3-4i ,则向量Z 1Z 2→对应的复数为________.答案 (1)6+i (2)-11i (3)1-i探究1 复数的加减运算例1 计算:(1)(3-5i)+(-4-i)-(3+4i); (2)(-7i +5)-(9-8i)+(3-2i).[解] (1)原式=(3-4-3)+(-5-1-4)i =-4-10i. (2)原式=(5-9+3)+(-7+8-2)i =-1-i. 拓展提升复数代数形式的加减法运算,其运算法则是对它们的实部和虚部分别进行加减运算.在运算过程中应注意把握每一个复数的实部和虚部.这种运算类似于初中的合并同类项.【跟踪训练1】 计算:(1)(1+2i)+(-2+i)+(-2-i)+(1-2i); (2)(i 2+i)+|i|+(1+i).解 (1)原式=(-1+3i)+(-2-i)+(1-2i) =(-3+2i)+(1-2i)=-2. (2)原式=(-1+i)+0+12+(1+i) =-1+i +1+(1+i)=1+2i. 探究2 复数加减运算的几何意义例2 已知ABCD 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别是1+3i ,-i,2+i ,求点D 对应的复数.[解] 解法一:设D 点对应复数为x +y i(x ,y ∈R ),则D (x ,y ). 又由已知A (1,3),B (0,-1),C (2,1),∴AC 中点为⎝ ⎛⎭⎪⎫32,2,BD 中点为⎝ ⎛⎭⎪⎫x 2,y -12.∵平行四边形对角线互相平分, ∴⎩⎪⎨⎪⎧32=x 2,2=y -12,∴⎩⎪⎨⎪⎧x =3,y =5.即点D 对应的复数为3+5i.解法二:设D 点对应的复数为x +y i(x ,y ∈R ).则AD →对应的复数为(x +y i)-(1+3i)=(x -1)+(y -3)i , 又BC →对应的复数为(2+i)-(-i)=2+2i. 由已知AD →=BC →,∴(x -1)+(y -3)i =2+2i ,∴⎩⎪⎨⎪⎧x -1=2,y -3=2,∴⎩⎪⎨⎪⎧x =3,y =5,即点D 对应的复数为3+5i.[条件探究] 若一个平行四边形的三个顶点对应的复数分别为1+3i ,-i,2+i ,求第四个顶点对应的复数.[解] 设1+3i ,-i,2+i 对应A ,B ,C 三点,D 为第四个顶点,则①当ABCD 是平行四边形时,D 点对应的复数是3+5i.②当ABDC 是平行四边形时,D 点对应的复数为1-3i.③当ADBC 是平行四边形时,D 点对应复数为-1+i.拓展提升(1)根据复数的两种几何意义可知:复数的加减运算可以转化为点的坐标运算或向量运算.(2)复数的加减运算用向量进行时,同样满足平行四边形法则和三角形法则. (3)复数及其加减运算的几何意义为数形结合思想在复数中的应用提供了可能. 【跟踪训练2】 已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,求:(1)点C ,D 对应的复数; (2)平行四边形ABCD 的面积.解 (1)因为向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i , 所以向量AC →对应的复数为(3-i)-(1+2i)=2-3i. 又OC →=OA →+AC →,所以点C 对应的复数为(2+i)+(2-3i)=4-2i. 因为AD →=BC →,所以向量AD →对应的复数为3-i ,即AD →=(3,-1), 设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),所以⎩⎪⎨⎪⎧x -2=3,y -1=-1,解得⎩⎪⎨⎪⎧x =5,y =0.所以点D 对应的复数为5. (2)因为BA →·BC →=|BA →||BC →|cos B ,所以cos B =BA →·BC →|BA →||BC →|=3-25×10=152=210.所以sin B =752=7210,所以S =|BA →||BC →|sin B =5×10×7210=7.所以平行四边形ABCD 的面积为7. 探究3 复数加减运算的几何意义的应用 例3 已知|z 1|=|z 2|=|z 1-z 2|=1,求|z 1+z 2|.[解]解法一:设z1=a+b i,z2=c+d i(a,b,c,d∈R),∵|z1|=|z2|=|z1-z2|=1,∴a2+b2=c2+d2=1,①(a-c)2+(b-d)2=1.②由①②得2ac+2bd=1.∴|z1+z2|=a+c2+b+d2=a2+c2+b2+d2+2ac+2bd= 3.解法二:设O为坐标原点,z1,z2,z1+z2对应的点分别为A,B,C.∵|z1|=|z2|=|z1-z2|=1,∴△OAB是边长为1的正三角形,∴四边形OACB是一个内角为60°,边长为1的菱形,且|z1+z2|是菱形的较长的对角线OC的长,∴|z1+z2|=|OC|=|OA|2+|AC|2-2|OA||AC|cos120°= 3.拓展提升掌握以下常用结论:在复平面内,z1,z2对应的点为A,B,z1+z2对应的点为C,O为坐标原点,则四边形OACB:①为平行四边形;②若|z1+z2|=|z1-z2|,则四边形OACB为矩形;③若|z1|=|z2|,则四边形OACB为菱形;④若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.【跟踪训练3】若复数z满足|z+i|+|z-i|=2,求|z+i+1|的最小值.解解法一:设复数-i,i,-(1+i)在复平面内对应的点分别为Z1,Z2,Z3.如图,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以复数z对应的点Z的集合为线段Z1Z2.问题转化为:动点Z在线段Z1Z2上移动,求|ZZ3|的最小值,由图可知|Z1Z3|为最小值且最小值为1.解法二:设z=x+y i(x,y∈R).因为|z+i|+|z-i|=2,所以x2+y+12+x2+y-12=2,又x2+y+12=2-x2+y-12≥0,所以0≤1-y=x2+y-12≤2,即(1-y)2=x2+(y-1)2,且0≤1-y≤2.所以x=0且-1≤y≤1,则z=y i(-1≤y≤1).所以|z+i+1|=|1+(y+1)i|=12+y+12≥1,等号在y=-1即z=-i时成立.所以|z+i+1|的最小值为1.1.复数的加法规定:实部与实部相加,虚部与虚部相加,两个复数的和仍是一个复数,这一法则可以推广到多个复数相加.2.因为复数可以用向量来表示,所以复数加法的几何意义就是向量加法的平行四边形法则.3.复数的减法可根据复数的相反数,转化为复数的加法来运算.1.复数z 1=3+i ,z 2=1-i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 ∵z 1-z 2=(3+i)-(1-i)=2+2i , ∴z 1-z 2在复平面内对应的点位于第一象限. 2.已知|z |=3,且z +3i 是纯虚数,则z 等于( ) A .-3i B .3i C .±3i D.4i 答案 B解析 设z =x +y i(x ,y ∈R ),由z +3i =x +(y +3)i 为纯虚数,得x =0,且y ≠-3,又|z |=x 2+y 2=|y |=3,∴y =3.故选B.3.非零复数z 1,z 2分别对应复平面内的向量O A →,O B →,若|z 1+z 2|=|z 1-z 2|,则( ) A .O A →=O B → B .|O A →|=|O B →| C .O A →⊥O B →D .O A →,O B →共线答案 C解析 如图,由向量的加法及减法法则可知,O C →=O A →+O B →,B A →=O A →-O B →.由复数加法及减法的几何意义可知,|z 1+z 2|对应O C →的模,|z 1-z 2|对应B A →的模.又|z 1+z 2|=|z 1-z 2|,所以四边形OACB 是矩形,则O A →⊥O B →.4.复数z 满足z -(1-i)=2i ,则z 等于( )A .1+iB .-1-iC .-1+iD .1-i答案 A解析 z =2i +(1-i)=1+i.故选A.5.如图所示,平行四边形OABC 的顶点O ,A ,C 分别对应复数0,3+2i ,-2+4i.求:(1)向量AO →对应的复数; (2)向量CA →对应的复数; (3)向量OB →对应的复数.解 (1)因为AO →=-OA →,所以向量AO →对应的复数为-3-2i.(2)因为CA →=OA →-OC →,所以向量CA →对应的复数为(3+2i)-(-2+4i)=5-2i. (3)因为OB →=OA →+OC →,所以向量OB →对应的复数为(3+2i)+(-2+4i)=1+6i.。
复数代数形式的加减运算及其几何意义
复数代数形式的加减运算及其几何意义复数是由实数和虚数组成的数,可以表示为 a + bi 的形式,其中 a 和 b 都是实数,i 是虚数单位,满足 i^2 = -1、复数代数形式的加减运算是指复数之间的加法和减法操作。
复数加法运算:设有两个复数 z1 = a + bi 和 z2 = c + di,其中 a、b、c、d 都是实数。
复数加法运算的计算规则如下:1.实部相加:(a+c)2.虚部相加:(b+d)因此,两个复数之和为 z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i。
复数减法运算:设有两个复数 z1 = a + bi 和 z2 = c + di,其中 a、b、c、d 都是实数。
复数减法运算的计算规则如下:1.实部相减:(a-c)2.虚部相减:(b-d)因此,两个复数之差为 z1 - z2 = (a + bi) - (c + di) = (a - c) + (b - d)i。
综上所述,复数的加减运算可以分别对实部和虚部进行相应的加减操作,从而得到新的复数。
几何意义:复数可以用平面上的向量来表示,其中复数的实部对应向量在 x 轴上的投影,虚部对应向量在 y 轴上的投影。
对于复数 z = a + bi,可以将其在平面上表示为一个点 P(x, y)。
- 复数加法的几何意义:设有两个复数 z1 = a + bi 和 z2 = c + di,根据复数加法运算规则,z1 + z2 = (a + c) + (b + d)i。
可以将其几何意义理解为将向量 z2 平移至向量 z1 的尾部,得到一个新的向量。
新向量的坐标为 (a + c,b + d)。
因此,复数加法可以看作是两个向量的矢量相加。
- 复数减法的几何意义:设有两个复数 z1 = a + bi 和 z2 = c + di,根据复数减法运算规则,z1 - z2 = (a - c) + (b - d)i。
高中数学3-2-1复数代数形式的加、减运算及其几何意义
方法技巧 数形结合思想在复数中的应用 数与形是数学中两个最古老、也是最基本的研究对象,它们 在一定条件下可以相互转化.数形结合,不仅是一种重要的解题
方法,而且也是一种重要的思维方法.本章中有关复数的几何意
义包括三个方面:复数的表示(点和向量)、复数的模的几何意义及 复数运算的几何意义.复数的几何意义充分体现了数形结合这一 重要的数学思想方法,即通过几何图形来研究代数问题.
课前探究学习
课堂讲练互动
→ 设 D(x,y),则AD=(x-2,y-1)=(3,-1),
x-2=3, ∴ y-1=-1, x=5, 解得 y=0,
∴点 D 对应的复数为 5.
→ → → → (2)∵BA· =|BA||BC|cos B, BC → → 3-2 BA· BC 1 2 ∴cos B= = = = . → → 5× 10 5 2 10 |BA||BC| 7 2 ∴sin B= = , 5 2 10 7 2 → → ∴S=|BA||BC|sin B= 5× 10× =7, 10 ∴平行四边形 ABCD 的面积为 7.
(3)复数的加减法可以推广到若干个复数,进行连加连减或混合运
算.
课前探究学习
课堂讲练互动
【变式1】 计算: (1)(3+5i)+(3-4i);
(2)(-3+2i)-(4-5i);
(3)(5-6i)+(-2-2i)-(3+3i). 解 (1)(3+5i)+(3-4i)=(3+3)+(5-4)i=6+i. (2)(-3+2i)-(4-5i)=(-3-4)+[2-(-5)]i=-7+7i. (3)(5-6i)+(-2-2i)-(3+3i)=(5-2-3)+[-6+(-2)-3]i
=-11i.
第3章 3.2.13.2.1 复数代数形式的加减运算及其几何意义
z2+z1 , (2)对任意z1,z2,z3∈C,有z1+z2=________ z1+(z2+z3) (z1+z2)+z3=__________.
填一填· 知识要点、记下疑难点
3.2.1
2.复数加减法的几何意义 → → 如图:设复数z1,z2对应向量分别为 OZ 1, OZ 2,四边形 → OZ1ZZ2为平行四边形,则与z1+z2对应的向量是______, OZ → Z2Z1 . 与z1-z2对应的向量是______
答 仍然是个复数,且是一个确定的复数;
研一研· 问题探究、课堂更高效
3.2.1
问题2 当b=0,d=0时,与实数加法法则一致吗?
本 课 时 栏 目 开 关
答
一致.
研一研· 问题探究、课堂更高效
3.2.1
问题3 它的实质是什么?类似于实数的哪种运算方法?
本 课 时 栏 目 开 关
答 实质是实部与实部相加,虚部与虚部相加,类似于 实数运算中的合并同类项.
填一填· 知识要点、记下疑难点
3.2.1
1.复数加法与减法的运算法则
本 课 时 栏 目 开 关
(1)设z1=a+bi,z2=c+di是任意两个复数,则z1+z2= (a-c)+(b-d)i (a+c)+(b+d)i ,z1-z2=________________. ________________
3.2.1
方法二 设O为坐标原点, z1,z2,z1+z2对应的点分别为A,B,C. ∵|z1|=|z2|=|z1-z2|=1,
本 课 时 栏 目 开 关
∴△OAB是边长为1的正三角形, ∴四边形OACB是一个内角为60° ,边长为1的菱形,
且|z1+z2|是菱形的较长的对角线OC的长, → ∴|z +z |=|OC|
第三章3.2.1复数代数形式的加减运算及其几何意义
§3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义 课时目标 1.熟练掌握复数的代数形式的加减法运算法则.2.理解复数加减法的几何意义,能够利用“数形结合”的思想解题.1.复数加法与减法的运算法则(1)设z 1=a +b i ,z 2=c +d i 是任意两个复数,则z 1+z 2=____________,z 1-z 2=____________.(2)对任意z 1,z 2,z 3∈C ,有z 1+z 2=__________,(z 1+z 2)+z 3=z 1+(__________).2.复数加减法的几何意义如图:设复数z 1,z 2对应向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是_________,与z 1-z 2对应的向量是__________.一、选择题1.复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( )A .2B .2+2iC .4+2iD .4-2i2.复数z 1=2-12i ,z 2=12-2i ,则z 1+z 2等于( ) A .0 B .32+52i C .52-52i D .52-32i 3.向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则OZ 1→+OZ 2→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i4.非零复数z 1,z 2分别对应复平面内的向量OA →与OB →,若|z 1+z 2|=|z 1-z 2|,则向量OA →与OB →的关系是( )A.OA →=OB → B .|OA →|=|OB →|C .OA →⊥OB →D .OA →,OB →共线5.复数z 1=a +4i ,z 2=-3+b i ,若它们的和为实数,差为纯虚数,则实数a ,b 的值为( )A .a =-3,b =-4B .a =-3,b =4C .a =3,b =-4D .a =3,b =4二、填空题6.设纯虚数z 满足|z -1-i|=3,则z =____________.7.在复平面内,O 是原点,OA →,OC →,AB →对应的复数分别为-2+i,3+2i,1+5i ,那么BC→对应的复数为________________________________________________________________.8.设f (z )=z -2i ,z 1=3+4i ,z 2=-2-i ,则f (z 1-z 2)=__________.三、解答题9.已知复数z 1=-2+i ,z 2=-3+2i.(1)求z 1-z 2;(2)在复平面内作出复数z 1-z 2所对应的向量.10.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.能力提升11.若z ∈C 且|z +2-2i|=1,则|z -2-2i|的最小值是( )A .2B .3C .4D .512.复数3+3i ,-5i ,-2+i 的对应点分别为平行四边形的三个顶点A ,B ,C ,求第四个顶点对应的复数.1.复数的加减法运算,可以类比多项式中的合并同类项.2.根据复数的两种几何意义可知:复数的加减运算可以转化为点的坐标运算或向量运算.§3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义答案知识梳理1.(1)(a +c )+(b +d )i (a -c )+(b -d )i(2)z 2+z 1 z 2+z 32.OZ → Z 2Z 1→作业设计1.C [z 1-z 2=(3+i)-(-1-i)=4+2i.]2.C [z 1+z 2=⎝⎛⎭⎫2+12-⎝⎛⎭⎫12+2i =52-52i.] 3.C [OZ 1→+OZ 2→=5-4i +(-5+4i)=0.]4.C [由向量的加法及减法可知:在▱OACB 内,OC →=OA →+OB →,AB →=OB →-OA →.非零复数z 1,z 2分别对应复平面内向量OA →,OB →,由复数加减法的几何意义可知:|z 1+z 2|对应OC →的模,|z 1-z 2|对应AB →的模,又因为|z 1+z 2|=|z 1-z 2|,则|OC →|=|AB →|,所以四边形OACB是矩形,因此OA →⊥OB →,故选C.]5.A [z 1+z 2=a -3+(4+b )i ,z 1-z 2=a +3+(4-b )i ,由已知得⎩⎪⎨⎪⎧ 4+b =0a +3=0,∴⎩⎪⎨⎪⎧a =-3b =-4.] 6.(±22+1)i解析 ∵z 是纯虚数,设z =b i (b ∈R 且b ≠0).由|z -1-i|=3得|-1+(b -1)i|=3.∴1+(b -1)2=9,∴b -1=±22,∴b =±22+1,即z =(±22+1)i.7.4-4i解析 由AB →=OB →-OA →,得OB →=AB →+OA →=1+5i +(-2+i)=-1+6i ,BC →=OC →-OB →=3+2i -(-1+6i)=4-4i.8.5+3i解析 ∵f (z )=z -2i ,∴f (z 1-z 2)=z 1-z 2-2i=(3+4i)-(-2-i)-2i=(3+2)+(4+1)i -2i =5+3i.9.解 (1)因为z 1=-2+i ,z 2=-3+2i ,所以z 1-z 2=(-2+i)-(-3+2i)=1-i.(2)在复平面内复数z 1-z 2所对应的向量是OZ →=1-i ,如图所示.10.解 (1)AB →对应的复数为z B -z A =(2+i)-1=1+i.BC →对应的复数为z C -z B =(-1+2i)-(2+i)=-3+i.AC →对应的复数为z C -z A =(-1+2i)-1=-2+2i.(2)由(1)可得,|AB →|=2,|BC →|=10,|AC →|=8,∵|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形.(3)S △ABC =12×2×8=2. 11.B [由已知|z -(-2+2i)|=1,所以复数z 的对应点的轨迹是以(-2,2)为圆心,1为半径的圆,如图所示,|z -2-2i|=|z -(2+2i)|表示复数z 的对应点到(2,2)点的距离,即圆上的点到(2,2)点的距离,最小值为圆心与点(2,2)的距离减去半径,易得值为3.]12.解 当四点顺序为ABCD 时,第四个顶点D 对应的复数为1+9i ;当四点顺序为ADBC 时,第四个顶点D 对应的复数为5-3i ;当四点顺序为ABDC 时,第四个顶点D 对应的复数为-5-7i.。
复数代数形式的加减运算及其几何意义
我们知道实数有加、减运算,且有运算律:
abba
(a b) c a (b c)
那么复数应怎样进行加、减运算呢?
你认为应怎样定义复数的加、减运算呢?
运算律仍成立吗?
注意到 i2 1,虚数单位 i 可以和实数进行运 算且运算律仍成立,所以复数的加、减运算我们已
经是自然而然地在进行着,只要把这些零散的操作
⑵易知复数的加法满足交换律、结合律,
即对任何 z1,z2,z3∈C, 有 z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).
⑶复数的加减法可类比多项式的加减法进行.
(a+bi )±(c+di) = (a±c) + (b±d)i
我们知道,两个向量的和满足平行四边形法则, 复数可以 表示平面上的向量,那么复数的加法与向量的加法是否具有一 致性呢?
类似地,复数减法:
y
设 z1a b, iz2c di,
Z2(c,d) OZ1-OZ2
有 当o zz z1o z 1 z 2时 o z 2 , = a b ) - ( ,d ( c , ) ,
Z1(a,b)
(a-c )(b-d)i来自OxZ 复数的减法为对应向量的减法 这就是复数减法的几何意义.
整理成法则即可了!
1.复数加、减法的运算法则: 已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数) (1)加法法则:z1+z2=(a+c)+(b+d)i;
(2)减法法则:z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减).
复数代数形式的加、减运算及其几何意义 课件
1.如何理解复数代数形式的加、减运算法则的合理性?
剖析:复数的代数形式的加法法则是一种规定,减法是加法的逆
运算,其合理性可以从以下几点理解:
(1)当复数的虚部为零时,与实数的加法、减法法则一致.
(2)实数加法的交换律、结合律在复数集中仍成立.
(3)两个复数的和(差)是唯一确定的复数.
(4)可以推广到多个复数进行加、减运算.
2.进一步理解复数减法运算的几何意义.
剖析:复数的减法用向量来进行运算时也可实施平行四边形法
则.
设与复数a+bi 对应, 1 与复数c+di 对应, 如图所示,以
为一条对角线, 1 为一边作平行四边形,那么这个平行四边形的另
一边2 所表示的向量就与复数(a-c)+(b-d)i 对应.
解:如图,
对应复数z3-z1, 对应复数z2-z1, 对应复数z4-z1.
由复数加、减运算的几何意义,得 = + ,
∴z4-z1=(z2-z1)+(z3-z1).
∴z4=z2+z3-z1
=(5+i)+(3+3i)-(1+i)=7+3i.
故 AD 的长为| | = |4 − 1|
∴平行四边形 OZ1ZZ2 为正方形.
∴|z1-z2|=|2 1 | = || = 2.
由题意知a2+b2=1,c2+d2=1,
(a+c)2+(b+d)2=2,∴2ac+2bd=0.
∴|z1-z2|2=(a-c)2+(b-d)2
=a2+c2+b2+d2-2ac-2bd=2,
复数代数形式的加减运算及其几何意义(上课)
问题: 问题: 实数有加、 乘方、 实数有加、减、乘、除、乘方、开方 等运算, 等运算,那么复数是否也能进行这些运算 呢?
1.复数加减法的运算法则: 复数加减法的运算法则: 复数加减法的运算法则
(1)运算法则:设复数z (1)运算法则:设复数z1=a+bi,z2=c+di, 运算法则 那么: 那么:z1+z2=(a+c)+(b+d)i;
P61习题 习题
z1-z2=(a-c)+(b-d)i. =(a-c)+(b即:两个复数相加(减)就是实部与 两个复数相加( 实部,虚部与虚部分别相加(减). 实部,虚部与虚部分别相加(
(2)复数的加法满足交换律、结合律, (2)复数的加法满足交换律、结合律, 复数的加法满足交换律 即对任何z1,z2,z3∈C,有 ∈C,有
3.2.1复数的代数形式的 3.2.1复数的代数形式的 加减运算及其几何意义
复数的几何意义( 复数的几何意义(一)
复数z=a+bi 复数z=a+bi (数) z=a+bi Z(a,b)
a b
一一对应
直角坐标系中的点Z(a,b) 直角坐标系中的点Z(a,b) (形) 建立了平面直角 坐标系来表示复数的 平面 ------复数平面 ------复数平面 简称复平面 复平面) (简称复平面)
上点除原点外都表示纯虚数。
例1
已知复数z=(m +m+m-2)i在复平面 已知复数z=(m2+m-6)+(m2+m-2)i在复平面
内所对应的点位于第二象限,求实数m 内所对应的点位于第二象限,求实数m允许的取 值范围。 值范围 −3 < m < 2 m2 + m− 6 < 0 得 解 :由 2 m < −2或m >1 m + m− 2 > 0
3.2.1复数代数形式的加减运算及几何意义
§3.2复数代数形式的四则运算§3.2.1复数代数形式的加减运算及几何意义教学目标:知识与技能:掌握复数的加法运算及意义过程与方法:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学重点:复数加法运算,复数与从原点出发的向量的对应关系.教学难点:复数加法运算的运算率,复数加减法运算的几何意义。
教具准备:多媒体、实物投影仪 。
教学设想:复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定.教学过程:学生探究过程:1.虚数单位i :(1)它的平方等于-1,即 21i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C .6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小7. 复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法8.若(,)A x y ,(0,0)O ,则(),OA x y =9. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差10. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲解新课:一.复数代数形式的加减运算1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .2. 复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .3. 复数的加法运算满足交换律: z 1+z 2=z 2+z 1.证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ).∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i .z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i .又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1.∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律.4. 复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3)证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R ).∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i )=[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i=[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i=(a 1+a 2+a 3)+(b 1+b 2+b 3)i .z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]=(a 1+b 1i )+[(a 2+a 3)+(b 2+b 3)i ]=[a 1+(a 2+a 3)]+[b 1+(b 2+b 3)]i=(a 1+a 2+a 3)+(b 1+b 2+b 3)i∵(a 1+a 2)+a 3=a 1+(a 2+a 3),(b 1+b 2)+b 3=b 1+(b 2+b 3).∴(z 1+z 2)+z 3=z 1+(z 2+z 3).即复数的加法运算满足结合律讲解范例:例1计算:(5-6i)+(-2-i)-(3+4i)解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i例2计算:(1-2i )+(-2+3i )+(3-4i )+(-4+5i )+…+(-2002+2003i )+(2003-2004i )解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i )=(2003-1001)+(1001-2004)i =1002-1003i .解法二:∵(1-2i )+(-2+3i )=-1+i ,(3-4i )+(-4+5i )=-1+i ,……(2001-2002i )+(-2002+2003)i =-1+i .相加得(共有1001个式子):原式=1001(-1+i )+(2003-2004i )=(2003-1001)+(1001-2004)i =1002-1003i二.复数代数形式的加减运算的几何意义复数的加(减)法 (a +bi )±(c +di )=(a ±c )+(b ±d )i .与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减). 1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ2. 复数z a bi =+←−−−→一一对应平面向量OZ3.复数加法的几何意义:设复数z 1=a +bi ,z 2=c +di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )以1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ , ∴OZ = 1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d )=(a +c )+(b +d )i4. 复数减法的几何意义:复数减法是加法的逆运算,设z =(a -c )+(b -d )i ,所以z -z 1=z 2,z 2+z 1=z ,由复数加法几何意义,以为一条对角线,1OZ 为一条边画平行四边形,那么这个平行四边形的另一边OZ 2所表示的向量2OZ 就与复数z -z 1的差(a -c )+(b -d )i 对应由于21OZ Z Z =,所以,两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.例3已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,z 在平面内所对应的点在第几象限?解:z =z 2-z 1=(1+2i )-(2+i )=-1+i ,∵z 的实部a =-1<0,虚部b =1>0,∴复数z 在复平面内对应的点在第二象限内.点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即AB 所表示的复数是z B -z A . ,而BA 所表示的复数是z A -z B ,故切不可把被减数与减数搞错尽管向量AB 的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量AB 所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向和长度有关,而与位置无关例4 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数. 分析一:利用BC AD =,求点D 的对应复数.解法一:设复数z 1、z 2、z 3所对应的点为A 、B 、C ,正方形的第四个顶点D 对应的复数为x +yi (x ,y ∈R ),是:-==(x +yi )-(1+2i )=(x -1)+(y -2)i ;-==(-1-2i )-(-2+i )=1-3i . ∵BC AD =,即(x -1)+(y -2)i =1-3i ,∴⎩⎨⎧-=-=-,32,11y x 解得⎩⎨⎧-==.1,2y x 故点D 对应的复数为2-i .分析二:利用原点O 正好是正方形ABCD 的中心来解.解法二:因为点A 与点C 关于原点对称,所以原点O 为正方形的中心,于是(-2+i )+ (x +yi )=0,∴x =2,y =-1.故点D 对应的复数为2-i .点评:根据题意画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用巩固练习:1.已知复数z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1在复平面内所表示的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在复平面上复数-3-2i ,-4+5i ,2+i 所对应的点分别是A 、B 、C ,则平行四边形ABCD 的对角线BD 所对应的复数是A.5-9iB.-5-3iC.7-11iD.-7+11i3.已知复平面上△AOB 的顶点A 所对应的复数为1+2i ,其重心G 所对应的复数为1+i ,则以OA 、OB 为邻边的平行四边形的对角线长为 A.32 B.22 C.2 D.54.复平面上三点A 、B 、C 分别对应复数1,2i ,5+2i ,则由A 、B 、C 所构成的三角形是A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.一个实数与一个虚数的差( )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数6.计算(-])23()23[()23()32i i i ++---++=____.7.计算:(2x +3yi )-(3x -2yi )+(y -2xi )-3xi =________(x 、y ∈R ).8.计算(1-2i )-(2-3i )+(3-4i )-…-(2002-2003i ).9.已知复数z 1=a 2-3+(a +5)i ,z 2=a -1+(a 2+2a -1)i (a ∈R )分别对应向量1OZ 、2OZ (O 为原点),若向量21Z Z 对应的复数为纯虚数,求a 的值. 解:21Z Z 对应的复数为z 2-z 1,则z 2-z 1=a -1+(a 2+2a -1)i -[a 2-3+(a +5)i ]=(a -a 2+2)+(a 2+a -6)i∵z 2-z 1是纯虚数∴⎪⎩⎪⎨⎧≠-+=+-060222a a a a 解得a =-1. 10.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.解:设D (x ,y ),则OA OD AD -=对应的复数为(x +yi )-(1+2i )=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i )-(-2+i )=1-3i ∵= ∴(x -1)+(y -2)i =1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x ∴D 点对应的复数为2-i 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 3.2.1复数代数形式的加减运算及其几何意义练习 新人教A 版选修2-2一、选择题1.(2014·浙江台州中学期中)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件[答案] A[解析] z 是纯虚数⇔⎩⎪⎨⎪⎧x 2-1=0,x +1≠0,⇔x =1,故选A.2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4[答案] B[解析] z =1-(3-4i)=-2+4i ,故选B.3.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( ) A .3 B .2 C .1 D .-1 [答案] D[解析] z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i. ∵z 1+z 2所对应的点在实轴上, ∴1+a =0,∴a =-1.4.▱ABCD 中,点A 、B 、C 分别对应复数4+i 、3+4i 、3-5i ,则点D 对应的复数是( ) A .2-3i B .4+8i C .4-8i D .1+4i [答案] C[解析] AB →对应的复数为(3+4i)-(4+i)=(3-4)+(4-1)i =-1+3i , 设点D 对应的复数为z ,则DC →对应的复数为(3-5i)-z . 由平行四边形法则知AB →=DC →, ∴-1+3i =(3-5i)-z ,∴z =(3-5i)-(-1+3i)=(3+1)+(-5-3)i =4-8i.故应选C.5.已知复数z 1=3+2i ,z 2=1-3i ,则复数z =z 1-z 2在复平面内对应的点Z 位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] ∵z 1=3+2i ,z 2=1-3i ,∴z =z 1-z 2=3+2i -(1-3i)=(3-1)+(2+3)i =2+5i.∴点Z 位于复平面内的第一象限.故应选A.6.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心[答案] A[解析] 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A 、B 、C 距离相等,∴P 为△ABC 的外心.二、填空题7.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根,则这个实根以及实数k 的值分别为____________和____________.[答案] ⎩⎨⎧x 0=2,k =-22,或⎩⎨⎧x 0=-2,k =2 2.[解析] 方程的实根必然适合方程,设x =x 0为方程的实根,代入整理后得a +b i =0的形式,由复数相等的充要条件,可得关于x 0和k 的方程组,通过解方程组可得x 及k 的值.8.已知z 1=cos α+isin α,z 2=cos β-isin β且z 1-z 2=513+1213i ,则cos(α+β)的值为____.[答案] 12[解析] ∵z 1=cos α+isin α,z 2=cos β-isin β, ∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i ,∴⎩⎪⎨⎪⎧cos α-cos β=513①sin α+sin β=1213②①2+②2得2-2cos(α+β)=1, 即cos(α+β)=12.9.在复平面内,O 是原点,OA →、OC →、AB →对应的复数分别为-2+i 、3+2i 、1+5i ,那么B C →对应的复数为______________.[答案] 4-4i [解析] B C →=OC →-OB →=OC →-(OA →+AB →)=3+2i -(-2+i +1+5i) =(3+2-1)+(2-1-5)i =4-4i. 三、解答题10.已知平行四边形ABCD 中,AB →与AC →对应的复数分别是3+2i 与1+4i ,两对角线AC 与BD 相交于P 点.(1)求AD →对应的复数; (2)求DB →对应的复数; (3)求△APB 的面积.[分析] 由复数加、减法运算的几何意义可直接求得AD →,DB →对应的复数,先求出向量PA →、PB →对应的复数,通过平面向量的数量积求△APB 的面积.[解析] (1)由于ABCD 是平行四边形,所以AC →=A B →+AD →,于是AD →=AC →-AB →,而(1+4i)-(3+2i)=-2+2i ,即A D →对应的复数是-2+2i.(2)由于DB →=AB →-AD →,而(3+2i)-(-2+2i)=5, 即DB →对应的复数是5.(3)由于PA →=12CA →=-12AC →=⎝ ⎛⎭⎪⎫-12,-2,PB →=12DB →=⎝ ⎛⎭⎪⎫52,0,于是PA →·PB →=-54,而|PA →|=172,|PB →|=52,所以172·52·cos∠APB =-54, 因此cos ∠APB =-1717,故sin ∠APB =41717, 故S △APB =12|PA →||PB →|sin ∠APB =12×172×52×41717=52.即△APB 的面积为52.[点评] (1)根据复数加减法运算的几何意义可以把复数的加减法运算转化为向量的坐标运算.(2)复数加减法运算的几何意义为应用数形结合思想解决复数问题提供了可能.一、选择题11.(2015·陕西理,11)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )A.34+12π B .12+1π C.12-1π D .14-12π[答案] D[解析] 由题意可得,|z |=x -2+y 2≤1,即(x -1)2+y 2≤1,符合条件y ≥x 的区域如图中阴影部分所示,可计算得出S 阴=14π×12-12×12=π4-12.所以由几何概型可知,所求概率为S 阴S 圆=14-12π.故本题正确答案为D.12.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值为( ) A .1 B .3 C .1或3D .-1[答案] B[解析] 由条件知⎩⎪⎨⎪⎧a 2-4a +3=0,a -1≠0.∴a =3.13.设复数z 1、z 2满足z 1-z -2=-1+i ,z 1=(a +2)+(a 2+a -2)为不等于0的实数,则|z 2|=( )A. 2 B . 5 C.17 D .26[答案] C[解析] ∵z 1∈R ,∴a 2+a -2=0,∴a =1或-2, ∵z 1≠0,∴a +2≠0,∴a =1,∴z 1=3,∵z 1-z -2=-1+i ,∴z -2=z 1-(-1+i)=4-i , ∴z 2=4+i ,∴|z 2|=17.14.(2014·新乡、许昌、平顶山调研)复数z 1、z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m 、λ、θ∈R ),并且z 1=z 2,则λ的取值范围是( )A .[-1,1]B .[-916,1]C .[-916,7]D . [916,1][答案] C[解析] ∵z 1=z 2,∴⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ.∴λ=4sin 2θ-3sin θ=4(sin θ-38)2-916,∵sin θ∈[-1,1],∴λ∈[-916,7].二、填空题15.在复平面内,z =cos10+isin10的对应点在第________________象限. [答案] 三[解析] ∵3π<10<7π2,∴cos10<0,sin10<0,∴z 的对应点在第三象限.16.若|z -1|=|z +1|,则|z -1|的最小值是______________. [答案] 1[解析] 解法一:设z =a +b i ,(a ,b ∈R ),则|(a -1)+b i|=|(a +1)+b i|. ∴a -2+b 2=a +2+b 2,即a =0,∴z =b i ,b ∈R , ∴|z -1|m i n =|b i -1|m i n =-2+b 2,故当b =0时,|z -1|的最小值为1. 解法二∵|z -1|=|z +1|,∴z 的轨迹为以(1,0),(-1,0)为端点的线段的垂直平分线,即y 轴,|z -1|表示,y 轴上的点到(1,0)的距离,所以最小值为1.三、解答题17.已知关于t 的方程t 2+2t +2xy +(t +x -y )i =0(x 、y ∈R ),求使该方程有实根的点(x ,y )的轨迹方程.[解析] 设原方程的一个实根为t =t 0,则有 (t 20+2t 0+2xy )+(t 0+x -y )i =0. 根据复数相等的充要条件有⎩⎪⎨⎪⎧t 20+2t 0+2xy =0, ①t 0+x -y =0, ②把②代入①中消去t 0,得(y -x )2+2(y -x )+2xy =0, 即(x -1)2+(y +1)2=2.故所求点的轨迹方程为(x -1)2+(y +1)2=2.[点评] 因为t 0为实数,故根据复数相等的充要条件让实部与虚部分别为0,而要求的是点(x ,y )的轨迹方程,故应用代入消元法将t 0消去整理即可.18.设z =a +b i(a 、b ∈R ),且4(a +b i)+2(a -b i)=33+i ,又ω=sin θ-icos θ,求z 的值和|z -ω|的取值范围.[解析] ∵4(a +b i)+2(a -b i)=33+i , ∴6a +2b i =33+i ,∴⎩⎨⎧6a =33,2b =1,∴⎩⎪⎨⎪⎧a =32,b =12.∴z =32+12i , ∴z -ω=⎝⎛⎭⎪⎫32+12i -(sin θ-icos θ)=⎝ ⎛⎭⎪⎫32-sin θ+⎝⎛⎭⎪⎫12+cos θi∴|z -ω|=⎝ ⎛⎭⎪⎫32-sin θ2+⎝⎛⎭⎪⎫12+cos θ2=2-3sin θ+cos θ=2-2⎝ ⎛⎭⎪⎫32sin θ-12cos θ=2-2sin ⎝⎛⎭⎪⎫θ-π6, ∵-1≤sin ⎝ ⎛⎭⎪⎫θ-π6≤1, ∴0≤2-2sin ⎝ ⎛⎭⎪⎫θ-π6≤4 ∴0≤|z -ω|≤2, 故所求得z =32+12i , |z -ω|的取值范围是[0,2].。