2011中考数学第一轮考点专题测试题41
2011年全国中考《一元二次方程》测试题
第1页2011年全国各地中考数学《一元二次方程》测试题一、选择题1. (福州)一元二次方程(2)0x x -=根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.(山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( ) A. ()22891256x -= B. ()22561289x -= C. 289(1-2x)=256 D.256(1-2x)=2893. (山东威海)关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( ) A .0B .8C .42±D .0或84.(四川南充市) 方程(x+1)(x -2)=x+1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,35. (江西)已知x=1是方程x 2+bx-2=0的一个根,则方程的另一个根是( ) A.1 B.2 C.-2 D.-16. (福建泉州)已知一元二次方程x 2-4x+3=0两根为x 1、x 2, 则x 1·x 2等于( )A. 4B. 3C. -4D. -37. (甘肃兰州)下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --=8. (甘肃兰州)用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=9. (江苏泰州)一元二次方程x 2=2x 的根是 ( )A .x=2B .x=0C .x 1=0, x 2=2D .x 1=0, x 2=-210.(重庆江津)已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A.a<2 B,a>2 C.a<2且a ≠1 D.a<-2·11. (江西南昌)已知x=1是方程x 2+bx-2=0的一个根,则方程的另一个根是( ) A.1 B.2 C.-2 D.-112. (江苏南通)已知3是关于x 的方程x 2-5x +c =0的一个根,则这个方程的另一个根是( )A. -2B. 2C. 5D. 613. (四川凉山州)某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x += 14. (安徽)一元二次方程x (x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和2二、填空题15. (江苏扬州)某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是16.(山东滨州)若x=2是关于x 的方程2250x x a --+=的一个根,则a 的值为______.AD 利用17.(江苏宿迁)如图,邻边不等..的矩形花圃ABCD ,它的一边已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m 2,则AB 的长度是 m (可利用的围墙长度超过6m ).18. (江苏镇江)已知关于x 的方程260x mx +-=的一个根为2,则m=_____,另一根是_______.三、解答题19、(山东聊城)解方程:()220x x x -+-=20. (江苏南京)解方程x 2-4x +1=021.解方程(配方法):22320x x +-=.。
2011数学中考第一轮复习课件 第3讲 整式及其运算
解:原式=-x2+5 当 x= 3,原式=2
考点训练 3
整式及其运算 (训练时间:60分钟 分值:100分)
一、选择题(每小题 3 分,共 45 分)
1.(2010·桂林)下列运算正确的是( ) A.a6÷a2=a3 B.5a2-3a2=2a C.(-a) 2·a3=a5 D.5a+2b=7ab
4.如果 a-3b=-3,那么代数式 5-a+3b 的值是( A.0 B.2 C.5 D.8
D )
5.如果代数式 4y2-2y+5 的值为 7,那么代数式 2y2-y+1 的值等于( A.2 B.3 C.-2 D.4
6.若 m2-n2=6,且 m-n=3,则 m+n=2.
A )
7.化简:(x+3) 2-(x-1)(x-2). 9x+7
1.下列运算中,正确的是( A ) A.x3·x2=x5 B.x+x2=x3 x 3 x3 3 2 C.2x ÷x =x D.( ) = 2 2
2.下列运算正确的是( C ) A.a3·a4=a12 B.a6÷a3=a2 C.2a-3a=-a D.(a-2)2=a2-4
3.下列运算正确的是( D ) A.2x5-3x3=-x2 - B.(-2x2y)3·4x 3=-24x3y3 1 1 1 C.( x-3y)(- x+3y)= x2-9y2 2 2 4 D.(3a6x3-9ax5)÷(-3ax3)=3x2-a5
)
【解析】同类项必须满足所含字母相同并且相同字母的指数也相同. 【答案】C
15.(2011 中考预测题)现规定一种运算:x*y=xy+x-y,其中 x、y 为实数,则 x*y+(y -x)*y 等于( ) A.x2-y B.y2-y C.y2 D.y2-x
2011年中考数学第一轮总复习学案(代数式第4课时)
第____周星期___第___节本学期学案累计: 课时上课时间:______ 签名:____我们的追求:让每位同学都得到发展我们的约定:我的课堂,我作主!课时4.二次根式【课前预测】1.(07福州)当{ EMBED Equation.DSMT4 |x___________时,二次根式在实数范围内有意义.2.(07上海)计算:__________.3.(06长春)计算:= _____________.4.下面与是同类二次根式的是()A. B. C. D.5.(08荆州)下列根式中属最简二次根式的是()A. B. C. D.【考点呈现】1.二次根式的有关概念⑴式子叫做二次根式.注意被开方数只能是.并且根式.⑵简二次根式被开方数所含因数是,因式是,不含能的二次根式,叫做最简二次根式.(3) 同类二次根式化成最简二次根式后,被开方数几个二次根式,叫做同类二次根式.2.二次根式的性质⑴ 0;⑵(≥0)⑶;⑶();⑷().3.二次根式的运算(1) 二次根式的加减:①先把各个二次根式化成;②再把分别合并,合并时,仅合并,不变.【考题例析】例1 (08芜湖)估计132202⨯+的运算结果应在()A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间例2 计算:⑴( 07台州);【考题训练】1.(06南昌)计算: .2.(06南通)式子有意义的x 取值范围是________.3.(06海淀)下列根式中能与合并的二次根式为( )A .B .C .D .4.(08大连)若,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a -5.在数轴上与表示的点的距离最近的整数点所表示的数是 .6.(1)(06无锡)计算:º;(2)(08宜宾)计算:.﹡7.(08广州)如图,实数、在数轴上的位置,化简 .。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习
在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
中考数学第一轮专题限时训练精选试题及答案
2015年中考数学一轮复习资料毛坦厂中学叶集分校皖西当代中学二零一四年十月坚持到底,三载拼搏终有回报决胜中考,父母期盼定成现实序言第一轮复习的目的第一轮复习的目的是要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。
要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。
要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容重点串讲。
(2)过基本方法关。
如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。
(3)过基本技能关。
如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
做到对每道题要知道它的考点。
基本宗旨:知识系统化,练习专题化。
2、具体要求与做法:(1)认真阅读考纲,搞清课本上每一个概念,公式、法则、性质、公理、定理。
重视教材的基础作用和示范作用。
抓基本概念的准确性;抓公式、定理的熟练和初步应用;抓基本技能的正用、逆用、变用、连用、巧用;能准确理解教材中的概念;能独立证明书中的定理;能熟练求解书中的例题;能说出书中各单元的作业类型;能掌握书中的基本数学思想、方法,做到基础知识系统化,基本方法类型化,解题步骤规范化(2)抓住基本题型,学会对基本题目进行演变,如适当改变题目条件,改变题目问法等。
(3)初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。
这些方法要按要求灵活运用。
因此复习中针对要求,分层训练,避免不必要的丢分,从而形成明晰的知识网络和稳定的知识框架。
研读课标(特别注意课标中可操作性语言,对“了解”“理解”“掌握”“灵活应用”等做出具体界定),以课本为依据,不扩展范围和提高要求.据课本内容将有关的概念、公式、法则、定理及基本运算、基本推理,基本作图,基本技能和方法等形成合理的知识网络结构,通过网络结构,体现知识发生、发展的过程,体现知识的联系,体现知识的应用功能,做到遗漏的知识要补充;模糊的概念要明晰;零散的内容要整合;初浅的理解要深化,要关注基础知识和基本技能的训练,关注“双基”所蕴涵的数学本质及其在具体情况中的合理应用.(4)防范错误。
专题反比例函数-中考数学第一轮总复习课件(全国通用)
考 其中x是自变量,y是x的函数,k是比例系数. 点
真 表达式:y k 或y=kx-1 或 xy=k(k≠0).
题
x
防错提醒:(1)k≠0;(2)自变量x≠0;(3)函数y≠0.
精
练
提 升
考点1 反比例函数的图象与性质
检 测
考
2.(202X•T6)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)
检 测
考
1及.如y2图=,2x直的线图l象⊥分x于别点交P于,且点与A反、比B,例连函接数OA,yO1B=,已4x
y
点 知 △AOB的面积为_1__.
l A B
真 题
精
2y.2如 图kx2 ,(x平行0)的于图x轴象的分直别线相与交函于数A,yB1两 k点x1 (,x点 0A)在与点 B的右侧,C为x轴上的一个动点,若△ABC的面积为
x
O
两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x y
x
精 轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的A P
练 提 面积记为S1,△QMN的面积记为S2,则S1_=_____S2.B
Q
升 (填“>”“<”或“=”)
OM N
x
考点2 反比例函数k的几何意义
检 测
1.如图,点A(m,1),B(2,n)在双曲线 y k (k 0) 上连接OA,OB. x
练 过平移,旋转来考查.注意利用平行四边形,矩形,菱形的性质
提 升
构建全等和类似,利用平移,旋转的性质沟通坐标之间的关系.
考点4 反比例函数与几何图形结合
检 测
(交2于02点X·P(T22,04))如.已图知,直点线A(y4=,k01x)(,xB≥(00,)3与),双连曲接线AB,将yRt△k(x2xA>OB0沿)相OP
中考数学一轮复习专题突破练习—有理数的运算(含解析)
中考数学一轮复习专题突破练习—有理数的运算(含解析)一、单选题1.(2022·陕西西安交大第二附属中学南校区九年级其他模拟)﹣23的倒数是()A.32B.23C.﹣32D.﹣23【答案】C【分析】根据:除0外的数都存在倒数,两个乘积是1的数互为倒数,0没有倒数;判断即可.【详解】解:﹣23的倒数是﹣32.故答案为:C.2.(2022·重庆字水中学九年级三模)下列各数中,相反数最大的是()A.-5 B.-2 C.-1 D.0【答案】A【分析】求得各选项的相反数,然后比较大小即可. 【详解】解:各选项的相反数分别为5,2,1,0∵5210>>>∴-5的相反数最大故答案为A .3.(2022·西安市铁一中学九年级其他模拟)据新浪财经2022年4月2日报到,第一龙头股贵州茅台一路走高,截至收盘涨近6%至2162元,收涨5.75%,市值激增至272000000元.数据272000000用科学记数法表示为( ) A .627210⨯B .82.7210⨯C .90.27210⨯D .927210⨯ 【答案】B 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8272000000 2.7210=⨯,故选:B.4.(2022·长春市解放大路学校九年级其他模拟)下列各数中,比2021-小的数为()A.2022-B.2020-C.0 D.2020【答案】A【分析】根据有理数的大小比较方法即可求解.【详解】∵2022-<2020-<2021-<0<2020故比2021--小的数为2022故选A.5.(2022·福建泉州市·泉州五中九年级其他模拟)据报道,2020年泉州GDP总量突破万亿大关,约为10159亿元,居全国第18位,其中数10159亿元用科学记数法表示为()A.12⨯元C.4⨯元D.51.0159100.1015910⨯元B.131.015910⨯元0.1015910【答案】A【分析】根据题意,运用科学记数法的表示方法可直接得出答案,要注意绝对值大于1的数字科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为正整数.【详解】解:10159亿用科学记数法表示为121.015910⨯,故选:A .6.(2022·山东省诸城市树一中学九年级三模)若x x +=0,那么实数x 一定是( )A .负数B .正数C .零D .非正数 【答案】D【分析】先整理,然后根据绝对值等于它的相反数进行解答.【详解】解:由x +|x |=0得,|x |=−x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:D .7.(2022·江苏南京·)下列四个实数中,是负数的是( )A .-(-1)B .(-1)2C .|-1|D .(-1)3【答案】D 【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得. 【详解】解:A .-(-1)=1,是正数,不符合题意;B .(-1)2=1,是正数,不符合题意;C .|-1|=1,是正数,不符合题意;D .(-1)3=-1,是负数,符合题意;故选:D .8.(2022·河南师大附中九年级三模)1长度单位“埃”,等于一亿分之一厘米,那么一本杂志长为35厘米,等于( )埃.A .73.510⨯B .83.510⨯C .93.510⨯D .83.510-⨯ 【答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:35cm=35×108埃=3.5×109埃.故选:C.9.(2019·宁夏)如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.17【答案】C【解析】试题分析:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,故选C.考点:规律型:图形的变化类.10.(2022·江苏苏州·)21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.二、填空题11.(2022·厦门市第九中学九年级二模)2022年厦门中考生大约39700人,这个数字可用科学记数法表示为__________【答案】3.97×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:39700=3.97×104.故答案为:3.97×104. 12.(2022·广东)已知a ,b 为有理数,如果规定一种新的运算“※”,规定:23a b b a =-※,例如:122231431=⨯-⨯=-=※,计算:()235=※※_________ .【答案】10 【分析】根据a ※b =2b -3a ,可以计算出所求式子的值. 【详解】解:∵a ※b =2b -3a ,∴(2※3)※5=(2×3-3×2)※5=(6-6)※5=0※5=2×5-3×0 =10-0=10,故答案为:10.13.(2022·贵州)某同学在银行存入1000元,记为1000+元,则支出500元,记为______元.【答案】500【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,若向银行存入1000元,记作“+1000元”,那么向银行支出500元,应记作“﹣500元”.故答案为:﹣500.14.(2022·浙江)已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=_____.【答案】-1【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.【详解】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.15.(2019·云南)如果x的相反数是2019,那么x的值是__________.【答案】2019-【解析】【分析】根据相反数的定义进行分析即可.【详解】解:∵2019-的相反数是2019,x的值是:2019-.故答案为2019-三、计算题16.(2020·河北九年级一模)小盛和丽丽在学完了有理数后做起了数学游戏(1)规定用四个不重复(绝对值小于10)的正整数通过加法运算后结果等于12,小盛:1+2+3+6=12:丽丽:1+2+4+5=12,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由:(2)规定用四个不重复(绝对值小于10)的整数通过加法运算后结果等于12;【答案】(1)见解析;(2)答案不唯一,-1-3+7+9=12.【分析】(1)由于1+2+3+4=10,要想和为12,在此基础上要加上2,据此进行思考即可;(2)根据有理数加减法法则按要求进行计算即可(答案不唯一).【详解】(1)没有其他算式了,四个小于10的不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加2,则任何两个数加1或者任意一个数加2,又因为数字不能重复,所以只能是3+1或4+1,3+2,或4+2;故符合条件的算式有1+2+4+5,1+2+3+6;只有两个;(2)答案不唯一,如:-1-3+7+9=12,写出一个即可.17.(2020·河北保定市·)计算下列各式的值.(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)﹣3.61×0.75+0.61×3+(﹣0.2)×75%.4【答案】(1)0;(2)-2.4【分析】(1)根据有理数的加减运算法则,先省略括号,再进行计算即可得解;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣90+90=0;(2)33.610.750.61(0.2)75%-⨯+⨯+-⨯4=﹣3.61×0.75+0.61×0.75+(﹣0.2)×0.75=0.75×(﹣3.61+0.61﹣0.2)=0.75×(﹣3.2)=﹣2.4.18.(2022·河南九年级一模)计算下列各题(1)3-----(2)|25|(15)(2)15351-+-+÷-()()2681224(3)23122--⨯--÷-3[(1)()6||]293(4)3331⨯--⨯+-⨯+⨯-2(1)213(1)5(13)7474;(4)-49【答案】(1)4;(2)-9;(3)34【分析】(1)原式先计算乘方及绝对值的代数意义计算即可求出值;(2)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值.【详解】解:(1)原式83154=--+=;(2)原式1535=-+-+⨯-()(24)26812=-+-1220910=-;9(3)原式2723=--⨯--⨯9[()6]8923=-++9943=;4(4)原式3311(25)13(2)=-⨯+-⨯+74410=-⨯-⨯71337=--1039=-;4919.(2018·石家庄市第四十一中学九年级二模)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【答案】-57.5【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.20.(2020·河北九年级其他模拟)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×1-5⎛⎫⎪⎝⎭-999×1835.【答案】(1)-14 985;(2)99 900.【详解】(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×413 118-18555⎡⎛⎫⎤+-⎪⎢⎥⎣⎝⎭⎦=999×100=99 900.21.(2019·浙江中考模拟)计算:–23+6÷3×23.圆圆同学的计算过程如下:原式=–6+6÷2=0÷2=0,请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】–203.【详解】圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+2×23=﹣8+43=﹣203.22.(2022·山东课时练习)求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【答案】(1)38;(2)0.15;(3)﹣a;(4)3b;(5)2﹣a;(6)a﹣b≥0时,a ﹣b;a﹣b<0时,b﹣a.【详解】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.23.(2022·全国课时练习)某沙漠可以粗略看成一个长方体,该沙漠的长度约是4800000m,沙层的深度大约是366cm,已知该沙漠中的体积约为33345km3立方千米.(1)请将沙漠中沙的体积用科学记数法表示出来(单位:m3);(2)该沙漠的宽度是多少米(精确到万位)?(3)如果一粒沙子体积大约是0.036mm3,那么,该沙漠中有多少粒沙子(用科学记数法表示)?【答案】(1)3.334 5×1013m3;(2)1.90×104m;(3)9.26×1023【详解】【分析】(1)首先把3 3345km3换算成33 345 000 000 000m3,再写成科学记数法.(2)沙漠的体积÷撒哈拉沙漠的长度÷沙层的深度=撒哈拉沙漠的宽度.(3)沙漠的体积÷一粒沙子体积=沙漠沙子的粒数.(1)33 345km3=33 345 000 000 000m3=3.334 5×1013m3;(2)3.334 5×1013m3÷4800000m÷366m≈1.90×104m.答:沙漠的宽度是1.90×104m.(3)3.334 5×1013m3=3.334 5×1022mm3,3.3345×1022mm3÷0.036mm3=9.26×1023(粒).答:沙漠中有9.26×1023粒沙子.。
中考数学一轮复习专题 实数知识点、对应习题及答案
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.分析:比较3-2与2-1的大小,可先将各数的近似值求出来, 即3-2≈1.732-1.414=0.318,2-1≈1.414-1=0.414,再比较大小例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8 答:2-1,A 利用数轴考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨··· (2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23 ,0 3.14 )A .1个B .2个C .3个D .4个答:B ,A考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b的值为 分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
中考数学一轮复习第四章几何初步与三角形第三节全等三角形同步测试题及答案.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第三节全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( )A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等2.如图,在▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A.BE=DF B.BF=DEC.AE=CF D.∠1=∠23.如图,在方格纸中,以AB为一边作△AB P,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个4.(2017·四川眉山中考)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F.若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△ED B中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB=4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE 于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD 的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,A M⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥C D ,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF. 在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.18∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF =90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC , ∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠A CD =90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC , ∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD=180°-∠ABC-∠BAO-∠CAE=180°-60°-60°=60°.【培优训练】19.解:(1)∵AM⊥BM,∴∠AMB=∠AMC=90°.∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM.∵AB=32,∴AM=BM=3.∵BC=5,∴MC=2,∴AC=AM2+CM2=13.(2)证明:如图,延长EF到点G,使得FG=EF,连结BG.∵DM=MC,∠BMD=∠A MC=90°,BM=AM,∴△BMD≌△AMC,故AC=BD.又CE=AC,因此BD=CE.∵点F是线段BC的中点,∴BF=FC,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDG=∠G,∴∠BDF=∠CEF.中考数学知识点代数式一、重要概念分类:1.代数式与有理式的一个数或字母也是代数式。
九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习6期函数(二)同步练习
中考一轮复习:函数(二)同步练习 二次函数图象与性质同步练习(答题时间:30分钟)1. 已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )xyO -3A. 无实根B. 有两个相等实数根C. 有两个异号实数根D. 有两个同号不等实数根2. 下图中,哪个是二次函数y =2x 2-4x +3的图象( )123-1-2-3-1-21234yx 123-1-2-3-1-21234yx123-1-2-3-1-21234yx 123-1-2-3-1-21234yxA B C D3. (山东泰安)已知函数y =(x -m )(x -n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =xnm 的图象可能是( )A. B.C. D.*4. 已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴是x =1,则下列结论中正确的是( )xyOA. ac >0B. b <0C. b 2-4ac <0D. 2a +b =05. 已知二次函数y =ax 2+bx +c 的图象如图所示,则a ______0,b ______0,c ______0。
(填“>”“<”或“=”)xyO**6. (浙江杭州)设抛物线y =ax 2+bx +c (a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为__________.*7. (北京)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值。
例如,如图中的函数是有界函数,其边界值是1。
(1)分别判断函数 y =x1(x >0)和y =x +1(-4≤x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足43≤t ≤1?二次函数图象与性质同步练习参考答案1. D 解析:方程ax 2+bx +c +2=0即ax 2+bx +c =-2。
一元二次方程-中考数学一轮复习考点专题复习大全(全国通用)
考向12 一元二次方程【考点梳理】1、一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.2、 一元二次方程的一般形式:ax 2+bx+c=0(a 、b 、c 是常数,且a ≠0)3、运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想.4、配方法解一元二次方程就是将方程变形为q p x =+2)(的形式,如果q ≥0,方程的根是q p x ±-=;如果q <0,方程无实根.5、一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,求根公式.利用求根公式解一元二次方程的方法叫公式法.6、一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-,则有下列性质:①0∆>⇔方程有两个不相等的实数根:1,2x =.②0∆=⇔方程有两个相等的实数根:122bx x a==-. ③0∆<⇔方程没有实数根.7、一元二次方程根与系数的关系(又叫韦达定理):如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有a b x x -=+21,ac x x =•21(注意:运用根与系数的关系的前提是b 2-4ac ≥0) 【题型探究】题型一:一元二次方程的基础概念1.(2022秋·江苏盐城·九年级校联考期中)下列方程中,不是一元二次方程的是( )A .x 2﹣1=0B .x 2 +1x+3=0C .x 2 + 2x +1=0D .3x 2 x +1=02.(2022·河南洛阳·统考二模)若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为( ) A .3B .4C .5D .63.(2022·四川宜宾·统考中考真题)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( ) A .0B .-10C .3D .10题型二:一元二次方程的解(开平方和配方法)4.(2022秋·广东佛山·九年级校考期中)方程(9x ﹣1)2=1的解是( )A .1213x x ==B .1229x x ==C .1220,9x x ==D .1220,9x x ==-5.(2022·山东聊城·统考中考真题)用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( ) A .103 B .73C .2D .436.(2022·四川雅安·统考中考真题)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( ) A .﹣3B .0C .3D .9题型三:一元二次方程的解(公式法)7.(2022秋·全国·九年级专题练习)已知关于x 的一元二次方程2(2)20x m x m +++=有两个不相等的实数根1x ,2x ,且有212x x <<,那么实数m 的取值范围是( ) A .2m <B .m>2C .2m <-D .2m >-8.(2021·上海·九年级专题练习)如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.若关于x 的方程210,(ax bx a b ++=是常数,0)a >是“邻根方程”,令28t a b =-,则t 的最大值为( )A .2B .C .4D .2-9.(2022秋·北京·九年级北京师大附中校考期末)定义新运算:对于两个不相等的实数a ,b ,我们规定符号{}max ,a b 表示a ,b 中的较大值,如:{}max 2,44=.因此,{}max 2,42--=-;按照这个规定,若{}232max ,2x x x x ---=,则x 的值是( )A .-1B .-1CD .1 题型四:一元二次方程的解(因式分解)10.(2022·内蒙古包头·中考真题)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9- B .3-或9 C .3或6- D .3-或611.(2023·全国·九年级专题练习)已知方程3a 1a a 44a--=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤B .34b <≤C .23b ≤<D .34b ≤<12.(2022秋·九年级课时练习)已知实数a ,b 同时满足2222190,2470a b a b +-=--=,则b 的值是( )A .2或6-B .2C .2-或6D .6-题型五:一元二次方程的判别式问题13.(2022·山东威海·模拟预测)若关于x 的方程230x x k -+=有两个不相等的实数根,则k 的值不能是( )A .2B .0C .94D 14.(2022·四川泸州·四川省泸县第四中学校考一模)关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( ) A .18a >-B .18a ≥-C .1,18a a >-≠D .118,a a ≥-≠15.(2022·湖南长沙·长沙市南雅中学校联考一模)若关于x 的一元二次方程()21210a x x --+=有实数根,则a 的取值范围为( ) A .2a ≤B .2a ≥C .2a ≤且1a ≠D .2a <且1a ≠题型六:一元二次方程根与系数的问题16.(2022·山东济宁·三模)若m n ,是方程22470x x --=的两个根,则223m m n -+的值为( ) A .9B .8C .7D .517.(2022·贵州黔东南·统考中考真题)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-18.(2022秋·广东广州·九年级铁一中学校考阶段练习)若α和β是关于x 的方程210x bx +-=的两根,且2211αβαβ--=-,则b 的值是( )A .-3B .3C .-5D .5题型七:一元二次方程的实际问题19.(2022·辽宁盘锦·校考一模)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系,部分数据如表:(1)求出y 与x 之间的函数表达式;(不需要求自变量x 的取值范围)(2)该批发市场每月想从这种衬衫销售中获利6000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w (元),求w 与x 之间的函数关系式,x 为多少时,w 有最大值,最大利润是多少?20.(2022·重庆大渡口·重庆市第三十七中学校校考二模)草莓是大家非常喜欢的水果,3月份是草莓上市的旺季.某水果超市销售草莓,第一周每千克草莓的销售单价比第二周销售单价高10元,该水果超市这两周共销售草莓180千克,且第一周草莓的销量与第二周的销量之比为4:5,该水果超市这两周草莓销售总额为11600元. (1)第二周草莓销售单价是每千克多少元?(2)随着草莓的大量上市,3月份第三周,草莓定价与第二周保持一致,且该水果超市推出会员优惠活动,所有的会员均可享受每千克直降a 元的优惠,而非会员需要按照原价购买,第三周草莓的销量比第二周增加了20%,其中通过会员优惠活动购买的销量占第三周草莓总销量的6a,而第三周草莓的销售总额为(6200100)a +元,求a 的值.21.(2022秋·九年级单元测试)某新建公园需要绿化的面积为224000m ,施工队在绿化了212000m 后将每天的工作量增加为原来的1.2倍,结果提前5天完成了该项目的绿化工程(1)求该公园绿化工程原计划每天完成多少平方米?(2)如图所示,该公园内有一块长30米,宽20米的矩形空地,准备将其修建成一个矩形花坛,要求在花坛中修建三条等宽的矩形小道(图中阴影部分),剩余地方种植花草,要使得种植花草的面积为2468m ,那么小道的宽应为多少米?题型八:一元二次方程的综合问题22.(2022·湖北十堰·统考中考真题)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.23.(2022·四川南充·中考真题)已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 24.(2022·四川凉山·统考中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=ba -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值. 解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n , ∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= . (2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值. (3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【必刷基础】一、单选题25.(2022·甘肃武威·统考中考真题)用配方法解方程x 2-2x =2时,配方后正确的是( ) A .()213x +=B .()216x +=C .()213x -=D .()216x -=26.(2022·湖北武汉·统考中考真题)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .627.(2022·内蒙古呼和浩特·统考中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .128.(2021·山东泰安·统考中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠29.(2022·山东泰安·统考中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .()316210x x -= B .()316210x -= C .()316210x x -=D .36210x =30.(2023·安徽合肥·合肥一六八中学校考一模)已知关于x 的一元二次方程()2430x k x k -+++=.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于0,求k 的取值范围.31.(2022·江苏泰州·模拟预测)用总长为60m 的篱笆围成矩形场地. (1)根据题意,填写下表:(2)设矩形一边长为m x ,矩形面积为2m S ,当x 是多少时,矩形场地的面积S 最大?并求出矩形场地的最大面积; (3)当矩形的长为______m ,宽为______m 时,矩形场地的面积为2216m .【必刷培优】一、单选题32.(2022秋·湖北武汉·九年级华中科技大学附属中学校联考阶段练习)若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( )A .14B .1C ..4D .333.(2021·广西河池·统考中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .实数根的个数由m 的值确定34.(2018·河北秦皇岛·统考中考模拟)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( ) A .50(1+x )²=182 B .50+50(1+x )+50(1+x )²=182 C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=18235.(2022·四川达州·模拟预测)如图的六边形是有甲、乙两个等腰直角三角形和丙、丁两个矩形组成,其中甲、乙的面积和等于丙、丁的面积和,若甲的直角边长为4,且甲的面积大于乙的面积,则乙的直角边长为( )A .1B .65C .423-D .843-36.(2022·云南楚雄·云南省楚雄第一中学校考模拟预测)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,下列说法: ①方程2280x x --=是倍根方程;②若()()20x mx n -+=是倍根方程,则m n =-或14m n =-;③若方程20ax bx c ++=是倍根方程,且相异两点()2,M t s +,()4,N t s -都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为2.其中,正确说法的个数是( ) A .0B .1C .2D .337.(2022·重庆大渡口·重庆市第三十七中学校校考二模)如图,正方形ABCD 的对角线AC 与BD 相交于点O ,ACB ∠的角平分线分别交AB 、BD 于M 、N 两点.若22BM =,则线段AC 的长为( )A .424+B .422+C .426+D .4238.(2022·四川绵阳·校考二模)已知实数,m n 满足22220,220m am n an -+=-+=.若m n ≠,且4m n +≥,则()()2211m n -+-的最小值是( )A .6B .3-C .3D .0二、填空题39.(2022·山东菏泽·菏泽一中校考模拟预测)若关于x 的二次方程()21320m x x +-+=有两个相等的实数根,则m =___________.40.(2023秋·天津南开·九年级南开中学校考期末)已知一元二次方程220x mx m -+-=的两个实数根为1x 、2x ,且1212()3x x x x +=,则m 的值是______.41.(2022·四川泸州·四川省泸县第四中学校考一模)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根1x ,2x ,若121212(2)(2)23x x x x x x -+--+=-,则k =_____.42.(2022·四川眉山·模拟预测)若实数m ,n 满足2231,31,m nm m n n n m=+=++的值为______.43.(2022·吉林长春·校考模拟预测)某水果批发商经销一种高档水果,如果每千克盈利10元,平均每天可售出500千克,经市场调查发现,若每千克每涨价一元,平均日销量将减少20千克,要使商场每天获利最多,那么每千克应涨价______ 元.44.(2022·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考模拟预测)如图,将边长为12的正方形纸片,沿两边各剪去一个一边长为x 的长方形,剩余的部分面积为64,则根据题意可列出形式为一般式的方程为______,x 的值是______.45.(2022·四川成都·统考二模)关于x 的一元二次方程240x kx -+=的两个实数根分别是1x 、2x ,且满足2212122270x x x x +---=,则k 的值为______.46.(2022·山东济南·济南育英中学校考模拟预测)从3,1,0,1,2--这五个数中任意取出一个数记作b ,则既能使函数()24y b x =-的图象经过第二、第四象限,又能使关于x 的一元二次方程210x bx b -++=的根的判别式小于零的概率为 _____.三、解答题47.(2023·安徽合肥·合肥一六八中学校考一模)随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?48.(2022·四川南充·南充市实验中学校考模拟预测)关于x 的一元二次方程()2220x k x k -++=.(1)求证:方程总有两个实数根;(2)若方程两根12x x 、与且221220x x +=,求k 的值.49.(2022·江苏盐城·校考三模)2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,用480元购买冰墩墩和用320元购买雪容融的数量相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商将雪容融按每个100元的价格售出140个,将冰墩墩按每个150元的价格售出120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m 元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m 个,而冰墩墩的销量比第一周增加了0.2m 个,最终商家获利5160元,求m .50.(2022·山东济南·模拟预测)已知M 、N 为双曲线()40y x x=>上两点,且其横坐标分别为a ,2a +,分别过M 、N 作y 轴、x 轴的垂线,垂足分别为C 、A ,交点为B .(1)若矩形OABC 的面积为12,求a 的值;(2)随着a 的取值的不同,M N 、两点不断运动,判断M 能否为BC 边的中点,同时N 为AB 中点?请说明理由; (3)矩形OABC 能否成为正方形?若能,求出此时a 的值及正方形的边长,若不能,说明理由.51.(2022·宁夏银川·校考三模)已知:如图,在Rt ABC ∆中,90C ∠=︒,3AC cm =,4BC cm =,点P 从点B 出发,沿BC 向点C 匀速运动,速度为1cm/s ,过点P 作PD AB ∥,交AC 于点D .同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为2cm/s .当一个点停止运动时,另一个点也停止运动,连接PQ .设运动时间为t (s )(0 2.5t <<),解答下列问题:(1)当t 为何值时,四边形ADPQ 为平行四边形?(2)设四边形ADPQ 的面积为y (2cm ),试确定y 与t 的函数关系式.(3)在运动过程中,是否存在某一时刻t ,使:13:2PQB ADPQ S S =四边形△?若不存在,请说明理由;若存在,求出t 值,并求出此时PQ 的距离.参考答案:1.B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】解:A 、C 、D 选项含有一个未知数,未知数的次数是2,是一元二次方程,故选项A 、C 、D 不符合题意; B 选项分母中含有未知数,是分式方程,故本选项符合题意,故选:B .【点睛】本题考查了一元二次方程的定义,解题关键是掌握:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,运用定义判断.2.A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m -+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x -+=的两个根,∴2410m m -+=,m +n =4,∴241m m -=-,∴2234143m m n m m m n -+=-++=-+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a+=-,12c x x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 3.A【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=0,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.4.C【分析】利用直接开平方法求解即可.【详解】解:2(91)1x -=,911x ∴-=或911x -=-,解得10x =,229x =,故选:C .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.B【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,继而得出答案.【详解】解:∵23610x x +-=,∴2361x x +=,2123x x +=, 则212113x x ++=+,即()2413x +=, ∴1a =,43b =, ∴73a b +=. 故选:B .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键.6.C【分析】先移项把方程化为26,x x c 再配方可得239,x c 结合已知条件构建关于c 的一元一次方程,从而可得答案.【详解】解:x 2+6x +c =0,移项得:26,x x c 配方得:239,x c 而(x +3)2=2c ,92,c c 解得:3,c =故选C【点睛】本题考查的是配方法,掌握“配方法解一元二次方程的步骤”是解本题的关键.7.C 【分析】根据求根公式求得(2)(2)2m x m -+±-=,结合条件212x x <<,可知22x =-,1x m ,进而可得m 的范围,即可求解.【详解】解:2(2)20x m x m +++=,(2)(2)2m m x -+±-∴, 212x x <<,22x ∴=-,1x m ,2m ∴->, 2m ∴<-,故选:C .【点睛】本题考查了解一元二次方程,掌握公式法解一元二次方程是解题的关键.8.C【分析】根据“邻根方程”的定义求出224b a a -=,代入28t a b =-进行配方求出最大值即可.【详解】解:设1x 、2x 是方程210,(ax bx a b ++=是常数,0)a >的两根,解得,1x =2x = ∵原方程是“邻根方程”1=1= 224b a a ∴-=224b a a ∴=+()22228844(2)4t a b a a a a a a ∴=-=-+=-+=--+ ∴当a=2时,t 有最大值,最大值为4.故选C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“邻根方程”的定义,本题属于中等题型.9.B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有2322x x x --=,解得1x =2x =(舍去), x<0时,有2322x x x --=-,解得,x 1=−1,x 2=2(舍去). 故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.10.A【分析】结合根与系数的关系以及解出方程2230x x --=进行分类讨论即可得出答案.【详解】解:∵2230x x --=, ∴12331x x -⋅==-, ()()130x x +-=,则两根为:3或-1,当23x =时,212212239x x x x x x ==--⋅=,当21x =-时,2121222··33x x x x x x ⋅==-=, 故选:A .【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.11.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.12.B【分析】由实数a ,b 同时满足2222190,2470a b a b +-=--=,先消去a ,求解b ,再检验即可. 【详解】解: 实数a ,b 同时满足2222190,2470a b a b +-=--=,24120,b b620,b b解得:122,6,b b当6b =-时,22219193617a b 不合题意,故舍去,所以 2.b =故选:B 【点睛】本题考查的是一元二次方程的解法,非负数的性质,掌握加减消元法是解决本题的关键.13.C【分析】根据一元二次方程有两个不相等的实数根得到2340k ,求出解集判断即可. 【详解】解:∵方程230x x k -+=有两个不相等的实数根,∴2340k , 解得94k <, 故选:C .【点睛】此题考查了利用一元二次方程的根的情况求参数,正确掌握一元二次方程的根的三种情况是解题的关键.14.D【分析】根据一元二次方程的定义和判别式的意义得到1a ≠且()()2Δ=3-41?20a --≥,然后求出两个不等式的公共部分即可.【详解】根据题意得1a ≠且()2=3-41(2)0a ∆--≥, 解得18a ≥-且1a ≠. 故选:D .【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24=b ac ∆-有如下关系:当0∆>时,方程有两个不相等的实数根;当=0∆时,方程有两个相等的实数根;当Δ0<时,方程无实数根.15.C【分析】根据一元二次方程的定义和结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】解:∵关于x 的一元二次方程()21210a x x --+=有实数根,则△≥0.∴()210=(2)410a a -≠---≥⎧⎨⎩, 解得:a ≤2且a ≠1.故选:C .【点睛】本题考查一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.16.A【分析】根据一元二次方程根的定义以及根与系数的关系,求解即可.【详解】解:m n ,是方程22470x x --=的两个根,则22704m m --=,2m n +=,∴2247m m =+,22373794m m n m m n m n +=+-=++-+=,故选:A【点睛】此题考查了一元二次方程根的定义以及根与系数的关系,解题的关键是熟练掌握相关基础知识.17.B【分析】根据根与系数关系求出2x =3,a =3,再求代数式的值即.【详解】解:∵一元二次方程220x x a --=的两根分别记为1x ,2x ,∴1x +2x =2,∵11x =-,∴2x =3,∴1x ·2x =-a =-3, ∴a =3,∴22123917a x x --=--=-. 故选B .【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.18.C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ-=-,代入2211αβαβ--=-得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +-=的两根,∴+=,1b αβαβ-=-,∴222()1211b αβαβαβαβ--=-+=-+=-∴=5b -故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为c a是解题的关键. 19.(1)201800y x =-+(2)这种衬衫定价为60元.(3)售价定为70元时,可获得最大利润,最大利润是8000元.【分析】(1)设y 与x 之间的函数关系式为y kx b =+,待定系数法求解析式即可;(2)由题意知,()()502018006000x x --+=,计算求出满足要求的解即可;(3)由题意可得,2(50)(20180020(70)8000)x x x w =--+=--+,由()50505050x x ≥⎧⎨-÷≤⎩%,求出x 的取值范围,然后根据二次函数的图象与性质求w 的最值即可.【详解】(1)解:设y 与x 之间的函数关系式为y kx b =+,则5570060600k b k b +=⎧⎨+=⎩, 解得201800k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式是201800y x =-+.(2)解:由题意知,()()502018006000x x --+=,解得126800x x ==,,∵尽量给客户优惠,∴这种衬衫定价为60元.(3)解:由题意可得,(50)(201800)w x x =--+220(70)8000x =--+,∵该衬衫的每件利润不允许高于进货价的50%,每件售价不低于进货价,∴()50505050x x ≥⎧⎨-÷≤⎩%, 解得5075x ≤≤,∵200a =-<,抛物线开口向下,∴当70x =时,w 取得最大值,此时8000w =元,∴售价定为70元时,可获得最大利润,最大利润是8000元.【点睛】本题考查了一次函数的应用,一元二次方程的应用,二次函数的应用,二次函数的图象与性质,二次函数的最值,解不等式组等知识.解题的关键在于根据题意正确的列等式与不等式.20.(1)60;(2)5.【分析】(1)设第一周草莓销售单价是每千克x 元,第二周草莓销售单价是每千克y 元,然后根据题意,列出关于,x y 的二元一次方程组,求解即可;(2)根据第三周草莓的销售总额为(6200100)a +元,列出关于a 的一元二次方程,然后求解即可.【详解】(1)解:设第一周草莓销售单价是每千克x 元,第二周草莓销售单价是每千克y 元, 根据题意,得10451801801160099x y x y -=⎧⎪⎨⨯⨯+⨯⨯=⎪⎩, 解得7060x y =⎧⎨=⎩, 答:第二周草莓销售单价是每千克60元;(2)解:根据题意,3月份第三周的销售单价是60元/千克,3月份第三周的销售量为5180(120%)1209⨯⨯+=千克, 其中会员购买的销量为:120206a a ⨯=千克,非会员购买的销量为:(12020)a -千克; 第三周草莓的销售总额为(6200100)a +元,∴20(60)(12020)606200100a a a a ⨯-+-⨯=+,整理,得25500a a +-=,5a ∴=或10a =-(不符合题意,舍去), ∴a 的值为5.【点睛】此题考查了二元一次方程组的应用、一元二次方程的应用,解答此题的关键是根据题意准确列出二元一次方程组和一元二次方程.21.(1)2400m(2)2米【分析】(1)设原计划每天完成2m x ,根据题意列出分式方程,解方程即可求解;(2)设小路宽为m a ,根据题意列出一元二次方程,解方程即可求解.【详解】(1)设原计划每天完成2m x , 由题意得:240001200024000120005 1.2x x x--=+, 解得:400x =,经检验:400x =是原方程的根,且符合题意,答:原计划每天完成2400m ;(2)设小路宽为m a ,有题意得:()()30220468a a --=,解得:133a =(超出矩形的长,不合题意,舍去),22a =,即2m a =,答:小路宽2米.【点睛】本题考查了分式方程和一元二次方程的应用,明确题意,列出相应的方程是解答本题的关键.22.(1)见解析(2)1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【详解】(1)()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; (2)方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系. 23.(1)k 174≤; (2)k =3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【详解】(1)解:∵一元二次方程2320x x k ++-=有实数根.∴∆≥0,即32-4(k -2)≥0,解得k 174≤ (2)∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.24.(1)32;12- (2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可; (3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t -进行变形求解即可. 【详解】(1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. (2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- (3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴t s -=t s -=,当t s -=11212t s s t st --===-当t s -=11212t s s t st --===-综上分析可知,11s t-或【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -或t s -= 25.C【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果. 【详解】解:x 2-2x =2, x 2-2x +1=2+1,即(x -1)2=3. 故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键. 26.A【分析】根据一元二次方程有实数根先确定m 的取值范围,再根据一元二次方程根与系数的关系得出212122,41x x m x x m m +==--,把()()121222217x x x x ++-=变形为12122()130x x x x +--=,再代入得方程28120m m -+=,求出m 的值即可.【详解】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∴22=(2)4(41)0m m m ∆----≥, ∴14m ,≥-∵12x x ,是方程222410x mx m m -+--=的两个实数根, ∵212122,41x x m x x m m +==--, 又()()121222217x x x x ++-= ∴12122()130x x x x +--=把212122,41x x m x x m m +==--代入整理得,28120m m -+=解得,122,6m m == 故选A【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)由根与系数的关系结合12122()130x x x x +--=,找出关于m 的一元二次方程. 27.A【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.。
中考数学第一轮总复习微专题与中点有关的问题、与角平分线有关的问题课件全文
结论:PB=PA,Rt△AOP≌Rt△BOP.
微专题 与角平分线有关的问题
方法应用 1.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB于点E,S△ABC=7, DE=2,AB=4,则AC的长为___3____. 2.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若 CD=1,则AC的长为___2_+_1__.
如图,P是∠MON的平分线上一点,AP⊥OP交OM于点A. 方法4 遇三角形一边上的垂线过这条边的中点时,可考虑用垂直平分线的性质
如图,在矩形ABCD中,E,F分别是AB,BC的中点,BD=12,则EF的长 结论:CD= AB. 方法1 遇中点找中点,构造三角形中位线 方法3 作角平分线的垂线构造等腰三角形 如图,在△ABC中,∠B=∠C,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是________. 反之,已知OQ=PQ,OC是∠AOB的平分线,可得PQ∥OB. 方法1 遇中点找中点,构造三角形中位线 如图,在△ABC中,∠B=∠C,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是________. DC,则∠BAC的度数为________. 如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,已知∠ADE=65°,则∠CFE的度数为________. 如图,在△ABC中,D是BC的中点,ED垂直BC. 反之,已知OE=OD,OC是∠AOB的平分线,可得DE∥OC. 结论:OD=OE,△ODE为等腰三角形; 结论:△AOB为等腰三角形,OP是△AOB的高线、中线,Rt△AOP≌Rt△BOP. 如图,P是∠MON的平分线上一点,PA⊥OM于点A.
如图,在矩形ABCD中,E,F分别是AB,BC的中点,BD=12,则EF的长
中考数学《一元二次方程及应用》一轮专题复习2含答案解析
中考一轮数学专题复习:一元二次方程及应用测试题1.(来宾)已知实数,满足,,则以,为根的一元二次方程是()A.B.C.D.【答案】A.试题分析:以,为根的一元二次方程,故选A.2.(贵港)若关于x的一元二次方程有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.2【答案】B.试题分析:∵关于x的一元二次方程有实数根,∴△==且,∴且,∴整数a的最大值为0.故选B.3.(钦州)用配方法解方程,配方后可得()A.B.C.D.【答案】A.试题分析:方程,整理得:,配方得:,即,故选A.4.(成都)关于x的一元二次方程有两个不相等的实数根,则的取值范围是()A.B.C.D.且【答案】D.试题分析:∵是一元二次方程,∴,∵有两个不想等的实数根,则,则有,∴,∴且,故选D.5.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.试题分析:解方程,(x﹣1)(x﹣3)=0,解得,;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选B.6.(达州)方程有两个实数根,则m的取值范围()A.B.且C.D.且【答案】B.试题分析:根据题意得:,解得且.故选B.7.(南充)关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②;③.其中正确结论的个数是()A.0个B.1个C.2个D.3个【答案】C.8.(佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【答案】A.试题分析:设原正方形的边长为xm,依题意有:(x﹣3)(x﹣2)=20,解得:x=7或x=﹣2(不合题意,舍去),即:原正方形的边长7m.故选A.9.(安顺)若一元二次方程无实数根,则一次函数的图象不经过第()象限.A.四B.三C.二D.一【答案】D.试题分析:∵一元二次方程无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m <0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数的图象不经过第一象限,故选D.10.(山西省)我们解一元二次方程时,可以运用因式分解法,将此方程化为,从而得到两个一元一次方程:或,进而得道原方程的解为,.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想【答案】A.试题分析:我们解一元二次方程时,可以运用因式分解法,将此方程化为,从而得到两个一元一次方程:或,进而得道原方程的解为,.这种解法体现的数学思想是转化思想,故选A.11.(枣庄)已知关于x的一元二次方程的两个实数根分别为,,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【答案】A.12.(烟台)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程的两根,则n的值为()A.9 B.10 C.9或10 D.8或10【答案】B.13.(甘孜州)若矩形ABCD的两邻边长分别为一元二次方程的两个实数根,则矩形ABCD的对角线长为.【答案】5.试题分析:方程,即,解得:,,则矩形ABCD的对角线长是:=5.故答案为:5.14.(达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.【答案】(40﹣x)(20+2x)=1200.15.(广元)从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数和关于x的一元二次方程中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是________.【答案】.试题分析:∵所得函数的图象经过第一、三象限,∴,∴,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入中得,,△=﹣4<0,无实数根;将代入中得,,,有实数根,但不是一元二次方程;将代入中得,,△=4+4=8>0,有实数根.故m=.故答案为:.16.(毕节)一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L.【答案】20.试题分析:设每次倒出液体xL,由题意得:,解得:x=60(舍去)或x=20.故答案为:20.17.(日照)如果m,n是两个不相等的实数,且满足,,那么代数式= .【答案】.考点:根与系数的关系.18.(自贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.【答案】当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.试题分析:设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.试题解析:设垂直于墙的一边为x米,得:x(58﹣2x)=200,解得:,,∴另一边为8米或50米.答:当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.19.(崇左)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,市政府共投资3亿元人民币建设了廉租房12万平方米,投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问建设了多少万平方米廉租房?【答案】(1)50%;(2)18.试题分析:(1)设每年市政府投资的增长率为x.根据投资6.75亿元人民币建设廉租房,列方程求解;(2)先求出单位面积所需钱数,再用累计投资÷单位面积所需钱数可得结果.试题解析:(1)设投资平均增长率为x,根据题意得:,解得,(不符合题意舍去)答:政府投资平均增长率为50%;(2)(万平方米)答:建设了18万平方米廉租房.对应练习1.一元二次方程x2=2x的根是( C )A.x=2B.x=0C.x1=0, x2=2D.x1=0, x2=-22.方程x2-4=0的根是( C )A.x=2 B.x=-2C.x1=2,x2=-2 D.x=43.方程(x-3)(x+1)=x-3的解是( D )A.x=0 B.x=3C.x=3或x=-1 D.x=3或x=04.用配方法解方程3x2-6x+1=0,则方程可变形为( D )A .(x -3)2=13B .3(x -1)2=13C .(3x -1)2=1D .(x -1)2=235.一元二次方程x (x -2)=0根的情况是( A ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根6.已知方程x 2-5x +2=0的两个解分别为x 1、x 2,则x 1+x 2-x 1·x 2的值为( D ) A .-7 B .-3 C .7 D .37.当m 满足m <4.5时,关于x 的方程x 2-4x +m -12=0有两个不相等的实数根.8.方程2x 2+5x -3=0的解是x 1=-3,x 2=12.9.已知关于x 的方程x 2+mx -6=0的一个根为2,则m =1,另一根是-3.10.(四川宜宾)某城市居民每月最低生活保障在是240元,经过连续两年的增加,到提高到345.6元,则该城市两年来最低生活保障的平均年增长率是20%.11.(山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为289(1-x )2=256.12.解方程: (x -3)2+4x (x -3)=0. 解:(x -3)2+4x (x -3)=0, (x -3)(x -3+4x )=0, (x -3)(5x -3)=0.于是得x -3=0或5x -3=0,x 1=3,x 2=35.13.一元二次方程x (x -2)=2-x 的根是( D ) A .-1 B .2C .1和2D .-1和214.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p 、q 的值分别是( A )A .-3,2B .3,-2C .2,-3D .2,315.关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( B ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种16.已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于-1.17.已知一元二次方程x 2-6x -5=0的两根为a 、b ,则1a +1b的值是-65. 18.如图X2-1-4,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6 m .若矩形的面积为4 m 2,则AB 的长度是 1或2m(可利用的围墙长度超过6 m).图X2-1-4 C 级 拔尖题19.三角形的每条边的长都是方程x 2-6x +8=0的根,且该三角形不是等边三角形,求三角形的周长.解:解方程x 2-6x +8=0得x =2,x =4, ∴三角形的三条边的长只能是4,4,2, ∴周长是10.20.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m 2下降到5月份的12 600元/m 2.(1)问4、5两月平均每月降价的百分率约是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m 2?请说明理由.(参考数据:0.9≈0.95)解:(1)设4,5月份平均每月降价的百分率为x ,根据题意得14 000(1-x )2=12 600, 化简得(1-x )2=0.9,解得x 1≈0.05,x 2≈1.95(不合题意,舍去). 因此4,5月份平均每月降低的百分率约为5%.(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12 600(1-x )2=12 600×0.9=11 340>10 000,因此可知,7月份该市的商品房成交均价不会跌破10 000元/m 2. 21.关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根. 解:(1)方程有两个不相等的实数根,∴(-3)2-4(-k )>0,即4k >-9,解得k >-94.(2)若k 是负整数,k 只能为-1或-2. 如果k =-1,原方程为x 2-3x +1=0, 解得x 1=3+52,x 2=3-52.如果k =-2,原方程为x 2-3x +2=0,解得x 1=1,x 2=2.22.如图X2-1-5,A 、B 、C 、D 为矩形的四个顶点,AB =16 cm ,AD =6 cm.动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向B 移动,一直到点B 为止,点Q 以2 cm/s 的速度向点D 移动.(1)P 、Q 两点从出发开始多长时间,四边形PBCQ 的面积是33 cm 2;(2)P、Q两点从出发开始多长时间,点P与点Q间的距离是10 cm.图X2-1-5解:(1)设P、Q两点从出发开始x s时,四边形PBCQ的面积是33 cm2,则AP=3x cm,PB=(16-3x) cm,CQ=2x cm,由梯形的面积公式,得[2x+(16-3x)]×6÷2=33,解得x=5.所以P、Q两点从出发开始5 s时,四边形PBCQ的面积是33 cm2.(2)过点Q作QH⊥AB,则HB=BC=6,HB=QC=2x,所以PH=16-5x,在Rt△PHQ中,PQ2=PH2+HQ2=(16-5x)2+62=102,即(16-5x)2=64,解得x1=1.6,x2=4.8.当x=4.8时,16-5x=-8,不符题意,舍去.所以P、Q两点从出发1.6s时,点P与点Q间的距离是10 cm.。
中考数学一轮复习《命题、定理与证明》知识要点及专题练习
中考数学一轮复习知识点课标要求专题训练:命题、定理与证明(含答案)一、知识要点:1、命题与定理定义1:判断一件事情的语句,叫做命题。
命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。
数学中的命题常可以写成“如果……,那么……”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。
定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。
定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。
定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。
其中一个叫做原命题,另外一个叫做逆命题。
如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。
2、证明:一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。
二、课标要求:1、通过具体实例,了解定义、命题、定理、推论的意义。
2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。
会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。
3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。
4、了解反例的作用,知道利用反例可以判断一个命题是错误的。
三、常见考点:1、命题及命题真伪的判断。
2、命题的条件和结论的区分。
3、写出命题的逆命题。
四、专题训练:1.下列说法正确的是()A.一组数据6,5,8,8,9的众数是8B.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐C.命题“若|a|=1,则a=1”是真命题D.三角形的外角大于任何一个内角2.下列命题正确的是()A.三角形的一个外角大于任何一个内角B.三角形的三条高都在三角形内部C.三角形的一条中线将三角形分成两个三角形面积相等D.两边和其中一边的对角相等的三角形全等3.下列四个命题:①5是25的算术平方根;②(﹣4)2的平方根是﹣4;②经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是()A.0个B.1个C.2个D.3个4.下列说法中,不正确的个数是()①若a+b=0,则有a,b互为相反数,且=﹣1;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c<0,abc>0,则﹣+﹣的结果有三个;⑤方程ax+b=0(a,b为常数)是关于x的一元一次方程.A.1个B.2个C.3个D.4个5.如图,在矩形ABCD中,AB=,BC=1,把矩形ABCD绕点A顺时针旋转30°得到矩形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为()A.B.C.D.6.下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的有()A.2个B.3个C.4个D.5个7.写出“对顶角相等”的逆命题.8.四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人都只猜对了一半,那么甲、乙、丙、丁的名次顺序为.(按一、二、三、四的名次排序)9.如图,直线与x轴、y轴分别交于A、B两点,点P是第二象限图象上一动点,PM⊥x轴于点M,PN⊥y轴于点N,连接MN,在点P的运动过程中,线段MN长度的最小值是.10.如图,矩形ABCD中,AB=2,BC=,将矩形ABCD绕点A旋转得到矩形AB'C'D',点C的运动路径为.当点B'落在CD上时,图中阴影部分的面积为.11.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为.12.在Rt△ABC中,∠ABC=90°,AB=8,BC=4.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A 到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.13.如图,▱ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O,以下三个条件:①BO=DO;②EO=FO;③AE=CF,以其中两个作为题设,余下的一个作为结论组成命题,其中真命题的个数为.14.如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,则点D在运动过程中ME的最小值为.15.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP于点F.①弦AB的长度为;②点P在⊙O上运动的过程中,线段OF长度的最小值为.16.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其短边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其短边恰好落在水平桌面上,则长方形木板顶点A在滚动过程中所经过的路径长为.17.桌子上有7张反面向上的纸牌,每次翻转n张(n为正整数)纸牌,多次操作后能使所有纸牌正面向上吗?用“+1”、“﹣1”分别表示一张纸牌“正面向上”、“反面向上”,将所有牌的对应值相加得到总和,我们的目标是将总和从﹣7变化为+7.(1)当n=1时,每翻转1张纸牌,总和的变化量是2或﹣2,则最少次操作后所有纸牌全部正面向上;(2)当n=2时,每翻转2张纸牌,总和的变化量是,多次操作后能使所有纸牌全部正面向上吗?若能,最少需要几次操作?若不能,简要说明理由;(3)若要使多次操作后所有纸牌全部正面向上,写出n的所有可能的值.18.阅读下面内容,并解答问题.在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.求证:.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择题.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,则∠EMF 的度数为.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,则∠EOF与∠EPF满足的数量关系为.19.点E、F分别是菱形ABCD边BC、CD上的点.(1)如图,若CE=CF,求证AE=AF;(2)判断命题“若AE=AF,则CE=CF”的真假.若真,请证明;若假,请在备用图上画出反例.20.概念学习.已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC、△PAC 中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC 的等角点.理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①内角分别为30°、60°、90°的三角形存在等角点;;②任意的三角形都存在等角点;;(2)如图①,点P是锐角△ABC的等角点,若∠BAC=∠PBC,探究图①中,∠BPC、∠ABC、∠ACP之间的数量关系,并说明理由.解决问题如图②,在△ABC中,∠A<∠B<∠C,若△ABC的三个内角的角平分线的交点P是该三角形的等角点,求△ABC三角形三个内角的度数.参考答案1.解:A、一组数据6,5,8,8,9的众数是8,是真命题;B、甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,原命题是假命题;C、命题“若|a|=1,则a=1”是假命题,原命题是假命题;D、三角形的外角大于任何一个不与它相邻的内角,原命题是假命题;故选:A.2.解:A、三角形的一个外角大于与它不相邻的任何一个内角,原命题是假命题;B、钝角三角形的三条高不在三角形内部,原命题是假命题;C、三角形的一条中线将三角形分成两个三角形面积相等,是真命题;D、两边和其夹角相等的三角形全等,原命题是假命题;故选:C.3.解:①5是25的算术平方根,本小题说法是真命题;②∵(﹣4)2的平方根是±4,∴本小题说法是假命题;②经过直线外一点,有且只有一条直线与这条直线平行,本小题说法是真命题;④∵两直线平行,同旁内角互补,∴本小题说法是假命题;故选:C.4.解:①若a+b=0,则有a,b互为相反数,当a=b=0时,无意义,本小题说法不正确;②∵|a|>|b|,∴a2>b2,∴(a+b)(a﹣b)=a2﹣b2>0,是正数,本小题说法正确;③(2a5+a﹣3)+(﹣a5+2a﹣3)+(﹣a5+a2﹣30)=a2+3a﹣36,则三个五次多项式的和不一定是五次多项式,本小题说法不正确;④当a+b+c<0,abc>0时,a、b、c两个正数、一个负数或一个正数、两个负数,则﹣+﹣的结果有两个,本小题说法不正确;⑤方程ax+b=0(a,b为常数),当a=0时,不是关于x的一元一次方程,本小题说法不正确;故选:D.5.解:连接AC',在矩形ABCD中,∵∠B=90°,AB=,BC=1,∴tan∠BAC==,∴∠BAC=30°,∵旋转角为30°,∴A、B′、C共线.∴AC===2,∵S阴=S扇形ACC′﹣S△AB′C′,∴S阴=﹣=﹣,故选:B.6.解:①负数有立方根,原命题是假命题;②一个实数的算术平方根一定是非负数,原命题是假命题;③一个正数或负数的立方根与这个数同号,原命题是真命题;④如果一个数的算术平方根是这个数本身,那么这个数是1或0,原命题是真命题;⑤如果一个数的立方根是这个数本身,那么这个数是1、﹣1或0,原命题是假命题;故选:B.7.解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.8.解:因为他们每人只猜对一半,可以先假设明明说“甲得第一”是正确的,由此推导:明明:甲得第一→文文:丁得第四→凡凡:丙得第二→乙得第三,成立;若假设明明说“乙得第二”是正确的,由此进行推导:明明:乙得第二→文文:丁得第四→凡凡:丙得第二,矛盾.所以甲、乙、丙、丁的名次顺序为甲、丙、乙、丁.故答案为:甲、丙、乙、丁.9.解:连接OP.∵直线与x轴、y轴分别交于A、B两点,∴A(﹣2,0),B(02),∴OA=2,OB=2,∴tan∠BAO==,∴∠BAO=30°,∵PM⊥x轴于点M,PN⊥y轴于点N,∴∠PMO=∠PNO=∠MON=90°,∴四边形OMPN是矩形,∴MN=OP,∴当OP⊥AB时,MN=OP的值最小,最小值=OA•sin30°=,故答案为.10.解:如图,连接AC,AC′.∵四边形ABCD是矩形,∴∠B=∠D=∠DAB=90°,∵AB=2,BC=,∴AC===,∵cos∠DAB′=,∴∠DAB′=30°,DB′=AB′=1,∴∠BAB′=∠CAC′=60°,CB′=CD﹣DB′=2﹣1=1,∴S阴=S扇形CAC′﹣S△AC′B′﹣S△ACB′=﹣×2×﹣×1×=﹣.故答案为﹣.11.解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∴在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,∴∠AFB=120°,∴点F的运动轨迹是以点O为圆心,OA为半径的弧,如图,此时∠AOB=120°,OA==,所以弧AB的长为:=.则点F的运动路径的长度为.故答案为:.12.解:如图所示:取A1B1的中点E,连接OE,C1E,当O,E,C1在一条直线上时,点C到原点的距离最大,在Rt△A1OB1中,∵A1B1=AB=8,点OE为斜边中线,∴OE=B1E=A1B1=4,又∵B1C1=BC=4,∴C1E==4,∴点C到原点的最大距离为:OE+C1E=4+4.故答案为:4+4.13.解:已知②EO=OF;①BO=DO,结论:③AE=CF.理由:在△DOE和△BOF中,∴△DOE≌△BOF(SAS),∴DE=BF,∵四边形ABCD是平行四边形,∴AD=BC,∴AE=FC,同理可得:已知②EO=FO,③AE=CF,结论:①BO=DO,是真命题;已知:①BO=DO,③AE=CF,结论:②EO=FO,是真命题,故答案为:3.14.解:如图,连接BE,过点M作MG⊥BE的延长线于点G,过点A作AK⊥AB交BD的延长线于点K,∵等腰直角△ABC中,∠ACB=90°,∴∠B=45°,∴∠K=45°,∴△AKB是等腰直角三角形.∵线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴∠KAD+∠DAB=∠BAE+∠DAB=90°,∴∠KAD=∠BAE,在△ADK和△AEB中,∴△ADK≌△AEB(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵AC=BC=4,∴AB=4,∵M为AB中点,∴BM=2,∴MG=BG=2,∠G=90°,∴BM>MG,∴当ME=MG时,ME的值最小,∴ME=BE=2.故答案为2.15.解:①如图,连接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA•sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案为2.②取AC的中点H,连接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值为﹣1.故答案为﹣1.16.解:第一次转动是以点M为圆心,AM为半径,圆心角是60度所以弧AA1的长==π,第二次转动是以点N为圆心,A′N为半径圆心角为90度,所以弧A′A″的长==π,所以总长为π.故答案为π.17.解:(1)总变化量:7﹣(﹣7)=14,次数(至少):14÷2=7,故答案为:7;(2)①两张由反到正,变化:2×[1﹣(﹣1)]=4,②两张由正到反,变化:2×(﹣1﹣1)=﹣4,③一正一反变一反一正,变化﹣1﹣1+1﹣(﹣1)=0,不能全正,总变化量仍为14,无法由4,﹣4,0组成,故不能所有纸牌全正;故答案为:14;(3)由题可知:0<n≤7.①当n=1时,由(1)可知能够做到,②当n=2时,由(2)可知无法做到,③当n=3时,总和变化量为6,﹣6,2,﹣2,14=6+6+2,故n=3可以,④当n=4时,总和变化量为8,﹣8,4,﹣4,0,14无法由8,﹣8,4,﹣4,0组成,故=4不可以,⑤当n=5时,总和变化量为10,﹣10,6,﹣6,2,﹣2,14=10+2+2,故n=5可以,⑥当n=6时,总和变化量为12,﹣12,8,﹣8,4,﹣4,0,无法组合,故n=6不可以,⑦当n=7时,一次全翻完,可以,故n=1,3,5,7时,可以.18.解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴,,∴.在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为EG⊥GF.(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=(∠BEG+∠DFG)=45°,∴∠M=∠BEM+∠MFD=45°,B.如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为A或B,45°,∠EOF=2∠EPF.19.解:(1)连接AC,∵四边形ABCD是菱形,∴∠ACE=∠ACF,在△ACE与△ACF中,∴△ACE≌△ACF(SAS),∴AE=AF,(2)当AE=AF=AF'时,CE≠CF',如备用图,所以命题“若AE=AF,则CE=CF”是假命题.20.解:理解应用(1)①内角分别为30、60、90的三角形存在等角点是真命题;②任意的三角形都存在等角点是假命题,如等边三角形不存在等角点;故答案为:真命题,假命题;(2)如图①,∵在△ABC中,∠BPC=∠ABP+∠BAC+∠ACP,∠BAC=∠PBC,∴∠BPC=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP;解决问题如图②,连接PB,PC∵P为△ABC的角平分线的交点,∴∠PBC=∠ABC,∠PCB=∠ACB,∵P为△ABC的等角点,∴∠PBC=∠BAC,∠BCP=∠ABC=2∠PBC=2∠BAC,∠ACB=∠BPC=4∠A,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠A+4∠A=180°,∴∠A=,∴该三角形三个内角的度数分别为,,。
2011年中考数学第一轮总复习学案(代数式第1课时)
第____周 星期___第___节 本学期学案累计: 课时 上课时间:_____ 签名:____我们的追求:让每位同学都得到发展 我们的约定:我的课堂,我作主!第二章 代数式 课时1.整式及其运算【课前预测】 1. 31-x 2y 的系数是 ,次数是 . 2.(08遵义)计算:2(2)a a -÷= . 3.(08双柏)下列计算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷=4. (08湖州)计算23()x x - 所得的结果是( )A .5xB .5x -C .6xD .6x -5.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点呈现】 1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 ___ 或表示____ 连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的_____ 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式. 4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 . 【考题例析】例1 (08乌鲁木齐)若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23D .32例2 (06 广东)按下列程序计算,把答案写在表格内:⑴ 填写表格:输入n 3 21 —2 —3 … 输出答案11…⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:((08江西)x (x +2)-(x +1)(x -1),其中x =-21; 【考题训练】1.(06泉州)下列运算中,结果正确的是( )A.633·x x x =B.422523x x x =+C.532)(x x = D .222()x y x y +=+ ﹡2.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 ﹡3.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .n 平方 +n ÷n -n 答案1 1 1 12 11 3 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++。
2011年中考数学第一轮总复习学案(实数第1课时)
第____周 星期___第___节 本学期学案累计: 课时 上课时间:______ 签名:____ 我们的追求:让每位同学都得到发展 我们的约定:我的课堂,我作主!第一章 实数课时1.实数的有关概念【课前预测】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08乌鲁木齐)2的相反数是 .4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点呈现】1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += .⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数.4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.(3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【考题例析】例1 ⑴(06成都)2--的倒数是( )A .2 B.12 C.12-D.-2 ⑵(08芜湖)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4⑶(07扬州)如图,数轴上点P 表示的数可能是( )A.7B. 7-C. 3.2-D. 10-【考题训练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)3.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21B .21-C .21± D .2 4.(08梅州)下列各组数中,互为相反数的是( ) A .2和21 B .-2和-21 C .-2和|-2| D .2和21 5.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.166.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( ) A .a > b B . a = b C . a < b D .不能判断3- 2- 1- O 1 2 3 P o b a。
中考数学第一轮复习精品讲解(专题突破)
A.55
B.42
图 Z1-2 C.41
D.29
[解析] 第一个图形 1 个,第 2 个图形有:2(1+2)-1=5,第 3 个图形有:2(1+2+3)-1=11,„,第 6 个图形有:2(1+2+ 3+4+5+6)-1=41(个).
·新课标
专题突破一
3.[2011· 菏泽]填在下面各正方形中的四个数之间都有相同 158 的规律,根据这种规律,m 的值是________.
[解析]规律是每个数的末位数是 2,4,8,6,„,四个数循环,2010÷ 4 =502„„2,所以 22010 末位数与 22 的末位数 4 相同.
数字规律型问题是研究按一定规律排列的数之间的相互关系或大 小变化规律的问题,解决这类问题的关键是仔细分析前后各数之间 的联系,从而发现其中所蕴含的规律.
3 5.[2011· 湛江]已知:A2 3= 3×2 = 6, A 5= 5×4×3 = 60 , 2 A5 =5×4×3×2=120,A3 6=6×5×4×3=360,„,观察前面 < 的计算过程,比较 A5 A3 9________ 10.(填“>”或“<”或“=”)
5 [解析] A9 -A3 10=9×8×7×6×5-10×9×8×7×6×5×4×3<0.
专题突破一
规律探索题
专题突破二
专题突破三 专题突破四 专题突破五 专题突破六 专题突破七 专题突破八 专题突破九
新概念型题
图标信息题 阅读理解题 开放探究题 动手操作题 方案设计题 动态型问题 综合型问题
·新课标
专题突破一
专题突破一 规律探索题
பைடு நூலகம்
·新课标
专题突破一
1.如图 Z1-1,下面是按照一定规律画出的“数形图”, 经观察可以发现:图 A2 比图 A1 多出 2 个“树枝”, 图 A3 比图 A2 多出 4 个“树枝”, 图 A4 比图 A3 多出 8 个“树枝”,„, 照此规律,图 A6 比图 A2 多出“树枝”( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梯形
知识考点:
掌握梯形、直角梯形、等腰梯形的判定和性质,并能熟练解决实际问题。
精典例题:
【例1】如图,在梯形ABCD 中,AB ∥DC ,中位线EF =7,对角线AC ⊥BD ,∠BDC =300,求梯形的高AH 。
分析:根据对角线互相垂直,将对角线平移后可构造直角三角形求解。
略解:过A 作AM ∥BD 交CD 的延长线于M 。
∵AB ∥DC ,∴DM =AB ,∠AMC =∠BDC =300 又∵中位线EF =7
∴CM =CD +DM =CD +AB =2EF =14 又∵AC ⊥BD , ∴AC ⊥AM ,AC =
2
1
CM =7 ∵AH ⊥CD ,∴∠ACD =600 ∴AH =0
60sin ⋅AC =
32
7 评注:平移梯形对角线、平移梯形的腰是解梯形问题时常用的辅助线。
例1图
M
H D C B
A
F
E
例2图
G H
D
C
B A
F
E
【例2】如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是AD 、BC 的中点,∠B +∠C =900,AD =7,BC =15,求EF 的长。
分析:将AB 、CD 平移至E 点构成直角三角形即可。
答案:EF =4
探索与创新:
【问题】已知,在梯形ABCD 中,AD ∥BC ,点E 在AB 上,点F 在DC 上,且AD =a ,BC =b 。
(1)如果点E 、F 分别为AB 、DC 的中点,求证:EF ∥BC 且EF =2
b
a +; (2)如图2,如果
n
m
FC DF EB AE ==,判断EF 和BC 是否平行?请证明你的结论,并用a 、b 、m 、n 的代数式表示EF 。
b
a
问题图1
D C B
A
F
E b
a
问题图2
M
D
C B
A
F
E
分析:(2)根据(1)可猜想EF ∥BC ,连结AF 并延长交BC 的延长线于点M ,利用
平行线分线段成比例定理证明即可。
略证:连结AF 并延长交BC 的延长线于点M
∵AD ∥BM ,
FC DF CM AD FM AF ==,n
m
FC DF EB AE == ∴在△ABM 中有EB AE
FM AF = ∴EF ∥BC ,n m m
BM EF AB AE +== ∴EF =
BM n m m +=)(CM BC n m m
++ 而n m FC DF CM AD ==,故m
na
AD m n CM == ∴EF =BM n m m +=)(m na b n m m ++=n
m na
mb ++ 评注:本题是一道探索型试题,其目的是考查学生观察、归纳、抽象、概括、猜想的能
力,它要求学生能通过观察进行分析和比较,从特殊到一般去发现规律,并能概括地用数学公式表达出来。
跟踪训练:
一、填空题:
1、梯形的上底长为3,下底长为7,梯形的中位线所分成的上下两部分的面积之比为 。
2、等腰梯形中,上底∶腰∶下底=1∶2∶3,则下底角的度数是 。
3、如图,直角梯形ABCD 中,AD ∥BC ,CD =10,∠C =600,则AB 的长为 。
第3题图
D
C B A
第4题图
D
C
B
A
第6题图
E
D
C
B
A
4、如图,梯形ABCD 中,AB ∥CD ,∠D =2∠B ,AD =a ,CD =b ,那么AB 的长是 。
5、在梯形ABCD 中,AD ∥BC ,AD =2,BC =3,BD =4,AC =3,则梯形ABCD 的面积是 。
6、如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,CD =BC ,E 是BA 、CD 延长线的交点,∠E =400,则∠ACD = 度。
二、选择题:
1、在课外活动课上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm 2,则对角线所用的竹条至少需( )
A 、230cm
B 、30 cm
C 、60 cm
D 、260 cm 2、如图,直角梯形ABCD 中,AB ⊥BC ,AD =1,BC =3,CD =4,EF 为梯形的中位线,DH 为梯形的高,下列结论:①∠BCD =600;②四边形EHCF 是菱形;③CEH BEH S S ∆∆=2
1
④以AB 为直径的圆与CD 相切于点F 。
其中正确的结论有( )
A 、1个
B 、2个
C 、3个
D 、4个
第2题图 H
F
E
D
C B A
0120
45第3题图 D
C B
A
第4题图 12
8
13
D
C
B A
第5题图
D
C
B
A
3、已知如图,梯形ABCD 中,AD ∥BC ,∠B =450,∠C =1200,AB =8,则CD 的长为( ) A 、
638 B 、64 C 、23
8
D 、24 4、如图,在直角梯形ABCD 中,底AB =13,CD =8,AD ⊥AB ,并且AD =12,则A 到BC 的距离为( )
A 、12
B 、13
C 、10
D 、12×21+13 5、如图,等腰梯形ABCD 中,对角线AC =BC +AD 则∠DBC 的度数为( ) A 、300 B 、450 C 、600 D 、900 三、解答题:
1、如图,梯形ABCD 中,AD ∥BC ,AB =DC ,在AB 、DC 上各取一点F 、G ,使BF =CG ,E 是AD 的中点。
求证:∠EFG =∠EGF 。
2、已知,在等腰△ABC 中,AB =AC ,AH ⊥BC 于H ,D 是底边上任意一点,过D 作BC 的垂线交AC 于M ,交BA 的延长线于N 。
求证:DM +DN =2AH 。
3、如图,等腰梯形ABCD 中,AB ∥CD ,AB =6,CD =2,延长BD 到E ,使DE =DB ,作EF ⊥BA 的延长线于点F ,求AF 的长。
第1题图
G
E
F
D
C
B
A
第2题图 N
M
H
D
C
B
A
第3题图 F E
D C
B
A
4、如图,等腰梯形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,∠ACD =600,点S 、P 、Q 分别是OD 、OA 、BC 的中点。
(1)求证:△PQS 是等边三角形; (2)若AB =8,CD =6,求PQS S ∆的值。
(3)若PQS S ∆∶AOD S ∆=4∶5,求CD ∶AB 的值。
第4题图
S Q
P
O
D C
B
A
5、如图,直角坐标系内的梯形AOBC ,AC ∥OB ,AC 、OB 的长分别是关于x 的方程
04622=++-m mx x 的两根,并且AOC S ∆∶BOC S ∆=1∶5。
(1)求AC 、OB 的长;
(2)当BC ⊥OC 时,求OC 的长及OC 所在的直线解析式;
(3)在第(2)问的条件下,线段OC 上是否存在一点M ,过M 点作x 轴的平行线,交y 轴于F ,交BC 于D ,过D 点作y 轴的平行线交x 轴于E ,使ADBC FOED S S 梯形矩形=2
1,若存在,请直接写出M 点的坐标;若不存在,请说明理由。
跟踪训练参考答案
一、填空题:
1、2∶3;
2、600;
3、35;
4、b a +;
5、6;
6、150
二、选择题:CBAAC 三;解答题:
1、证△AFE ≌△DEG ;
2、作AH ⊥MN 于N ,则MN =MH ,AH =MH +MD 易证NH +DM =AH ;
3、2
4、(1)连结CS 、BP ;(2)∵SB =
2
1
DO +OB =11,CS =33,BC =27112+=372,SQ =37,∴PQS S ∆=
4
3
37; (3)设CD =a ,AB =b )(b a <,222
2
2
)2
1
()23(
a b a BC SC BC ++=+==ab b a ++22。
∴PQS S ∆=
)(16
322
ab b a ++,又AOD S ∆∶COD S ∆=b ∶a ,则AOD S ∆=
ab 4
3
,∵P QS S ∆∶AOD S ∆=4∶5,∴ab ab b a 434)(163522⨯=++⨯。
整理得:0511522=+-b ab a ,
102111±=
b a ,又∵b a <,∴10
2111-=b a 。
即: 10
21
11-=
AB CD 。
5、(1)AC =1,OB =5;(2)C (1,2);(3)存在,1M (21,1),2M (43,2
3)。