2015-2016学年度(下)九年级数学复习综合卷(五)
2015中考九年级数学检测试卷(有答案)
第5题图第2题图 第8题图九年级数学试题一、选择题 (本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列计算中,正确的是( ).A .2a +3b =5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 22.已知实数a b 、在数轴上对应的点如图所示,则下列式子正确的是( ).A .0ab >B .a b >C .0a b ->D .0a b +>3.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大, 多么大的经济总量,除以13亿,都会变得很小.”如果每人每天浪费0.01 千克粮食,我国13亿人每天就浪费粮食( ).A .1.3×105 千克 B. 1.3×106千克 C. 1.3×107千克 D. 1.3×108千克4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子 长为1.1m ,那么小刚举起的手臂超出头顶( ). A .0.5m B .0.55m C .0.6m D .2.2m5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角 形ABC 的边长为( ).ABC.D.6.某种品牌的同一种洗衣粉有A B C 、、三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A B C 、、三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A B C 、、三种包装的洗衣粉各1200千克,获得利润最大的是( ).A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ). A .15 B .29 C .14 D .5188.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2. A..6第12题图第10题图第9题图C..129.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相 应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( ).A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩ C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳 节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人, 每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8 人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长) 相等.设每人向后挪动的距离为x ,根据题意,可列方程( ).A .2π(6010)2π(6010)68x +++= B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯ 11.下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不等实数根;④ 若240b ac ->,则二次函数的图象与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 12.能分别是( ).A .y = k x ,y =kx 2-xB .y = kx,y =kx 2+x C .y = - k x ,y=kx 2+x D .y = - kx,y =-kx 2-x 二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.函数y =x 的取值范围是 .14.如图,∠1的正切值等于__________.15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在第14题图第15题图第16题图x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′ 的 位置.若OBtan ∠BOC =12,则点A′ 的坐标为_________. 16.如图,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径 为2,∠P =60°,则图中阴影部分的面积为 .17.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题(本大题共7题,共69分.解答应写出文说明、证明过程或推演步骤.) 18.(8分)网瘾低龄化问题已引起社 会各界的高度关注,有关部门在 全国范围内对12~35岁的网瘾人 群进行了抽样调查.下图是用来 表示在调查的样本中不同年龄段 的网瘾人数的,其中30~35岁的 网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人;(2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~ 17岁的网瘾人数约为多少人?19.(8分)如图,梯形ABCD 内接于⊙O ,BC ∥AD ,AC 与BD 相交 于点E ,在不添加任何辅助线的情况下:(1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一 对全等三角形进行证明.(2)若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.第1个图第2个图第3个图… 第17题图20.(10分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要 方法.善于学习的小明在学习了一次方程(组)、 一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 . 21.(10分)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000 m 2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m 2或乙种板材20 m 2.问:应分别安排多少人生产甲种板材和乙 种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间 问:这400间板房最多能安置多少灾民?一次函数与方程的关系 一次函数与不等式的关系1 第20题图第22题图22.(10分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对 角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交 BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.23.(11分)随着风筝城潍坊近几年城市建设的快速发展,对花木的需求量 逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预 测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花 卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资 量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?24.(12分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分 别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 图① 图②九年级数学试题答案一、选择题1.D 2. C 3. C 4. A 5. C 6. B 7. B 8. A 9. D 10. A 11. B 12. B 二、填空题 13.2x ≥ 14. 13 15. 34(,)55- 16.-43π 17 . 3n +1 三、解答题19.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ······ 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . · 8分20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:(1)设安排x 人生产甲种板材,则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.···················································· (6分)解得300m ≥. ······················································································· (7分) 又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························ (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ················································ (10分) 22.(本题满分10分)(1)证明:当90AOF ∠=时,AB EF ∥,又AF BE ∥,∴四边形ABEF 为平行四边形. ······································································· 3分 (2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴= ·································································································· 5分 (3)四边形BEDF 可以是菱形. ······································································ 6分 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形. ·················· 7分 在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,-------8分,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. ···································· 10分 23.(1)设1y =kx ,由图12-①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k 故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过 (2,2),所以222⋅=a ,21=a ABCD OF E故利润2y 关于投资量x 的函数关系式是221x y =…………………………4分 (2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x …………………6分当2=x 时,z 的最小值是14 ……………………………………………8分 因为80≤≤x ,所以622≤-≤-x所以36)2(2≤-x ,所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32; ………………………………………11分 24. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.…………………3分(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.…………………………6分(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,AB CD ER PM 2 1 A HQA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.…………………12分。
2015-2016学年九年级下学期5月月考数学试卷及答案
九下5月月考数学试卷学校:班级:教师:科目:得分:一、选择题:1、在实数-3,2,0,-1中,最大的实数是()A、-3B、2C、0D、-12、式子在实数范围内有意义,则x的取值范围是()A、x≥-2B、x≤-2C、x<-2D、x>-23、把3x-x分解因式正确的是()A、x (1-x2)B、x()21-x C、x(x+1)(x-1)D、(x2+1)(x-1)4、学校为了丰富学生课余活动开展了一次朗读比赛,共有18名同学入围,他们的决赛成绩如下表:那么这18明同学绝赛成绩的中位数和众位数分别是()A、9.70,9.60B、9.60,9.60C、9.60,9.70D、9.65,9.605、下列计算正确的是()A、3a2-2a=aB、()532a8-a2-=C、126a2a2÷=63a D、a-(1+a)= -16、如图,正方形BODC的顶点C的坐标是(3,3),以原点O为位似中心,将正方形BODC缩小后得到正方形CODB'',点C的对应点C'的坐标为(-1,-1),那么点D的对应点D'的坐标为()A、(-1,0)B、(0,-1)C、(1,0)D、(0,1)yxOC′D′B′CDB生中随机各选取1名学生组成两人互助小组,请用列表法或树状图的方法求选出的两人恰好是性别相同的概率。
20%40%DCBA人数/人等级4O DCBA20.在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1 ,点A1坐标是_________;(2)平移△ABC,使点A移到点A2(0,2),画出平移后的△A2B2C2 ,点B2的坐标是______,点C2的坐标是______.(3)△A2B2C2与_______________关于点_______中心对称。
2015-2016学年九年级下学期5月月考数学试卷及答案二四
九下5月月考数学试卷学校:班级:教师:科目:得分:一、选择题:1、在实数-3,2,0,-1中,最大的实数是()A、-3B、2C、0D、-12、式子在实数范围内有意义,则x的取值范围是()A、x≥-2B、x≤-2C、x<-2D、x>-23、把3x-x分解因式正确的是()A、x (1-x2)B、x()21-x C、x(x+1)(x-1)D、(x2+1)(x-1)4、学校为了丰富学生课余活动开展了一次朗读比赛,共有18名同学入围,他们的决赛成绩如下表:那么这18明同学绝赛成绩的中位数和众位数分别是()A、9.70,9.60B、9.60,9.60C、9.60,9.70D、9.65,9.605、下列计算正确的是()A、3a2-2a=aB、()532a8-a2-=C、126a2a2÷=63a D、a-(1+a)= -16、如图,正方形BODC的顶点C的坐标是(3,3),以原点O为位似中心,将正方形BODC缩小后得到正方形CODB'',点C的对应点C'的坐标为(-1,-1),那么点D的对应点D'的坐标为()A、(-1,0)B、(0,-1)C、(1,0)D、(0,1)yxOC′D′B′CDB7、由六个大小相同的正方体组成的几何体如图所示,它的俯视图是()DCBA8、下图是某公司今年1到4月份的总产值相对上个月的增长率统计图,下列说法:①2月份总产值与去年12月份总产值相同;②3月份与2月份的总产值相同;③4月份的总产值比2月份增长7%;④在1到4月份中,4月份的总产值最高;其中正确的个数是()A、4B、3C、2D、1-5%5%2%43210xy9、如图,正六边形ABCDEF,点P在直线AB上移动,若点P与正六边形六个顶点中的至少两个顶点距离相等,则直线AB上满足条件的点P共有()A、6个B、5个C、4个D、3个10. 如图,等边△ABC的边长为4,D、E是边AB、BC上的动点(与A、B不重合),AD=2CE,以CE 的长为半径作⊙C,DF与⊙C相切于F,下列关于DF的长说法正确的是()A.有最大值,无最小值B.有最小值,无最大值C.有最大值,也有最小值D.为定值二、填空题11.计算:5-(1-9)=_________12. 据报道,某小区改进用水设备,十年内小区的居民累计节水305000吨,将305000用科学计数法表示,应为_________________13. 甲、乙、丙三人并排照相,那么甲、乙不相邻的概率是_____________14. 设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y 关于x的函数关系如图所示,则甲车的速度是____________米/秒.15. 如图,直线y=21x+4交x轴于点B,交y轴于点A,双曲线y=xk交直线于C、D,若CD=2AC,则k =____________AODCB xy16、如图,△ABC中,∠A=60º,C∠=20º,D是BC的中点,E是AC上一点,CD=CE,若ABCS∆+2CDES∆=23,则AC=___________EDBAC三、解答题17. 已知一次函数y=kx-2的图像经过点(-3,4)(1)求这个一次函数的解析式(2)求关于x的不等式kx-k≤6的解集18. 已知△ACE中,AC=CE,F、D是AE上的点,CF=CD,AB∥CE交CD的延长线于B。
2015年九年级复习调查考试数学试题.docx
2015年九年级复习调查考试数学试题注意事项:1.本试卷分第I卷(选择题)和第【I卷(非选择题)两部分,满分120分.第I卷1 至2页,第II卷3至8页.考试时间120分钟.2.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用2B铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第I卷(选择题共45分)一. 选择题(木大题共15个小题,每小题3分,共45分.在每小题给出的四个选项屮,只有一项是符合题目要求的.)1・-3的相反数是()A. 3B. 13•请将数据450亿元用科学记数法表示为(单位:元)()••C. 4.5OX1O10A. 4. 50X10?B. 0.45X10'4.5.如图,直线a//b,点3在直线b上,且丄BC、Z1 =55°,则Z2的度数为()A. 35°B. 45°C. 55°D. 125°6.下列运算正确的是()C.宀宀严 D.D. 0.45X10“)D.(―%)'十(一aby ——a'b?□)]>D. -3••2-右图是由四个小正方体摆成的一个立体图形,那么它的主视图是(A.)5 M.7-化简9 对一12A.—— X — 1 的结果是() C. x+\ D. 2(x+l)8.下列命题为真命题的是( B 对角线相等的四边形是菱形D 对角线互相垂育•的四边形是平行四边形 捐款(元) 5 10 15 20 25 30 人数 361111136) A 四边相等的四边形是正方形 C 四个角相等的四边形是矩形9.我市某中学九年级(1)班为开展“阳光体冇运动”,决定白筹资金为班级购买体育 器材,全班50名同学捐款情况如下表:问该班同学捐款金额的众数和屮位数分别是( A. 13, 11 B. 25, 3010. 如图,AB 是OO 的玄径, ) C ・ 20, 25 D. 25, 20点C 在00 ±,若ZA=40°,则ZB 的度数为( )11. A. 12. A 、80° B> 60°c、50° D 、40°如图,已知点A. D 、C 、F 在同一条肓线上,AB=DE, BC=EF,要使ZkABC 竺ADEF, 还需要添加一个条件是( )ZBCA=ZF B. ZB 二ZE如图, C. BC 〃EF矩形ABCD 屮,C 是AB 的屮点,反比例函数y = ±伙>())在第一象限的•图象经 X ) D. ZA=ZEDF过A 、 BC 两点, 11题图)DAB C14.已知抛物线y = x 2+bx + c 的部分图彖如图所示,若jVO,则x 的取值范围是()A. 一 1 <x<3B. 一 1 <x<4 C ・ 一 1 或 x>4 D ・ 一 1 或 x>315.如图,菱形ABCD 屮,AB=29 ZX=120°,点P, Q, K 分别为线段BC, CD, BD 上的第I 【卷(非选择题 共75分)注意事项:1. 第II 卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上.2. 答卷前将密封线内的项目填写清楚. 二、填空题(木大题共6个小题,每小题3分,共IX 分.把答案填在题屮的横线上・)1 218. 方程古=f 的解是 ____________19. 在如图所示的正方形纸片上做随机扎针实验,贝I 」针头扎在阴影区域内的概率为 20. 如图,在菱形A3CD 屮,E 、F 分别是AB 、AC 的屮点,如果EF=2,那么菱形ABCD 的周长是 _________ .21. 如图・y = ax 2+bx+c (aHO )的图象与x 轴交于A 、B,与y 轴交于C, B (・1, 0),下面四个结论:®OA=3②a + b + c <0③ac >0④I? 一 4ac >0其屮正确的结论C. 2D. V3+1第15题图17. 时,分式丄亠的值为0。
2015届九年级下数学基础复习卷(5)二次函数(含答案)
(第三章 二次函数 时间: 60 分钟 满分: 100 分)
班别:
姓名:
一、选择题: (每小题 3 分,共 30 分)
1.在抛物线 y x 2 4 上的一个点是(
学号: )
成绩:
A .( 4, 4)
2.抛物线 y ( x 2) 2
轴与抛物线 y 1 x2 交于点 Q,则图中阴影部分的面积 2
为 ________________ .
三、解答题: (每小题 8 分,共 32 分)
17.求抛物线 y
1 x 2 x 的开口方向、顶点坐标和对称轴. 2
(图 7)
18.若 y ax 2 bx c ,由下列表格的信息, 求 y 与 x 之间的函数关系式.
y
E A
O
x
C
B
(图 10)
的距离的 4 倍,记抛物线顶点为
E. [来源 :]
( 1)求双曲线和抛物线的解析式;
( 2)计算△ ABC 与△ ABE 的面积;
( 3)在抛物线上是否存在点 D,使△ ABD 的面积等于△ ABE 的面积的 8 倍.若存在,
请 求出点 D 的坐标;若不存在,请说明理由.
D. c 3
8.设 A ( 2, y1), B(1, y2), C(2, y3) 是抛物线 y ( x 1)2 m 上的三点, 则 y1, y2, y3 的大
小关系为(
)
A . y1 y2 y3
B. y1 y3 y2
C. y3 y2 y1
D. y2 y1 y3
9.二次函数 y ax2 bx 的图象如图 2 所示,若一元二次方程
人教版九年级下册数学全册综合复习练习试卷【答案+解析】
人教版九年级下册数学全册综合复习练习试卷一.选择题(共10小题,每小题2分,共20分)1.反比例函数y=的图象生经过点(1,﹣2),则k的值为()A.﹣1 B.﹣2 C.1 D.2【答案】B【精准解析】解:∵反比例函数y=的图象生经过点(1,﹣2),∴k=1×(﹣2)=﹣2.故选B.2.如图,点A(1.5,3)在第一象限,OA与x轴所夹的锐角为α,tanα=()A.1 B.1.5 C.2 D.3【答案】C【精准解析】解:根据题意得:tanα==2;故选:C.3.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【答案】B【精准解析】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选B.4.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【答案】D【精准解析】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.5.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【答案】B【精准解析】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD 是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.6.一个三角形三遍的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6 B.9 C.10 D.15【答案】B【精准解析】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选B.7.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F.若AF=2,则对角线AC的长为()A.4 B.5 C.6 D.8【答案】C【精准解析】解:∵四边形ABCD是平行四边形,AD=BC,∴AD∥BC,∴△AEF∽△CBF.∵E是A的中点,∴AE=AD=BC,∴==∵AF=2,∴CF=4.∴AC=AF+CF=6.故选:C.8.在同一平面直角坐标系中,函数y=mx+m与y=﹣(m≠0)的图象可能是()A.B.C.D.【答案】B【精准解析】解:方法一:A、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m 中,与y轴相交于正半轴,则常数项m>0,y随x的增大而增大,则一次项系数m>0,三个m 不同号,故选项错误;B、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m<0,三个m同号,故选项正确;C、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于正半轴,则常数项m>0,y随x的增大而减小,则一次项系数m<0,三个m不同号,故选项错误;D、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m>0,三个m不同号,故选项错误.故选B.方法二:①当m>0时,一次函数y=mx+m的图象过第一、二、三象限,符合一次函数图象的只有A选项,反比例函数y=﹣的图象过点第二、四象限,符合反比例函数图象的有C,D选项,∴同时符合的一次函数和反比例函数图形的选项没有;②当m<0时,一次函数y=mx+m的图象过第二、三、四象限,符合一次函数图象的只有B选项,反比例函数y=﹣的图象过点第一、三象限,符合反比例函数图形的有A,B选项,∴同时符合一次函数图象和反比例函数图象的选项是B,故选B.9.反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【答案】D【精准解析】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.10.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论正确的是()①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.A.①②③B.①②④C.①③④D.①②③④【答案】C【精准解析】解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴,∵点E是AB的中点,∴AE=BE,∴,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=HE,在△AEF和△HEF中,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE═=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故选C.二.填空题(共10小题,每小题2分,共20分)11.已知C是线段AB上一点,若=,则=.【答案】【精准解析】解:∵C是线段AB上一点,=,∴=,即=.故答案为.12.如图是某超市楼梯示意图,若BA与CA的夹角为α,∠C=90°,AC=6米,则楼梯高度BC为米.【答案】6tanα【精准解析】解:在Rt△ABC中,=tanα;即=tanα,BC=6tanα米.故答案为6tanα.13.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为.【答案】4m【精准解析】解:如图,CE=1.5m,∵CE∥BD,∴△ACE∽△ABD,∴=,即=,∴BD=4(m),即树的高度为4m.故答案为:4m.14.在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k 的值为.【答案】2【精准解析】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.15.在△ABC中,∠A,∠B都是锐角,cosA=,sinB=,则△ABC的形状是.【答案】等边三角形【解析】解:∵cosA=,sinB=,∴∠A=60°,∠B=60°.∴∠C=60°.则△ABC是等边三角形.16.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B 点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为千米.(参考数据:≈1.732,结果保留两位有效数字)【答案】1.8【解析】解:过点A作AD⊥BC于点D.设AD=x,则BD=x.∵△ACD是等腰直角三角形,∴CD=AD=x.∵小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,骑行20分钟后到达C点,∴15×=5,∴BC=5.∴x+x=5.∴x=≈1.8(千米).即仓库到公路的距离为1.8千米.17.若α为锐角,且3tan2α﹣4tanα+3=0,则α的度数为.【答案】60°或30°【解析】解:∵α为锐角,∴tanα=x(x>0),则由原方程,得3x2﹣4x+3=0,∴x==,∴x1=,x2=;当x1=,即tanα=时,α=60°;当x2=,即tanα=时,α=30°;综上所述,α的度数为60°或30°;故答案是:60°或30°.18.如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线y=的图象上,若OA=1,则点C的坐标为.【答案】(,)【解析】解:过A作AE⊥OB于E,过C作CF⊥BD于F,∵△OAB是等边三角形,∴∠AOB=∠OAB=60°,OB=OA=1,∴OE=,AE=,∴k=,∴双曲线的解析式为y=,设等边三角形CBD的边长为2a,∴BF=a,CF=a,∴C(1+a,a),∴(1+a)•a=,∴a=,(负值舍去),∴C(,).故答案为:(,).19.如图,△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,其中AB=2,BB1=1,底边BB1,B1B2,…,B n﹣2B n﹣1,B n﹣1B n在同一条直线上,连接AB n 交A n﹣2B n﹣1于点P,则PB n﹣1的值为.【答案】【解析】解:∵△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,∴∠AB1B=∠PB n﹣1B,∴AB1∥PB n﹣1,∴PB n B n﹣1∽△AB n B1,∴=,∵AB1=AB=2,B1B n=n﹣1,B n B n﹣1=1,∴=,∴PB n﹣1=.故答案为:.20.如图,矩形ABCD的一边BC与⊙O相切于G,DC=6,且对角线BD经过圆心O,AD 交⊙O于点E,连接BE,BE恰好是⊙O的切线,已知点P在对角线BD上运动,若以B、P、G三点构成的三角形与△BED相似,则BP=.【答案】4或12【解析】解:连接OE、OG、DG,如图,GO的延长线交AD于H,∵BE和BG为⊙O的切线,∴BG=BE,OB平分∠GBE,OG⊥BC,而BC∥AD,∴GH⊥AD,∴EH=DH,易得四边形CDHG为矩形,∴CG=DH,∴DE=2CG,∵∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,∴BE=BG=DE,∴AE=CG,四边形BGDE为菱形,在Rt△ABE中,∵sin∠ABE==,∴∠ABE=30°,∴∠EBD=∠CBD=30°,∴BC=6,BD=12,∴BE=DE=BG=4,当=时,△PBG∽△EBD,即=,解得PB=4;当=时,△PBG∽△DBE,即=,解得PB=12,综上所述,BP的长为4或12.故答案为4或12.三.解答题(共10小题,每小题6分,共60分)21.(1)计算sin245°+cos30°•tan60°(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.【答案】解:(1)sin245°+cos30°•tan60°=+=2;(2)∵∠B=90°﹣∠A=90°﹣60°=30°,tanB==,∴AC=3•tanB=3tan30°=3×=.22.已知点P(﹣2,3)在反比例函数y=(k为常数,且k≠0)的图象上.(1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A(﹣1,﹣3),并说明理由.【答案】解:(1)∵将P(﹣2,3)代入反比例函数y=,得3=,解得,k=﹣6.∴反比例函数表达式为:y=﹣;(2)反比例函数图象不经过点A.理由是:∵将x=﹣1代入y=,得y=6≠﹣3,∴反比例函数图象不经过点A.【解析】(1)直接把点P(﹣2,3)代入反比例函数y=,求出k的值即可;(2)把点A (﹣1,﹣3)代入反比例函数的解析式进行检验即可.23.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.【答案】解:△ABF∽△DEF.①选择:△ABF∽△DEF理由:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABF=∠E,∠A=∠FDE,∴△ABF∽△DEF.②选择:△EDF∽△ECB理由:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠C=∠FDE.又∵∠E=∠E,∴△EDF∽△ECB.③选择:△ABF∽△CEB理由:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C.∴∠ABF=∠E.∴△ABF∽△CEB.【解析】选择△ABF∽△DEF,根据四边形ABCD是平行四边形可知AB∥CD,再由平行线的性质得出∠ABF=∠E,∠A=∠FDE,据此可得出结论.24.如图,已知∠A=36°,线段AB=6.(1)尺规作图:求作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;(2)求(1)中菱形对角线AC的长.(精确到0.1,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan36°≈0.7265)【答案】解:(1)如图,菱形ABCD为所求作的图形.(2)连接BD交AC于点O.∵四边形ABCD是菱形,∴BD⊥AC,AC=2AO.在Rt△ABO中,∠A=36°,AB=6.∵cos∠BAO=,∴AO=AB•cos36°≈4.85.∴AC=2AO≈9.7.【解析】(1)根据菱形的性质画出图形即可;(2)连接BD交AC于点O,根据菱形的性质可知BD⊥AC,AC=2AO,再由锐角三角函数的定义即可得出结论.25.近年来交通事故发生率逐年上升,交通问题成为重大民生问题,鄱阳二中数学兴趣小组为检测汽车的速度设计了如下实验:如图,在公路MN(近似看作直线)旁选取一点C,测得C到公路的距离为30米,再在MN上选取A、B两点,测得∠CAN=30°,∠CBN=60°;(1)求AB的长;(精确到0.1米,参考数据=1.41,=1.73)(2)若本路段汽车限定速度为40千米/小时,某车从A到B用时3秒,该车是否超速?【答案】解:(1)作CD⊥MN于D,如图所示:则CD=30米,在Rt△CBD中,BC===20≈34.6(米),又∵∠CBN=60°,∠CAN=30°,∴∠ACB=60°﹣30°=30°=∠CAN,∴AB=BC=34.6米;(2)∵40千米/小时≈11.1米/秒,34.6÷3≈11.53(米/秒),11.1<11.53,∴该车是超速.(1)作CD⊥MN于D,则CD=30米,在Rt△CBD中,由三角函数求出BC=【解析】≈34.6(米),由三角形的外角性质求出∠ACB=∠CAN,得出AB=BC=34.6米即可;(2)求出汽车的速度,即可得出答案.26.如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.(1)求点C的坐标;(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.【答案】解:(1)∵点B的坐标为(0,﹣3),∴点C的纵坐标为﹣3,把y=﹣3代入y=﹣得,﹣3=﹣,解得x=5,∴点C的坐标为(5,﹣3);(2)∵C(5,﹣3),∴BC=5,∵四边形ABCD是正方形,∴AD=5,设点P到AD的距离为h.∵S△PAD=S正方形ABCD,∴×5×h=52,解得h=10,①当点P在第二象限时,y P=h+2=12,此时,x P==﹣,∴点P的坐标为(﹣,12),②当点P在第四象限时,y P=﹣(h﹣2)=﹣8,此时,x P==,∴点P的坐标为(,﹣8).综上所述,点P的坐标为(﹣,12)或(,﹣8).【解析】(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标y P=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣,12);②当点P在第四象限时,P点的纵坐标为y P=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为(,﹣8).27.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)【答案】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)×,解得:x≈13,∴BC=13米,答:大树的高度为13米.【解析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x,根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.28.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.【答案】解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【解析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.29.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【解析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB 于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.30.如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)【答案】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.【解析】(1)根据四边形ABCD是平行四边形,可得AD=BC=2,AD∥y轴,进而得出D(1,2),再根据反比例函数y=的图象经过点D,可得反比例函数的解析式;(2)在一次函数y=mx+3﹣4m中,当x=4时,y=3,据此可得一次函数y=mx+3﹣4m的图象一定过点C;(3)过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,根据一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,可知直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,据此可得点P的横坐标的取值范围.训练小能手1.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣3x的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.5【答案】D【解析】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.2.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】解:如图所示几何体的左视图是.故选:B.3.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯【答案】A【解析】解:用光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.4.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3S C.4S D.9S【答案】D【解析】解:∵△ABC与△DEF位似,∴=()2=,∴△ABC的面积=9S.故选D.5.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=(x>0)的图象上,则k的值为.【答案】4【解析】解:连结AC,如图,∵四边形ABCD为菱形,∴AC与BD互相垂直平分,∵BD∥x轴,∴AC⊥x轴,∴A点坐标为(2,2),∴k=2×2=4.故答案为4.6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:EF2=CD•BF.【答案】(1)证明:如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.∵∠BEF=∠EHF=90°,∠BFE=∠EFH,∴△BEF∽△EHF,∴EF2=HF•BF,∴EF2=CD•BF.【解析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE ≌△HFE,再由全等三角形的对应边相等即可得出CD=HF,证明∴△BEF∽△EHF,得出对应边成比例,即可得出结论.例7.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x﹣1),把C(0,2)代入得:2=a(0+2)(0﹣1),解得a=﹣1,∴y=﹣(x+2)(x﹣1)=﹣x2﹣x+2,∴二次函数的解析式为:y=﹣x2﹣x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,﹣n2﹣n+2),设直线AC的解析式为:y=kx+b,把A(﹣2,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(﹣n2﹣n+2)﹣(n+2)=﹣n2﹣2n,∴S△ANC=×2×[﹣n2﹣2n]=﹣n2﹣2n=﹣(n+1)2+1,∴当n=﹣1时,△ANC的面积有最大值为1,此时N(﹣1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(﹣1,0);②如图2,由勾股定理得:BC==,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1﹣,0),M3(1+,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,∵M4在x轴的负半轴上,∴M4(﹣,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(﹣1,0)或(1±,0)或(﹣,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP1Q∽△BCO,∴点P1与点C关于抛物线的对称轴对称,∴P1(﹣1,2),②如图5,由(3)知:当M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2Q⊥BC,此时,△CP2Q∽△BCO,易得直线CM的解析式为:y=x+2,则,解得:P2(﹣,﹣),综上所述,点P的坐标为:(﹣1,2)或(﹣,﹣).【解析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.。
2015~2016学年度九年级数学科中考模拟考试卷(含参考答案)
2015~2016学年度九年级学年考试数学试卷(中考模拟试卷)一、选择题(每题3分,共30分)1、在-3,- ,0,3这四个数中,最小的数是( )A、-3B、-C、0D、32、某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是( )3、或一组数据-2,0,2,3,x的极差为6,则x的值是( )A、4B、4或-8C、-3D、4或-34、若三角形的两边长分别为3和7,则第三边的长可能是( )A、3B、4C、5D、105、下列方程有两个相等的实数根的是( )A、x2+2x-1=0B、3x2-2x+4=0C、4x2-20x+25=0 错误!未定义书签。
D、x2+10x-25=06、在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为( )A、5B、7C、8D、127、十边形的外角和等于( )A、2880ºB、360ºC、1080ºD、1440º8、已知点(a+1,-0.5a+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )9、函数y= 的图象与直线y=x没有交点,那么k的取值范围是( )A、k>1B、k<1C、k>-1D、k<-110、如图,已知⊙O直径AB⊥CD 于点E,则下列结论错误的是( )A、CE=DEB、AE=OEC、B╭C╮=B╭D╮D、△OCE≌△ODE二、填空题(每小题4分,共24分)11、若使二次根式有意义,则x的取值范围是______________。
12、分解因式:a3b-4ab=__________________.13、如果|a-1|+(b+2)2=0,则(a+b)2016的值是_______.14、如图,将△ABC绕点A按顺时针方向旋转40º得△ADE,则∠BAD=______度.15、如图,菱形ABCD中,AB=5,∠BCD=120º,则对角线AC的长是________。
完整word版,2015-2016学年九年级数学期末试卷
2016学年福州市中考数学综合练习(一)(本卷共4页,三大题,共27小题;考试时间:120分钟;满分:150分)一.选择题(共12小题,每题3分,满分36分;每小题只有一个正确的选项.请在答题卡的相应位置填涂) 1.a 的平方根是( ) A .±a B.C .-aD .a2.如图,△ABC 内接于⊙O ,若∠AOB=76°,则∠ACB 的度数是 A .38° B .39° C .76° D .37.5°3.若一个扇形的半径是18cm ,且它的弧长是12π cm ,则此扇形的圆心角等于 A .30° B .60° C .90° D .120° 4. 下列运算正确的是A .3412a a a ⋅=B .325=a a () C .236(3)9a a -=- D .236()a a -=-5.一个隧道的横截面如图所示,它的形状是以点O 为圆心,10为半径的圆的一部 分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =12,则隧道的高 (ME 的长)为( )A .8 B .12 C .16 D .186.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为 A .()2213y x =++ B .()2213y x =+- C.()2213y x =-- D .()2213y x =-+7.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)8.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y <<9. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若此时BN CN =13,则△AMD ′ 的面积与△AMN 的面积的比为A .1:3B .1:4C .1:6D .1: 9 10.如图,在4×4的正方形网格中,tanα的值等于 ( ).(第9题)(第5题) (第7题) (第10题)xy OABA .2B .12 CD11.如图,△AOB 是直角三角形,∠AOB=90°,OB=2OA ,点A 在反比例函数1y x=的图象上.若点B 在反比例函数ky x=的图象上,则k 的值为( )A .2B .-2C .4D .-412.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB =3,则点M 到直线l 的距离为 A. 52B .94C .2D .74二.填空题(共6小题,每题4分,满分24分,请将正确答案填在答题卡相应位置) 13.分解因式:24x -=_____________.14.已知关于x 的方程260x x m -+= 有实数根,则m 的取值范围是 .15.小宇把一面镜子放在假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量 2.1BE =米,若小宇的身高是1.7米,则假山AC 的高度为________________.16.已知20141001a =⨯,20151000b =⨯,2016999c =⨯,则数a ,b ,c 按从小到大的顺序排列,结果是_________________.17.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________18.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC.将△ABC 绕点..D .旋转..得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 .(第15题) (第17题) (第18题)三.解答题(共9小题,满分90分;请将正确答案及解答过程写在答题卡相应位置) 19.(7分)计算:-218cos60(2π⎛⎫+- ⎪⎝⎭.20.(7分)化简:224411(1)x x x x x --⋅--.(第11题)(第12题)21.(8分)如图,点B 、C 、E 、F 在同一直线上,BC =EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC =DF 求证:AB ∥DE(第21题) 22.(8分)一个不透明袋子中有1个红球,1个绿球和n 个白球,这些球除颜色外无其他差别. (1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.2,则n 的值是________;(2)当n=2时,从袋中随机摸出一个球,然后不放回,再从袋中摸出一个球,记录两次摸出球的颜色.请用树状图或列表法求两次摸出的球颜色不同的概率.23. (10分)已知2a b -=,2220a ab c c --+=,点11(,)P x y ,22(,)Q x y 在反比例函数(0)ay a x=≠ 图象上,且满足218x x -=,21112y y ->,求整数c 的值.24.(11分)奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD 约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.(12分)如图,AB 是⊙O 的直径,∠ABT =45°,AT =AB(1) 求证:AT 是⊙O 的切线(2) 连接OT 交⊙O 于点C ,连接AC ,求tan ∠TAC 的值(第25题)(第24题)26.(14分)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接..写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,当△AOH 是等腰三角形时,求出t 的值。
2015-2016学年五校联考九年级(下)第一次月考数学试卷(解析版)
2021 -2021学年五校联考九年级|| (下)第|一次月考数学试卷一、选择题(本大题共10小题,每题4分,共40分,每题只有一个正确选项)1.2021的相反数是()A.B.﹣C.2021 D.﹣2021 2.2021年初,一列CRH5型高速车组进行了"300000公里正线运动考核〞标志着中|国高速快车从"中|国制造〞到"中|国创造〞的飞跃,将300000用科学记数法表示为()A.3×105B.3×104C.0.3×105D.30×1043.以下计算正确的选项是()A.a2a3=a5B.a2+a3=a5C.(a3 )2=a5D.a3÷a2=1 4.以下事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落5.假设a、b为实数,a>0 ,b<0 ,且|a|<|b| ,那么以下正确的选项是()A.a +b<0 B.a +b =0 C.a +b>0 D.以上都不对6.一元二次方程2x2+3x +1 =0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.将抛物线y =x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y = (x +2 )2﹣3 B.y = (x +2 )2+3 C.y = (x﹣2 )2+3 D.y = (x﹣2 )2﹣3 8.假设点A (a ,b )在反比例函数y =的图象上,那么代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣69.在同一平面直角坐标系中,函数y =ax2+bx与y =bx +a的图象可能是() A.B.C.D.10.如图,在平面直角坐标系中,点A1 ,A2 ,A3…都在x轴上,点B1 ,B2 ,B3…都在直线y =x 上,△OA1B1 ,△B1A1A2 ,△B2B1A2 ,△B2A2A3 ,△B3B2A3…都是等腰直角三角形,且OA1=1 ,那么点B2021的坐标是()A.(22021 ,22021 ) B.(22021 ,22021 ) C.(22021 ,22021 ) D.(22021 ,22021 )二、填空题(本大题共6小题,每题4分,共24分)11.在函数中,自变量x的取值范围是.12.分解因式:a2﹣4b2=.13.一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125 ,那么他们成绩的中位数是.14.设x1、x2是一元二次方程x2﹣5x﹣1 =0的两实数根,那么x12+x22的值为.15.二次函数y = (x﹣2 )2+3 ,当x时,y随x的增大而减小.16.如图,在平面直角坐标系中,反比例函数y =(x>0 )的图象交矩形OABC的边AB 于点D ,交边BC于点E ,且BE =2EC.假设四边形ODBE的面积为6 ,那么k=.三、解答题(本大题共10小题,共86分)17.计算:|﹣3|﹣(5﹣π )0+.18.先化简,再求值:a (a﹣2b ) + (a +b )2 ,其中a =﹣1 ,b =.19.解不等式组,并将解集在数轴上表示出来.20.解分式方程:+=1.21.为开展"争当书香少年〞活动,小石对本校局部同学进行"最||喜欢的图书类别〞的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,答复以下问题:(1 )此次被调查的学生共人;(2 )补全条形统计图;(3 )扇形统计图中,艺术类局部所对应的圆心角为度;(4 )假设该校有1200名学生,估计全校最||喜欢"文史类〞图书的学生有人.22.小颖和小丽做"摸球〞游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同) ,从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.假设两次数字之和大于5 ,那么小颖胜,否那么小丽胜,这个游戏对双方公平吗?请说明理由.23.如果抛物线y =ax2+bx +c过定点M (1 ,1 ) ,那么称此抛物线为定点抛物线.(1 )张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y =2x2+3x﹣4 ,请你写出一个不同于小敏的答案;(2 )张老师又在投影屏幕上出示了一个思考题:定点抛物线y =﹣x2+2bx +c +1 ,求该抛物线顶点纵坐标的值最||小时的解析式,请你解答.24.某物流公司承接A、B两种货物运输业务,5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1 )该物流公司月运输两种货物各多少吨?(2 )该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最||多将收到多少运输费?25.如图,一次函数y =﹣x +4的图象与反比例函数y =(k为常数,且k≠0 )的图象交于A (1 ,a ) ,B两点.(1 )求反比例函数的表达式及点B的坐标;(2 )在x轴上找一点P ,使PA +PB的值最||小,求满足条件的点P的坐标及△PAB的面积.26.如图,折叠矩形OABC的一边BC ,使点C落在OA边的点D处,折痕BE =5,且=,以O为原点,OA所在的直线为x轴建立如下列图的平面直角坐标系,抛物线l:y =﹣x2+x +c经过点E ,且与AB边相交于点F.(1 )求证:△ABD∽△ODE;(2 )假设M是BE的中点,连接MF ,求证:MF⊥BD;(3 )P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ ,在点P运动过程中,能否使得PD =DQ ?假设能,求出所有符合条件的Q点坐标;假设不能,请说明理由.2021 -2021学年五校联考九年级|| (下)第|一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题4分,共40分,每题只有一个正确选项)1.2021的相反数是()A.B.﹣C.2021 D.﹣2021【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2021的相反数是:﹣2021 ,应选:D.【点评】此题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.2021年初,一列CRH5型高速车组进行了"300000公里正线运动考核〞标志着中|国高速快车从"中|国制造〞到"中|国创造〞的飞跃,将300000用科学记数法表示为()A.3×105B.3×104C.0.3×105D.30×104【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝||对值与小数点移动的位数相同.当原数绝||对值>1时,n是正数;当原数的绝||对值<1时,n是负数.【解答】解:300000 =3×105 ,应选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10 ,n为整数,表示时关键要正确确定a的值以及n的值.3.以下计算正确的选项是()A.a2a3=a5B.a2+a3=a5C.(a3 )2=a5D.a3÷a2=1【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法运算法那么和幂的乘方运算以及同底数幂的除法运算法那么分别计算得出即可.【解答】解:A、a2a3=a5 ,正确;B、a2+a3无法计算,故此选项错误;C、(a3 )2=a6 ,故此选项错误;D、a3÷a2=a ,故此选项错误.应选:A.【点评】此题主要考查了同底数幂的乘法运算和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法那么是解题关键.4.以下事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落【考点】随机事件.【分析】必然事件是指一定会发生的事件.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.应选:D.【点评】此题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.5.假设a、b为实数,a>0 ,b<0 ,且|a|<|b| ,那么以下正确的选项是()A.a +b<0 B.a +b =0 C.a +b>0 D.以上都不对【考点】绝||对值.【分析】根据题意取a =2 ,b =﹣3 ,求出a +b =﹣1 ,再比较即可.【解答】解:∵|b|>|a| ,且a>0 ,b<0 ,∴取a =2 ,b =﹣3 ,∴a +b =﹣1 ,应选A.【点评】此题有理数的大小比较的应用,采取了取特殊值法.6.一元二次方程2x2+3x +1 =0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1 =1>0 ,∴方程有两个不相等的实数根.应选A.【点评】此题考查的是根的判别式,熟知一元二次方程ax2+bx +c =0 (a≠0 )的根与△的关系是解答此题的关键.7.将抛物线y =x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y = (x +2 )2﹣3 B.y = (x +2 )2+3 C.y = (x﹣2 )2+3 D.y = (x﹣2 )2﹣3 【考点】二次函数图象与几何变换.【分析】先确定抛物线y =x2的顶点坐标为(0 ,0 ) ,再根据点平移的规律得到点(0 ,0 )平移后所得对应点的坐标为(﹣2 ,﹣3 ) ,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x2的顶点坐标为(0 ,0 ) ,把点(0 ,0 )向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(﹣2 ,﹣3 ) ,所以平移后的抛物线解析式为y = (x+2 )2﹣3.应选:A.【点评】此题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.假设点A (a ,b )在反比例函数y =的图象上,那么代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣6【考点】反比例函数图象上点的坐标特征.【分析】先把点(a ,b )代入反比例函数y =求出ab的值,再代入代数式进行计算即可.【解答】解:∵点(a ,b )反比例函数y =上,∴b =,即ab =2 ,∴原式=2﹣4 =﹣2.应选B.【点评】此题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.9.在同一平面直角坐标系中,函数y =ax2+bx与y =bx +a的图象可能是() A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】压轴题.【分析】首||先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y =bx +a来说,由图象可以判断,a>0 ,b>0;而对于抛物线y =ax2+bx来说,对称轴x =﹣<0 ,应在y轴的左侧,故不合题意,图形错误.B、对于直线y =bx +a来说,由图象可以判断,a<0 ,b<0;而对于抛物线y =ax2+bx 来说,图象应开口向下,故不合题意,图形错误.C、对于直线y =bx +a来说,由图象可以判断,a<0 ,b>0;而对于抛物线y =ax2+bx 来说,图象开口向下,对称轴x =﹣位于y轴的右侧,故符合题意,D、对于直线y =bx +a来说,由图象可以判断,a>0 ,b>0;而对于抛物线y =ax2+bx 来说,图象开口向下,a<0 ,故不合题意,图形错误.应选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首||先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.如图,在平面直角坐标系中,点A1 ,A2 ,A3…都在x轴上,点B1 ,B2 ,B3…都在直线y =x 上,△OA1B1 ,△B1A1A2 ,△B2B1A2 ,△B2A2A3 ,△B3B2A3…都是等腰直角三角形,且OA1=1 ,那么点B2021的坐标是()A.(22021 ,22021 ) B.(22021 ,22021 ) C.(22021 ,22021 ) D.(22021 ,22021 ) 【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题;规律型.【分析】根据OA1=1 ,可得点A1的坐标为(1 ,0 ) ,然后根据△OA1B1 ,△B1A1A2 ,△B2B1A2 ,△B2A2A3 ,△B3B2A3…都是等腰直角三角形,求出A1A2 ,B1A2 ,A2A3 ,B2A3…的长度,然后找出规律,求出点B2021的坐标.【解答】解:∵OA1=1 ,∴点A1的坐标为(1 ,0 ) ,∵△OA1B1是等腰直角三角形,∴A1B1=1 ,∴B1 (1 ,1 ) ,∵△B1A1A2是等腰直角三角形,∴A1A2=1 ,B1A2=,∵△B2B1A2为等腰直角三角形,∴A2A3=2 ,∴B2 (2 ,2 ) ,同理可得,B3 (22 ,22 ) ,B4 (23 ,23 ) ,…B n (2n﹣1 ,2n﹣1 ) ,∴点B2021的坐标是(22021 ,22021 ).应选:A.【点评】此题考查了一次函数图象上点的坐标特征:一次函数y =kx +b , (k≠0 ,且k ,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y =kx +b.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每题4分,共24分)11.在函数中,自变量x的取值范围是x≥4.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0 ,列不等式求解.【解答】解:根据题意得:x﹣4≥0 ,解得x≥4 ,那么自变量x的取值范围是x≥4.【点评】此题考查的知识点为:二次根式的被开方数是非负数.12.分解因式:a2﹣4b2=(a +2b ) (a﹣2b ).【考点】因式分解-运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2= (a +b ) (a﹣b ).【解答】解:a2﹣4b2= (a +2b ) (a﹣2b ).【点评】此题考查运用平方差公式进行因式分解,熟记公式结构是解题的关键.13.一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125 ,那么他们成绩的中位数是120.【考点】中位数.【分析】根据中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,进行求解即可.【解答】解:按大小顺序排列为:100 ,100 ,120 ,125 ,135 ,中间一个数为120 ,这组数据的中位数为120 ,故答案为120.【点评】此题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.14.设x1、x2是一元二次方程x2﹣5x﹣1 =0的两实数根,那么x12+x22的值为27.【考点】根与系数的关系.【分析】首||先根据根与系数的关系求出x1+x2=5 ,x1x2=﹣1 ,然后把x12+x22转化为x12+x22= (x1+x2 )2﹣2x1x2 ,最||后整体代值计算.【解答】解:∵x1、x2是一元二次方程x2﹣5x﹣1 =0的两实数根,∴x1+x2=5 ,x1x2=﹣1 ,∴x12+x22= (x1+x2 )2﹣2x1x2=25 +2 =27 ,故答案为:27.【点评】此题主要考查了根与系数的关系的知识,解答此题的关键是掌握一元二次方程两根之和与两根之积与系数的关系,此题难度不大.15.二次函数y = (x﹣2 )2+3 ,当x≤2时,y随x的增大而减小.【考点】二次函数的性质.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y = (x﹣2 )2+3中,a =1 ,∵a>0 ,∴开口向上,由于函数的对称轴为x =2 ,当x≤2时,y的值随着x的值增大而减小;当x≥2时,y的值随着x的值增大而增大.故答案为:≤2.【点评】此题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.16.如图,在平面直角坐标系中,反比例函数y =(x>0 )的图象交矩形OABC的边AB 于点D ,交边BC于点E ,且BE =2EC.假设四边形ODBE的面积为6 ,那么k =3.【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】连接OB ,由矩形的性质和条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3 ,在求出△OCE的面积,即可得出k的值.【解答】解:连接OB ,如下列图:∵四边形OABC是矩形,∴∠OAD =∠OCE =∠DBE =90° ,△OAB的面积=△OBC的面积,∵D、E在反比例函数y =(x>0 )的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3 ,∵BE =2EC ,∴△OCE的面积=△OBE的面积=,∴k =3;故答案为:3.【点评】此题考查了矩形的性质、三角形面积的计算、反比例函数的图象与解析式的求法;熟练掌握矩形的性质和反比例函数解析式的求法是解决问题的关键.三、解答题(本大题共10小题,共86分)17.计算:|﹣3|﹣(5﹣π )0+.【考点】实数的运算;零指数幂.【分析】先根据绝||对值,零指数幂,二次根式的性质求出每一局部的值,再代入求出即可.【解答】解:原式=3﹣1 +5=7.【点评】此题考查了绝||对值,零指数幂,二次根式的性质的应用,能求出每一局部的值是解此题的关键,难度适中.18.先化简,再求值:a (a﹣2b ) + (a +b )2 ,其中a =﹣1 ,b =.【考点】整式的混合运算-化简求值.【专题】计算题.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最||简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab +a2+2ab +b2=2a2+b2 ,当a =﹣1 ,b =时,原式=2 +2 =4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法那么是解此题的关键.19.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3 ,由②得,x≤2 ,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:【点评】此题考查的是解一元一次不等式组,熟知"同大取较大,同小取较小,小大大小中间找,大大小小解不了〞的原那么是解答此题的关键.20.解分式方程:+=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2 +x (x +2 ) =x2﹣4 ,解得:x =﹣3 ,经检验x =﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的根本思想是"转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.为开展"争当书香少年〞活动,小石对本校局部同学进行"最||喜欢的图书类别〞的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,答复以下问题:(1 )此次被调查的学生共40人;(2 )补全条形统计图;(3 )扇形统计图中,艺术类局部所对应的圆心角为72度;(4 )假设该校有1200名学生,估计全校最||喜欢"文史类〞图书的学生有300人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1 )根据条形图可知喜欢"社科类〞的有5人,根据在扇形图中占12.5%可得出调查学生数;(2 )根据条形图可知喜欢"文学类〞的有12人,即可补全条形统计图;(3 )计算出喜欢"艺术类〞的人数,根据总人数可求出它在扇形图中所占比例;(4 )用该年级||的总人数乘以"文史类〞的学生所占比例,即可求出喜欢的学生人数.【解答】解:(1 )5÷12.5% =40 (人)答:此次被调查的学生共40人;(2 )40﹣5﹣10﹣8﹣5 =12 (人)(3 )8÷40 =20%360°×20% =72°答:扇形统计图中,艺术类局部所对应的圆心角为72度;(4 )1200×=300 (人)答:假设该校有1200名学生,估计全校最||喜欢"文史类〞图书的学生有300人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.22.小颖和小丽做"摸球〞游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同) ,从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.假设两次数字之和大于5 ,那么小颖胜,否那么小丽胜,这个游戏对双方公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】列表得出所有等可能的情况数,找出数字之和大于5的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1 ,1 ) (2 ,1 ) (3 ,1 ) (4 ,1 )2 (1 ,2 ) (2 ,2 ) (3 ,2 ) (4 ,2 )3 (1 ,3 ) (2 ,3 ) (3 ,3 ) (4 ,3 )4 (1 ,4 ) (2 ,4 ) (3 ,4 ) (4 ,4 )所有等可能的情况有16种,其中数字之和大于5的情况有(2 ,4 ) , (3 ,3 ) , (3 ,4 ) , (4 ,2 ) , (4 ,3 ) , (4 ,4 )共6种,故小颖获胜的概率为:=,那么小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否那么就不公平.23.如果抛物线y =ax2+bx +c过定点M (1 ,1 ) ,那么称此抛物线为定点抛物线.(1 )张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y =2x2+3x﹣4 ,请你写出一个不同于小敏的答案;(2 )张老师又在投影屏幕上出示了一个思考题:定点抛物线y =﹣x2+2bx +c +1 ,求该抛物线顶点纵坐标的值最||小时的解析式,请你解答.【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】(1 )根据顶点式的表示方法,结合题意写一个符合条件的表达式那么可;(2 )根据顶点纵坐标得出b =1 ,再利用最||小值得出c =﹣1 ,进而得出抛物线的解析式.【解答】解:(1 )依题意,选择点(1 ,1 )作为抛物线的顶点,二次项系数是1 ,根据顶点式得:y =x2﹣2x +2;(2 )∵定点抛物线的顶点坐标为(b ,c +b2+1 ) ,且﹣1 +2b +c +1 =1 ,∴c =1﹣2b ,∵顶点纵坐标c +b2+1 =2﹣2b +b2= (b﹣1 )2+1 ,∴当b =1时,c +b2+1最||小,抛物线顶点纵坐标的值最||小,此时c =﹣1 ,∴抛物线的解析式为y =﹣x2+2x.【点评】此题考查抛物线的形状与抛物线表达式系数的关系,首||先利用顶点坐标式写出来,再化为一般形式.24.某物流公司承接A、B两种货物运输业务,5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1 )该物流公司月运输两种货物各多少吨?(2 )该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最||多将收到多少运输费?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1 )设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x 的不等式组,解方程组求解即可;(2 )运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1 )设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2 )设A种货物为a吨,那么B种货物为(330﹣a )吨,依题意得:a≤ (330﹣a )×2 ,解得:a≤220 ,设获得的利润为W元,那么W =70a +40 (330﹣a ) =30a +13200 ,根据一次函数的性质,可知W随着a的增大而增大当W取最||大值时a =220 ,即W =19800元.所以该物流公司7月份最||多将收到19800元运输费.【点评】此题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.25.如图,一次函数y =﹣x +4的图象与反比例函数y =(k为常数,且k≠0 )的图象交于A (1 ,a ) ,B两点.(1 )求反比例函数的表达式及点B的坐标;(2 )在x轴上找一点P ,使PA +PB的值最||小,求满足条件的点P的坐标及△PAB的面积.【考点】反比例函数与一次函数的交点问题;轴对称-最||短路线问题.【分析】(1 )把点A (1 ,a )代入一次函数y =﹣x +4 ,即可得出a ,再把点A坐标代入反比例函数y =,即可得出k ,两个函数解析式联立求得点B坐标;(2 )作点B作关于x轴的对称点D ,交x轴于点C ,连接AD ,交x轴于点P ,此时PA +PB的值最||小,求出直线AD的解析式,令y =0 ,即可得出点P坐标.【解答】解:(1 )把点A (1 ,a )代入一次函数y =﹣x +4 ,得a =﹣1 +4 ,解得a =3 ,∴A (1 ,3 ) ,点A (1 ,3 )代入反比例函数y =,得k =3 ,∴反比例函数的表达式y =,两个函数解析式联立列方程组得,解得x1=1 ,x2=3 ,∴点B坐标(3 ,1 );(2 )作点B作关于x轴的对称点D ,交x轴于点C ,连接AD ,交x轴于点P ,此时PA +PB的值最||小,∴D (3 ,﹣1 ) ,设直线AD的解析式为y =mx +n ,把A ,D两点代入得,,解得m =﹣2 ,n =5 ,∴直线AD的解析式为y =﹣2x +5 ,令y =0 ,得x =,∴点P坐标(,0 ) ,S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=.【点评】此题考查了一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x轴或y轴分割为2个三角形的面积和.26.如图,折叠矩形OABC的一边BC ,使点C落在OA边的点D处,折痕BE =5,且=,以O为原点,OA所在的直线为x轴建立如下列图的平面直角坐标系,抛物线l:y =﹣x2+x +c经过点E ,且与AB边相交于点F.(1 )求证:△ABD∽△ODE;(2 )假设M是BE的中点,连接MF ,求证:MF⊥BD;(3 )P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ ,在点P运动过程中,能否使得PD =DQ ?假设能,求出所有符合条件的Q点坐标;假设不能,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1 )由折叠和矩形的性质可知∠EDB =∠BCE =90° ,可证得∠EDO =∠DBA ,可证明△ABD∽△ODE;(2 )由条件可求得OD、OE的长,可求得抛物线解析式,结合(1 )由相似三角形的性质可求得DA、AB ,可求得F点坐标,可得到BF =DF ,又由直角三角形的性质可得MD =MB ,可证得MF为线段BD的垂直平分线,可证得结论;(3 )过D作x轴的垂线交BC于点P ,设抛物线与x轴的两个交点分别为M、N ,可求得DM =DN =DG ,可知点M、N为满足条件的点Q ,可求得Q点坐标.【解答】方法一:(1 )证明:∵四边形ABCO为矩形,且由折叠的性质可知△BCE≌△BDE ,∴∠BDE =∠BCE =90° ,∵∠BAD =90° ,∴∠EDO +∠BDA =∠BDA +∠DAB =90° ,∴∠EDO =∠DBA ,且∠EOD =∠BAD =90° ,∴△ABD∽△ODE;(2 )证明:∵=,∴设OD =4x ,OE =3x ,那么DE =5x ,∴CE =DE =5x ,∴AB =OC =CE +OE =8x ,又∵△ABD∽△ODE ,∴==,∴DA =6x ,∴BC =OA =10x ,在Rt△BCE中,由勾股定理可得BE2=BC2+CE2 ,即(5)2= (10x )2+ (5x )2 ,解得x =1 ,∴OE =3 ,OD =4 ,DA =6 ,AB =8 ,OA =10 ,∴抛物线解析式为y =﹣x2+x +3 ,当x =10时,代入可得y =,∴AF =,BF =AB﹣AF =8﹣=,在Rt△AFD中,由勾股定理可得DF ===,∴BF =DF ,又M为Rt△BDE斜边上的中点,∴MD =MB ,∴MF为线段BD的垂直平分线,∴MF⊥BD;(3 )解:由(2 )可知抛物线解析式为y =﹣x2+x +3 ,设抛物线与x轴的两个交点为H、G ,令y =0 ,可得0 =﹣x2+x +3 ,解得x =﹣4或x =12 ,∴H (﹣4 ,0 ) ,G (12 ,0 ) ,①当PD⊥x轴时,由于PD =8 ,DH =DG =8 ,故点Q的坐标为(﹣4 ,0 )或(12 ,0 )时,△PDQ是以P为直角顶点的等腰直角三角形;②当PD不垂直于x轴时,分别过P ,Q作x轴的垂线,垂足分别为N ,I ,那么Q不与G重合,从而I不与G重合,即DI≠8.∵PD⊥DQ ,∴∠QDI =90°﹣∠PDN =∠DPN ,∴Rt△PDN∽Rt△DQI ,∵PN =8 ,∴PN≠DI ,∴Rt△PDN与Rt△DQI不全等,∴PD≠DQ ,另一侧同理PD≠DQ.综合① ,②所有满足题设条件的点Q的坐标为(﹣4 ,0 )或(12 ,0 ).方法二:(1 )略.(2 ),设OE =3a ,OD =4a ,∴DE =CE =5a ,∴OE =AB =8a ,由(1 )知:,∴AD =6a ,∴OA =BC =10a ,∵BE =5,∴ (5a )2+ (10a )2= (5)2 ,∴a =1 ,∴E (0 ,3 ) ,∴y =﹣,∴D (4 ,0 ) ,∵B (10 ,8 ) ,∴F (10 ,) ,∵M为BE的中点,∴M (5 ,) ,∴KBD×KMF ==﹣1 ,∴MF⊥BD.(3 )设P (t ,8 ) (0<t<10 ) ,∵D (4 ,0 ) ,∵PD⊥DQ ,PD =PQ ,∴△PDQ是以点D为直角顶点的等腰直角三角形,①点Q可视为点P绕点D顺时针旋转90°而成,将D点平移至||原点,D′ (0 ,0 ) ,那么P′ (t﹣4 ,8 ) ,将P′点绕原点顺时针旋转90° ,那么Q′ (8 ,4﹣t ) ,将D′点平移至||D点,那么Q′平移后即为Q (12 ,4﹣t ) ,把Q (12 ,4﹣t )代入抛物线,∴﹣=4﹣t ,∴t =4 ,∴Q (12 ,0 );②点Q可视为点P绕点D逆时针旋转90°而成,同理可得:Q (﹣4 ,0 ) , 综合① ,②所有满足题设条件的点Q的坐标为(﹣4 ,0 )或(12 ,0 ).。
人教版九年级数学下册2016年5月九年级数学模拟测试卷及答案
2016年5月九年级教学质量抽测参考答案(数学)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C A C C A C A C D C二、填空题:13. 6 14. -2 15. 1:4916. 7 17. 2006 18. 319.解:原式=3分---------------=----------------5分=2.---------------6分20. 证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,---------------------2分∴在:△ABE与△CDF中,-----------------------5分∴△ABE≌△CDF(ASA)-----------------------6分21.解:(1)m=40;--------------------------1分(2)“其他”类所占的百分比为15%;---------------2分(3)画树状图,如图所示:--------------4分所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.------------6分22. 解:(1)根据关于x 轴对称点的坐标特点可知:A 1(2,﹣4);------------1分 如图下图:连接A 1、B 1、C 1即可得到△A 1B 1C 1.-----------------2分(2)如图:---------------4分(3)由两点间的距离公式可知:BC= -------------5分∴点C 旋转到C 2点的路径长=. ----------------8分23.解:(1)依题意,则AN=4+2=6,-----------1分 ∴N (6,2), -------------2分 把N (6,2)代入y=得:∴k=212; --------------------4分(2)∵M 点横坐标为2,∴M 点纵坐标为,262212∴M (2,26),∴由图象知,≥ax+b的解集为:0<x≤2或x≥6.--------------------8分24.解:(1)设A种型号服装每件x元,B种型号服装每件y元.-----------1分依题意可得-------------------2分解得-----------------3分答:A种型号服装每件90元,B种型号服装每件100元.-----------4分(2)设B型服装购进m件,则A型服装购进(2m+4)件.---------5分根据题意得------------6分解不等式得9≤m≤12 ------------7分因为m这是正整数所以m=10,11,122m+4=24,26,28答:有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A 型服装购进26件;B型服装购进12件,A型服装购进28件.-------------------8分25.(1)证明:连接OB.∵BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB,∴∠POA=∠POB,-------------------1分又∵PO=PO,OB=OA,∴△POB≌△POA.----------------------2分∴∠PBO=∠PAO=90°.∴PB是⊙O的切线--------------------3分(2)解:2PO=3BC.(写PO=BC亦可)----------------4分证明:∵△POB≌△POA,∴PB=PA.∵BD=2PA,∴BD=2PB.∵BC∥PO,∴△DBC∽△DPO.-------------------------5分∴,∴2PO=3BC.-------------------------------------6分(3)解:∵CB∥OP,∴△DBC∽△DPO,∴,即DC=OD.∴OC=OD,∴DC=2OC.------------------------------------------------7分设OA=x,PA=y.则OD=3x,OB=x,BD=2y.在Rt△OBD中,由勾股定理得(3x)2=x2+(2y)2,即2x2=y2.----------------8分∵x>0,y>0,∴y=x,OP==x.---------------------------9分∴sin∠OPA====.----------------------------10分26. 解:(1)在y=﹣3x+3中,令y=0,可求得x=1,令x=0,可求得y=3,∴A(1,0),B(0,3),-------------------------------------------------2分分别代入y=a(x﹣2)2+k,可得,解得,即a为1,k为﹣1;---------------------------------------------4分(2)由(1)可知抛物线解析式为y=(x﹣2)2﹣1,令y=0,可求得x=1或x=3,∴C(3,0),∴AC=3﹣1=2,AB=,过B作平行x轴的直线,在B点两侧分别截取线段BQ1=BQ2=AC=2,如图1,∵B(0,3),∴Q1(﹣2,3),Q2(2,3);过C作AB的平行线,在C点分别两侧截取CQ3=CQ4=AB=,如图2,∵B(0,3),∴Q 3、Q4到x轴的距离都等于B点到x轴的距离也为3,且到直线x=3的距离为1,∴Q3(2,3)、Q4(4,﹣3);综上可知满足条件的Q点的坐标为(﹣2,3)或(2,3)或(4,﹣3);----------------------7分(3)由条件可知对称轴方程为x=2,连接BC交对称轴于点M,连接MA,如图3,∵A、C两点关于对称轴对称,∴AM=MC,∴BM+AM最小,------------------------------8分∴△ABM周长最小,∵B(0,3),C(3,0),∴可设直线BC解析式为y=mx+3,把C点坐标代入可求得m=﹣1,∴直线BC解析式为y=﹣x+3,当x=2时,可得y=1,∴M(2,1);---------------------------------------9分∴存在满足条件的M点,此时BC=3,且AB=,∴△ABM的周长的最小值为3+;-------------------------10分(4)由条件可设N点坐标为(2,n),则NB2=22+(n﹣3)2=n2﹣6n+13,NA2=(2﹣1)2+n2=1+n2,且AB2=10,当△ABN为以AB为斜边的直角三角形时,由勾股定理可得NB2+NA2=AB2,∴n2﹣6n+13+1+n2=10,解得n=1或n=2,即N点坐标为(2,1)或(2,2),综上可知存在满足条件的N点,其坐标为(2,1)或(2,2).-----------------12分11。
2015-2016学年九年级下学期阶段性质量检测 数学试题及答案(新人教版)
2015-2016学年九年级下学期阶段性质量检测数学试题(新人教版)检测范围:二次函数、相似三角形时间120分钟 满分120分 2015.11.30一、选择题(每小题3分,共30分)1、抛物线1)3(22+-=x y 的顶点坐标是( ) A.(3,-1) B.(-3,1) C.(3,1) D.(-3,-1)2、抛物线 442--=x x y 的对称轴是( )A. 2-=xB. 2=xC.4=xD. 4-=x3、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =--B. 23(1)2y x =+-C. 23(1)2y x =++D. 23(1)2y x =-+4、△ABC 和△A ′B ′C ′是相似图形,且对应边AB 和A ′B ′的比为1∶3,则△ABC 和△A ′B ′C ′的面积之比为( )A .3∶1B .1∶3C .1∶9D .1∶275、如图,已知直线a ∥b ∥c ,直线m ,n 与直线a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC =4,CE =6,BD =3,则BF =( )A .7B .7.5C .8D .8.56、在△ABC 中,BC =15 cm ,CA =45 cm ,AB =57 cm ,另一个和它相似的三角形的最短边长是5 cm ,则最长边长是( )A .18 cmB .19 cmC .24 cmD .19.5 cm7、如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C . 8 cm 2D .16 cm 28、二次函数与882+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且9、如图,身高1.6 m 的某学生想测量一棵大树的高度,她沿着树影BA 由B向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BA =4 m ,CA =0.8 m ,则树的高度为( )A .4.8 mB .6.4 mC .8 mD .10m第9题 第10题10、 如图为二次函数错误!未找到引用源。
2015-2016学年度下学期九年级数学模拟试卷(含答案)
2015~2016学年度下学期九年级数学模拟试卷注意事项: 4大页,五道大题,26小题,满分150分,考试时间120分钟;2.请根据要求在答题卡上规范作答,在本试卷上作答无效.一、选择题(本大题共有8小题,每小题3分,共24分) 1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰三角形B .平行四边形C .直角三角形D .圆2.如图1的几何体是由4个完全相同的正方体组成的,这个几何体的左视图是( )3.下列一元二次方程中,没有实数根的是( ) 图1 A .2210x x --= B .2210x x -+=C .210x -=D .2230x x ++=4.如图2,BD 是⊙O 的直径,∠CBD=30°,则∠A 的度数为( ) A .30°B .45°C .60°D .75°5.小明在一次班会中参与知识抢答活动,现有语文题2道,数学题3道, 综合题4道,他从中随机抽取一道,抽中数学题的概率是( ) A . B . C . D . 6.如图3,△ABC 中,DE ∥BC ,13AD AB =,DE=3,则BC 边的长是( ) 图2 A .6 B .7 C .8D .97.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台 电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程 正确的是( )A .()181x x +=B .2181x x ++=C .()1181x x x +++=D .()21181x ++= 图38.已知抛物线()21y x =-+上的两点A ()11,x y 和B ()22,x y ,如果121x x <<-,那么下列结论一定成立的是( )A .y 1<y 2<0B .0<y 1<y 2C .0<y 2<y 1D .y 2<y 1<0二、填空题(本大题共有8小题,每小题3分,共24分) 9.分解因式:244ab ab a -+= .10.如图4,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若AB =10,CD =8,则OP =__________. 图4 11.已知关于x 的一元二次方程210x ax a ++-=有一个根为3,则a 的值为__________.12.一枚质地均匀的骰子,六个面分别刻有1到6的点数,连续抛掷这个骰子两次,则向上一面的点数和为6的概率是__________.13.如图5,用一个圆心角为120°,半径为3的扇形做一个圆锥的侧面,则这个圆锥的底面圆的半径为__________.图5 图6 图714.将抛物线22y x =-向上平移1个单位,再向右平移2个单位,得到新的抛物线解析式为__________. 15. 如图6,为了缓解市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌.已知立杆AB 高度为3米,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°,计算路况显示牌BC 的高度是 __________米.(3 1.732≈,结果精确到)16.如图7,在△ABC 中,∠BAC=70°,在同一平面内将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=__________.三、解答题(本大题共有4小题,其中17、18、19题各9分,20题12分,共39分) 17.计算:()10sin 6012342016-︒-+⨯-.18.化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭.19.如图,在平行四边形ABCD 中,BE 、CF 分别平分∠ABC 、∠BCD ,交AD 于E 、F 两点,求证:AF=DE.20.某学校为了解该校七年级学生的身高状况,抽样调查了部分同学,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)样本的中位数在统计图的哪个范围内?(直接写出答案)(3)如果上述样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么(填“七年级”或“八年级”)学生的身高比较整齐;(4)从所有七年级学生中随机抽选一名,该学生的身高不低于155cm的概率为 .四、解答题(本大题共有3小题,其中21、22题各9分,23题10分,共28分)21.某校九年级准备购买一批笔奖励优秀学生,在购买时发现,每只笔可以打九折,用360元钱买的笔,打折后购买的数量比打折前多10只,求打折前每支笔的售价是多少钱?22.如图,直线2y x =-+与反比例函数ky x=的图象相交于点A (a ,3),且与x 轴相交于点B . (1)求该反比例函数的表达式;(2)若P 为y 轴上的点,且△AOP 的面积是△AOB 的面积的23, 请求出点P 的坐标.23.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切于点A ,射线AO 交BC于点E ,交⊙O 于点F ,点G 在射线AF 上,且∠GCB=2∠BAF . (1)求证:直线GC 是⊙O 的切线;(2)若AB=25,AD= 4,求线段GC 的长.五、解答题(本大题共有3小题,其中24题11分,25、26题各12分,共35分)24.如图1,在△ABC中,∠ACB=90°,AC=3cm,BC=4cm,点D为AB中点,连结CD,动点P、Q从点C同时出发,点P沿BC边C→B→C以2a cm/s的速度运动;点Q沿CA边C→A以a cm/s的速度运动,当点Q到达点A时,两点停止运动,以CQ,CP为边作矩形CQMP,当矩形CQMP与△CDB重叠部分的图形是四边形时,设重叠部分图形的面积为y(cm2).P、Q两点运动时间为t(s),在点P由C→B过程中,y与t的图象如图2所示.(1)求a、m的值;(2)求y与t的函数关系式,并写出t的取值范围.25.已知:过△ABC的顶点作直线MN∥AC,D为BC边上一点,连结AD,作∠ADE=∠BAC交直线MN于点E,DE交AB于点F(如图1).(1)找出图中与∠BED相等的角,并证明;(2)若AB=AC(如图2),其它条件不变,求证:AD=DE;(3)若AB=kAC(如图3),其它条件不变,探究线段AD,DE之间的数量关系,并证明.(用含k 的式子表示)26.如图,抛物线2y x bx c =-++交x 轴于A (1,0),B (5,0)两点,顶点为D ,直线132y x =-+交x 轴、y 轴于点E 、F ,交抛物线于M 、N 两点.(1)抛物线的解析式为 ;点D 的坐标为 ; (2)点P 为直线MN 上方的抛物线上的点,当△PMN 的面积最大时,求点P 的坐标;(3)在抛物线上是否存在点Q ,使点Q 关于直线EF 的对称点在x 轴上?若存在,求出点Q 的坐标;若不存在,请说明理由.2015~2016学年度下学期九年级数学模拟试卷答案一、选择题1、D2、C3、D4、C5、B6、D7、C8、A二、填空题a b-;10、 3 ;9、()2211、 -2 ; 12、536;13、 1 ; 14、()2221y x =--+; 15、 2.2 ; 16、 40° . 三、解答题 17、原式=|23-32|+23-1 =23-1…………9分(结果错误、不规范但其余步骤正确得8分) 18、原式=1a b+ 19、21、解:22、 (1)∵点A (a ,3)在直线2y x =-+ 上,∴ 3=-a +2.∴ a =-1.…………………………………………………… 1分 ∴A (-1,3).…………………………………………… … 2分∵点A (-1,3)在反比例函数ky =x的图象上,∴31k=-. ∴ k = -3. ……………… ……… 3分∴3y =x-. ……………………………………………… 4分(2)(0,4 )或(0,-4 ).……………………………………9分 23、【分析】(1)首先连接OC ,由AD 与⊙O 相切,可得FA ⊥AD ,四边形ABCD 是平行四边形,可得AD ∥BC ,然后由垂径定理可证得F 是的中点,BE=CE ,∠OEC=90°,又由∠GCB=2∠BAF ,即可求得∴∠GCB+∠OCE=90°,继而证得直线GC 是⊙O 的切线;(2)首先由勾股定理可求得AE 的长,然后设⊙O 的半径为r ,则OC=OA=r ,OE=3﹣r ,则可求得半径长,易得△OCE ∽△CGE ,然后由相似三角形的对应边成比例,求得线段GC 的长. 【解答】(1)证明:连结OC∵AD与⊙O相切于点AAF为⊙O直径,∴AF⊥AD,又∵四边形ABCD平行四边形,∴AD∥BC,∴AF⊥BC,∴∠OEC=90°,BE=CE,=,∴∠COE=2∠BAF,∵∠GCB=2∠BAF,∴∠COE=∠GCB,∵∠COE+∠OCE=90°,∴∠GCB+∠OCE=90°,即∠OCG=90°,∴OC⊥CG,又∵OC为半径,∴GC为⊙O的切线;(2)∵AD=4,∴BC=4,∴BE=2,在Rt△ABE中,AE==4,设⊙O的半径为r,则在Rt△OCE中,OC2=OE2+CE2,∴r2=(4﹣r)2+22,解得r = ,∴OE= 4﹣= ,又∵∠COE=∠GCB,∠OEC=∠GEC=90°∴△OCE∽△CGE,∴= ,即= .∴CG = .24、【分析】(1)根据图象可知,当t= 时,点M落在AB边上,根据△BPM∽△BCA,得到比例式,计算求出a,根据点D为AB中点,DQ∥BC,求出m;(2)分0<t≤、<t<2、2<t<3三种情况,根据相似三角形的性质解答即可.【解答】解(1)由图象得:当t= 时,点M落在AB边上,如图3所示,CP= ×2a= a,CQ=a,∵△BPM∽△BCA,∴= ,即= ,解得:a=1,根据题意得,当QM过点D时,t=m,如图4所示,∵点D 为AB 中点,DQ ∥BC ,∴点Q 为AC 中点∴t = ,∴m = ;(2)当0<t ≤ 时,如图5,CD 与QM 的交点是点G ,∵△CQG ∽△ACB , ∴ = ,即 = ,整理得:QG= t , ∴S △CQG = •t •t= t 2,∴y=2t 2﹣t 2= t 2,当<t <2时,如图5,PM 与BD 交点是H ,∴△BHP ∽△BAC ,∴ = ,即 = ,∴HP=BP ,∴y=S △BCD ﹣S △BHP =3﹣BP •BP=3﹣BP 2=3﹣(4﹣2t )2=﹣t 2+6t ﹣3;当2<t <3时,同理得到y=3﹣(2t ﹣4)2=﹣t 2+6t ﹣3.25、【分析】(1)∠BAD=∠BED ,理由为:由MN 与AC 平行,得到一对内错角相等,再由已知角相等,等量代换得到∠EBA=∠ADE ,再由对顶角相等,得到△EBF ∽△ADF ,利用相似三角形的对应角相等即可得证;(2)以D 为圆心,DB 为半径画弧交AB 于Q ,则DB=DQ ,如图2所示,利用等边对等角得到一对角相等,再由AB=AC ,得到∠ABC=∠C ,进而得到∠BDQ=∠BAC ,根据已知角相等,利用等式的性质得到∠BDE=∠QDA ,再由DB=DQ ,利用AAS 得到△BED ≌△QAD ,利用全等三角形的对应边相等即可得证;(3)作∠BDQ=∠ADE ,交AB 于点Q ,如图3所示,利用两对角相等的三角形相似得到△BED ∽△QAD ,以及△BDQ ∽△BAC ,由相似得比例,根据AB=kAC ,即可确定出AD ,DE 之间的数量关系.【解答】解:(1)∠BAD=∠BED ,理由为:证明:∵MN ∥AC ,∴∠EBA=∠BAC , ∵∠BAC=∠ADE ,∴∠EBA=∠ADE ,又∵∠AFD=∠EFB ,∴△EBF ∽△ADF ,∴∠BED=∠BAD;(2)以D为圆心,DB为半径画弧交AB于Q,则DB=DQ,∴∠DBQ=∠DQB,∵AB=AC,∴∠ABC=∠C,∴∠BDQ=∠BAC,∵∠ADE=∠BAC,∴∠BDQ=∠ADE,∴∠BDQ﹣∠EDQ=∠ADE﹣∠EDQ,即∠BDE=∠QDA,在△BED和△QAD中,,∴△BED≌△QAD(AAS),∴AD=DE;(3)作∠BDQ=∠ADE,交AB于点Q,如图3所示,∴∠BDQ﹣∠EDQ=∠ADE﹣∠EDQ,即∠BDE=∠ADQ,∵∠BED=∠BAD,∴△BED∽△QAD,∴= ,∵∠ABC=∠QBD,∠BDQ=∠ADE=∠BAC,∴△BDQ∽△BAC,∴= =k,∴= k,即DE=kAD.26、【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点式解析式,可得顶点坐标;(2)根据自变量与函数值的对应关系,可得P,G点坐标,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PG的长,根据解方程组,可得M、N的横坐标,根据面积的和差,可得二次函数,根据二次函数的性质,可得P点的横坐标,再根据自变量与函数值的对应关系,可得P 点坐标;(3)根据相似三角形的判定与性质,可得∠ADG=∠FEO,根据余角的性质,可得∠IDH+∠DIH=90°,根据直角三角形的判定,可得∠DHE=90°,根据线段垂直平分线的定义,可得EF为AD中垂线,根据线段垂直平分线的性质,可得直线ED上的点关于直线EF的对称点都在x轴上,根据解方程组,可得Q点坐标.【解答】解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+6x﹣5,y=﹣x2+6x﹣5=﹣(x﹣3)2+4,点D 的坐标为(3,4);故答案为:y=﹣x 2+6x ﹣5,(3,4);(2)如图1,过P 作PG ⊥x 轴交EF 于G 点,设P (m ,﹣m 2+6m ﹣5),G (m ,﹣m+3), PG=﹣m 2+6m ﹣5﹣(﹣m+3)=﹣m 2+m ﹣8.联立抛物线与直线EF ,得 , 化简,得:2x 2﹣13x+16=0,解得x 1=,x 2=,S △PMN =S △PGN +S △PGM =PG •(x N ﹣3)+PG •(3﹣x M )= PG (x N ﹣x M ) =(﹣m 2+m ﹣8)(﹣) =﹣(m ﹣)2+, 当m=时,S 最大=, 当m=时,﹣m 2+6m ﹣5=﹣()2+6×﹣5=, 即P (,),当△PMN 的面积最大时,点P 的坐标(,);(3)如图2,连接AD 交MN 于点H ,过D 作DG ⊥x 轴于G ,连接DE ,∴AG=2,DG=4,=,又∵F (0,3),E (6,0),∴= ∴=,∴△OFE ∽△GAD ,∴∠ADG=∠FEO ,∴∠DHE=∠DGE=90°∴EF ⊥AD ,又∵AD中点为(2,2),将(2,2)代入EF解析式2=﹣×2+3,∴H为AD中点,∴EF为AD中垂线,连结ED,则直线ED上的点关于直线EF的对称点都在x轴上.∵D(3,4),E(6,0),∴y DE=﹣x+8,连接DE与抛物线,得:消元,得:﹣x+8=﹣x2+6x﹣5.解得x1=3,﹣x+8=4,Q(3,4);x2=,﹣x+8=,Q(,);∴在抛物线上存在点Q,使点Q关于直线EF的对称点在x轴上,点Q的坐标为Q1(3,4),Q2(,).。
2015~2016学年度第二学期九年级质量检测(一)数学试题参考答案
2015~2016学年度第二学期九年级质量检测(一)数学试题参考答案及评分标准(注:若有其他正确答案请参照此标准赋分)一、选择题(本大题共8个小题,每小题2分,共16分)二、填空题(本大题共8个小题,每小题3分,共24分) 9.3.12×10610.6元,6元(没有单位也可) 11. 13m <12. 22.5-x -15≥15×10% 或%1015155.22≥--x13. ①③④ 14.6 15. 22或111 16. 24031 三、解答题(本大题共2个小题,每小题6分,共12分) 17. 解:方法1:原式=(1)(1)11x x x x x x -⎡⎤--÷⎢⎥++⎣⎦=1(1)1(1)x x x x x x +⎡⎤--⋅⎢⎥+-⎣⎦=11x x x x +--=22(1)1(1)(1)x x x x x x --=--(或21x x-). ……………5分 当2x =-时,原式=111(1)(2)(21)6x x ==--⨯--.……………………………6分方法2:原式=2(1)11x x x x x x -⎡⎤--÷⎢⎥++⎣⎦=22(1)(1)111xx x x x x x x⎡⎤-++-⋅⎢⎥++-⎣⎦ =222(1)11x x x x x x ⎡⎤--+⋅⎢⎥+-⎣⎦=2111x x x x +⋅+-=21x x-(或1(1)x x -). ……………………………5分 当2x =-时,原式=22111(2)(2)6x x ==----. ……………………………6分18.(1)作图如下:(注:不写结论不扣分)则四边形AEMF 为所求作的菱形. ……………………………2分 说明:作图方法不唯一,如:可作边BC 的垂直平分线. (2)由作图知,∠BAM=∠CAM ,又∵△ABC 是等腰三角形, ∴BM=CM ,∵E 、F 是AB 、AC 的中点,∴AE=12AB, AF=12AC . ∴EM 、FM 是△ABC 的中位线. ∴EM ∥AC ,MF ∥AB .∴四边形AEMF 是平行四边形. ∵AB=AC, ∴AE=AF .∴四边形AEMF 为菱形. ……………………………6分四、解答题(本大题共2个小题,每小题7分,共14分) 19.解:(1)20,20-2-3-4-5-4=2(个). 补图正确……………………2分(2)4100%=20%20⨯. 360°×20%=72°.所以圆心角的度数为72°. ……4分(3)平均每班患流感人数为122233445564420x ⨯+⨯+⨯+⨯+⨯+⨯==(人).则45个班中共有45×4=180(人).答:估计该校此次患流感的人数为180人. …………………………………7分20. 解:(1)用列表法列出两次抽出的数字的所有可能结果如下:第1次第2次-1 -2 1 2M E FBCA 第18题图第19题图2名 1名 4名 3名 5名 抽查班级患流感人数条形统计图班级个数65 4 3 2 1 0图2第22题图 B A D 10m C ……………………………4分(2)由(1)得,所有可能出现的结果共16种,每种情况出现的可能性相同,其中点P 落在双曲线xy 2=上的情况有4种,分别是(-1,-2)、(-2,-1)、(1,2)、(2,1), 所以点P 落在双曲线x y 2=上的概率是=16441. ……………………………7分21.解:(1)设这项工程规定的时间为x 天,则314xx x +=+. ……………………4分 解得x =12.经检验:x =12是原方程的解.答:规定的工期是12天. …………………………6分 (2)选择方案3. 理由如下:方案1付款:2.8×12=33.6(万元). 方案2:耽误工期,不符合要求; 方案3付款:2.8×3+2×12=32.4(万元).答:方案3节省工程款. …………………………8分 22. 解:不需要砍掉.理由如下:根据题意,在Rt △ABC 中,∵∠ABC=90°,∠CAB=45°,CB=10,∴tan45°=ABBC. ∴AB=10. ………………… 2分在Rt △BCD 中,∵∠CDB=37°,CB=10,∴tan37°=BDBC. ……………4分∴340=BD . ……………5分 ∴AD =BD -AB =31010340=-. ……………………6分 ∵310+3=319<9, 所以离原坡脚9m 处的大树不需要砍掉.……………………8分 六、解答题(本大题共2个小题,每小题8分,共16分) 23.(1)证明:∵AD 平分∠EAC ,-1 (-1,-1) (-2,-1) (1,-1) (2,-1) -2 (-1,-2) (-2,-2) (1,-2) (2,-2) 1 (-1,1) (-2,1) (1,1) (2,1) 2(-1,2)(-2,2)(1,2)(2,2)∴∠EAD=∠DAC.∵四边形AFBC内接于圆,∴∠FBC=180°-∠FAC.∵∠DAC=180°-∠FAC,∴∠DAC=∠FBC.∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB. ……………………4分(2)解:∵AB是圆的直径,∴∠ACB=∠ACD= 90°.∵∠D=30°,∴∠DAC=60°.…………………5分∵AD平分∠EAC,∴∠EAC=∠DAC=120°.∴∠BAC=180°-∠EAC=60°.∵BC=3,sin∠BAC= sin 60°=BC,AB∴…………………8分24.解:(1)由题意得y=20+2(x-1),即y=2x+18 (1≤x≤10). …………………2分(2)由题意知,当y=28时,18+2x=28,解得x=5. ……………………3分当1≤x≤5时,W=(1400-1000)×(18+2x),即W=800x+7200. ………………………4分∵800>0,W随着x的增大而增大,∴当x=5时,W最大值=11200;………………………5分当5<x≤10时,W =(1400-1000)×(2x+18)-20×[(2x+18)-28] (2x+18),即W=-80x2+480x+10800. ………………………6分将这个函数配方,得W =-80(x-3)2+11520,∴当x=3时,W最大=11520,但x=3不在5<x≤10之内,由函数图象的开口向下,当x≥3时,W随x的增大而减小,在5<x≤10之内时当x=6时,W最大=-80(6-3)2+11520=10800. ……7分∵11200>10800,∴第5天时该厂获得利润最大,最大利润为11200元.………………………8分七、解答题(本题共10分)25.解:(1)①证明:作AH⊥BF,垂足为点H,∵BF⊥BC,第26题图 ∴∠AHB =∠HBC=∠ACB=90°. ∴四边形ACBH 为矩形. ∵AC=BC ,∴四边形ACBH 为正方形.∴AH=BC=AC=BH ,∠CAH=∠DAE=90°. ∴∠CAD=∠HAE=90°-∠CAE . 又∵∠ACD=∠AHE=90°, ∴△ACD ≌△AHE (ASA ).∴AD=AE . ………………………………5分 ②BD+BE=2BC . ………………………………6分 ∵△ACD ≌△AHE , ∴CD=HE .∴BD -BC=BH -BE=BC -BE .∴BD+BE=2BC . ………………………………8分 (2)当D 在BC 边上时,BD+BE=2BC ;当D 在CB 延长线上时,BE -BD=2BC . ………………………………10分 八、解答题(本题共12分)26. 解:(1)由直线y=3x+3可知B 点坐标(0,3),A 点坐标(-1,0),∴AB=10.由C 点坐标(0,1)可得AC =2. ∵∠ADB=∠ABC, ∠BAC=∠BAD , ∴△ABC ∽△ADB . ∴ AB 2=AC•AD .∴AD=52. …………………………1分 如图,过点D 作DM ⊥x 轴于点M , ∵OC ∥MD ,∴OC ACMD AD=. ∴MD=5.∴D 点坐标(4,5) ∵抛物线过点B(0,3),则可设抛物线解析式为y=2ax + 把A (-1,0) D(4,5)代入表达式中,得 3164a b a b -+⎧⎨+⎩,25.2b -⎪=⎪⎩∴所示抛物线表达式为y=215322x x -++. …………………5分 (2) 由已知易得直线AD 的表达式为y=x+1, 可设P (x ,x+1),则H (x ,325x 21-2++x ),第25题图 x y O BA D CM所以PH=215322x x -++-x -1= 825.解得 x 1= x 2=23. ………………7分把x=23代入y=215322x x -++,得y=458.∴点H 的坐标为(23,458). …………………… 9分(3) A '(1,338), ………………10分7322m -≤≤,54588n ≤≤. …………………………12分。
2015~2016年度九年级下册期末数学试题
九年级下册数学期末测试一、选择题(每一小题3分,共8道小题)1.将两个长方体如图放置,则所构成的几何体的左视图可能是( )2.若反比例函数()0≠=k xy 的图像经过点P (-2,3),则该函数的图像不经过的点是( ) A.(3,-2) B.(1,-6) C.(-1,6)D.(-1,-6)3.若ABC ∆∽C B A '''∆,相似比为1:2,则ABC ∆与C B A '''∆的面积比为( )A.2:1B.1:2C.1:4D.1:4A.125 B.512 C.1312 D.135 4.在Rt ABC ∆中,90=∠C ,AB=10,53sin =A ,则BC 的长为( )A.6B.7.5C.8D.12.5 6.如图,在ABC ∆中,两条中线BE 、CD 相较于点O ,则COB DOE S S ∆∆:等于( ) A.2:1 B.3:1 C.1:4 D.3:27.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB .若AD=2BD ,则的值CD .8.在同一平面直角坐标系中,函数y=mx+m 与)0(≠=m xmy 的图象可能是( )1.()12+-π...D .A.C.D.2.已知反比例函数y x=-的图象经过点P (a+1,4),则a=_____; 3.若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y ;(填“>”或“=”或“<”). 4.如图,在 中,E 在AB 上,CE 、BD 交于F ,若AE :BE=4:3,且BF=2,则DF=;5.如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 ;6.如图,△ABC 中,DE ∥BC ,DE=1,AD=2,DB=3,则BC 的长是 ;7.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2, tan ∠OAB =,则AB 的长是 。
2016届九年级(下)第二次段考数学试卷(解析版)
26.已知抛物线
.
(1)试说明:无论 m 为何实数,该抛物线与 x 轴总有两个不同的交点.
(2)如图,当抛物线的对称轴为直线 x=3 时,抛物线的顶点为点对称轴交于点 D. ①抛物线上是否存在一点 P 使得四边形 ACPD 是正方形?若存在,求出点 P 的坐标;若 不存在,说明理由; ②平移直线 CD,交直线 AB 于点 M,交抛物线于点 N,通过怎样的平移能使得以 C、 D、M、N 为顶点的四边形是平行四边形?
19.计算:
.
20.解二元一次方程组
.
21.如图,在△ABC 中,AD 是中线,分别过点 B、C 作 AD 延长线及 AD 的垂线 BE、 CF,垂足分别为点 E、F.求证:BE=CF.
22.为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部 分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根 据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题: (1)在扇形统计图中,“合格”的百分比为 ; (2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人; (3)若该校九年级有 400 名学生,估计该校九年级体质为“不合格”等级的学生约有 人.
25.如图,在矩形 ABCD 中,AD=4,AB=m(m>4),点 P 是 AB 边上的任意一点(不与 A、B 重合),连接 PD,过点 P 作 PQ⊥PD,交直线 BC 于点 Q. (1)当 m=10 时,是否存在点 P 使得点 Q 与点 C 重合?若存在,求出此时 AP 的长;若 不存在,说明理由; (2)若△PQD 为等腰三角形,求以 P、Q、C、D 为顶点的四边形的面积 S 与 m 之间的函 数关系式. (3)在原图中,连接 AC,若 PQ∥AC,求线段 BQ 的长(用含 m 的代数式表示)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.如图,边长为 6 的等边三角形 ABC 中,E 是对称轴 AD 上的一个动点,连接 EC,将线段 EC 绕点 C 逆时 针旋转 60°得到 FC,连接 DF.则在点 E 运动过程中,DF 的最小值是____________. 二、解答题(满分 90 分; 16.(每小题 7 分,共 14 分) (1) 计算:(π +3) ―|―2013|+ 64×
1
开展“光盘行动”宣传活动,根据各班级参加该活动的总人次拆线统计图,下列说法正确的是( A.极差是 40 C.平均数大于 58 B.中位数是 58 D.众数是 5
总人次 80 70 60 50 40 30 20 10 0 九年级宣传“光盘行动” 总人次拆线统计图 80 59 50 58 45 62
第 7 题图
8.如图,已知△ABC,以点 B 为圆心,AC 长为半径画弧;以点 C 为圆心,AB 长为 半径画弧,两弧交于点 D,且 A、D 在 BC 同侧,连接 AD,量一量线段 AD 的长,约 为( ) B.1.4cm C.1.8cm D.2.2cm
B
A
第 8 题图
C
A.1.0cm
9.有一种公益叫“光盘” .所谓“光盘” ,就是吃光你盘子中的食物,杜绝“舌尖上的浪费” .某校九年级
在乙游戏规则中,从列表看出,所有可能出现的结果共有 16 种,这些结果出现的可能性相同,而颜色 相同的两个小球共有 8 种. 8 1 ∴P(颜色相同) = = . 16 2 1 1 ∵ < , 3 2 ∴乙游戏规则摸到颜色相同的小球的可能性更大. 19.(12 分) 1 (1) 2 „3 分(2) 标出点 D, „„„8 分 „5 分 连接 CD. „„„7 分
B B
M
N
A
D F E A 第 21 题图
C C 备用图
22.(14 分)如图,已知抛物线 y=ax +bx+c(a≠0)与 x 轴交于 A(1,0)、B(4,0)两点,与 y 轴交于 C(0, 2),连接 AC、BC.(1) 求抛物线解析式; (2) BC 的垂直平分线交抛物线于 D、E 两点,求直线 DE 的解析式;
1
2
3
4
0
1
2
3
4
A
B
2
C
D
5.已知 b<0,关于 x 的一元二次方程(x-1) =b 的根的情况是( A.有两个不相等的实数根 C.没有实数根 B.有两个相等的实数根 D.有两个实数根
)
6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是(
x≥-1 A. x<2 x≤-1 B. x>2 x<-1 C. x≥2 x>-1 D. x≤2
(2) 不放回 „„„5 分 (3) 乙游戏规则摸到颜色相同的小球的可能性更大. 理由: 在甲游戏规则中, 从树形图看出, 所有可能出现的结果共有 12 种, 这些结果出现的可能性相同, 而颜色相同的两个小球共有 4 种. 4 1 ∴P(颜色相同)= = . 12 3 „„„„6 分 „„„„7 分
3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约 3 亿 5 千万人.350 000 000 用科学记数法表示为( A.3.5×10
7
)
9
B.3.5×10
8
C.3.5×10 )
D.3.5×10
10
4.下列学习用具中,不是轴对称图形的是(
0 0 1 2 3 4 5 6
18.(10 分)有一个袋中摸球的游戏.设置了甲、乙两种不同的游戏规则: 甲规则:
第一次 红1 红2 黄1 黄2
第二次
红2
黄1
黄2
红1
黄1
黄2
红1
红2
黄2
红1
红2
黄1
乙规则: 第一次 红1 第二次 红1 红2 黄1 黄2 (红 1,红 1) (红 1,红 2) (红 1,黄 1) (红 1,黄 2) (红 2,红 1) (红 2,红 2) ① (红 2,黄 2) (黄 1,红 1) (黄 1,红 2) (黄 1,黄 1) (黄 1,黄 2) ② (黄 2,红 2) (黄 2,黄 1) (黄 2,黄 2) 红2 黄1 黄2
二、填空题(每题 4 分,满分 20 分) 11.m(m-10) 三、解答题 16.(每题 7 分,共 14 分)(1) =-2011 17.(每小题 8 分,共 16 分) (2) 解:设江水的流速为 x 千米/时,依题意,得: 100 60 = , 解得:x=5. 经检验:x=5 是原方程的解. 20+x 20-x 18.(10 分) (1) 4 „„1 分; (红 2,黄 1) „„2 分; (黄 2,红 1) „„3 分 (2) 原式=3 12.360 13.四 14.24 15.1.5
B E F C A
第 19 题图
20.(12 分)如图,半径为 2 的⊙E 交 x 轴于 A、B,交 y 轴于点 C、D,直线 CF 交 x 轴负半轴于点 F,连接 EB、EC.已知点 E 的坐标为(1,1),∠OFC=30°. (1) 求证:直线 CF 是⊙E 的切线; (2) 求证:AB=CD; (3) 求图中阴影部分的面积.
19.(10 分)如图,由 6 个形状、大小完全相同的小矩形组成矩形网格.小矩形的顶点称为这个矩形网格的 格点.已知小矩形较短边长为 1,△ABC 的顶点都在格点上. BE (1) 格点 E、F 在 BC 边上, 的值是_________; AF (2) 按要求画图:找出格点 D,连接 CD,使∠ACD=90°; (3) 在(2)的条件下,连接 AD,求 tan∠BAD 的值.
F O A D 第 20 题图 B x C E
y
4
21.(12 分)如图,Rt△ABC 中,∠C=90°,AC=BC=8,DE=2,线段 DE 在 AC 边上运动(端点 D 从点 A 开 始),速度为每秒 1 个单位,当端点 E 到达点 C 时运动停止.F 为 DE 中点,MF⊥DE 交 AB 于点 M,MN∥AC 交 BC 于点 N,连接 DM、ME、EN.设运动时间为 t 秒. (1) 求证:四边形 MFCN 是矩形; (2) 设四边形 DENM 的面积为 S,求 S 关于 t 的函数解析式;当 S 取最大值时,求 t 的值; (3) 在运动过程中,若以 E、M、N 为顶点的三角形与△DEM 相似,求 t 的值.
2
„„„„„„12 分
(若先证明四边形 MFCN 是平行四边形,得 2 分,再证明它是矩形,得 3 分) (2) 解:当运动时间为 t 秒时,AD=t, 1 ∵F 为 DE 的中点,DE=2,∴DF=EF= DE=1. 2 ∴AF=t+1,FC=8-(t+1)=7-t. ∵四边形 MFCN 是矩形,∴MN=FC=7-t. 又∵AC=BC,∠C=90°,∴∠A=45°. ∴在 Rt△AMF 中,MF=AF=t+1, 1 1 ∴S=S△MDE+ S△MNE = DE·MF+ MN·MF 2 2 1 1 1 2 9 = ×2(t+1)+ (7-t)(t+1)=- t +4t+ 2 2 2 2 1 2 9 1 25 2 ∵S=- t +4t+ =- (t-4) + 2 2 2 2 ∴当 t=4 时,S 有最大值. (若面积 S 用梯形面积公式求不扣分) (3) 解:∵MN∥AC,∴∠NME=∠DEM. NM EM ① 当△NME∽△DEM 时,∴ = . DE ME „„„„9 分
2015-2016 学年度(下)九年级数学复习综合卷(五) 班级:
1.计算-3+3 的结果是( A.0 B.-6 ) C.9 D.-9 ) D.80°
座号:
姓名:
B D
一、选择题(共 10 小题,每题 4 分,满分 40 分)
A 第 2 题图
C
2.如图,AB∥CD,∠BAC=120°,则∠C 的度数是( A.30° B.60° C.70°
A D F E C M N B
8
∴
7-t =1,解得:t=5. 2
„„„„10 分 „„„„11 分
NM EM ② 当△EMN∽△DEM 时,∴ = . EM DE ∴EM =NM·DE.
2
在 Rt△MEF 中,ME =EF +MF =1+(t+1) ,∴1+(t+1) =2(7-t). 解得:t1=2,t2=-6(不合题意,舍去) 综上所述,当 t 为 2 秒或 5 秒时,以 E、M、N 为顶点的三角形与△DEM 相似. 22.(14 分) 1 2 5 ∴这个抛物线的解析式为 y= x - x+2. 2 2 (2) 解法一: 如图 1,设 BC 的垂直平分线 DE 交 BC 于 M,交 x 轴于 N,连接 CN,过点 M 作 MF⊥x 轴于 F. MF BF BM 1 ∴△BMF∽△BCO,∴ = = = . CO BO BC 2 ∵B(4,0),C(0,2), ∴MF=1,BF=2, ∴M(2,1) ∵MN 是 BC 的垂直平分线,∴CN=BN, 设 ON=x,则 CN=BN=4-x, 在 Rt△OCN 中,CN =OC +ON , 3 3 2 2 2 ∴(4-x) =2 +x ,解得:x= ,∴N( ,0). 2 2 设直线 DE 的解析式为 y=kx+b,依题意,得:
0
1 8
(2) 已知 a +2a=-1,求 2a(a+1)-(a+2)(a-2)的值.
2
2
17.(每小题 8 分,共 16 分) (1) 如图,在△ABC 中,AB=AC,点 D、E、F 分别是△ABC 三边的中点. 求证:四边形 ADEF 是菱形.
D F A
B
E 第 17(1)题图
C
(2) 一艘轮船在静水中的最大航速为 20 千米/时,它沿江以最大航速顺流航行 100 千米所用时间与以最大 航速逆流航行 60 千米所用时间相等,江水的流速为多少?
F A C G D
2
2
2
2
„„10 分 y