(经典高一)求函数解析式的九种常用方法
高中求函数解析式方法
高中求函数解析式方法
高中求函数解析式的方法有以下几种:
1. 列方程法:根据已知条件设置等式,然后解方程得到函数解析式。
这种方法适用于一些简单的函数问题,如线性函数、二次函数等。
2. 求导法:如果已知函数的导函数和一个点上的函数值,可以通过求导得到函数解析式。
这种方法适用于一些需要通过求导来确定函数解析式的问题,如最小值、最大值等。
3. 已知特殊点法:如果已知函数经过某个特殊点,可以通过该特殊点的信息来确定函数解析式。
例如,如果已知函数经过原点,则可以确定函数的截距。
4. 已知导函数法:如果已知函数的导函数,可以通过积分来确定函数解析式。
这种方法适用于一些需要通过积分来确定函数解析式的问题,如定积分、不定积分等。
总之,求函数解析式的方法取决于已知条件和问题的性质,需要根据具体情况选择合适的方法。
高一数学必修一函数的解析式
高一数学必修一函数的解析式(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除求函数的解析式的主要方法有:1) 凑配法(直接变换法)如:f (x-1)=x+1,求f (x )的解析式。
2) 待定系数法如:若f{f[f(x)]}=27x+26,求f (x )的解析式。
3) 换元法如:f (1 x )=x+2x ,求f (x )。
4) 消参法如:如果f (x )满足af (x )+f (x1)=ax ,x ∈R ,且x ≠0,a ≠+1,求f (x )。
5) 特殊值法如:设f (x )是R 上的函数,f (0)=1,并且对任意实数x 、y 有f (x-y )=f (x )-y (2x-y+1),求f (x )。
6、函数最大(小)值○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 练习:1.已知f(3x+1)=4x+3, 求f(x)的解析式.2.已知221)1(xx x x f +=-, 求)(x f 的解析式. 3.设)(x f 是一元二次函数, )(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++,求)(x f 与)(x g .4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式. 5.设)(x f 是定义在*N 上的函数,若1)1(=f ,且对任意的x,y 都有:xy y x f y f x f -+=+)()()(, 求)(x f .6.已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。
函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式
一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。
待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。
[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。
若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。
[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。
高一数学函数解析式的七种求法
函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+xx x x f , 21≥+x x 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的函数解析式的求法。
1. 一次函数,一次函数的一般形式为y=ax+b,其中a和b为常数,通过两点法、斜率法、解方程法等可以求得一次函数的解析式。
2. 二次函数,二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
通过配方法、求顶点法、根的性质等方法可以求得二次函数的解析式。
3. 指数函数,指数函数的一般形式为y=a^x,其中a为常数且a>0且a≠1。
通过观察法、对数法、取对数法等方法可以求得指数函数的解析式。
4. 对数函数,对数函数的一般形式为y=loga(x),其中a为常数且a>0且a≠1。
通过观察法、指数法、换底公式等方法可以求得对数函数的解析式。
5. 三角函数,三角函数包括正弦函数、余弦函数、正切函数等,它们的解析式可以通过周期性、对称性、变换公式等方法求得。
二、函数解析式的例题。
1. 求一次函数y=2x+3的解析式。
解,由于一次函数的一般形式为y=ax+b,所以y=2x+3的解析式为y=2x+3。
2. 求二次函数y=x^2+3x-2的解析式。
解,通过配方法或求顶点法可以求得y=x^2+3x-2的解析式为y=(x+2)(x-1)。
3. 求指数函数y=2^x的解析式。
解,观察法可得y=2^x的解析式为y=2^x。
4. 求对数函数y=log2(x)的解析式。
解,换底公式可得y=log2(x)的解析式为y=log(x)/log(2)。
5. 求正弦函数y=sin(x)的解析式。
解,通过周期性和对称性可得y=sin(x)的解析式为y=sin(x)。
以上就是关于求函数解析式的方法和例题的介绍,希望对大家有所帮助。
在学习过程中,要灵活运用各种方法,多加练习,提高解析式求解的能力。
高中函数解析式的七种求法
函 数 解 析 式 的 七 种 求 法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+)0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
(经典高一)求函数解析式的九种常用方法
2 x x 2 x
2
2x
x≥0, x<0.
评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.
9、利用奇偶性法
例 9、
(经典高一)求函数解析式的九种常用方法 山东省宁阳四中
1、定义法
例 1.若 f ( x 1 x 2 x ) ,求 f(x)。 解: x 2 x ( x 1) 2 1 ∴ f ( x 1) ( x 1) 2 1
宁方年
x 1 ≥1
∴f(x)=x21
2、配凑法
2
②
由 f(x+1)= f(x)+2x+8 与①、② 得
2 a b b 2 a b 8
解得
a 1, b 7.
故 f(x)= x2+7x.
评注: 已知函数类型,常用待定系数法求函数解析式.
5、直接图像法
例 5.函数在闭区间 [ 1, 2] 上的图象如右图所示,则求此函数的解析式。 y
3、换元法
x 1 x2 1 1 例 3、 已知 f( )= ,求 f(x)的解析式. x x2 x x 1 1 = t ,则 x= (t≠1) , x t 1 1 2 ( ) 1 1 2 t 1 ∴f(t)= = 1+ (t 1) +(t-1)= t2-t+1 1 2 1 ( ) t 1 t 1
x 1(1 x 0) 解: f ( x) 1 . x(0 x 2) 2
1
1 0 1
2 x
6、方程组法
1 )= x (x≠0) ,求 f(x)函数解析式. x 1 1 分析:欲求 f(x) ,必须消去已知中的 f( ) ,若用 去代替已知中 x,便可得到另一 x x
必修1求函数解析式的常用方法
必修1求函数解析式的常用方法在数学中,函数解析式是表示函数关系的一种方法,能够通过输入一个自变量的值来计算对应的函数值。
在求函数解析式时,有几种常用的方法可以帮助我们推导出函数解析式,包括代数法、求导法、极限法和积分法等。
一、代数法(方程法)代数法是一种常用的求函数解析式的方法,通过建立方程组来解决问题。
具体步骤如下:1.确定未知数:观察函数关系,确定未知数的个数和性质。
2.建立方程:将已知条件和未知数之间的关系转化为方程。
3.求解方程组:利用代数运算的方法求解方程组。
4.验证:将求得的解带入原方程进行验证,确保解的正确性。
例如,已知函数f(x)满足f(x)-f(x-1)=x,我们可以采用代数法求函数解析式。
解:设f(x) = ax + b,将f(x)的表达式带入已知条件f(x) - f(x - 1) = x中,得到:ax + b - a(x - 1) - b = x整理得:ax + b - ax + a - b = x去掉相同项后得:a=1再将a=1代入f(x),得到f(x)=x+b。
因此,函数f(x)的解析式是f(x)=x+b,其中b是常数。
二、求导法求导法是一种通过对函数求导来求解函数解析式的方法。
该方法主要适用于求解一阶线性微分方程。
1.已知已知函数的导数表达式;2.将导数表达式带入微分方程,得到关于未知函数的微分方程;3.求解微分方程,得到未知函数;4.对求得的未知函数进行验证。
例如,已知函数f'(x)=2x+1,我们可以采用求导法求函数解析式。
解:对已知函数f'(x) = 2x + 1进行积分,得到f(x) = ∫(2x + 1)dx = x^2 + x + C其中C为常数。
因此,函数f(x)的解析式是f(x)=x^2+x+C。
三、极限法极限法是一种通过取极限的方法来求解函数解析式的方法。
该方法主要适用于求解极限关系存在的函数。
1.观察函数的极限特征;2.利用极限性质推导函数解析式;3.对推导的解析式进行验证。
高中数学求函数解析式解题方法大全与配套练习
高中数学求函数解析式解题方法大全及配套练习一、定义法:根据函数的定义求解析式用定义法。
【例1】【例2】【例3】【例4】二、待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
【例1】【解析】【例2】已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)(x+1)= ax2+(2a+b)x+a+b②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.【例3】三、换元(或代换)法:道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
如:已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。
实施换元后,应注意新变量的取值围,即为函数的定义域.【例1】【解析】【例2】【例3】【例4】(1)在(1(2)1(3)【例5】(1(2)由【例6】四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.【例1】解则解得,上,(五)配凑法【例1】:2x当然,上例也可直接使用换元法即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。
【例2】:分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。
实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的函数来表示出来,在通过整体换元。
和换元法一样,最后结果要注明定义域。
函数解析式的七种求法
函数解析式的七种求法一、通过给定的输入和输出求解析式。
这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。
例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。
对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。
例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。
对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。
例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。
四、利用已知函数的级数展开求解析式。
对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。
例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。
五、利用已知函数的导数和积分求解析式。
对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。
例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。
六、基于已知函数的函数逼近求解析式。
对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。
例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。
七、利用差分方程或微分方程求解析式。
对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。
例如,可以利用差分方程或微分方程求解线性递推函数的解析式。
以上是七种常用的求解函数解析式的方法。
不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。
高一必修一函数解析式的求法
一、代入法
已知 f (x) 的解析式,求 f (g(x))
的解析式常用此法。
例题1:已知 f (x) x2 1 ,求 f (x x2) 解析式。
二.配凑法 已知 f (g(x)) 的解析式,求 f (x) 的解析式时,可从 f (g(x)) 的解析式 中配凑出 g(x),即用 g(x) 来表示,
再将解析式两边的 g(x) 用 x 代替即
可。
例1.已知 f (x 1) x2 2x 2,求
f (3)及f x, f x 3
解:方法一:f ( x 1) x 2 2x 2 x2 2x 11
( x 1)2 1
f (x) x2 1
f 3 10
y f x 3 (x 3)2 1 x2 6x 10
用适当的方法求下列函数的解析式
1.已知f (x2 x) 2x2 2x 6,求f (x)的解析式
2.已知f (1 2x) x2 4x 1,求的f (x)解析式
四.待定系数法 如果已知函数类型,可设出函数解
析式,再代入条件解方程(组),求 出参数,即可确定函数解析式。
例2 已知f(x)是二次函数,且
f (x y) f ( y) (x 2y 1)x 成立,且
f (1) 0
1.求 f (0) 的值
2.求f (x)的解析式.
再见
例4 已知定义在R上的函数f(x),对任意 实数x,y满足: f (x y) f (x) 2xy y2 y
且f (0) 1, 求 f (x).
解: 令x y得
f (0) f (x) 2x2 x2 x
f (x) x2 x 1
练习:已知函数 f (x) 对于一切实数 x, y 都有
f (x 1) f (x 1) 2x2 4x 4 求 f (x). 解:设f (x) ax2 bx c (a 0)
求函数的解析式的几种常见方法
求函数的解析式的几种常见方法求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多, 若在考试的时候方法运用适当,就能起到简化运算过程,避繁就简,起到事半功倍的作用。
下面就对一些常用的方法举例如下.一.换元法:已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),在求出f(t)可得f (x )的解析式。
换元后要确定新元t 的取值范围。
例题1.已知f(3x+1)=4x+3, 求f(x)的解析式.令t=3x+1, x=31-t 354)(3314)(-=⇒+-⨯=⇒t t f t t f 354)(-=⇒x x f 二.配凑法:把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。
一般的利用完全平方公式例题2.已知221)1(xx x x f +=-, 求)(x f 的解析式. 2)(2)1()1(22+=⇒+-=-⇒x x f xx x x f 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数例题3.设)(x f 是一元二次函数, )(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++, 求)(x f 与)(x g .解;设c bx ax x f =+=2)(,则g(x)=2x (ax 2+bx+c) 四.构造法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式例题4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式. 解;令x x 1=,xx f x f 14)(2)1(3⨯=+ 联立方程,得: ⎪⎪⎩⎪⎪⎨⎧=+=+x x f x f x x f x f 4)(2)1(34)1(2)(3 , 解得x x x f 58512)(-= 五.利用给定的特性求解析式;一般为已知x>0时, f(x)的解析式,求x<0时,f(x)的解析式。
求函数解析式的几种方法及题型
求函数解析式的几种方法及题型【最新版3篇】篇1 目录一、引言二、求函数解析式的常用方法1.待定系数法2.交点式3.顶点式4.换元法5.归纳法三、求函数解析式的题型及应用1.已知三个点求解析式2.已知顶点求解析式3.已知交点求解析式4.抽象复杂函数问题四、结论篇1正文一、引言求函数解析式是高中数学中的常见问题,也是高考的常规题型之一。
解决这类问题需要掌握一定的方法和技巧。
本文将介绍几种常用的求函数解析式的方法及题型,帮助同学们更好地理解和应用这些方法。
二、求函数解析式的常用方法1.待定系数法待定系数法是一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。
2.交点式交点式适用于已知抛物线与 x 轴的两个交点的情况。
通过已知的交点,我们可以得到两个方程,解这两个方程可以求得抛物线的解析式。
3.顶点式顶点式适用于已知抛物线的顶点的情况。
通过已知的顶点,我们可以得到一个方程,这个方程包含了抛物线的顶点坐标和抛物线的解析式中的待定系数。
解这个方程可以求得抛物线的解析式。
4.换元法换元法是一种通用的求函数解析式的方法,适用于各种复杂的函数问题。
通过换元,我们可以将复杂的函数问题转化为简单的函数问题,从而求得函数的解析式。
5.归纳法归纳法适用于具有一定规律的函数问题。
通过观察函数的规律,我们可以猜测函数的解析式,然后通过数学归纳法证明我们的猜测是正确的。
三、求函数解析式的题型及应用1.已知三个点求解析式已知函数上的三个点,我们可以通过待定系数法求解函数的解析式。
设定函数的形式为 y=ax^2+bx+c,然后将三个点的坐标代入方程,得到三个方程组成的线性方程组,解这个方程组可以求得函数的解析式。
2.已知顶点求解析式已知抛物线的顶点,我们可以通过顶点式求解抛物线的解析式。
七种求法求函数解析式
七种求法求函数解析式七种求函数解析式的方法一、待定系数法:已知函数的解析式时,可以使用待定系数法构造函数。
例如,设$f(x)$是一次函数,且$f[f(x)]=4x+3$,求$f(x)$的解析式。
设$f(x)=ax+b(a\neq0)$,则$f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b$。
根据题意,有$a^2=4$,解得$a=2$或$a=-2$。
再代入$f[f(x)]=4x+3$中,解得$b=1$或$b=3$。
因此,$f(x)=2x+1$或$f(x)=-2x+3$。
二、配凑法:已知复合函数$f[g(x)]$的表达式,求$f(x)$的解析式,可以使用配凑法。
但需要注意所求函数$f(x)$的定义域不是原复合函数的定义域,而是$g(x)$的值域。
例如,已知$f(x+1)=(x+1)^2-2$,求$f(x)$的解析式。
将$x$换成$x-1$,得$f(x)=(x-1)^2-2(x\geq2)$。
三、换元法:已知复合函数$f[g(x)]$的表达式时,可以使用换元法求$f(x)$的解析式。
与配凑法类似,需要注意所换元的定义域的变化。
例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。
令$t=x+1$,则$t\geq1$,$x=(t-1)$,$f(t)=(t-1)^2+2(t-1)=t^2-1$,因此$f(x)=x^2-1(x\geq1)$。
四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般使用代入法。
例如,已知函数$y=x+\sqrt{x}$与$y=g(x)$的图像关于点$(-2,3)$对称,求$g(x)$的解析式。
设$M(x,y)$为$y=g(x)$上任一点,且$M'(x',y')$为$M(x,y)$关于点$(-2,3)$的对称点,则$x'+x=-4$,$y'+y=6$,解得$y=-x-7+\sqrt{x+4}$,因此$g(x)=-x^2-7x-6$。
高中数学:求函数解析式的10种常见方法
高中数学:求函数解析式的10种常见方法一、配凑法:给定$f(x+1)=x-3x+2$,求$f(x)$。
练1:设函数$f(x)=2x+3$,$g(x+2)=f(x)$,求$g(x)$。
练2:设$f(f(x))=x^2+2$,求$f(x)$。
练3:设$f(x+2)+f(x)=x^3+x$,求$f(x)$。
二、待定系数法:例1:如果反比例函数的图像经过点$(1,-2)$,那么这个反比例函数的解析式为$\frac{-2}{x-1}$,求$f(x)$。
练1:在反比例函数$y=\frac{k}{x}$的图像上有一点P,它的横坐标$m$与纵坐标$n$是方程$t^2-4t-2=0$的两个根,求$k$。
练2:已知二次函数$f(x)$满足$f(x+1)=f(x)+2x+8$,求$f(x)$的解析式。
练3:已知$f(x-2)=2x-9x+13$,求$f(x)$。
三、换元(或代换)法:例1:已知函数$f(\frac{1-x}{1+x})=\frac{1+x}{1-x}$,求:(1)$f(2)$的值;(2)$f(x)$的表达式。
练1:已知$f(x+1)=x+2x$,求$f(x)$及$f(x^2)$;练2:已知$f(x)=\frac{1}{2}x+\frac{1}{x}$,求$f(x+1)$.四、消去法:例1:设函数$f(x)$满足$f(x)+2f(\frac{1}{x})=x$,求$f(x)$.练1:已知$f(x)-2f(-x)=3x+2$,求$f(x)$.练2:已知定义在R上的函数$f(x)$满足$f(-x)+2f(x)=x+1$,求$f(x)$.练3:已知$f(x)+3f(-x)=2x+1$,求$f(x)$.练4:设函数$f(x)$满足$af(x)+bf(\frac{1}{x})=cx$(其中$a,b,c$均不为$0$,且$a\neq\pm b$),求$f(x)$.五、反函数法:例1:已知$f(a^2-x^2)=x$,求$f(x)$。
高中数学-求函数解析式的六种常用方法
高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。
下面分别介绍这六种方法。
一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。
例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。
设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。
二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。
首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。
三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。
例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。
设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。
四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。
把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。
求函数解析式的6种方法
求函数解析式的6种方法函数解析式是描述函数行为的一种数学表示方法,可以通过不同的方法得到。
以下是六种常见的方法:1.点斜式:如果已知函数通过一点(x1,y1)且斜率为m,则可以使用点斜式来表示函数解析式。
点斜式的一般形式为y-y1=m(x-x1)。
例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=4(x-2)。
2.两点式:如果已知函数通过两个点(x1,y1)和(x2,y2),则可以使用两点式来表示函数解析式。
两点式的一般形式为(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
例如,如果已知函数通过点(1,2)和(3,4),则函数解析式可以表示为(y-2)/(4-2)=(x-1)/(3-1)。
3. 斜截式:如果已知函数通过y轴截距b且斜率为m,则可以使用斜截式来表示函数解析式。
斜截式的一般形式为y = mx + b。
例如,如果已知函数通过y轴截距为2且斜率为3,则函数解析式可以表示为y =3x + 24.一般式:一般式是一种通用的函数解析式表示方法,用Ax+By+C=0的形式表示。
其中A、B、C为常数。
一般式的选择通常取决于特定问题或需要。
例如,已知函数为3x+2y-6=0,则可以将其表示为一般式。
5.法线式:如果已知函数通过一点(x1,y1),则可以使用法线式来表示函数解析式。
法线式与点斜式类似,但斜率的倒数与点斜式斜率相反。
法线式的一般形式为y-y1=(-1/m)(x-x1),其中m为函数的斜率。
例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=(-1/4)(x-2)。
6.函数图形:通过观察函数的图形,可以得到函数的一些特征和规律,从而推断出函数解析式。
例如,通过观察函数图形的对称性、零点、极值点等,可以得到函数解析式的一些重要信息。
这种方法通常适用于简单的函数图形,对于复杂的函数图形可能需要借助计算机软件进行分析。
这些方法不是互斥的,可以根据具体问题和已知条件选择合适的方法来得到函数解析式。
求函数解析式的几种常用方法
求函数解析式的几种常用方法函数解析式是用来描述一个函数的数学表达式,它是数学中非常重要的概念。
在数学中,我们常常使用函数解析式来描述一个函数的性质、图像以及其他相关信息。
下面介绍几种常用的方法来求函数解析式。
一、观察法观察法是最常见的一种方法,它适用于一些简单的函数。
通过观察函数的各个特点,我们可以推测出函数的解析式。
例如,对于线性函数y = kx + b来说,我们可以通过观察到该函数的图像是一条直线,并且通过截距b可以确定直线的位置。
同时,我们还可以通过观察到斜率k来确定直线的斜率。
二、代入法代入法是一种常用的方法,它可以通过代入已知的数据来求得函数的解析式。
例如,假设我们已知一个函数满足条件f(0) = 2,f(1) = 3,f(2) = 4,我们可以通过代入这些数据来求得函数的解析式。
首先,我们可以设函数的解析式为f(x) = ax + b,然后代入第一个条件f(0) = 2,得到2 = a * 0 + b,从而得到b = 2、接着,我们再代入第二个条件f(1) = 3,得到3 = a * 1 + 2,从而得到a = 1、最后,代入第三个条件f(2) = 4,得到4 = 1 * 2 + 2,从而验证了我们的答案。
三、求导和积分法对于一些复杂的函数,我们可以利用求导和积分的方法来求函数的解析式。
首先,我们可以通过求导的方法来求得函数的导函数,然后再通过积分的方法来求得函数的解析式。
例如,对于函数f(x)=x^2+2x+1来说,我们可以通过求导的方法来求得导函数f'(x)=2x+2,然后再通过积分的方法来求得函数的解析式。
具体的方法和步骤可以根据函数的特点来确定。
四、简化法简化法是一种常用的方法,它适用于一些复杂的函数。
通过对函数的特征进行简化,我们可以得到函数的解析式。
例如,对于一个多项式函数f(x)=2x^3+3x^2+4x+5来说,我们可以通过简化法来求得函数的解析式。
首先,我们可以对多项式进行化简,得到f(x)=x^2*(2x+3)+4x+5,然后再进行进一步的化简。
求解析式的十种方法
高中函数解析式的十种方法在高中数学学习中,会遇到求函数解析式的一类题,这里是指已知)]([x g f 或)]([x f g ,求)(x f 或)(x g ,或已知)(x f 或)(x g ,求)]([x g f 或)]([x f g 等复合函数的解析式,这些问题是学生在学习中感到棘手的问题。
解决这些问题是否有一套有效的方法可循呢?回答是肯定的。
这类题在现行的高中数学教科书中几乎没有,但在一些二类教材如《目标测试》等书中有很多类似题,它与课本上的函数这一内容关系密切,并且具有一定的规律性,故就有一些有效的解题方法,根据本人的教学心得整理如下:一、定义法:例1:设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f=6)1(5)1(2++-+x x65)(2+-=∴x x x f例2:设21)]([++=x x x f f ,求)(x f .解:设xx x x x x f f ++=+++=++=111111121)]([ xx f +=∴11)(例3:设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .解:2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f 又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f例4:设)(sin ,17cos )(cos x f x x f 求=.解:)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:(主要用于二次函数)例5:已知1392)2(2+-=-x x x f ,求)(x f .解:显然,)(x f 是一个一元二次函数。
求函数解析式常用的方法
求函数解析式常用的方法函数解析式是指用数学表达式来表示一个函数的关系式。
常用的方法有以下几种:一、常数法:当函数表达式中只包含常数时,可以直接表示为一个确定的常数。
例如,函数f(x)=5表示f(x)始终等于5,不管x的取值如何。
二、线性函数法:线性函数是指函数的表达式中只包含一次项(通常是x)和常数项的函数。
常用的线性函数有一次函数、斜率截距式和两点式。
一次函数的函数表达式为f(x) = ax + b,其中a和b为常数。
通过给定的一对坐标点,可以利用斜率公式或两点式公式求解得到函数解析式。
三、二次函数法:二次函数是指函数的表达式中包含二次项(x的平方)的函数。
函数解析式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
常用的求解方法有配方法和因式分解法。
配方法是通过将二次项与其他项配对,使得被配对的两项的和或差为一个完全平方。
通过这种方法可以将二次函数转化为完全平方的形式从而求解。
因式分解法是将二次函数进行因式分解,通过找出两个一次函数的乘积形式来求解。
通过因式分解可以得到二次函数的解析式。
四、指数函数法:指数函数是指函数的表达式中包含指数项的函数。
函数解析式为f(x)=a^x,其中a为底数,x为指数。
指数函数的图像表现为指数的增长或衰减。
五、对数函数法:对数函数是指函数的表达式中包含对数项的函数。
函数解析式为f(x) = loga(x),其中a为底数,x为真数。
对数函数的性质使得复杂的乘除运算可以转化为简单的加减运算。
六、三角函数法:三角函数是指函数的表达式中包含三角函数项的函数。
常用的三角函数有正弦函数、余弦函数和正切函数等。
函数解析式可以表示为一个周期性的曲线。
通过这些常用的方法,我们可以求解各种函数的解析式,根据函数的特点和已知条件选择适当的方法进行求解。
需要注意的是,在求解函数解析式时,需要满足函数的定义域和值域的限制,以确保函数的合法性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②
由 f(x+1)= f(x)+2x+8 与①、② 得
2 a b b 2 a b 8
解得
a 1, b 7.
故 f(x)= x2+7x.
评注: 已知函数类型,常用待定系数法求函数解析式.
5、直接图像法
例 5.函数在闭区间 [ 1, 2] 上的图象如右图所示,则求此函数的解析式。 y
(经典高一)求函数解析式的九种常用方法 山东省宁阳四中
1、定义法
例 1.若 f ( x 1 x 2 x ) ,求 f(x)。 解: x 2 x ( x 1) 2 1 ∴ f ( x 1) ( x 1) 2 1
宁方年
x 1 ≥1
∴f(x)=x21
2、配凑法
解: 设 故 f(x)=x2-x+1 (x≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.
4、待定系数法
例 4、 已知二次函数 f(x)满足 f(0)=0,f(x+1)= f(x)+2x+8,求 f(x)的解 析式. 解:设二次函数 f(x)= ax2+bx+c,则 f(0)= c= 0 ① f(x+1)= a ( x 1) +b(x+1)= ax2+(2a+b)x+a+b
(x≥1)
例 2、已知 f ( x 1) x 2 2 x ,求 f ( x) . 解: f ( x 1) ( x 1) 2 2 x 1 2 x
( x 1) 2 4 x 1 ( x 1) 2 4( x 1) 3
∴
f ( x) x 2 4 x 3 .
3、换元法
x 1 x2 1 1 例 3、 已知 f( )= ,求 f(x)的解析式. x x2 x x 1 1 = t ,则 x= (t≠1) , x t 1 1 2 ( ) 1 1 2 t 1 ∴f(t)= = 1+ (t 1) +(t-1)= t2-t+1 1 2 1 ( ) t 1 t 1
8、对称性图像法
即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式. 例 8、 已知是定义在 R 上的奇函数,当 x≥0 时,f(x)=2x-x2,求 f(x)函数解析 式. 解:∵y=f(x)是定义在 R 上的奇函数, ∴y=f(x)的图象关于原点对称. 当 x≥0 时,f(x)=2x-x2 的顶点(1,1) ,它关于原点对称点(-1,—1) , 因此当 x<0 时,y= ( x 1) -1= x2 +2x.故 f(x)=
例 7、设是定义在 R 上的函数,且满足 f(0)=1,并且对任意的实数 x,y, 有 f(x-y)= f(x)- y(2x-y+1) ,求 f(x)函数解析式. 分析:要 f(0)=1,x,y 是任意的实数及 f(x-y)= f(x)- y(2x-y+1) ,得到
f(x)函数解析式,只有令 x = y. 解: 令 x = y ,由 f(x-y)= f(x)- y(2x-y+1) 得 f(0)= f(x)- x(2x-x+1) ,整理得 f(x)= x2+x+1.
例 6、 设函数 f(x)满足 f(x)+2 f( 个方程,联立方程组求解即可.
1 )= x (x≠0) ① x 1 1 1 由 代入得 2f(x)+f( )= (x≠0) ② x x x 2 x 解 ①② 构成的方程组,得 f(x)= - (x≠0). 3x 3
解:∵ f(x) 解: f ( x) 1 . x(0 x 2) 2
1
1 0 1
2 x
6、方程组法
1 )= x (x≠0) ,求 f(x)函数解析式. x 1 1 分析:欲求 f(x) ,必须消去已知中的 f( ) ,若用 去代替已知中 x,便可得到另一 x x
2
2 x x 2 x
2
2x
x≥0, x<0.
评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.
9、利用奇偶性法
例 9、