高代选择填空题

合集下载

高等数学题库

高等数学题库

高等数学题库(总13页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除(一)函数、极限、连续一、选择题:1、在区间(-1,0)内,由( )所给出的函数是单调上升的。

(A);1+=x y (B);2x x y -= (C)34+-=x y (D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小 4、x =0是函数1()arctan f x x=的( )(A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点 5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xxx x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、若),1(3-=x f y Z 且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ; 3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ; 三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 22--+→x x x (4)xx x x cos 11sinlim30-→(5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则tt x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey2sin =, 则dy = ;4、 设),0(sin >=x x x y x 则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x 确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 212、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=0 3、设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x ex f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =1 4、若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( )(A)(sin )f x dx ' (B)(cos )f x dx '(C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n f x .7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin limx f f x f x -→= ;4、 x e y xsin =的极大值为 ,极小值为 ; 5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。

《高等代数》多项式试题库

《高等代数》多项式试题库


(1 �
i)x 2
� 1 ;(vi) 1 �
1 2!
x

1 3!
x3
���
1 n!
xn
��
;
其中

多项式.
3. 零多项式是
, 零次多项式是
.
n
m
4.
� � 设 多 项 式 f ( x) � ai x i , g ( x) � bi x i
i �1
i �1
,
则 f (x)g(x) 的 k 次 项 系 数
二 证明题
1. 证明 x f k (x) 的充分必要条件是 x f (x) .
2. 证明 . x 8 � x 7 � x 5 � x 4 � x 3 � x � 1 x 12 � x 9 � x 6 � x 3 � 1
3. 证明 x d �1 整除 x n �1 的充要条件是 d n .
4. 证明, 若 x 3 � x 2 � x � 1 f ( x 4 ) � xg (x 4 ) � x 2 h(x 4 ) ,则 x � 1 同时整除 f ( x), g ( x), h( x) . 与例 2 联系,将此题推广到一般结果,并证明你的结论.
(C)若 g (x) Q f (x) ,则 g ( x) R f ( x) ;(D)若 g (x)� R f (x) ,则 g ( x)� q f ( x) .
3. 设 p(x) f (x), p(x) g (x) ,则 p( x) 整除于
.
① f ( x) � g ( x) ;② f 2 ( x) � g 2 ( x) ;③ f ( x) g ( x) ;④ f 3 (x) � g 3 (x) .
a2 � b2 n

大学高等代数试卷

大学高等代数试卷

大学高等代数试卷一、选择题(每题5分,共20分)下列关于行列式的叙述,正确的是()A. 行列式的值只与矩阵的元素有关B. 行列式可以通过行变换或列变换进行化简C. 若行列式的两行互换位置,则行列式的值不变D. 行列式的值可以是任意复数下列关于矩阵的叙述,错误的是()A. 矩阵的秩是指矩阵中行向量或列向量的最大线性无关组的大小B. 矩阵的逆矩阵存在当且仅当矩阵是可逆的C. 矩阵的转置是将矩阵的行变为列,列变为行D. 矩阵的特征值总是实数二、填空题(每题5分,共20分)若矩阵A满足A^2 = A,则称A为幂等矩阵,此时矩阵A的特征值λ满足____________。

若矩阵B满足B^2 = 0,则称B为幂零矩阵,此时矩阵B的特征值λ满足____________。

设矩阵C的特征值为2, -1, -3,则矩阵C的迹(即矩阵C的主对角线元素之和)为____________。

三、计算题(每题10分,共30分)计算矩阵A的行列式,其中A = [1, 2; 3, 4]。

计算矩阵B的特征值,其中B = [1, -1; -1, 1]。

设矩阵C的一个特征值为λ,求对应的特征向量。

四、应用题(每题10分,共20分)证明或反证:若矩阵A是n阶正交矩阵,则A的逆矩阵A^{-1}等于A的转置矩阵A^T。

证明或反证:若矩阵A是n阶可逆矩阵,且满足AA^T = A^TA = I,则A是正交矩阵。

五、探究题(每题5分,共10分)探究矩阵A的相似对角化问题,其中A = [0, 1; -1, 0]。

说明是否存在一个可逆矩阵P,使得P^{-1}AP是对角矩阵,并给出相应的对角矩阵。

总分:80分这份试卷涵盖了行列式、矩阵的性质、特征值和特征向量等基础知识点,以及矩阵的相似对角化问题,难度较高,适合作为一次高等代数的考试试卷。

高代2期末考试试题及答案

高代2期末考试试题及答案

高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。

答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。

答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。

答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。

答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。

答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。

答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。

高代选讲第七章习题篇

高代选讲第七章习题篇

高代选讲第七章一﹑填空题1.设σ是线性空间3R 的线性变换,()()321323213212,,2,,x x x x x x x x x x x -++-+=σ 则)0(1-σ的维数是_____。

2.设σ是线性空间3R 的线性变换,()()12312323123,,,,2x x x x x x x x x x x σ=+-++- 则)(3R σ的维数是________。

3.设σ是数域P 上线性空间V 的线性变换,λ是σ的特征根,V ∈ξ且满足λξξσ=)(,则ξ_____定是σ的属于特征值λ的特征向量,(填一,或 不一)。

4.设A 是一个n 阶复矩阵,那么A 可以对角化的充分条件是_________。

5.已知矩阵A 与矩阵100230857B ⎛⎫⎪= ⎪ ⎪⎝⎭相似, 则矩阵A 的特征多项式为_________。

6.设A 是线性空间3P 中的一个线性变换, 321,,εεε是3P 的一组基, 且已知()11,1,0A ε=,()20,1,1A ε=,()30,0,0A ε=,则A 的值域()3A P 的维数为( ), A 的核()10A -的维数为_____。

7.设A 是线性空间3P 中的一个线性变换, ),,0,0,1(1=ε ),0,1,0(2=ε,),1,0,0(3=ε是3P 的一组基, 且1(5,7,9)A ε=, 2(3,0,1)A ε=, 3(0,1,1)A ε=, 那么A 在基321,,εεε下的矩阵为_________。

8.设A 是数域P 上线性空间V 的线性变换, W 是 V 的子空间, 如果_________,就称W 是A 的不变子空间。

9.设A 是线性空间3P 中的一个线性变换, 321,,εεε是3P 的一组基, 且已知()11,1,0A ε=,()20,1,1A ε=,()30,0,0A ε=,则A 的值域()3A P 的一个基为 ( ) , A 的核()10A -的一个基为_________。

高等教育学考试试题(答案)

高等教育学考试试题(答案)

高等教育学试题及答案闭卷部分一、填空题(10选7,每题1分)1.教育者应当使受教育者的(身心)获得健康发展。

2.高等教育与普通中等教育相比其性质是(专业)教育。

3.社会(政治制度)决定高等教育的领导权。

4.教育方针以(培养目标)为主要的核心的内容。

5.培养高级专门人才的基本途径是(课堂教学)。

6.强调教学内容综合性的教育模式是(通才教育)。

7.高等学校中(教学大纲)是学科教学的指导文件。

8.(培养高级专门人才)是高等学校教师的主要任务。

9.高等学校教育工作的中心环节是(教学)工作。

10.大学生通过(社会实践)途径将理论知识转化为实际工作体验。

二、选择题(10选4,每题2分)1.高等学校既培养学术型专业人才,又培养( C )。

A.红又专人才 B.理论人才 C.职业型人才 D.技术型人才2.高等教育与人类文化的关系是( D )。

A.人类文化制约高等教育 B.文化深刻影响高等教育C.高等教育决定文化 D.互相包容的内在联系3.高等教育的目的具有不可测性是指( B )。

A.高等教育培养目标 B.高等教育目的只是抽象概括的教育理想C.高等教育社会活动目的 D.高等教育科学研究目的4.高等教育强调传授知识与( B )相统一。

A.政治思想教育 B.培养能力 C.素质提高 D.确立共产主义世界观5.学分制的主要缺点之一是( B )。

A.不利于学生发挥特长 B.容易造成教学秩序混乱C.灵活性差 D.不利于教师发挥特长6.中国高等学校实( C )。

A.通才教育 B.通才教育与专才教育融合 C.通才教育与专才教育结合 D.专才教育7.我国高等教育总体发展处于( A )阶段。

A.大众化发展 B.英才教育发展C.英才教育发展为大众化 D.英才教育向大众化转变8.( C )在高等学校的社会职能体系中处于中心地位。

A.搞好宣传 B.发展校园文化 C.培养专门人才 D.发展科学9.高等学校实施全面发展教育的最基本的途径是( A )。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

高等数学基础模拟题答案

高等数学基础模拟题答案

高等数学基础模拟题一、单项选择题(每小题3分,本题共15分)1.设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于(D )对称. (A)x y = (B)x 轴(C)y 轴 (D)坐标原点2.当0→x 时,变量(C )是无穷小量.(A)x 1 (B)x x sin(C)1e -x (D)2x x3.设x x f e )(=,则=∆-∆+→∆x f x f x )1()1(lim 0(B ).(A)e 2 (B)e(C)e 41 (D)e 21 4.=⎰x x xf x d )(d d 2( A ).(A))(2x xf (B)x x f d )(21 (C))(21x f (D)x x xf d )(2 5.下列无穷限积分收敛的是(B ).(A)⎰+∞0d e x x (B)⎰+∞-0d e x x (C)⎰+∞1d 1x x (D)⎰+∞1d 1x x 二、填空题(每小题3分,共15分)1.函数)1ln(92--=x x y 的定义域是 (1,2)U(2,3] .2.函数⎩⎨⎧≤>-=0sin 01x x x x y 的间断点是 X=0 .3.曲线1)(+=x x f 在)2,1(处的切线斜率是1/2.4.函数1)1(2++=x y 的单调减少区间是 (-∞,-1) .5.='⎰x x d )(sin sinx+c .三、计算题(每小题9分,共54分)1.计算极限xx x 5sin 6sin lim0→. 2.设22sin xx y x+=,求y '. 3.设x y e sin 2=,求.4.设是由方程y x y e cos =确定的函数,求.5.计算不定积分⎰x x x d 3cos . 6.计算定积分⎰+e1d ln 2x x x . 四、应用题(本题12分)圆柱体上底的中心到下底的边沿的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)当0>x 时,证明不等式x x arctan >.高等数学基础模拟题答案一、单项选择题(每小题3分,本题共15分)1.D2.C3.B4.A5.B二、填空题(每小题3分,本题共15分)1.]3,2()2,1(2.0=x3.21 4.)1,(--∞ 5.c x +sin 三、计算题(每小题6分,共54分)1.解:5655sin lim 66sin lim 5655sin 66sin 56lim 5sin 6sin lim 0000=⋅=⋅=→→→→xx x x x x x x x x x x x x 2.解:由导数四则运算法则得3.解:)e 2sin(e e cos e sin e 2xx x x x y =='4.解:等式两端求微分得左端y x x y x y d cos )(cos d )cos (d +==右端y y y d e )e (d ==由此得整理后得5.解:由分部积分法得6.解:由换元积分法得四、应用题(本题12分)解:如图所示,圆柱体高h 与底半径r 满足 222l r h =+圆柱体的体积公式为将222h l r -=代入得求导得令0='V 得l h 33=,并由此解出l r 36=.即当底半径l r 36=积最大.五、证明题(本题4分)证明:设x x x F arctan )(-=,则有2221111)(xx x x F +=+-=' 当0>x 时,0)(>'x F ,故)(x F 单调增加,所以当0>x 时有0)0()(=>F x F ,即不等式x x arctan >成立,证毕.高等数学基础练习题一、单项选择题:(每小题3分,共15分)1.设函数f (x )的定义域为),(+∞-∞,则函数f (x ))(x f --的图形关于()对称。

高数题库及答案

高数题库及答案

高数题库及答案【篇一:大学高等数学上考试题库(附答案)】>一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(a)f?x??lnx 和 g?x??2lnx (b)f?x??|x| 和 g?x??2(c)f?x??x 和 g?x??2(d)f?x??|x|x和 g?x??122.函数f?x???ln?1?x??a?x?0x?0在x?0处连续,则a?().(a)0 (b)14(c)1 (d)23.曲线y?xlnx的平行于直线x?y?1?0的切线方程为().(a)y?x?1 (b)y??(x?1)(c)y??lnx?1??x?1?(d)y?x 4.设函数f?x??|x|,则函数在点x?0处().(a)连续且可导(b)连续且可微(c)连续不可导(d)不连续不可微5.点x?0是函数y?x4的().(a)驻点但非极值点(b)拐点(c)驻点且是拐点(d)驻点且是极值点6.曲线y?1|x|的渐近线情况是().(a)只有水平渐近线(b)只有垂直渐近线(c)既有水平渐近线又有垂直渐近线(d)既无水平渐近线又无垂直渐近线 7.?f???2dx的结果是(). ?x?x??1??1??1(b)(c)?c?f??cf????x??x??x?x(a)f??8.?dxe?ex??1(d)?c?f????x???c ?的结果是().x?x(a)arctane?c (b)arctane?c (c)e?e x?x?c (d)ln(e?ex?x)?c9.下列定积分为零的是().?(a)?4?arctanx1?x2??4dx (b)?4??4xarcsinxdx (c)?11?1e?e2x?x1?1?x2?x?sinxdx10.设f?x?为连续函数,则?f??2x?dx等于().(a)f?2??f?0? (b)12??f?11??f?0???(c)12??f?2??f?0???(d)f?1??f?0?二.填空题(每题4分,共20分)?e?2x?1?1.设函数f?x???x?a?x?0x?056在x?0处连续,则a?.2.已知曲线y?f?x?在x?2处的切线的倾斜角为?,则f??2??3.y?4.?xx?12.的垂直渐近线有条.dxx?1?lnx?2?.?5.?2??xsinx?cosx?dx?4?2.三.计算(每小题5分,共30分) 1.求极限①lim x??2x?1?x????x?②limx?0x?sinxxe?x2?1?2.求曲线y?ln?x?y?所确定的隐函数的导数y?. x3.求不定积分①?四.应用题(每题10分,共20分) 1.作出函数y?x?3x的图像. 232dx?x?1??x?3?②??a?0? ③?xe?xdx2.求曲线y?2x和直线y?x?4所围图形的面积.《高数》试卷1参考答案一.选择题1.b 2.b 3.a 4.c 5.d 6.c 7.d 8.a 9.a 10.c 二.填空题 1.?22.?三.计算题1①e2 ②11633.24.arctanlnx?c 5.22.y??x1x?y?13. ①ln|2x?1x?3|?c②ln|x|?c③?e?x?x?1??c四.应用题1.略2.s?18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ). (a) f?x??x和g?x??(b) f?x??22x?1x?122和y?x?1(c) f?x??x和g?x??x(sinx?cosx)(d) f?x??lnx和g?x??2lnx ?sin2?x?1??x?1??2.设函数f?x???2?2x?1???x?1x?1 ,则limfx?1?x??().x?1(a) 0 (b) 1(c)2(d) 不存在3.设函数y?f?x?在点x0处可导,且f??x?0, 曲线则y?f?x?在点?x0,f?x0??处的切线的倾斜角为{}. (a) 0 (b)?2(c)锐角(d) 钝角4.曲线y?lnx上某点的切线平行于直线y?2x?3,则该点坐标是( ). ??1?1??(b) 2,?ln??? 2?2??2?x(a) ?2,ln (c)??1??1?,ln2? (d) ?,?ln2? ?2??2?5.函数y?xe及图象在?1,2?内是( ).(a)单调减少且是凸的 (b)单调增加且是凸的 (c)单调减少且是凹的 (d)单调增加且是凹的6.以下结论正确的是( ).(a) 若x0为函数y?f?x?的驻点,则x0必为函数y?f?x?的极值点. (b) 函数y?f?x?导数不存在的点,一定不是函数y?f?x?的极值点. (c) 若函数y?f?x?在x0处取得极值,且f??x0?存在,则必有f??x0?=0. (d) 若函数y?f?x?在x0处连续,则f??x0?一定存在.17.设函数y?f?x?的一个原函数为xex,则f?x?=( ).21111(a) ?2x?1?ex (b)2x?ex(c)?2x?1?ex(d) 2xex 8.若?f?x?dx?f?x??c,则?sinxf?cosx?dx?( ).(a) f?sinx??c (b) ?f?sinx??c (c) f?cosx??c (d) ?f?cosx??c 9.设f?x?为连续函数,则?f??1?x??dx=( ). ?2???1??(a) f?1??f?0? (b)2??f?1??f?0??? (c) 2??f?2??f?0??? (d)2?f?2??f?0??????10.定积分?dx?a?b?在几何上的表示( ).ab(a) 线段长b?a (b) 线段长a?b (c) 矩形面积?a?b??1 (d) 矩形面积?b?a??1 二.填空题(每题4分,共20分) ?ln?1?x2??1.设 f?x???1?cosx?a?x?0x?0, 在x?0连续,则a=________.2.设y?sin2x, 则dy?_________________dsinx.3.函数y?xx?12?1的水平和垂直渐近线共有_______条.4.不定积分?xlnxdx?______________________.5. 定积分?1?1xsinx?11?x22?___________.三.计算题(每小题5分,共30分) 1.求下列极限:?①lim?1?2x?x ②limx?01?arctanx1xx???2.求由方程y?1?xe所确定的隐函数的导数y?x.3.求下列不定积分:①?tanxsec3xdx②?ya?0?③?xedx2x四.应用题(每题10分,共20分) 1.作出函数y?13x?x的图象.(要求列出表格)3【篇二:高等数学试题及答案】>一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

高代考研试题及答案

高代考研试题及答案

高代考研试题及答案一、单项选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 2C. 1/4D. 1答案:C2. 若向量α=(1,2,3)和向量β=(2,3,4),则向量α和向量β的点积为:A. 20B. 21C. 22D. 23答案:B3. 设函数f(x)=x^3-3x+1,求f'(x):A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A4. 若矩阵B为3阶方阵,且B的秩为2,则矩阵B的零空间的维数为:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 设矩阵C为2阶方阵,其特征值为1和2,则矩阵C的特征多项式为________。

答案:λ^2 - (1+2)λ + 1*2 = λ^2 - 3λ + 22. 设向量a=(1,0),向量b=(0,1),则向量a和向量b的叉积为________。

答案:(0,0)3. 设函数g(x)=x^2+2x+1,则g''(x)=________。

答案:24. 设线性方程组Ax=b,其中A为3阶方阵,且A的秩为3,b为3维列向量,则该方程组的解集为________。

答案:非空集合三、解答题(每题10分,共60分)1. 求矩阵D=\[\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}\]的逆矩阵。

答案:矩阵D的逆矩阵为\[\begin{matrix}2 & -1 \\ -3 &2\end{matrix}\]。

2. 设向量c=(3,-1)和向量d=(2,4),求向量c和向量d的夹角。

答案:向量c和向量d的夹角为cos^-1((3*2 + (-1)*4) / (sqrt(9+1) * sqrt(4+16))) = cos^-1(0.6)。

3. 设函数h(x)=x^3+3x^2-3x+1,求h'(x)和h''(x)。

安徽普通高中会考数学真题及答案

安徽普通高中会考数学真题及答案

2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。

因此,答案为A。

2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。

3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。

高代行列式测试题

高代行列式测试题

高等代数《行列式》测 验一 填空题(2'612'⨯=)1. 六阶行列式的展开式共有( )项. (A )120 (B )60 (C) 720 (D) 2402. 排列12345a a a a a 的逆序数为a ,则排列54321a a a a a 的逆序数为( ). (A) a - (B) 10a - (C) 10a - (D) 2a -或a +23. 0001002003004000=( ).(A) 24 (B) -24 (C) 0 (D) 124. 已知1112131111121213212223212122222331323331313232334142434141424243,,a a a b a a b a a a a b a a b a m n a a a b a a b a a a a b a a b a == 则行列式1112131112212223212231323331324142434142a a ab b a a a b b a a a b b a a a b b ++=++( ).(A) m n + (B) n m - (C) m n - (D) ()m n -+5. 已知231421,111D =- ij A 为D 的元素ij a 的代数余子式,则( ). (A) 1112130A A A ++= (B) 1121310A A A ++= (C) (A),(B)都成立 (D) (A),(B)都不成立6. 0001000020010n n =-( ).(A) 1(1)!n n +- (B) (1)2(1)!n n n --(C) (1)2(1)!n n n +- (D)!n二 填空题(2'816'⨯=)1. 2011阶反对称行列式的值为 .2. 13234425k l a a a a a 为五阶行列式ij D a =中带负号的项,则k = ,l = .3. 排列(1)321n n -的逆序数为 , 13(21)24(2)n n -的逆序数为 .4. 线性方程组 1212040x x x x λλ+=⎧⎨+=⎩有唯一解,则λ满足 .5. 若n 阶行列式D 中等于0的元素个数大于2n n -,则D = .6.211203101311112x x ----的展开式中2x 的系数为 .7.1111123414916182764= .8. 已知四阶行列式D 的第3行元素为3,3,1,1--, 其对应的余子式的值为1,2,5,4, 则行列式D = .三计算题(8'756'⨯=)1. 01000020000100nn-2.000000000000nx yx yx yDx yy x=3.121111100100100naaa4.12111111naaa5.12112122121111nnnn na a aa b a aa ab aa a a b+++6.1221 00010010000001nn x ax ax ax ax a-----+7.123123123123,nnnnx a a a aa x a a aa a x a aa a a x a++++(用3种方法求解)四.应用题(8'216'⨯=)1 一城市局部交通流如下图所示(单位:辆/小时)(1)建立12345,,,,x x x x x 所满足的线性方程组; (2)要同时控制2200x ≤与350x ≤可行吗?2. ,,A B C 3家公司相互拥有的股份及单独营业的净收入如下表所示,设,,A B C 的联合收入为,,.x y z(1)建立 ,,x y z 所满足的线性方程组; (2) 求3家公司的实际收入。

高数练习册答案(完整版)

高数练习册答案(完整版)

1 高等数学1C 习题解答习题一一.单项选择题1、A 2、D 3、C 二.填空题1、22)1(133-+-x x x 2、(-9,1)三.计算题1、(1)解函数要有意义,必须满足îíì³-¹0102x x 即îí죣-¹110x x 定义域为]1,0()0,1(È-(2)解函数要有意义,必须满足ïïîïïí죣-¹³-111003x xx 解得1-£x 或31££x 3.(1)解由1-=x e y 得1ln +=y x 交换x 、y 得反函数为1ln +=x y (2)解由11+-=x x y 得y yx -+=11交换x 、y 得反函数为xx y -+=114.(1)解只有t=0时,能;t 取其它值时,因为112>+t ,x arcsin 无定义(2)解不能,因为11££-x ,此时121-=x y 无意义5.解(1)12arccos 2-====x w wv vu ey u(2) 令22y y y +=则11ln 21+=+==x u u v vy xw em m x v v u ey wu2)sin(32==+===6.解ïîïíì-£+£<-+->-=1101)1(0)]([22x x x x x x x f g 7.解设cbx ax x f ++=2)(所以ïîïíì==++=++41242c c b a c b a 解得25214-===b a c习题二习题二一.单项选择题一.单项选择题1、A 2、B 3、D 二.填空题二.填空题1、>1 2、单调增加、单调增加 三.计算题三.计算题1、(1)解)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数所以函数是偶函数 (2)解)解 因为)()1ln(11ln )1ln()(222x f x x xx x x x f -=-+-=-+=++=-所以函数是奇函数所以函数是奇函数(3)解)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=ïîïíì>+-=<--=ïîïíì<---=->-+-=- 所以函数是奇函数所以函数是奇函数2.解.解 因为因为 x x y 2cos 2121sin 2-== 而x 2cos 的周期为p ,所以x y 2sin =是周期函数,周期为p3.解.解 由h r V 231p = 得23rvh p =表面积:表面积: )0(919221226224222222³++=++=+×+=r r v r r r rv r r r r h r s p p p p p p p 四 证明证明 )()1()1(11)(x f e e e e e e x f x x xxxx-=+-=+-=--- 习题三习题三一.单项选择题一.单项选择题1、C 2、C 3、B 4、C 二.填空题二.填空题1、1 2、a 3、³4、2,0 5、1 三.判断正误三.判断正误1、对;、对;2、对;、对;3、错、错 四.(1) 证明证明 令12+=n nx ne <=<+=-n nn n nx n11022只要e 1>n ,取]1[e=N当N n >时,恒有e <-0n x所以01lim2=+¥®n nn(2)证明)证明 因为)0()(lim>=+¥®A A x f x ,对取定的2A=e ,存在M>0,当x>M 时,有时,有2)()(AA x f A x f <-<-故当x>M 时,2)(Ax f >习题四习题四一.单项选择题一.单项选择题1、B 2、B 3、B 4、D 二.填空题二.填空题1、ae 2、0,6 3、6 4、2,-2 三.判断正误三.判断正误 1、错;、错; 2、错;、错; 3、错;、错; 四.计算题四.计算题 1、原式=2112lim )1)(1()1)(2(lim 11=+--=+---®®x x x x x x x x 2、原式=01111lim 11lim =++=+++¥®+¥®xxxx x x 3、原式=2311lim )1)(1()1)(1(lim 32313231=+++=-+++-®®xx x x x x x x x x 4、原式=31)32(131)32(31lim )32(13233lim 1111=-×+=-++¥®++++¥®n n n n n nn nn 5、原式=]21)121121(21)5131(21)311[(lim ×+--++×-+×-+¥®n n n 21)2112121(lim =×+-=¥®n n 6、、原式=23232223)12)(1(21lim 3)21(3lim n n n n n n n n n n -++=-+++¥®+¥® 2132123lim 22=+=¥®nn n n 7、因为、因为 0lim =-+¥®xx e 1s i n £x 所以所以 0s i nl i m =-+¥®x e xx习题五习题五一、1.B , 2.A, 3. B 二、1.sin tan x x x << 2.0.0 三、1. (1)0sin 77lim tan 55x x x ®=解:(2)0lim sin0x x x p ®=解:这是有界函数乘无穷小量,故 (3)000sin 5sin 5115sin 55lim lim lim 1sin 3sin 3sin 31133x x x xxx x x x x x x x x x®®®---===-+++解: (4)00sin 1lim lim sin 1()x x x x x x ++®®+=解:原式解:原式==后一项是无穷小量乘有界函数2.(1)22222222222lim(1)lim[(1)]lim(1)1n nn n n e e nn n´+®¥®¥®¥=+=++==原式 (2)()1()1111lim(1)lim 1x x x x x x e ---·-®¥®¥éùæö-=-=êúç÷èøêúëû原式原式== (3)22322(3)3332233lim(1)lim(1)22x x xx e x x -++-·---®¥®¥éù-=-=êú++êúëû原式= (4)13330lim(13)xx x e ·®=+=原式(中间思维过程同前) (5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nnn n n n n n n nn n n·®¥®¥®¥®¥+==+=+=+=原式四.四.1.证明:证明:22222111......2n n n n n n n n n ppppp<+++<+++++22limlim 1,,.n n n nn n n p p®¥®¥==++而故由夹逼准则知原式成立 2.证明:证明:只要证明原数列单调有界就可以达到目的只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->> n 即而0<x <1,<1,故故即故数列单调递增且有界故数列单调递增且有界,,极限存在极限存在..22212(21)11(1)1lim 1n nnnn n n n x x x x x x x +®¥=-+=--++=--<\=习题六习题六一、1.B ,2.B ,3.B ,4.B ,5。

高分子化学练习题讲解

高分子化学练习题讲解

高分子化学练习题一、选择题:1.常温下作为塑料的聚合物在形变-温度曲线图中应处于()。

A.高弹态B.玻璃态C.过渡区D.粘流态2.制造尼龙的原材料是()。

A.链烯B.二烯C.二元羧酸和二元胺D.二元羧酸和二元3. 尼龙-6的单体是()。

A.己内酰胺B.己二酸C.己二胺D.己二醇4.聚碳酸酯是由双酚A与光气聚合物而得:HOC6H4c(CH3)2C6H4OH + ClCOCl-> H-(-OC6H4c(CH3) 2c6H4OCO-)n-Cl+HClT该反应称为()A.缩聚反应B.加聚反应^自由基加成D.亲电加成5.丙烯在烷基铝-TiCl4催化下合成聚丙烯的反应属于()。

A.正离子型加聚B.负离子型加聚 ^自由基加聚D.配位聚合6.不属于逐步聚合方法的是()A,悬浮聚合 B.溶液聚合 C.界面聚合 D.熔融聚合7.不属于影响缩聚物聚合度的因素的是()A.转化率B.反应程度C.平衡常数D.基团数比8.热固性聚合物的特征是()A,可溶可熔 B.为体型大分子 C.不溶不熔D.不能成型加工9.下列反应过程能使自由基聚合物聚合度增加的是()A.链增长反应B.链引发反应C.链转移反应D.链终止反应10.自由基链转移反应中,不可能包括活性链向()的转移。

A.高分子c. d.B.单体C引发剂D.溶剂11.自由基向()转移,导致诱导分解,使引发剂效率降低,同时也使聚合度降低。

A.引发剂b. c. dB.单体C.高分子链D.溶剂12.聚合体系仅由单体和少量(或无)引发剂组成的聚合方法属于()。

A.本体聚合B.溶液聚合C.悬浮聚合D.乳液聚合13.下列聚合方法中,最有利于环境友好产品生产的方法是()A.本体聚合B.溶液聚合C.悬浮聚合D.乳液聚合14.下列高分子化合物中,()具有”人造羊毛”之称,是针织衫和混纺外套的良好材料。

A.聚丙烯腈B.聚甲基丙烯酸甲酯C.尼龙-66D.聚醋酸乙烯酯15.下列聚合方法中,比较经济的方法是()A.本体聚合B.溶液聚合C.悬浮聚合D.乳液聚合16.不属于溶液聚合基本组分的是()A.乳化剂B.单体C引发剂D.溶剂17、乳液聚合最简单的配方不包括的组分是()A.分散剂B.单体C水溶性引发剂D.水溶性乳化剂18.悬浮聚合体系一般组分中不含有的成分是()A.水溶性乳化剂 B .单体C水溶性引发剂D.分散剂19.下列物质中,不能作为阴离子引发剂的是()A.碱金属B. Lewis酸C.三级胺D.有机金属化合物20.下列单体中不能发生阴离子聚合的是()A.烷基乙烯基醚B.丙烯腈C.苯乙烯D.甲基丙烯酸甲酯21.下列酸中,不能作为阳离子引发剂的是()A.浓H2SO4 B H3PO4 C ACC。

高中教师业务考试试题

高中教师业务考试试题

高中教师业务考试试题一、选择题(每题2分,共20分)1. 在高中数学教学中,以下哪个概念是学生最难以理解的?A. 函数B. 几何图形C. 概率论D. 微积分2. 根据新课标要求,高中英语课程应该注重培养学生的哪一项技能?A. 阅读理解B. 写作能力C. 口语交流D. 语法知识3. 在高中物理教学中,以下哪个实验是必做的?A. 欧姆定律实验B. 牛顿第二定律实验C. 光的折射实验D. 热力学第一定律实验4. 高中化学课程中,以下哪个元素的化学性质最为活泼?A. 氢B. 氧C. 铁D. 碳5. 在高中生物教学中,以下哪个结构是细胞膜的主要组成成分?A. 蛋白质B. 核酸C. 脂质D. 糖类6. 高中历史教学中,以下哪个事件标志着中国近代史的开始?A. 鸦片战争B. 辛亥革命C. 甲午战争D. 五四运动7. 在高中地理教学中,以下哪个因素对气候影响最大?A. 纬度B. 海拔C. 洋流D. 人类活动8. 高中政治教学中,以下哪个原则是社会主义市场经济的基本原则?A. 公平竞争B. 诚实守信C. 效率优先D. 共同富裕9. 在高中信息技术教学中,以下哪个软件是用于数据处理的?A. PhotoshopB. ExcelC. PowerPointD. Word10. 高中教师在教学过程中应遵循的最重要的教学原则是什么?A. 因材施教B. 启发式教学C. 循序渐进D. 学生主体二、填空题(每空2分,共20分)11. 高中教师在教学设计时,应充分考虑学生的______、______和______,以实现教学内容与学生实际需求的有效对接。

12. 在高中语文教学中,文言文的教学不仅要注重字词的解释,还要强调______和______的理解和掌握。

13. 高中教师应定期进行______和______,以不断提升自身的教育教学能力。

14. 根据新课程标准,高中阶段的教育教学应注重培养学生的______能力和______能力。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

《高等数学》试卷1(下)一。

选择题(3分10)1。

点到点的距离()。

A。

3 B。

4 C.5 D。

62。

向量,则有( ).A。

∥ B.⊥C。

D.3。

函数的定义域是()。

A。

B。

C. D4.两个向量与垂直的充要条件是()。

A. B。

C. D.5.函数的极小值是( ).A。

2 B。

C.1 D.6.设,则=().A. B. C。

D。

7。

若级数收敛,则()。

A。

B。

C。

D.8。

幂级数的收敛域为()。

A。

B C. D.9.幂级数在收敛域内的和函数是( )。

A。

B。

C。

D。

10.微分方程的通解为()。

A. B。

C. D.二。

填空题(4分5)1.一平面过点且垂直于直线,其中点,则此平面方程为______________________。

2。

函数的全微分是______________________________.3。

设,则_____________________________.4。

的麦克劳林级数是___________________________。

三。

计算题(5分6)1。

设,而,求2。

已知隐函数由方程确定,求3。

计算,其中.4.求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。

四。

应用题(10分2)1。

要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?。

试卷1参考答案一.选择题CBCAD ACCBD二.填空题1。

2. 。

3. .4。

5。

三。

计算题1。

,。

2。

.3。

.4。

5。

四。

应用题1。

长、宽、高均为时,用料最省.2.《高数》试卷2(下)一。

选择题(3分10)1.点,的距离().A. B。

C. D.2。

设两平面方程分别为和,则两平面的夹角为()。

A。

B. C。

D。

3。

函数的定义域为()。

A。

B。

C. D。

4。

点到平面的距离为( )。

A.3 B。

4 C。

5 D.65。

函数的极大值为().A。

0 B。

1 C。

D。

6。

设,则().A。

6 B。

7 C。

【高等数学基础】2020秋复习总和重点试题解析

【高等数学基础】2020秋复习总和重点试题解析

高等数学基础样题一、单项选择题(每小题3分,本题共15分)1.函数222xx y +=-的图形关于( )对称.(A) 坐标原点 (B) y 轴 (C) x 轴 (D) x y = 2.在下列指定的变化过程中,( )是无穷小量. (A) )0(1sin →x xx (B) )(1sin∞→x xx(C) )0(ln →x x(D) )(e ∞→x x3.下列等式中正确的是( ).(A) x x x d ln )1(d = (B) xx x d )(ln d = (C) x xxd 3)3(d = (D) xx x d )(d =4.若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( ).(A) )(x F (B) c x F +)( (C) c x F +)(2 (D) )(2x F 5.下列无穷限积分收敛的是( ). (A)⎰+∞1d 1x x(B) ⎰+∞d e x x(C)⎰+∞1d 1x x(D)⎰+∞12d 1x x二、填空题(每小题3分,共15分) 1.函数)1ln(1-+=x x y 的定义域是 .2.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(1x kx x x x f x ,在0=x 处连续,则=k .3.曲线x x f =)(在)1,1(处的切线斜率是 .4.函数)1ln(2x y +=的单调增加区间是 . 5.='⎰x x d )(cos .三、计算题(每小题9分,共54分) 1.计算极限4)2sin(lim22--→x x x .2.设xxx y e sin 2+=,求y '.3.设2e sin x y =,求'y .4.设y y x =()是由方程3e ln y x y=+确定的函数,求d y .5.计算不定积分⎰x xx d 1cos2. 6.计算定积分⎰e1d ln x x x .四、应用题(本题12分)圆柱体上底的中心到下底的边沿的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)当0>x 时,证明不等式)1ln(x x +>.高等数学基础样题答案一、单项选择题1.B2.A3. B4. C5. D 二、填空题1. ),2()2,1(∞+2. e3. 214. ),0(∞+5. c x +cos 三、计算题1. 41 2. x x x x x e sin cos 22+++ 3. 22e cos e 2x x x 4. x y x yd )e 3(12- 5. c x +-1sin6. 94e 923+ 四、应用题 当底半径l r 36=,高l h 33=时,圆柱体的体积最大. 高等数学基础典型例题解析例1 计算极限32)1sin(lim 21-+-→x x x x .解 利用重要极限1sin lim 0=→xxx ,及极限的运算法则得)1)(3()1sin(lim 32)1sin(lim121-+-=-+-→→x x x x x x x x )1()1sin()3(1lim 1--⋅+=→x x x x)1()1sin(lim )3(lim 111--⋅+=→→x x x x x 41141=⋅=例2 计算极限1276lim 223+---→x x x x x .解 利用极限的运算法则得5)4(lim )2(lim )4)(3()2)(3(lim 1276lim 333223-=-+=--+-=+---→→→→x x x x x x x x x x x x x x 例3 设x y xln e sin -=,求y '.解 利用导数的运算法则和复合函数求导法则得)(ln )e (sin )ln e (sin '-'='-='x x y x xxx x 1e cos e -= 例4 设2cos x x y =,求y '.解 利用导数的运算法则和复合函数求导法则得)(cos cos )cos (222'+='='x x x x x y)(sin sin 222'-=x x x x 222sin 2sin x x x -=例5 计算⎰x x xd e21.解 利用换元积分法得⎰⎰⎰-=--=)1d(e d e 1d e 11221x x x x x xx xc u u u u x+-===⎰=e d e 1c x+-=1e练习:⎰x xxd e,⎰x xxd eln ,⎰x x x d 1sin 2,⎰x x x d sin ,⎰x x x d ln sin .例6 计算⎰x x x d ln α.解 利用分部积分法得⎰⎰⎰+α-+α=+α=+α+α+αα)(ln d 1ln 1)1(d ln d ln 111x x x x x x x x x⎰+++-+=x x x x x d 111ln 111αααα ⎰+-+=+x x x x d 11ln 11αααα c x x x ++-+=++)1(ln 111αααα 练习:⎰x x d ln ,⎰x x x d ln ,⎰x x x d ln 2,⎰x x x d ln ,⎰x x xd ln 2. 例7 求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.解 曲线x y 22=上的点到点)0,2(A 的距离公式为22)2(y x d +-=。

27届ymo六年级初赛题目及解析

27届ymo六年级初赛题目及解析

27届ymo六年级初赛题目及解析一、题目类型本次ymo六年级初赛共有25道题目,包括选择题、填空题和解答题,主要考察学生对数学基础知识、基本技能和基本方法的掌握情况。

二、题目介绍1. 填空题(共10道):主要考察学生对数学概念、公式、定理的理解和运用。

题目难度适中,需要学生仔细阅读题目并进行分析。

例题:一个圆柱体的底面半径是4厘米,高是5厘米,这个圆柱体的侧面积是()。

请将答案填在括号中。

解析:圆柱体的侧面积=2πrh,学生需要将数值代入公式进行计算。

2. 选择题(共5道):主要考察学生对数学知识的记忆和理解,难度较低。

题目涉及基础概念、公式、方法等。

例题:下面哪个数字不是质数?(A)10(B)35(C)29(D)61。

解析:质数是指只有1和它本身两个因数的数,学生需要找出哪个数字不是质数。

3. 解答题(共10道):主要考察学生的综合解题能力,难度中等。

需要学生运用所学的数学知识进行分析和解答。

例题:一个长方形的周长是24厘米,已知长和宽的比是5:3,求这个长方形的长和宽分别是多少?请写出解答过程。

解析:学生需要运用周长和长宽比的关系,解出长和宽的数值。

三、题目解析1. 填空题解析:学生需要仔细阅读题目,理解题意,并将所学知识运用到解题中。

在填写答案时,要注意数字和符号的准确性。

例:一个三角形的底是20厘米,高是5厘米,这个三角形的面积是多少平方厘米?学生需要运用三角形面积公式S=1/2 × 底× 高进行计算。

2. 选择题解析:学生需要仔细阅读题目,理解题意,并比较选项中的数字或表述,找出正确答案。

在选择答案时,要注意选项之间的差异和题目的要求。

例:一辆汽车的速度是80千米/小时,如果一辆自行车速度是汽车速度的4/5,那么自行车速度是多少?学生需要根据题目中的信息,找出自行车速度的数值。

3. 解答题解析:学生需要仔细阅读题目,理解题意,分析所给信息,列出解题步骤。

在解答时,要注意数字和符号的准确性以及解题过程的完整性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数试卷
一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)
1、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。

( )
2、(){
}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。

( ) 3、数域F 上的每一个线性空间都有基和维数。

( ) 4、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。

( ) 5、零变换和单位变换都是数乘变换。

( ) 6、线性变换σ的属于特征根0λ的特征向量只有有限个。

( ) 7、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。

( ) 8、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==n
i i i x 1αβ,那么
∑==
n
i i
x
1
2
β。

( )
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写
在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)
1、设()n x x x f ,,,21 为n 元实二次型,则()n x x x f ,,,21 负定的充要条件为( ) ①负惯性指数=f 的秩; ②正惯性指数=0; ③符号差=n -; ④f 的秩=n 。

2、设{}m ααα,,,21 是线性空间V 的一个向量组,它是线性无关的充要条件为( )
①任一组不全为零的数m k k k ,,,21 ,都有∑=≠m
i i i k 10α;
②任一组数m k k k ,,,21 ,有∑==m
i i i k 1
0α;
③当021====m k k k 时,有∑==m
i i i k 1
0α;
④任一组不全为零的数m k k k ,,,21 ,都有∑==m
i i i k 1
0α。

3、若21,W W 都是n 维线性空间V 的子空间,那么( )
①维()1W +维()21W W =维()2W +维()21W W +; ②维()21W W +=维()1W +维()2W ; ③维()1W +维()21W W +=维()2W +维()21W W ; ④维()1W -维()21W W =维()21W W +-维()2W 。

4、设σ是n 维线性空间V 的线性变换,那么下列错误的说法是( ) ①σ是单射⇔σ的亏=0; ②σ是满射⇔σ的秩=n ; ③σ是可逆的⇔核()σ={}0; ④σ是双射⇔σ是单位变换。

8、同一个线性变换在不同基下的矩阵是( )
①合同的; ②相似的; ③相等的; ④正交的。

9、设V 是n 维欧氏空间 ,那么V 中的元素具有如下性质( ) ①若()()γβγαβα=⇒=,,; ②若βαβα=⇒=; ③若()11,=⇒=ααα; ④若()βα,>βα=⇒0。

10、欧氏空间3R 中的标准正交基是( )
①()0,1,0;21,0,21;21,0,21⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛; ②()1,0,0;21,21;0,21,21⎪⎭⎫
⎝⎛-⎪⎭⎫ ⎝⎛;
③()0,0,0;31,31,3
1;31,31,31⎪⎪⎭⎫
⎝⎛-⎪⎪⎭⎫ ⎝⎛; ④()()()1,1,1;1,1,1;1,1,1---。

三、填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空
无分。

每空2分,共20分)
1、多项式2)(24-+=x x x f 在实数域R 上的标准分解为 。

2、利用行列式的性质可知四阶行列式
g
f e d
c
b a 000000000的值为 。

3、若一个非齐次线性方程组无解且它的系数矩阵的秩为3,那么该方程组的增广矩阵的秩等于 。

4、在线性空间V 中,定义()0αασ=(其中0α是V 中一个固定向量), 那么当=0α 时,σ是V 的一个线性变换。

5、实对称矩阵的属于不同特征根的特征向量是彼此 的。

6、n 阶实对称矩阵的集合按合同分类,可分为 类。

7、若基Ⅰ到Ⅱ的过渡矩阵为P ,而向量α关于基Ⅰ和Ⅱ的坐标分别为X 和Y ,那么着两个坐标的关系是 。

8、设W 是线性空间V 的非空子集,若W 对V 的加法和数乘 ,则称W 为V 的子空间。

9、若线性变换σ关于基{}21,αα的矩阵为⎥⎦⎤
⎢⎣⎡d c b a ,那么σ关于基{}12,3αα的矩阵为 。

10、两个欧氏空间同构的充要条件是它们有 。

四、改错题(请在下列命题中你认为错误的地方划线,并将正确的内容写在预备的横线上面。

指出错误1分,更正错误2分。

每小题3分,共15分)
1、如果)(x p 是)(x f 的导数)('x f 的1-k 重因式,那么)(x p 就是)(x f 的k 重因式。

2、若线性方程组B AX =相应的齐次线性方程组0=AX 有无穷多解,那么B AX =也有无穷多解。

3、设A 是一个n m ⨯矩阵,若用m 阶初等矩阵()()4,53E 右乘A ,则相当对A 施行了一次“A 的第三列乘5加到第四列”的初等变换。

4、若21,αα都是数域F 上的方阵A 的属于特征根0λ的特征向量,那么任取
221121,,ααk k F k k +∈也是A 的属于0λ的特征向量。

5、设σ是欧氏空间V 的线性变换,那么σ是正交变换的充分必要条件是σ能保持任二个非零向量的夹角。

五、计算题(每小题10分,共40分) 1、计算n 阶行列式
0,1111111111
1
11111111121321≠++++=n n n a a a a a a a D 2、用相应的齐次线性方程组的基础解系表示下列线性方程组的全部解
⎪⎪⎩⎪⎪⎨
⎧-=-+++-=+----=--++--=-+-+21
93164432145234
2354321543215
432154321x x x x x x x x x x x x x x x x x x x x
3、解矩阵方程 ⎪⎪⎪


⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--87107210031012423321X
4、设⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,00014321αααα是()F M 2的一个基,而⎪⎪⎭

⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=2231,2121,1121,25324321ββββ是另一组基,求由{}4321,,,αααα到{}4321,,,ββββ的过渡矩阵,并求向量⎪⎪⎭

⎝⎛--=2945ξ在{}4321,,,ββββ下的坐标。

六、证明题
设321,,ααα是三维欧氏空间V 的一个标准正交基,试证:
()()()
321332123211223
1
2231
2231
αααβαααβαααβ--=+-=-+=
也是V 的一个标准正交基。

高等代数试卷参考解答
一、判断题 1 2 3 4 5 6 7 8 9 10
× × √ √ × √ √ × √ √
二、单项选择题 1 2 3 4 5 6 7 8 9 10 ② ① ④ ③ ① ④ ④ ② ③ ① 三、填空题
1、()()()
2112++-x x x ; 2、acef ; 3、4; 4、0; 5、正交; 6、
()()2
21++n n ; 7、X P Y 1-=; 8、封闭;
9、⎥⎥⎦

⎢⎢⎣
⎡b a d c 33
; 10、相同的维数。

四、改错题
1、如果)(x p 是)(x f 的导数)('x f 的1-k 重因式,那么)(x p 就是)(x f 的k 重因式。

)(x p 是)(x f 的因式且是)('x f 的1-k 重因式
2、若线性方程组B AX =相应的齐次线性方程组0=AX 有无穷多解,那么B AX =也有无穷多解。

当AX=B 有解时,AX=B 也有无穷多解
3、设A 是一个n m ⨯矩阵,若用m 阶初等矩阵()()4,53E 右乘A ,则相当对A 施行了一次“A 的第三列乘5加到第四列”的初等变换。

A 的第4列乘5加到第3列
4、若21,αα都是数域F 上的方阵A 的属于特征根0λ的特征向量,那么任取
,,21F k k ∈2211ααk k +也是A 的属于0λ的特征向量。

5、设σ是欧氏空间V 的线性变换,那么σ是正交变换的充分必要条件是σ能保持任二个非零向量的夹角。

必要条件。

相关文档
最新文档