浙教版数学八年级下册期中
浙教版数学八年级下册《期中考试卷》附答案解析
2020-2021学年第二学期期中测试浙教版八年级试题一,单项选择题(本大题共10小题,每小题3分,共30分) 1. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−22. 数据1、5、7、4、8的中位数是( )A. 4B. 5C. 6D. 73. 方程x 2+6x −5=0的左边配成完全平方后所得方程为( )A. (x +3)2=14B. (x −3)2=14C. (x +3)2=4D. (x −3)2=44. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中不一定正确的是( )A. AB =CDB. BO =ODC. ∠BAD =∠BCDD. AB ⊥AC5. 下列运算正确的是( )A. 2√3+3√2=5√5B. √6=3√2C. √(−2)2=−2D. √8÷√2=26. 关于x 的一元二次方程(a −1)x 2+3x −2=0有实数根,则a 的取值范围是( )A. a >−18 B. a ≥−18 C. a >−18且a ≠1D. a ≥−18且a ≠17. 如图,Rt △ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE//DC 交AF 的延长线于点E ,则BE 的长为( )A. 6B. 4C. 7D. 128.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设()A. 直角三角形中两个锐角都大于45°B. 直角三角形中两个锐角都不大于45°C. 直角三角形中有一个锐角大于45°D. 直角三角形中有一个锐角不大于45°9.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P、Q两点同时出发,当点P运动到点B时,P、Q两点同时停止运动,当三角形PQB的面积是三角形ABC的面积的三分之一时,经过多少秒时间? ()A. 4B. 2C. 2或4D. 3或410.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3√2,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP的长是()A. 2√2B. 3√2C. 6D. 12二、填空题(本大题共7小题,每小题3分,共21分)11.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是______.12.已知a=√3−√2,b=√3+√2,求a2+b2的值为______.13.将1化简得______.√3+114.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为______.15.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为______.16.方程2x2+3x−1=0的两个根为x1、x2,则1x1+1x2的值等于______ .17.如图,在△ABC中,D是AB上任意一点,E是BC的中点,过C作CF//AB,交DE的延长线于F,连BF,CD,若∠FDB=30°,∠ABC=45°,BC=2√2,则DF=________.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)18.用适当的方法解下列一元二次方程:(1)x2+4x−2=0;(2)(x+2)2=3(x+2).19.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上请你根据统计图表中的信息,解答下列问题:(1)a=______,b=______.(2)该调查统计数据的中位数是______,众数是______.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.20.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?21.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.如图,平行四边形ABCD的顶点A、B在x轴上,顶点D在y轴上,已知OA=3,OB=5,OD=4.(1)平行四边形ABCD的面积为_______;(2)如图1,点E是BC边上的一点,若ΔABE的面积是平行四边形ABCD的1,求点4 E的坐标;(3)如图2,将ΔAOD绕点O顺时针旋转,旋转得ΔA1OD1,在整个旋转过程中,能否使以点O、A1、D1、B为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由;答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)23.若式子√2x−4在实数范围内有意义,则x的取值范围是()A. x≠2B. x≥2C. x≤2D. x≠−2【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.24.数据1、5、7、4、8的中位数是()A. 4B. 5C. 6D. 7【答案】B【解析】解:将数据按从小到大的顺序重新排列为1、4、5、7、8,则这组数据的中位数为5,故选:B.根据中位数的定义判断即可;本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).25.方程x2+6x−5=0的左边配成完全平方后所得方程为()A. (x+3)2=14B. (x−3)2=14C. (x+3)2=4D. (x−3)2=4【答案】A【解析】解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.根据配方法的步骤进行配方即可.本题主要考查一元二次方程的解法,掌握配方法的步骤是解题的关键.26.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列结论中不一定正确的是()A. AB=CDB. BO=ODC. ∠BAD=∠BCDD. AB⊥AC【答案】D【解析】【分析】本题考查了平行四边形的性质;熟记平行四边形的对边相等、对角相等、对角线互相平分是解决问题的关键.由平行四边形的性质容易得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BO=OD,∠BAD=∠BCD,∴选项A、B、C正确,D不一定正确.故选D.27.下列运算正确的是()A. 2√3+3√2=5√5B. √6=3√2C. √(−2)2=−2D. √8÷√2=2【答案】D【解析】【分析】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.根据题目中的式子,可以计算出正确的结果,从而可以解答本题. 【解答】解:∵2√3+3√2不能合并,故选项A 错误,∵√6已经是最简二次根式,不能再化简,故选项B 错误, ∵√(−2)2=2,故选项C 错误, ∵√8÷√2=√4=2,故选项D 正确, 故选:D .28. 关于x 的一元二次方程(a −1)x 2+3x −2=0有实数根,则a 的取值范围是( )A. a >−18 B. a ≥−18 C. a >−18且a ≠1D. a ≥−18且a ≠1【答案】D 【解析】 【分析】本题考查了一元二次方程根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.根据一元二次方程的定义和判别式的意义得到a ≠1且Δ=32−4(a −1)×(−2)≥0,然后求出两个不等式解集的公共部分即可. 【解答】解:根据题意得a ≠1且Δ=32−4(a −1)×(−2)≥0, 解得a ≥−18且a ≠1. 故选D .29. 如图,Rt △ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE//DC 交AF 的延长线于点E ,则BE 的长为( )A. 6B. 4C. 7D. 12【答案】A【解析】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=12AB=4.5.∵CF=13CD,∴DF=23CD=23×4.5=3.∵BE//DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选:A.先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.30.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设()A. 直角三角形中两个锐角都大于45°B. 直角三角形中两个锐角都不大于45°C. 直角三角形中有一个锐角大于45°D. 直角三角形中有一个锐角不大于45°【答案】A【解析】略31.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P、Q两点同时出发,当点P运动到点B时,P、Q两点同时停止运动,当三角形PQB的面积是三角形ABC的面积的三分之一时,经过多少秒时间? ()A. 4B. 2C. 2或4D. 3或4【答案】C【解析】【分析】本题考查了一元二次方程的应用.关键是用含时间的代数式准确表示BP和BQ的长度,再根据三角形的面积公式列出一元二次方程,进行求解.设经过x秒,三角形PQB的面积是三角形ABC的面积的三分之一.表示出AP=t,BQ= 2t,PB=AB−AP=6−t,再得出S△PBQ与S△ABC面积,利用S△PBQ=13S△ABC求出即可.【解答】解:设经过x秒,三角形PQB的面积是三角形ABC的面积的三分之一.∵P、Q移动t秒时,AP=t,BQ=2t,则PB=AB−AP=6−t,∴S△PBQ=13,∵S△ABC=12AB⋅BC=12×6×8=24,当S△PBQ=13S△ABC时,则12⋅2t(6−t)=13×24,整理,得t2−6t+8=0,解得t1=2,t2=4,即当t=2或4时,△PBQ的面积等于△ABC的面积的三分之一.故选:C.32.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3√2,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP的长是()A. 2√2B. 3√2C. 6D. 12【答案】C【解析】【分析】本题考查了考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理等知识,解题关键是熟练掌握和运用这些判定和性质.根据平行四边形的性质得出AB=BD,进而得出△ADN≌△DAM,AM=DN,再根据三角形外角的性质和直角三角形的性质得出△AMP为等腰直角三角形,根据勾股定理即可得出AP的长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∵BD=CD,∴AB=BD,∴∠BAD=∠BDA,∵DN⊥AB于点N,AM⊥BD于点M,∴∠AND=∠AMD=90°,在△AMD和△DNA中{∠AMD=∠DNA ∠BDA=∠BAD AD=DA∴△AMD≌△DNA,∴AM=DN=3√2,∵∠ABD=∠P+∠BAP,∠ABD=∠MAP+∠PAB,∴∠P=∠MAP,∵AM⊥BD于点M,∴△AMP是等腰直角三角形,∴AP=√2AM=6.故选C.二、填空题(本大题共7小题,每小题3分,共21分)33.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是______.【答案】2【解析】解:由题意知,原数据的平均数为x−,新数据的每一个数都加了1,则平均数变为x−+1,则原来的方差S12=15[(x1−x−)2+(x2−x−)2+⋯+(x5−x−)2]=2,现在的方差S22=15[(x1+1−x−−1)2+(x2+1−x−−1)2+⋯+(x5+1−x−−1)2]=15[(x1−x−)2+(x2−x−)2+⋯+(x5−x−)2]=2,所以方差不变.故答案为2.方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.34.已知a=√3−√2,b=√3+√2,求a2+b2的值为______.【答案】10【解析】解:原式=(√3−√2)2+(√3+√2)2=5−2√6+5+2√6=10.故本题答案为:10.把已知条件代入求值.此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2−2ab,再整体代入.35.将1√3+1化简得______.【答案】√3−12【解析】【分析】本题考查了分母有理化,能找出分母的有理化因式是解此题的关键.先分母有理化,即可得出答案.【解答】解:√3+1=√3−1)(√3+1)×(√3−1)=√3−12,故答案为:√3−12.36.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为______.【答案】5【解析】解:由条件可知AB//CD,AD//BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.由条件可知AB//CD,AD//BC,可证明四边形ABCD为平行四边形,可得到AD=BC.本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行的四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.37.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为______.【答案】5或6或7【解析】【分析】本题考查了多边形的内角和定理,解题时注意:一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.首先求得内角和为720°的多边形的边数,再根据截去一个角后边数增加1,不变,减少1,即可确定原多边形的边数.【解答】解:设内角和为720°的多边形的边数是n,则(n−2)⋅180=720,解得:n=6.∵截去一个角后边数可能增加1,不变或减少1,∴原多边形的边数为5或6或7.故答案为:5或6或7.38.方程2x2+3x−1=0的两个根为x1、x2,则1x1+1x2的值等于______ .【答案】3【解析】【分析】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a . 先根据根与系数的关系得到x 1+x 2=−32,x 1x 2=−12,再通分得到1x 1+1x 2=x 1+x 2x 1x 2,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=−32,x 1x 2=−12,所以1x 1+1x 2=x 1+x 2x 1x 2=−32−12=3.故答案为3.39. 如图,在△ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作CF//AB ,交DE的延长线于F ,连BF ,CD ,若∠FDB =30°,∠ABC =45°,BC =2√2,则DF =________.【答案】4【解析】【分析】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,证明CF//DB ,CF =DB ,可得四边形CDBF 是平行四边形,作EM ⊥DB 于点M ,解直角三角形即可.【解答】解:∵CF//AB ,∴∠ECF =∠EBD .∵E 是BC 中点,∴CE =BE .∵∠CEF =∠BED ,∴△CEF≌△BED .∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=2√2,BC=√ 2,DF=2DE,∴BE=12=1,在Rt△EMB中,∠ABC=45°,EM=BE⋅√22在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为4.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)40.用适当的方法解下列一元二次方程:(1)x2+4x−2=0;(2)(x+2)2=3(x+2).【答案】解:(1)∵x2+4x−2=0,∴x2+4x+4=6,∴(x+2)2=6,∴x=−2±√6.(2)∵(x+2)2=3(x+2),∴(x+2)(x+2−3)=0,∴x=−2或x=1.【解析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.41.(1)计算:92√13+12√48−√754(2)计算:√(−2)2×12−√32+√49÷13【答案】解:(1)原式=3√32+2√3−5√32=√3;(2)原式=2×12−3+23×3=1−3+2=0.【解析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的性质化简,然后进行有理数的混合运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.42.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=______,b=______.(2)该调查统计数据的中位数是______,众数是______.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【答案】17 20 2次2次【解析】解:(1)∵被调查的总人数为13÷26%=50人,×100%=20%,即b=20,∴a=50−(7+13+10+3)=17,b%=1050故答案为:17、20;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为:2次、2次;(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;=120人.(4)估计该校学生在一周内借阅图书“4次及以上”的人数为2000×350(1)先由1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;(2)根据中位数和众数的定义求解;(3)用360°乘以“3次”对应的百分比即可得;(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.43.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?【答案】解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b(k ≠0), 将(40,600)、(45,550)代入y =kx +b ,得:{40k +b =60045k +b =550,解得:{k =−10b =1000, ∴年销售量y 与销售单价x 的函数关系式为y =−10x +1000.(2)设此设备的销售单价为x 万元/台,则每台设备的利润为(x −30)万元,销售数量为(−10x +1000)台,根据题意得:(x −30)(−10x +1000)=10000,整理,得:x 2−130x +4000=0,解得:x 1=50,x 2=80.∵此设备的销售单价不得高于70万元,∴x =50.答:该设备的销售单价应是50万元/台.【解析】【分析】本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.【解答】解:(1)根据点的坐标,利用待定系数法即可求出年销售量y 与销售单价x 的函数关系式;(2)设此设备的销售单价为x 万元/台,则每台设备的利润为(x −30)万元,销售数量为(−10x +1000)台,根据总利润=单台利润×销售数量,即可得出关于x 的一元二次方程,解值取其小于70的值即可得出结论.44. 已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB =AF ;(2)若AG =AB ,∠BCD =120°,判断四边形ACDF 的形状,并证明你的结论.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF//CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.45.如图,平行四边形ABCD的顶点A、B在x轴上,顶点D在y轴上,已知OA=3,OB=5,OD=4.(1)平行四边形ABCD的面积为_______;(2)如图1,点E是BC边上的一点,若ΔABE的面积是平行四边形ABCD的14,求点E的坐标;(3)如图2,将ΔAOD绕点O顺时针旋转,旋转得ΔA1OD1,在整个旋转过程中,能否使以点O、A1、D1、B为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由;【答案】解:(1)32;(2)过点E作EF⊥AB于F,∵S△ABE=14S▱ABCD,∴12×AB×EF=14×AB×OD,∴EF=2,∵OA=3,OB=5,OD=4,∴点B(5,0),点C(8,4)设BC解析式:y=kx+b,∴{0=5k+b4=8k+b,解得:{k =43b =−203, ∴解析式:y =43x −203, 当y =2时,x =132,∴E(132,2), (3)能.∵OA =3,OD =4,∴AD =5,如图,若四边形OA 1D 1B 是平行四边形,A 1D 1交y 轴于点F ,∵将△AOD 绕点O 顺时针旋转,旋转得△A 1OD 1,∴A 1O =AO =3,∠A =∠A 1,∵四边形OA 1D 1B 是平行四边形,∴A 1D 1//AB ,∴∠A 1FD =∠A 1FO =∠AOF =90°,且∠A 1=∠A ,∴△A 1FO∽△AOD ,∴A 1OAD=A 1F AO =FO DO , ∴35=A 1F3=FO 4, ∴A 1F =95,FO =125,∵点A 1在第二象限,∴A 1(−95,125);如图,若四边形A 1D 1OB 是平行四边形,A 1D 1交y 轴于点F ,∵将△AOD 绕点O 顺时针旋转,旋转得△A 1OD 1,∴A 1O =AO =3,∠A =∠D 1A 1O ,∵四边形OBA 1D 1是平行四边形,∴A 1D 1//AB ,∴∠A 1FO =∠AOF =∠AOD =90°,且∠A =∠D 1A 1O ,∴△A 1FO∽△AOD , ∴A 1O AD =A 1F AO =FO DO , ∴35=A 1F3=FO4, ∴A 1F =95,FO =125,∵点A 1在第四象限,∴A 1(95,−125); 如图,若OA 1BD 1是平行四边形,过点A 1作A 1E ⊥BA ,∵OA 1BD 1是平行四边形,且∠A 1OD 1=90°,∴OA 1BD 1是矩形,∴OD 1=A 1B =4,∠OA 1B =90°,∵S △A 1OB =12×OB ×A 1E =12×A 1O ×A 1B ,∴3×4=5×A1E,∴A1E=125,∴OE=√OA12−A1E2=√9−14425=95,∴A1坐标(95,12 5).综上可得点A1的坐标为(−95,125);(95,125)或(95,−125).【解析】【分析】本题主要考查的是平行四边形的性质,勾股定理,相似三角形的性质和判定,一次函数的性质和应用,三角形的面积,旋转的性质,点的坐标的确定,用分类思想解决问题是本题的关键.(1)由题意可得AB=5,根据平行四边形的面积公式可求▱ABCD的面积;(2)过点E作EF⊥AB,根据△ABE的面积是▱ABCD的14,可求EF的长,根据B点,C点坐标可求直线BC解析式,把点E纵坐标代入可求点E坐标;(3)分三种情况讨论,根据平行四边形的性质,相似三角形的性质,勾股定理可求点A1的坐标.【解答】解:(1)∵OA=3,OB=5,OD=4.∴AB=8,∴▱ABCD的面积=4×8=32,故答案为32;(2)见答案;(3)见答案.。
浙教版数学八年级下学期《期中测试卷》及答案
B、x2+3x=1,是一元二次方程,故此选项正确;
C、ax2+bx+c=0,当a≠0时,是一元二次方程,故C错误;
D、 ,是分式方程,故D错误.
故选B.
[点睛]考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
A. 1B. 2C. 3D. 4
10.如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上 动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为()
A. 1B. C. D.
二、填空题(本题共8小题,每小题3分,共24分)
11.求值: __________.
12.一元二次方程 解为________.
13.如果多边形的每个内角都等于 ,则它的边数为______.
14.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.
15.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加 条件是_________(只填写一个条件,不使用图形以外的字母和线段).
5.如图,在□ABCD中,点M为CD的中点,且DC=2AD,则AM与BM的夹角的度数为()
A.100°B.95°C.90°D.85°
6.用配方法解方程x2﹣ x﹣1=0时,应将其变形为( )
A. (x﹣ )2= B. (x+ )2=
C. (x﹣ )2=0D. (x﹣ )2=
7.某商场对上周女装的销售情况进行了统计,销售情况如表:
浙教版八年级下学期数学《期中检测试卷》含答案
(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包 利润=实际出厂单价-成本)
答案与解析
一、精心选一选(每小题3分,共30分)
1.下列计算结果正确的是( )
采访写作
计算机
创意设计
小明
70分
60分
86分
小亮
90分
75分
51分
小丽
60分
84分
72分
现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3∶5∶2变成5∶3∶2,成绩变化情况是( )
A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加
[答案]B
[解析]
创意权重没有改变,所以可以不计算.
21.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存 影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
22.已知关于x的一元二次方程x2-2(k-1)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)是否存在实数k,使x1+x2=x1x2-5.若存在,求出实数k的值;若不存在,请说明理由.
23.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.
[答案]B
[解析]
浙教版数学八年级下学期《期中考试卷》附答案
26.如图,平行四边形 中, , ,点 在 边上以每秒 的速度从点 向点 运动,点 在 边上,以每秒 的速度从点 出发,在 间往返运动,两个点同时出发,当点 到达点 时停止(同时点 也停止).设运动时间为 秒,当 为何值时,以点 、 、 、 为顶点的四边形是平行四边形?
答案与解析
一、选择题(每小题3分,共36分)
A.k≤1B.k>1C.k=1D.k≥1
[答案]A
[解析]
[详解]根据一元二次方程的根的判别式,可由方程有两个实数根,可得△=b2-4ac≥0,即4-4k≥0,解得k≤1.
故选A.
4.一个多边形的内角和是720°,这个多边形是()
A.五边形B.六边形C.七边形D.八边形
[答案]B
[解析]
利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.
17.在我国古代数学著作《九章算术》中记载了一道有趣 数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为 丈( 丈 尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是 尺,根据题意,可列方程为__________.
[详解]当k=0时,原方程为-x+1=0,
解得:x=1,
∴k=0符合题意;
当k≠0时,kx2-(k+1)x+1=(kx-1)(x-1)=0,
解得:x1=1,x2= ,
∵方程的根是整数,
∴ 为整数,k为整数,
∴k=±1.
综上可知:满足条件的整数k为0、1和-1.
浙教版数学八年级下学期《期中考试试题》含答案
浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A =B 1=C .3+=D 2= 2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A .41度B .42度C .45度D .46度 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是( )A .0m ≠B .14m ≥C .14m ≤D .14m >5.若22440a b b -++++=,则 abc =( ) A .4 B .2C .− 2D .1 6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm 7.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=408.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是 10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .B .C .6D .12二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.12.若x 满足|2017-x|+ =x, 则x -20172=________13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.16.已知y +18,_____.17.如图,在平行四边形ABCD 中,AB ,点E 为AD 的中点,连接BE 、CE,且BE =BC,过点C 作CF∠BE,垂足为点F,若BF =2EF,则BC 的长=________.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)18.解方程(1)(1)(2)1x x x +-=+ 24x -=19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.20.计算:|(2)3+-21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩?(2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A=B1=C.3+=D=[答案]D[分析]直接利用二次根式的加减运算法则分别计算得出答案.[详解]解:A无法合并,故此选项错误;B无法合并,故此选项错误;C、3无法合并,故此选项错误;D=故此选项正确;故选D.[点睛]此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A.41度B.42度C.45度D.46度[答案]C[分析]将用电量从小到大排列,再根据中位数的定义计算.解:将用电量从小到大排列为:42,42,42,42,42,42,45,45,45,50,50,50,50,50,共有3+5+6=14户,则中位数为:(45+45)÷2=45度,故选C .[点睛]本题考查了中位数,解题的关键是掌握中位数的求法.3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .[答案]A[分析]根据轴对称图形和中心对称图形的定义进行判断即可;[详解]A 、既是轴对称图形又是中心对称图形,符合题意;B 、既不是轴对称图形也不是中心对称图形,不符合题意;C 、是轴对称图形但不是中心对称图形,不符合题意;D 、不是轴对称图形是中心对称图形,不符合题意;故选:A .[点睛]本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键;4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是A .0m ≠B .14m ≥C .14m ≤D .14m > [答案]C[分析]由方程有实数根即△=b 2﹣4ac≥0,从而得出关于m 的不等式,解不等式即可得答案.[详解]△关于x 的一元二次方程()22210x m x m --+=有实数根, △△=b 2﹣4ac≥0,即[-(2m -1)]2-4m 2≥0,解得:m≤14, [点睛]本题主要考查根的判别式,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2﹣4ac,当△>0时,方程有两个不相等得实数根;当△=0时,方程有两个相等得实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的根与判别式间的关系是解题的关键.5.若22440a b b -++++=,则 abc =( ) A .4B .2C .− 2D .1 [答案]C[分析] 先根据绝对值,完全平方式以及二次根式的非负性,求出a,b,c 的值,进而即可求解.[详解]△2|2|44a b b -+++△2|2|(2)0a b -+++=,△|2|a -=0,2(2)b +0=, 即: a=2,b=-2,c=12, △abc =2×(-2)×12=-2. 故选C .[点睛] 本题主要考查绝对值,完全平方式以及二次根式的非负性,根据非负性,求出a,b,c 的值,是解题的关键.6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm[答案]A[分析] 根据在□ABCD 中,AE 平分△BAD,得到△BAE=△AEB,即AB=BE,即可求出EC 的长度.[详解]△在□ABCD 中,AE 平分△BAD,△△DAE=△BAE,△DAE=△AEB,△△BAE=△AEB,△AB=BE,△AD=5cm,AB=3cm,△BE=3cm,BC=5cm,△EC=5-3=2cm,故选:A.[点睛]本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.7.如图,在长20米,宽12米的矩形ABCD空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x米,根据题意列方程,正确的是()A.32x+2x2=40B.x(32+4x)=40C.64x+4x2=40D.64x﹣4x2=40[答案]B[分析]设小路的宽度为x米,则小正方形的边长为2x米,根据小路的横向总长度(20+2x)米和纵向总长度(12+2x)米,根据矩形的面积公式可得到方程.[详解]解:设道路宽为x米,则中间正方形的边长为2x米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B.[点睛]考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.8.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个[答案]B[分析] 利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.[详解] 解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒, 12AB BC =,12AE BE BC ∴==, AE CE ∴=,故△错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故△正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =,1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故△不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故△正确; 故正确的个数为2个,故选:B .[点睛]此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE ∆是等边三角形是关键.9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是 [答案]C[分析] 根据二次根式的性质分析即可得出答案.[详解]解:,m 、n 是正整数, △m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C .[点睛]本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A.B .C .6 D .12[答案]A[分析] 设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =从而可得CD =,最后利用平行四边形的面积公式即可得.[详解]设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=, 909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .[点睛]本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.[答案]8 2[分析] 样本方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.[详解] 解:由于22221281[(2)(2)(2)]8S x x x =-+-+⋯+-,所以该组数据的样本容量是8,该组数据的平均数是2.故答案为:8,2.[点睛]本题考查了方差,样本容量,平均数,熟练记住公式:2222121[()()()]n S x x x x x x n=-+-+⋯+-中各个字母所代表的含义.12.若x 满足|2017-x|+ =x, 则x -20172=________[答案]2018[分析]根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题. [详解]解:由条件知,x -2018≥0, 所以x≥2018,|2017-x|=x -2017.所以x -2017+ =x,即 =2017,所以x -2018=20172 ,所以x -20172=2018,故答案为:2018.[点睛]本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.[答案]12a [分析]延长BC ,使BE AD =,根据题意先证明四边形ABED 是平行四边形,可解得111222BC AD BE b ===,继而得到C 是BE 的中点,再结合中位线的性质解题即可.解:延长BC ,使BE AD =,//AD BC∴四边形ABED 是平行四边形,△DE=AB,,2AB a AD BC b ===111222BC AD BE b ∴=== C ∴是BE 的中点, M 为BD 的中点,111222CM DE AB a ∴=== 12CM a ∴= 故答案为:12a . [点睛]本题考查平行四边形的判定与性质、中位线的性质等知识,是重要考点,难度较易,掌握相关知识、作出正确的辅助线是解题关键.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______.[答案]2021根据题意得a 2+a -2022=0,即a 2+a=2022,利用根与系数的关系得到a+b=-1,代入整理后的代数式求值.[详解]解:a,b 分别是方程x 2+x -2022=0的两个实数根,△a+b=-1,a 2+a -2022=0,△a 2+a=2022,故a 2+2a+b=a 2+a+(a+b)=2022-1=2021,故答案为:2021.[点睛]本题主要考查了一元二次方程的根,根与系数的关系,一元二次方程20ax bx c ++=(0a ≠) 的根与系数的关系为12b x x a +=-,12c x x a=. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.[答案]3或4.[分析]分等腰三角形的腰长为3和底边为3两种情形求解即可.[详解]当等腰三角形的腰长为3时,则另一边长为3,△另两边长是关于x 的方程240x x k -+=的两个根,△x=3是方程240x x k -+=的根,△23430k -⨯+=,△2430x x -+=,△x=3或x=1,△等腰三角形的三边为3,3,1,存在,当等腰三角形的底边为3时,则两腰为方程的根,△另两边长是关于x 的方程240x x k -+=的两个根,△2(4)40k --=,△k=4,△2440x x -+=,△122x x ==,△等腰三角形的三边为2,2,3,存在,综上所述,k=3或k=4,故答案为:3或4.[点睛]本题考查了一元二次方程的根与等腰三角形的边长之间的关系,灵活运用分类思想,根的定义,根的判别式是解题的关键.16.已知y +18,_____.[答案][分析]首先由二次根式有意义的条件求得x =8,则y =18,然后代入化简后的代数式求值.[详解]解:由题意得,x﹣8≥0,8﹣x≥0,解得,x=8,则y=18,△x>0,y>0,△把x=8, y=18代入=﹣=故答案为:[点睛]本题考查了二次根式有意义的条件和二次根式的化简求值,解题关键是根据二次根式有意义的条件确定x、y的值,能够熟练的运用二次根式的性质化简.17.如图,在平行四边形ABCD中,AB,点E为AD的中点,连接BE、CE,且BE=BC,过点C作CF∠BE,垂足为点F,若BF=2EF,则BC的长=________.[答案][分析]过点C 作CG AD ⊥于点G,由平行四边形的性质可得://AD BC ,AB =,AD=BC,由平行线性质可得:BCE DEC ∠=∠,由BE =BC 可得:BCE BEC ∠=∠,进而可得=BEC DEC ∠∠,用AAS 可证EFC EGC ≅,可得EF=EG,FC=GC,由BF =2EF 可设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,由勾股定理可求FC 的长度,故可得CG 和DG 的长度, 在Rt CDG 中,由勾股定理可列方程解出x 即可求出.[详解]如图所示,过点C 作CG AD ⊥于点G,△四边形ABCD 为平行四边形,△//AD BC ,AB =△BCE DEC ∠=∠,△BE =BC,△BCE BEC ∠=∠,△=BEC DEC ∠∠,又△90EFC EGC ∠=∠=︒,EC=EC,△EFC EGC ≅,△EF=EG,FC=GC,△BF =2EF,△设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,FC ==,,EG=EF=x ,△E 为AD 中点, △ED= 12BC= 32x , △DG= 3122x x x -=,在Rt CDG 中,DG=12x ,△)22212x ⎛⎫+= ⎪⎝⎭,解得:3x =,△BC=3x =故答案为:[点睛]本题主要考查了全等三角形的判定与性质,勾股定理,平行四边形的性质,根据已知条件作出适当的辅助线构造直角三角形是解题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.解方程(1)(1)(2)1x x x +-=+ 24x -=[答案](1)11x =-,23x =;(2)1x =,2x =[分析](1)先将方程化为一般式,再利用因式分解法解题;(2)先将方程化为一般式,再利用配方法解题.[详解]解:(1)(1)(2)1x x x +-=+整理得,2230x x --=(3)(+1)=0x x -121,3x x ∴=-=;24x -=240x --=240x ∴--=2(60x ∴-=2(6x ∴-=x ∴=12x x ∴==[点睛]本题考查解一元二次方程,涉及因式分解法、配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.[答案](1)3x2x+4=0;(2)见解析[分析](1)由a=3,b=4,由a2+b2=c2求出c=±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.[详解](1)解:由a2+b2=c2可得:当a=3,b=4时,c=±5,相应的勾系一元二次方程为3x2x+4=0;(2)证明:根据题意,得△=2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0△△≥0,△勾系一元二次方程ax2=0(a≠0)必有实数根.[点睛]本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.20.计算:|(2)3+-[答案]3;(2)-[分析](1)分别化简各项,再作加减法;(2)利用完全平方公式和平方差公式展开,再作加减法.[详解]解:+=452+3;(2)3+-=2338+--=-[点睛]本题考查了二次根式的混合运算,解题的关键是掌握运算法则.21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?[答案](1)28,(2)1.5元,1.8元;(3)960[分析](1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.[详解]解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.5元,1.8元;(3)3000×32%=960(枚),答:价格为1.8元的约960枚.故答案为:960.[点睛]本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩? (2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?[答案](1)500吨;(2)300吨[分析](1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩,根据题意列不等式即可求解;(2)设每年在网络平台上销售了m 吨“留香瓜”,根据题意列方程即可求解.[详解]解:(1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩.由题意,得1101000(600)810004x x ⨯-≤⨯⨯ 解之得:x 500≥答:利用电商平台进行销售前,每年至少有500吨“留香瓜”卖给了水果商贩.(2)本地自产自销“留香瓜”的销量按(1)问中的最大值为:600-500=100(吨)设每年在网络平台上销售了m 吨“留香瓜”.则101000100201000m ⨯⨯+⨯+81000(500)9200000100m m ⎫⎛+⨯-= ⎪⎝⎭解得11400m =(舍去),2300m =,答:每年在网络平台上销售了300吨“留香瓜”.[点睛]本题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是理清题目中的数量关系,列出方程或不等式.23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.[答案](1)t=5;(2)t=9;(3)t=15[分析](1)由平行四边形的性质得出DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由题意得出方程,解方程即可;(2)当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由梯形面积公式得出方程,解方程即可;(3)当10.5≤t <16时,点P 到达C 点返回,由梯形面积公式得出方程,解方程即可.[详解]解:(1)△四边形PQDC 是平行四边形,△DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,如图1所示:△DQ=AD-AQ=16-t,CP=21-2t△16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.[点睛]本题是四边形综合题目,考查了直角梯形的性质、平行四边形的判定与性质、梯形的面积等知识,熟练掌握直角梯形的性质和平行四边形的判定与性质是解题的关键.。
浙教版数学八年级下学期《期中测试卷》含答案
浙教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()D. 中位数是13A. 众数是11B. 平均数是12C. 方差是1872.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A. 36°B. 54°C. 60°D. 72°3.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简√a2+|a+b|的结果为()A. 2a+bB. −2a−bC. bD. 2a−b4.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A. 1.7B. 1.8C. 2.2D. 2.45.若|a+1|+√b+3+c2−4c+4=0,则a+b2+c3的值等于()A. 0B. 6C. 16D. 226.若关于x的一元二次方程(k+1)x2+2(k+1)x+k−2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B.C. D.7.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,∠ADC=30°,8.①四边形ACED是平行四边形;9.②△BCE是等腰三角形;10.③四边形ACEB的周长是10+2√13;11.④四边形ACEB的面积是16.12.则以上结论正确的个数是()A. 1个B. 2个C. 3个D. 4个13.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A. ∠ABD=∠DCEB. DF=CFC. ∠AEB=∠BCDD. ∠AEC=∠CBD14.对于实数a,b,先定义一种新运算“★”如下:a★b={a2b+a,当a≥b时ab2+b,当a<b时.若2★m=36,则实数m等于()A. 8.5B. 4C. 4或−4.5D. 4或−4.5或8.515.如图,平行四边形ABCD,对角线BD平分∠ABC,BC=6,∠ABC=45°在对角线AC上有一动点P,边BC上有一动点Q,使PQ+PC最小,则这个最小值为()A. 6B. 2√6C. 3√3D. 3√2二、填空题(本大题共7小题,每小题3分,共21分)16.化简√(π−3)2=______.17.正n边形的每个内角都是120°,这个正n边形的对角线条数为______条.18.若关于x的方程x2+ax−2=0有一个根是1,则a=______.19.要使代数式√2x−1有意义,则x的取值范围是______.x−120.如图,★ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为______.21.22.23.在实数范围内定义一种运算“⊗”,其规则为a⊗b=a2−b2−5a,则方程(x+2)⊗√6=0的所有解的和为______ .24.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有____次.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)25.解方程:(1)(x−2)2=(2x+3)2(2)4x2−8x−3=0.26.计算(1)(2√5−√2+√3)(2√5−√2−√3)(2)√484−(√1214−√20.25)+(15)−127.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:28.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.29.已知关于x的方程x2−(k+2)x+2k−1=0.30.(1)求证:方程总有两个不相等的实数根;31.(2)如果方程的一个根为x=3,求k的值及方程的另一根.32.已知在△ABC中,AB=AC,点D在BC上,以AD、AE为腰做等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM//BC交CA延长线于M,连接BM.33.(1)求证:△BAD≌△CAE;34.(2)若∠ABC=30°,求∠MEC的度数;35.(3)求证:四边形MBDE是平行四边形.36.如图,直线y=−x+4分别交x轴、y轴于A、B两点,直线BC与x轴交于点C(−2,0),P是线段AB上的一个动点(点P与A、B不重合).(1)求直线BC的函数表达式;(2)设动点P的横坐标为t,△POA的面积为S. ①求出S与t的函数关系式,并写出自变量t的取值范围; ②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)37.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13 [答案]D[解析]解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;x−=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=17[(10−12)2+(11−12)2×3+(13−12)2×2+(15−12)2]=187,因此方差为187,于是选项C不符合题意;故选:D.根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.38.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A. 36°B. 54°C. 60°D. 72°[答案]B[解析]解:如图:由正五边形ABCDE,BG平分∠ABC,可得∠DPG=90°,∴∠G+∠EDG=90°,=72°,DG平分正五边形的外角∠EDF,∵∠EDF=360°5∠EDF=36°,∴∠EDG=12∴∠G=90°−∠EDG=54°.故选:B.根据正五边形的轴对称性以及多边形的外角和等于360度解答即可.本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.39.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简√a2+|a+b|的结果为()A. 2a+bB. −2a−bC. bD. 2a−b[答案]B[解析]解:由题意可知:a<−1<b<−a,∴a+b<0,∴原式=|a|−(a+b)=−a−a−b=−2a−b,故选:B.根据二次根式的性质以及绝对值的性质即可求出答案本题考查二次根式,解题的关键是熟练运用二次根式的性质以及绝对值的性质,本题属于基础题型.40.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A. 1.7B. 1.8C. 2.2D. 2.4[答案]A[解析]解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF=1AC=1.7,2故选:A.由已知条件得EF是三角形的中位线,进而根据三角形中位线定理求得EF的长度.本题主要考查了三角形的重心,三角形的中位线定理,关键正确利用重心定义得EF为三角形的中位线.41.若|a+1|+√b+3+c2−4c+4=0,则a+b2+c3的值等于()A. 0B. 6C. 16D. 22[答案]C[解析][分析]此题主要考查了非负数的性质,正确得出a,b,c的值是解题关键.直接利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值进而得出答案.[解答]解:∵|a+1|+√b+3+c2−4c+4=0,|a+1|+(c−2)2+√b+3=0,∴a=−1,c=2,b=−3,∴a+b2+c3=−1+9+8=16.故选C.42.若关于x的一元二次方程(k+1)x2+2(k+1)x+k−2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B. C.D.[答案]A[解析][分析] 本题考查了根的判别式、一元二次方程的定义以及在数轴上表示不等式的解集,根据一元二次方程的定义结合根的判别式,找出关于k 的一元二次不等式组是解题的关键.根据一元二次方程的定义结合根的判别式,即可得出关于k 的一元二次不等式组,解之即可得出k 的取值范围,将其表示在数轴上即可得出结论.[解答]解:∵关于x 的一元二次方程(k +1)x 2+2(k +1)x +k −2=0有实数根, ∴{k +1≠0△=[2(k +1)]2−4(k +1)(k −2)≥0, 解得:k >−1.在数轴上表示解集如下:故选:A .43. 如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC,CE//AD ,若AC =2,∠ADC =30°,44. ①四边形ACED 是平行四边形;45. ②△BCE 是等腰三角形;46. ③四边形ACEB 的周长是10+2√13;47. ④四边形ACEB 的面积是16.48. 则以上结论正确的个数是( )A. 1个B. 2个C. 3个D. 4个[答案]C[解析]解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC//DE,∵CE//AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=√AD2−AC2=2√3,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2√3,∴CB=4√3,∴AB=√AC2+BC2=2√13,∴四边形ACEB的周长是10+2√13,故③正确;④四边形ACEB的面积:12×2×4√3+12×4√3×2=8√3,故④错误,故选:C.证明AC//DE,再由条件CE//AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用勾股定理算出AD=4,CD=2√3,再算出AB长可得四边形ACEB的周长是10+2√13,利用△ACB和△CBE的面积和可得四边形ACEB的面积.本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法,等腰三角形的判定方法,属于中考常考题型.49.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A. ∠ABD=∠DCEB. DF=CFC. ∠AEB=∠BCDD. ∠AEC=∠CBD[答案]C[解析][分析]本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.根据平行四边形的性质得到AD//BC,AB//CD,求得DE//BC,∠ABD=∠CDB,推出BD//CE,于是得到四边形BCED为平行四边形,故A正确;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到EF=BF,于是得到四边形BCED为平行四边形,故B正确;根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故C错误;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确.[解答]解:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴DE//BC,∠ABD=∠CDB,∵∠ABD=∠DCE,∴∠DCE=∠CDB,∴BD//CE,∴BCED为平行四边形,故A正确;∵DE//BC,∴∠DEF=∠CBF,在△DEF与△CBF中,{∠DEF=∠CBF ∠DFE=∠CFB DF=CF,∴△DEF≌△CBF(AAS),∴EF=BF,∵DF=CF,∴四边形BCED为平行四边形,故B正确;∵AE//BC,∴∠AEB=∠CBF,∵∠AEB=∠BCD,∴∠CBF=∠BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故C错误;∵AE//BC,∴∠DEC+∠BCE=∠EDB+∠DBC=180°,∵∠AEC=∠CBD,∴∠BDE=∠BCE,∴四边形BCED为平行四边形,故D正确,故选C.50.对于实数a,b,先定义一种新运算“★”如下:a★b={a2b+a,当a≥b时ab2+b,当a<b时.若2★m=36,则实数m等于()A. 8.5B. 4C. 4或−4.5D. 4或−4.5或8.5 [答案]B[解析][分析]本题考查了一元一次方程的解法、因式分解法解一元二次方程.利用因式分解解方程时,采用了“十字相乘法”分解因式:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.分类讨论:①当2≥m时,将2★m代入新定义运算a★b=a2b+a;②当2<m时,将2★m代入新定义运算a★b=ab2+b.[解答]解:根据题意,得:①当2≥m时,2★m=4m+2=36,即4m+2=36,解得,m=172>2(不合题意,舍去);②当2<m时,2★m=2m2+m=36,即2m2+m−36=0,∴(m−4)(2m+9)=0,∴m−4=0或2m+9=0,∴m=4,或m=−4.5<2,(不合题意,舍去),综合①②,m=4.故选B.51.如图,平行四边形ABCD,对角线BD平分∠ABC,BC=6,∠ABC=45°在对角线AC上有一动点P,边BC上有一动点Q,使PQ+PC最小,则这个最小值为()A. 6B. 2√6C. 3√3D. 3√2[答案]D[解析][分析]此题考查菱形的判定及性质,勾股定理,轴对称的碰到及性质,首先证明四边形ABCD是菱形,垂线段最短等知识点.首先判定ABCD是菱形,推出A、C关于直线BD对称,推出PA=PC,所PC+PQ=PA+PQ,然后作AE⊥BC于E交BD于F,AF=CF,根据垂线段最短,可知当点Q与E重合,F与F重合时,PC+PQ=AF+CF=AE最小,最小值为AE 的长;根据∠ABC=45°,可知BE=AE,由勾股定理求出AE即可.[解答]解:如图,作AE⊥BC,交BD于F,交BC于E,连接AP,QF,CF,∵四边形ABCD是平行四边形,对角线BD平分∠ABC,∴四边形ABCD是菱形,∴A、C关于直线BD对称,∴AP=PC,∴PC+PQ=AP+PQ,∵作AE⊥CB于E交BD于F,根据垂线段最短,可知当点E与Q重合,F与P重合时,PC+PQ最小,即PC+PQ=AF+FE=AE,在Rt△ABE中,∵∠AEB=90°,AB=BC=6,,∠ABC=45°,∴AE=√62=3√2.2故选D.二、填空题(本大题共7小题,每小题3分,共21分)52.化简√(π−3)2=______.[答案]π−3[解析]解:∵π>3,∴π−3>0;∴√(π−3)2=π−3.根据二次根式的性质解答.解答此题,要弄清性质:√a2=|a|,去绝对值的法则.53.正n边形的每个内角都是120°,这个正n边形的对角线条数为______条.[答案]9[解析]解:由多边形内角和公式列方程,180°(n−2)=120°n解得,n=6.∴该正多边形为正六边形.=9.所以该六边形对角线条数=6(6−3)2故答案为9.根据题意利用多边形内角和公式先判断该多边形为正六边形,再由等量关系“多边形对角线条数=边数(边数−3)”求解即可.2本题考查了多边形的边数的确定方法以及边数与对角线的关系.54.若关于x的方程x2+ax−2=0有一个根是1,则a=______.[答案]1[解析][分析]本题考查了一元二次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.把x=1代入方程得出1+a−2=0,求出方程的解即可.[解答]解:∵关于x的方程x2+ax−2=0有一个根是1,∴把x=1代入方程得:1+a−2=0,解得:a=1,故答案为1.55.要使代数式√2x−1有意义,则x的取值范围是______.x−1且x≠1[答案]x≥12[解析]解:由题意可得:2x−1≥0,x−1≠0,且x≠1.解得:x≥12且x≠1.故答案为:x≥12直接利用二次根式的定义、分式的有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.56.如图,★ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为______.57.58.[答案]32[解析][分析]本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.根据平行四边形的性质和等边三角形的性质,可以得到BF和BE的长,然后可以证明△DCG和△EHG全等,然后即可得到CG的长.[解答]解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC//AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点, ∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC//AB,∴∠CDG=∠HEG,在△DCG和△EHG中,{∠CDG=∠HEG DG=EG∠DGC=∠EGH,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3, ∴△CBH是等边三角形,∴CH=BC=3,∴CG=12CH=32,故答案为:32.59.在实数范围内定义一种运算“⊗”,其规则为a⊗b=a2−b2−5a,则方程(x+2)⊗√6=0的所有解的和为______ .[答案]1[解析]解:根据题意得(x+2)2−(√6)2−5(x+2)=0,整理得(x+2)2−5(x+2)−6=0,(x+2−6)(x+2+1)=0,x+2−6=0或x+2+1=0,所以x1=4,x2=−3,所以方程(x+2)⊗√6=0的所有解的和为1.故答案为1.利用新定义得到(x+2)2−(√6)2−5(x+2)=0,整理得(x+2)2−5(x+2)−6=0,把方程看作关于(x+2)的一元一次方程,然后利用因式分解法解.本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.60.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有____次.[答案]3[解析][分析]此题考查了平行四边形的判定和性质.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.首先设经过t秒,根据平行四边形的判定可得当DP=BQ 时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.[解答]解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD//BC,设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次.分为以下情况:①点Q的运动路线是C−B,方程为12−4t=12−t,此时方程t=0,此时不符合题意;②点Q的运动路线是C−B−C,方程为4t−12=12−t,解得:t=4.8;③点Q的运动路线是C−B−C−B,方程为12−(4t−24)=12−t,解得:t=8;④点Q的运动路线是C−B−C−B−C,方程为4t−36=12−t,解得:t=9.6;⑤点Q的运动路线是C−B−C−B−C−B,方程为12−(4t−48)=12−t, 解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为3.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)61.解方程:62.(1)(x−2)2=(2x+3)263.(2)4x2−8x−3=0.[答案]解(1)因式分解,得[(x−2)+(2x+3)][(x−2)−(2x+3]=0,于是,得3x+1=0或−x−5=0,解得x1=−13,x2=−5;(2)a=4,b=−8,c=−3.△=b2−4ac=64−4×4×(−3)=112>0,x=−b±√b2−4ac2a =8±4√78,x1=1+√72,x2=1−√72.[解析](1)根据因式分解法,可得答案;(2)根据公式法,可得答案.本题考查了解一元二次方程,因式分解是解题关键.64.计算65.(1)(2√5−√2+√3)(2√5−√2−√3)66.(2)√484−(√1214−√20.25)+(15)−1[答案]解:(1)原式=(2√5−√2)2−(√3)2, =20−4√10+2−3,=19−4√10;(2)原式=22−(72−92)+5,=22+1+5,=28.[解析](1)首先利用平方差进行计算,然后再利用完全平方公式进行计算,再进行合并即可;(2)首先化简二次根式,计算负整数指数幂,然后再进行有理数的加减即可.此题主要考查了二次根式的混合运算,关键是掌握运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.67.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:68.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.[答案]9 9 8 10[解析]解:(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)a=9;b=9;c=8;d=10,故答案为:9,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.(1)设一班C等级的人数为x,列方程求出C等级的人数,再补全统计图即可;(2)根据中位数、众数的概念分别计算即可;(3)先比较一班和二班的平均分,再比较一班和二班的中位数,即可得出答案.此题考查了中位数、平均数、众数,关键是掌握中位数、平均数、众数的概念和有关公式,会用来解决实际问题.69.已知关于x的方程x2−(k+2)x+2k−1=0.70.(1)求证:方程总有两个不相等的实数根;71.(2)如果方程的一个根为x=3,求k的值及方程的另一根.[答案](1)证明:由于x2−(k+2)x+2k−1=0是一元二次方程,△=b2−4ac= [−(k+2)]2−4×1×(2k−1)=k2−4k+8=(k−2)2+4,无论k取何实数,总有(k−2)2≥0,(k−2)2+4>0,所以方程总有两个不相等的实数根.(2)解:把x=3代入方程x2−(k+2)x+2k−1=0,有32−3(k+2)+2k−1=0, 整理,得2−k=0.解得k=2,此时方程可化为x2−4x+3=0.解此方程,得x1=1,x2=3.所以方程的另一根为x=1.[解析](1)根据△=b2−4ac进行判断;(2)把x=3代入方程x2−(k+2)x+2k−1=0即可求得k,然后解这个方程即可;本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;还有方程根的意义等;72.已知在△ABC中,AB=AC,点D在BC上,以AD、AE为腰做等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM//BC交CA延长线于M,连接BM.73.(1)求证:△BAD≌△CAE;74.(2)若∠ABC=30°,求∠MEC的度数;75.(3)求证:四边形MBDE是平行四边形.[答案](1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°−2∠ABC,∵以AD、AE为腰做等腰三角形ADE,∴AD=AE,∴∠ADE=∠AED,∴∠DAE=180°−2∠ADE,∵∠ADE=∠ABC,∴∠BAC=∠DAE,∴∠BAC−∠CAD=∠DAE−∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAE AD=AE,∴△BAD≌△CAE(SAS);(2)解:∵AB=AC,∴∠ACB=∠ABC=30°,∵△BAD≌△CAE,∴∠ABD=∠ACE=30°,∴∠ACB=∠ACE=30°,∴∠ECB=∠ACB+∠ACE=60°,∵EM//BC,∴∠MEC+∠ECD=180°,∴∠MEC=180°−60°=120°;(3)证明:∵△BAD≌△CAE,∴DB=CE,∠ABD=∠ACE,∵AB=AC,∴∠ABD=∠ACB,∴∠ACB=∠ACE,∵EM//BC,∴∠EMC=∠ACB,∴∠ACE=∠EMC,∴ME=EC,∴DB=ME,又∵EM//BD,∴四边形MBDE是平行四边形.[解析](1)证明∠BAC=∠DAE,得出∠BAD=∠CAE,由SAS即可得出结论;(2)求出∠ACB=∠ACE=30°,由平行线的性质得出∠MEC+∠ECD=180°,即可得出结果;(3)由△BAD≌△CAE,得出DB=CE,再证明∠ACE=∠EMC,得出ME=EC,推出DB= ME,即可得出结论.本题考查了平行四边形的判定、等腰三角形的判定与性质、平行线的性质、全等三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.76.如图,直线y=−x+4分别交x轴、y轴于A、B两点,直线BC与x轴交于点C(−2,0),P是线段AB上的一个动点(点P与A、B不重合).(1)求直线BC 的函数表达式;(2)设动点P 的横坐标为t ,△POA 的面积为S . ①求出S 与t 的函数关系式,并写出自变量t 的取值范围; ②在线段BC 上存在点Q ,使得四边形COPQ 是平行四边形,求此时点Q 的坐标.[答案]解:(1)∵直线y =−x +4分别交x 轴、y 轴于A 、B 两点, ∴点A 的坐标为(4,0),点B 的坐标为(0,4).设直线BC 的函数表达式为y =kx +b(k ≠0),则{b =4−2k +b =0,解得{k =2b =4, 故直线BC 的函数表达式是y =2x +4.(2) ①∵点O(0,0),点A(4,0),∴OA =4,∵动点P 的横坐标为t ,P 是线段AB 上的一个动点(点P 与A 、B 不重合), ∴动点P 的纵坐标为−t +4,∴S =4×(−t+4)2=−2t +8,即S 与t 的函数关系式是S =−2t +8(0<t <4). ②如图,过点P 作PQ//x 轴,交直线BC 于点Q .∵点P的坐标为(t,−t+4),∴点Q的纵坐标为−t+4,∵点Q在直线y=2x+4上,∴−t+4=2x+4,解得x=−0.5t,∴点Q的横坐标为−0.5t.∵四边形COPQ是平行四边形,∴OC=PQ,又∵OC=2,∴2=t−(−0.5t),解得t=43,∴−0.5t=−23,−t+4=83.∴点Q的坐标为(−23,8 3 ).[解析]略。
浙教版八年级(下)数学期中考试卷含答案
浙教版八年级(下)数学期中考试卷含答案
一、单选题
1.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EF A=25°,∠FGH=90°,∠HMN=25°,∠CNP=30°,则∠GHM=()
A.45°B.50°C.55°D.60°
2.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()
A.B.C.D.
3.已知是一元二次方程的一个解,且,则的值为()
A.B.0C.5D.10
4.下列命题错误的是()
A.平行四边形的对角线互相平分B.矩形的对角线相等
C.对角线互相垂直平分的四边形是菱形D.对角线相等的四边形是矩形
5.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示,已知这15个数据的中位数为5.
这15名员工每人所创年利润的众数、平均数分别是
A.10,5B.7,8C.5,6.5D.5,6
6.下列说法中,不正确的是()
A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴
C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心
7.二次根式有意义时,x的取值范围是()
A.B.C.D.
8.若函数的值随自变量的增大而增大,则函敷的图象大致是()A.B.
C.D.
9.某校为了了解学生课外阅读情况,随机调查了50名学生平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( )
A.1小时B.0.9小时C.0.5小时D.1.5小时
10.一元二次方程总有实数根,则m应满足的条件是()
A.B.C.D.
二、填空题。
浙教版八年级下学期数学《期中测试题》及答案
C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时
9.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()
A 12B. 24C.12 D.16
10.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG,下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG= AD,其中正确的有( )
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
已知:如图,在四边形ABCD中,
BC=AD,
AB=____.
求证:四边形ABCD是____四过形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇 想法写出证明:
证明:
(3)用文宇叙述所证命题的逆命题为____________________.
22.如图,菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF.
[分析]
A根据二次根式的性质判断;
根据 表示9的算术平方根,求出即可判断B答案;
=2≠4,即可判断C;
根据二次根式的加减法则:把同类二次根式的系数相加,根式不变,求出即可判断D.
[详解] =7≠-7,故A错误;
=3≠±3,故B错误;
=2≠4,故C错误;
浙教版数学八年级下学期《期中检测卷》及答案
10.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB= ,AC=2,BD=4,则AE的长为()
A B. C. D.
二、仔细填一填(每小题4分,共24分)
11.化简:① =_______,② =________.
12.已知关于x的一元二次方程x2+(a-1)x+a=0有一个根是﹣2,则a的值为________.
A. 平均数B. 众数C. 方差D. 中位数
6.若一组数据x1+1,x2+1,…,xn+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,xn+2的平均数和方差分别为()
A.17,2B.18,2C.17,3D.18,3
7.若正数 是一元二次方程 一个根, 是一元二次方程 的一个根,则 的值是()
A.17,2B.18,2C.17,3D.18,3
[答案]B
[解析]
[分析]
根据平均数的变化规律可得出数据x1+2,x2+2,…,xn+2的平均数是18;根据方差变化规律可知x1+2,x2+2,…,xn+2的方差是2.
[详解]∵x1+1,x2+1,…,xn+1的平均数为17,方差为2,
∴x1+2,x2+2,…,xn+2的平均数和方差分别为18,2.
1.下列手机软件图标中,属于中心对称的是()
A. B. C. D.
[答案]C
[解析]
[分析]
根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
浙教版八年级下学期数学《期中检测卷》附答案
17.计算:
(1)
(2)
18.解方程:(1)x2﹣6x+5=0;(2)2x2﹣4x+1=0
19.某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48.
(1)求第10场比赛的得分;
A. 0<b<3B.b>3或b<0C. 0≤b≤3D. 1<b<3
二、填空题(共6小题,满分18分,每小题3分)
11.若最简二次根式 与 能合并成一项,则a=_____.
12.某样本数据是:2,2,x,3,3,6如果这个样本的众数为2,那么这组数据的方差是______
13.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有_____人.
每增加1人,人均收费降低1元,但人均收费不低于55元
A公司组织一批员工到该风景区旅游,支付给旅行社2800元.A公司参加这次旅游的员工有多少人?
22.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
C. 它们的平均水平不相同D. 数据A的波动小一些
[答案]B
[解析]
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
浙教版八年级下册数学期中考试试卷附答案
浙教版八年级下册数学期中考试试题一、单选题1.下列几何图形是中心对称图形的是( )A .B .C .D .2x 的取值范围是( ) A .2x ≥B .2x ≠C .2x >D .2x ≤3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中正确的是( )A .平均数为4.5,众数是6B .平均数为5,众数是6C .平均数为4.5,众数是5D .平均数为5,众数是54.下列各式中正确的是( )A 4±B 4C 4-D .2(7=5.下列条件不能判定四边形ABCD 是平行四边形的是( ). A .AD BC =,AB CD = B .A C ∠=∠,B D ∠=∠ C .//AB CD ,BC AD =D .//AD BC ,B D ∠=∠6.某快递公司今年一月份完成投递的快递总件数为10万件,二月份、三月份每月投递的件数逐月增加,第一季度总投递件数为33.1万件,问:二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程( ).A .()2101331x +=.B .()()210110133.1x x +++=C .()21010133.1x ++=D .()()210101101331x x ++++=.7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,过点O 作直线m 交线段AB于点E ,交线段CD 于点F .则图中共有几对全等三角形( )A .4B .5C .6D .78.已知关于x 的一元二次方程2430x x m ++-=有两个负整数根,则符合条件的所有正整数m 的和为( ) A .16B .13C .10D .79.如图所示,以平行四边形ABCD 的边AB 为边向内作等边ABE △,使AD AE =,且点E 在平行四边形内部,连结,DE CE ,则CED ∠的度数为( )A .150︒B .145︒C .135︒D .120︒10.如图所示,点E 为ABCD 内一点,连结,,,,EA EB EC ED AC ,已知BCE 的面积为2,CED 的面积为10,则阴影部分ACE 的面积为( )A .5B .6C .7D .8二、填空题11=________=_______. 12.一个多边形的内角和为900︒,则这个多边形是___边形,它的外角和等于____. 13.已知一组数据12345,,,,a a a a a 的方差是1S ,另一组数据123456,6,6,6,6a a a a a -----的方差是2S ,则1S 与2S 的大小关系是1S _____2S (填写“>”、“<”或“-”).14.已知关于x 的方程()21210a x x --+=有两个实数根,则a 的取值范围是______.15.如图,在平行四边形ABCD 中,,AC BD 相交于点O ,点E ,F 在对角线BD 上,有下列条件:①BF DE =;②AE CF =;③EAB FCO ∠=∠;④//AF CE .其中一定能判定四边形AECF 是平行四边形的是______.16.如图所示,在平行四边形ABCD 中,点E 在线段BC 上且2BE CE =,点F 是CD 边的中点,若AE =4AF =,且45EAF ∠=︒,则AB 的长是_______.三、解答题 17.计算:(1)2(2))2218.解一元二次方程: (1)22530x x +-= (2)()23412x x -=-19.如图所示,在平行四边形ABCD 中,点E ,点F 分别是AD 、BC 的中点.连结BE 、DF .(1)求证:四边形BEDF 是平行四边形.(2)若BE 平分,3ABC AB ∠=,求平行四边形ABCD 的周长.20.张老师对李华和刘强两位同学从数学运算、逻辑推理、直观想象和数据分析四个方面考核他们的数学素养.单项检测成绩(百分制)列表如下:(1)分别对两人的检测成绩进行数据计算,补全下表:(2)你认为李华和刘强谁的数学素养更好?结合数据,从两个角度进行分析.(3)若将数学运算、逻辑推理、直观想象、数据分析四个检测成绩分别按权重30%,40%,20%,10%的比例计算最终考核得分,请分别计算李华和刘强的最终得分.21.如图所示,某品牌1L 的牛奶包装盒,高25cm ,底面为长方形,将包装剪开铺平,得到如图的纸样.(1)牛奶包装盒底面长方形的长和宽分别是多少?(2)若不改变牛奶盒的容积和高度,将生奶盒的底面改为正方形,能否节约包装盒的纸张面积?若能,请计算每个生奶盒可节约的纸张面积;若不能,请说明理由. 22.已知关于x 的一元二次方程()222440x m x m m -+++=. (1)求证:无论m 取何值,此方程总有两个不相等的实数根. (2)设方程的两个实数根分别为12,x x , ①求代数式2212124x x x x +-的最大值;②若方程的一个根是6,1x 和2x 是一个等腰三角形的两条边,求等腰三角形的周长. 23.如图所示,ABC 是一个边长为4的等边三角形,D 是直线BC 边上一点,以AD 为边作ADE ,使,120AE AD DAE =∠=︒,并以AB ,AE 为边作平行四边形ABFE .(1)当点D 在线段BC 上时,AD 交BF 于点G ,求证:ABD BCF ≌; (2)求线段BF 的最小值;(3)当直线AE 与ABC 的一边垂直时,请直接写出平行四边形ABFE 的面积.参考答案1.B 【分析】根据中心对称图形的定义判断即可. 【详解】解:A 、图形不是中心对称图形,故本选项不合题意; B 、图形是中心对称图形,故本选项符合题意; C 、图形不是中心对称图形,故本选项不合题意; D 、图形不是中心对称图形,故本选项不合题意; 故选:B . 【点睛】本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形. 2.A利用二次根式有意义的条件可得2x -4≥0,再解不等式即可. 【详解】解:由题意得:2x -4≥0, 解得:x ≥2, 故选:A . 【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 3.B 【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断. 【详解】解:这组数据的众数为6吨, 平均数为()14635666⨯+++++=5吨, 故选:B . 【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数. 4.D 【分析】根据二次根式的性质分别计算,即可判断. 【详解】解:A 4=,因此选项A 不正确;B =B 不正确;C 4=,因此选项C 不正确;D .2(7=,因此选项D 正确; 故选:D .本题考查二次根式的性质,掌握二次根式的化简方法是正确计算的前提.5.C【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∥CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.6.D【分析】根据该快递公司今年一月份及第一季度完成投递的快递总件数,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意,得:10+10(1+x)+10(1+x)2=33.1.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C利用平行四边形的性质和全等三角形的判定可求解. 【详解】解:四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,//AD BC ,//AB CD ,AO CO =,BO DO =,CAB ACD ∴∠=∠,在ABC ∆和CAD ∆中, AB CD AC AC BC AD =⎧⎪=⎨⎪=⎩, ()ABC CAD SSS ∴∆≅∆,同理可得ABD CDB ∆≅∆, 在AOE ∆和COF ∆中, CAB ACD AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOE COF ASA ∴∆≅∆,同理可得BOE DOF ∆≅∆,AOB COD ∆≅∆,AOD COB ∆≅∆,∴共有6对全等三角形,故选:C . 【点睛】本题考查了平行四边形的性质,全等三角形的判定,解决本题的关键是掌握平行四边形的性质. 8.B 【分析】根据方程的系数结合根的判别式△≥0,即可得出m ≤7,由m 为正整数结合该方程的根都是负整数,即可求出m 的值,将其相加即可得出结论. 【详解】解:关于x 的一元二次方程2430x x m ++-=中的1a =,4b =,3c m =-,且该方程有两个负整数根,∴△22444(3)2840b ac m m =-=--=-,7m ∴.m 为正整数,且该方程的根都是负整数,2x ∴-∴2020⎧-<⎪⎨-<⎪⎩.解得3m >. 则37m <.又是整数,m ∴的值为6或7, 6713∴+=.故选:B . 【点睛】本题考查了一元二次方程的整数根与有理根,需要运用根的判别式以及一元二次方程的整数解的知识点解答,牢记“当△≥0时,方程有实数根”是解题的关键. 9.A 【分析】根据平行四边形的性质和等边三角形的性质可证明AD =AE =BE =BC ,得∠ADE =∠AED ,∠BCE =∠BEC ,设∠ADE =∠AED =x ,∠BCE =∠BEC =y ,可得∠DAE =180°-2x ,∠CBE =180°-2y ,由平行四边形的邻角互补得出方程,求出x +y =150°,即可得出结果. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD =BC ,∠BAD +∠ABC =180°, ∵△ABE 是等边三角形,∴AE =AB =BE ,∠AEB =∠EAB =∠ABE =60°, ∵AD =AE , ∴AD =AE =BE =BC ,∴∠ADE =∠AED ,∠BCE =∠BEC , 设∠ADE =∠AED =x ,∠BCE =∠BEC =y ,∴∠DAE =180°-2x ,∠CBE =180°-2y , ∴∠BAD =180°-2x +60°=240°-2x ,∠ABC =240°-2y , ∴∠BAD +∠ABC =240°-2x +240°-2y =180°, ∴x +y =150°,∴∠CED =360°-150°-60°=150°, 故选:A .【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质,等腰三角形的性质,熟练掌握平行四边形的性质,根据题意列出方程是解决问题的关键. 10.D 【分析】过点B 作BF CD ⊥于点F ,设ABE ∆和CDE ∆的AB 和CD 边上的高分别为a 和b ,根据平行四边形的性质可得12ABE CDE ABCD S S S ∆∆+=平行四边形,12ABE CBE ABCD S S S S ∆∆++=阴影平行四边形,进而可得CDE CBE S S S ∆∆=-阴影.【详解】解:如图,过点B 作BF CD ⊥于点F ,设ABE ∆和CDE ∆的AB 和CD 边上的高分别为a 和b ,12ABE S AB a ∆∴=⨯⨯,12CDE S CD b ∆=⨯⨯,a b BF +=,AB CD =,11()22ABE CDE S S AB a CD b AB BF ∆∆∴+=⨯⨯+⨯=⋅, ABCD S CD BF =⋅平行四边形,12ABE CDE ABCD S S S ∆∆∴+=平行四边形, 12ABE CBE ABCD S S S S ∆∆++=阴影平行四边形, ABE CDE ABE CBE S S S S S ∆∆∆∆∴+=++阴影,1028CDE CBE S S S ∆∆∴=-=-=阴影.故选:D .【点睛】本题考查了平行四边形的性质.三角形的面积,解决本题的关键是掌握平行四边形的性质.11 2 【分析】根据二次根式的性质化简即可.【详解】=22. 【点睛】 本题主要考查了二次根式的性质,熟练掌握二次根式的非负性是解答此题的关键. 12.七 360︒【分析】设这个多边形是n 边形,它的内角和可以表示成(n -2)•180°,就得到关于n 的方程,求出边数n .然后根据多边形的外角和是360°,即可求解.【详解】解:设这个多边形是n 边形,根据题意得:(n -2)•180°=900°,解得n =7.它的外角和等于360°.故答案为:七,360°.【点睛】本题考查了多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.同时考查了多边形的外角和定理.13.=【分析】由数据a 1-6,a 2-6,a 3-6,a 4-6,a 5-6是将数据a 1,a 2,a 3,a 4,a 5分别减去6所得,知两组数据的波动幅度相同,根据方差的性质可得答案.【详解】解:根据题意知,数据a 1-6,a 2-6,a 3-6,a 4-6,a 5-6是将数据a 1,a 2,a 3,a 4,a 5分别减去6所得,所以两组数据的波动幅度相同,∴S 1=S 2,故答案为:=.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 14.a ≤2且a ≠1【分析】根据方程有两个实数根可得△≥0且a −1≠0,解之即可.【详解】解:∵方程()21210a x x --+=有两个实数根,∴Δ=(−2)2−4×(a −1)×1≥0,且a −1≠0,解得:a ≤2且a ≠1.故答案为:a ≤2且a ≠1.【点睛】本题主要考查一元二次方程根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根,反之也成立.【分析】根据全等三角形的判定与性质和平行四边形的判定与性质分别推理论证,即可得到结论.【详解】解:①∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,OB =OD ,OA =OC ,∵BF =DE ,∴BF -OB =DE -OD ,即OF =OE ,∴四边形AECF 是平行四边形;②∵AE =CF ,不能判定△ABE ≌△CDF ,∴不能判定四边形AECF 是平行四边形;③∠EAB =∠FCO 不能判定四边形AECF 是平行四边形;④∵AF ∥CE ,∴∠AFB =∠CED ,在△ABF 和△CDE 中,ABF CDE AFB CED AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CDE (AAS ),∴BF =DE ,∴BF -OB =DE -OD ,即OF =OE ,又∵OA =OC ,∴四边形AECF 是平行四边形;故答案为:①④.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.16.过点F 作FM AE ⊥于点M ,过点M 作//MG AB 交BC 于点G ,连接EF ,可得AMF ∆是等腰直角三角形,证明GM 是三角形AEB 的中位线,可得四边形GMFC 是平行四边形,再根据勾股定理即可得AB 的长.【详解】解:如图,过点F 作FM AE ⊥于点M ,过点M 作//MG AB 交BC 于点G ,连接EF ,45EAF ∠=︒,AMF ∴∆是等腰直角三角形,AM MF AF ∴== 4AE =EM AE AM ∴=-=AM EM ∴=, //MG AB ,BG GE ,GM ∴是三角形AEB 的中位线,//GM AB ∴,12GM AB =,12GM CD ∴=,点F 是CD 边的中点,12CF CD ∴=,//GM CF ∴,GM CF =,∴四边形GMFC 是平行四边形,GC MF ∴==22BE BG GE ==,2BE CE =,BG GE EC ∴==,BE GC ∴==FM AE ⊥,//FM GC ,AE GC ∴⊥, 4AE =AB ∴=故答案为:【点睛】本题考查了平行四边形的判定与性质,三角形中位线定理,勾股定理,解决本题的关键是掌握平行四边形的判定与性质.17.(1)(2)7-【分析】(1)先计算二次根式的乘法和乘方,再计算除法即可;(2)先利用完全平方计算、化简二次根式,再计算加减即可.【详解】解:(1)原式=2=(2)原式=34+-=7-【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则. 18.(1)13x =-,20.5x =;(2)13x =,27x =【分析】利用因式分解法求解即可.【详解】解:(1)∵2x 2+5x -3=0,∴(x +3)(2x -1)=0,则x +3=0或2x -1=0,解得x 1=-3,x 2=0.5;(2)∵(x -3)2=4x -12,∴(x-3)2-4(x-3)=0,则(x-3)(x-7)=0,∴x-3=0或x-7=0,解得x1=3,x2=7.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(1)见解析;(2)18【分析】(1)由平行四边形的性质和中点的性质可得DE=BF,即可得结论;(2)由角平分线的性质和平行线的性质可证AB=AE=3,即可求解.【详解】解:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,点F分别是AD,BC的中点,∴AE=DE=12AD,BF=CF=12BC,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形;(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AD=2AE=6,∴平行四边形ABCD的周长=2×(3+6)=18.【点睛】本题考查了平行四边形的判定和性质,掌握平行四边形的性质是本题的关键.20.(1)见详解;(2)李华的数学素养更好,理由见详解;(3)84.3,82.8 【分析】(1)根据方差和中位数的定义求解即可;(2)可从平均分、中位数、方差的意义求解即可;(3)根据加权平均数的定义列式计算即可.【详解】解:(1)李华成绩的方差为14×[(86−84)2+2×(85−84)2+(80−84)2]=5.5,刘强成绩的中位数为84872+=85.5,补全表格如下:(2)李华的数学素养更好,从平均数看,李华的平均分高于刘强,所以李华的平均成绩更好;从方差看,李华的方差小于刘强,所以李华的成绩更加稳定(答案不唯一,合理均可);(3)李华的最终成绩为86×30%+85×40%+80×20%+85×10%=84.3(分),刘强的最终成绩为74×30%+87×40%+87×20%+84×10%=82.8(分).【点睛】本题主要考查数据的整理和统计量的意义,解题的关键是掌握平均数、众数、中位数及方差的意义.21.(1)长为8cm,宽为5cm;(2)能,(650-cm2【分析】(1)设长方形的长为x,宽为y,列出方程组,解之即可;(2)设底面正方形边长为a,分别计算前后单个纸盒的面积,作差比较即可.【详解】解:(1)设长方形的长为x,宽为y,且11000L ml=;由题意可得:2()26 251000x yxy+=⎧⎨=⎩,解得:85x y =⎧⎨=⎩或5(8x x y y =⎧<⎨=⎩,舍去); ∴长方形的长为8cm ,宽为5cm .(2)设底面正方形边长为a ,则有2251000a =,1a ∴=2a =-,此时单个纸盒的面积为2222542)S cm =⨯+⨯=,原来纸盒的面积为212852625730()S cm =⨯⨯+⨯=,21273080650)S S cm ∴-=-=-,6500-,∴能节约包装盘的纸张面积,且每个牛奶盘可节约2(650cm -.【点睛】本题考查二次根式的应用和剪纸的相关内容,解题的关键在于熟记长方体的体积公式并准确运算.22.(1)见解析;(2)①24;②14或22或26【分析】(1)通过判别式△求解.(2)①通过两根之积与两根之和的关系将x 12+x 22-4x 1x 2配方求解.②把x =6代入方程求出m ,再将m 代入原方程求出另外一个解,再根据三角形两边之和大于第三边确定x 的值.【详解】解:(1)△=(2m +4)2-4(m 2+4m )=16,16>0,∴此方程总有两个不相等的实数根.(2)①x 12+x 22-4x 1x 2=(x 1+x 2)2-6x 1x 2,∵x 1+x 2=()241m -+-=2m +4,x 1x 2=m 2+4m ,∴(x 1+x 2)2-6x 1x 2=(2m +4)2-6(m 2+4m )=-2m 2-8m +16=-2(m +2)2+24,∴当m =-2时x 12+x 22-4x 1x 2的最大值为24.②把x =6代入原方程可得m 2-8m +12=0,解得m =2或m =6,当m =2时,原方程化简为x 2-8x +12=0,解得x =2或x =6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m =6时,原方程化简为x 2-16x +60,解得x =6或x =10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.【点睛】本题考查一元二次方程综合应用,解题关键是熟练掌握一元二次方程的判别式与根与系数的关系.23.(1)见解析;(2)(3)【分析】(1)由BF AE =,AE AD =,可得BF AD =,ABC ∆是等边三角形可得AB BC =,60CBF ABG ∠+∠=︒且60ABD BAG ∠+∠=︒可得CBF BAD ∠=∠,从而可证ABD BCF ∆≅∆; (2)由ABD BCF ∆≅∆知BF AD =,故BF 最小时,AD 也最小,求出AD 最小值即可; (3)分三种情况:①AE AC ⊥时,②AE AB ⊥时,AE BC ⊥时,分别画出图形,求出底边长度和高,即可得到答案.【详解】解:(1)证明:四边形ABFE 是平行四边形,BF AE ∴=,//BF AE ,AE AD =,BF AD ∴=,ABC ∆是等边三角形,AB BC ∴=,60ABC ∠=︒,即60CBF ABG ∠+∠=︒,//BF AE ,120DAE ∠=︒,60AGF ∴∠=︒,60ABD BAG ∴∠+∠=︒,CBF BAD ∴∠=∠, 在ABD ∆和BCF ∆中, BF AFCBF BAD BC AB=⎧⎪∠=∠⎨⎪=⎩, ()ABD BCF SAS ∴∆≅∆; (2)由(1)知ABD BCF ∆≅∆, BF AD ∴=, BF 最小时,AD 也最小,此时AD BC ⊥,如图:ABC ∆是等边三角形, 60ABD ∴∠=︒,2ABAD ∴=BF ∴=故答案为: (3)直线AE 与ABC ∆的一边垂直,分三种情况: ①AE AC ⊥时,如图:此时90CAE ∠=︒, //AE BF ,90AFB CAE ∴∠=∠=︒, 又60BAC ∠=︒, 在Rt ABF ∆中,114222AF AB ==⨯=,42ABBF ===ABFE S AE BF ∴=⋅=②AE AB ⊥时,如图:此时90BAE ∠=︒,平行四边形ABFE 为矩形,在Rt ABE ∆中,60ABC ∠=︒,AE ∴=ABFE S AB AE ∴=⋅=③AE BC ⊥时,延长EA 交BC 于H ,如图:此时90EHD ∠=︒,30HAC ∴∠=︒,120DAE ∠=︒,30CAD ∴∠=︒,18030ADH AHD HAC CAD ∴∠=︒-∠-∠-∠=︒,Rt AHC ∆中,122CH AC ==,AH ==2BH ∴=,Rt AHD ∆中,2AD AH ==BF AE AD ∴===ABFE S BF BH ∴=⋅=,综上所述,直线AE 与ABC ∆的一边垂直,ABFE 的面积为【点睛】本题考查等边三角形、平行四边形性质及应用,涉及全等三角形、矩形等知识,解题的关键是分别画出图形,分类讨论.。
【浙教版】八年级下册数学《期中测试卷》含答案解析
浙教版八年级下学期期中考试数学试题一、选择题1. 下列图形是中心对称图形的是( )A. B. C. D.2. 下列方程属于一元二次方程的是( ) A. 20ax bx c ++= B. 21x = C. 2130x x+= D. 2310x y -+=3. 下列各坐标表示的点在反比例函数6y x=-图像上的是( ) A. ()3,2B. ()3,2--C. ()2,3-D. ()2,3--4. 一个多边形的内角和比外角和的3倍多180︒,则它的边数是( ) A. 八B. 九C. 十D. 十一5. 21a -是二次根式,则字母a 应满足的条件是( ) A .12a ≠B. 12a ≤C. 12a >D. 12a ≥6. 矩形具有而菱形不一定具有的性质是( ) A. 四条边相等 B. 四个内角都相等C. 对角线互相平分D. 中心对称图形 7. 甲、乙两人各射击6次,甲所中的环数是8,5,5,a ,b ,c ,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A. 甲射击成绩比乙稳定 B. 乙射击成绩比甲稳定C. 甲,乙射击成绩稳定性相同D. 甲、乙射击成绩稳定性无法比较8. 已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( )A. 213y y y <<B. 312y y y <<C. 123y y y <<D. 321y y y <<9. 如图,是一张平行四边形纸片ABCD ,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作A∠与B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断( )A. 甲正确,乙错误B. 甲错误,乙正确C. 甲、乙均正确D. 甲、乙均错误10. 如图,正方形ABCD在平面直角坐标系中的点A和点B的坐标为(1,0)A、(0,3)B,点D在双曲线(0)ky kx=≠上.若正方形沿x轴负方向平移m个单位长度后,点C恰好落在该双曲线上,则m的值是( )A. 1B. 2C. 3D. 4二、填空题11. 一组数据为1,2,3,4,5,6,则这组数据的中位数是______.12. 已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.13. 如图,AD为△ABC的中线,AB=9,AC=12,延长AD至点E,使DE=AD,连结BE,CE,则四边形ABEC的周长是_______.14. 已知反比例函数6yx=在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则AOBS=_______.15. 已知反比例函数3yx=-,当1x>时,y的取值范围是____16. 如图,四边形OABC和ADEF均为正方形,反比例函数8yx=的图象分别经过AB的中点M及DE的中点N,则正方形ADEF的边长为___三、解答题17. (1)计算:12186+÷;(2)解方程:2680x x++=18. 已知关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.19. 如图是6×6的正方形网格,点A,B,C均在格点上.请按下列要求完成作图:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.(1)在图中作出一个以点A,B,C,D为顶点的平行四边形.(2)在图中作出△ABC中AB边上的中线.20. 已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.21. 某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元,平均每天可多售出20箱。
浙教版数学八年级下学期《期中检测试题》含答案
浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,属于最简二次根式的是( ) A .21x +B .27C .2a bD .122.下列各式正确的是( ) A .235+=B .2(3)3-=C .114293=⨯ D .4499--=-- 3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.用配方法将方程2440x x --=化成2()x m n +=的形式,则m ,n 的值是( ) A .2-,0B .2,0C .2-,8D .2,85.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =; ②若这5次成绩的中位数为8,则8x =; ③若这5次成绩的众数为8,则8:x = ④若这5次成绩的方差为8,则8x = A .1个B .2个C .3个D .4个6.利用反证法证明“直角三角形至少有一个锐角不小于45︒”,应先假设( ) A .直角三角形的每个锐角都小于45︒ B .直角三角形有一个锐角大于45︒C .直角三角形的每个锐角都大于45︒D .直角三角形有一个锐角小于45︒7.如图,ABC ∆中,D 是AB 的中点,E 在AC 上,且1902AED C ∠=︒+∠,则2BC AE +等于( )A .ABB .ACC .32ABD .32AC 8.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .322203220570x x +⨯=⨯-B .(322)(20)570x x --=C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=9.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有( )个平行四边形.A .22B .24C .26D .2810.如图,在ABCD 中,4AB =,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且F 恰好为DC 的中点,DG AE ⊥,垂足为G .若1DG =,则AE 的长为( )A .23B .4C .3D .8二.填空题(共8小题) 11.计算:16(1)3⨯-= .12.某学生数学学科课堂表现为95分,平时作业为92分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是 分.13.若关于x 的方程2(2)(23)10a x a x a -+-++=有两个不相等的实数根,则a 的取值范围是 . 14.设a 、b 是方程22020x x l +-=的两个实数根,则(1)(1)a b --的值为 .15.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:)m 这六次成绩的平均数为7.7m ,方差为160.如果李阳再跳一次,成绩为7.7m .则李阳这7次跳远成绩的方差______(填“变大”、“不变”或“变小” ).16.某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为 .17.如图,在ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .18.如图,在ABC ∆中,90BAC ∠=︒,4AB =,6AC =,点D 、E 分别是BC 、AD 的中点,//AF BC 交CE 的延长线于F .则四边形AFBD 的面积为 .三.解答题(共8小题) 19.计算: (1)121263483(2)21(23)2323+20.解方程(1)23520x x -+= (2)(1)(3)8x x ++=21.已知关于x 的一元二次方程2(8)80x k x k -++= (1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛.在最近的五次选拔测试中,他俩的成绩分别如下表:12345小王 60 75 100 90 75 小李7090808080根据上表解答下列问题: (1)完成下表: 姓名 平均成绩(分)中位数(分)众数(分) 方差 小王 75 75 190 小李8080(2)在这五次测试中,哪位同学的成绩比较稳定?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖,那么你认为应选谁参赛比较合适?说明你的理由.23.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180︒. ②新多边形的内角和与原多边形的内角和相等. ③新多边形的内角和比原多边形的内角和减少了180︒.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520︒,求原多边形的边数.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示: (1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.如图1,在OAB ∆中,90OAB ∠=︒,30AOB ∠=︒,8OB =.以OB 为边,在OAB ∆外作等边OBC ∆,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.26.在四边形ABCD 中,//AB CD ,90BCD ∠=︒,10AB AD cm ==,8BC cm =,点P 从点A 出发,沿折线ABCD 方向以3/cm s 的速度匀速运动;点Q 从点D 出发,沿线段DC 方向以2/cm s 的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为()t s . (1)求CD 的长;(2)当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;(3)在点P 、Q 的运动过程中,是否存在某一时刻,使得BPQ ∆的面积为220cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,属于最简二次根式的是()A.B.C.D.[分析]找到被开方数中不含分母的,不含能开得尽方的因数或因式的式子即可.[解析]A、,被开方数中不含分母,不含能开得尽方的因数或因式,属于最简二次根式,符合题意;B、3,被开方数能继续开方,不属于最简二次根式,不符合题意;C、,被开方数能继续开方,不属于最简二次根式,不符合题意;D、,被开方数中包含分母,不属于最简二次根式,不符合题意;故选:A.2.下列各式正确的是()A.B.C.D.[分析]直接利用二次根式的性质分别化简得出答案.[解析]A、无法合并,故此选项错误;B、3,正确;C、,故此选项错误;D、,故此选项错误;故选:B.3.下列图形中,既是中心对称图形又是轴对称图形的是()[分析]结合中心对称图形和轴对称图形的概念求解即可.[解析]A、既是中心对称图形,又是轴对称图形.故本选项正确;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:A.4.用配方法将方程x2﹣4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0 B.2,0 C.﹣2,8 D.2,8[分析]将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.[解析]∵x2﹣4x﹣4=0,∴x2﹣4x=4,则x2﹣4x+4=4+4,即(x﹣2)2=8,∴m=﹣2,n=8,故选:C.5.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则x=8;②若这5次成绩的中位数为8,则x=8;③若这5次成绩的众数为8,则x=8:④若这5次成绩的方差为8,则x=8A.1个B.2个C.3个D.4个[分析]根据平均数的定义判断①,根据中位数的定义判断②;根据众数的定义判断③;根据方差的定义判断④.[解析]①若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;②若这5次成绩的中位数为8,则x为任意实数,故本选项错误;③若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;④如果x=8,则平均数为(8+9+7+8+8)=8,方差为[3×(8﹣8)2+(9﹣8)2+(7﹣8)2]=0.4,故本选项错误.故选:A.6.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°[分析]熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.[解析]用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.7.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC[分析]如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.[解析]如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°∠C)=90°∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.8.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x=32×20﹣570B.(32﹣2x)(20﹣x)=570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=570[分析]六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.[解析]设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:B.9.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有()个平行四边形.A.22 B.24 C.26 D.28[分析]第1幅可看作2×1﹣1=1,第2幅可看作2×2﹣1=3,第3幅可看作2×3﹣1=5,第4幅可看作2×4﹣1=7;从而求得第n幅图共有的平行四边形数,即可求得答案.[解析]根据图形分析可知:第1幅时,有2×1﹣1=1个平行四边形;第2幅时,有2×2﹣1=3个平行四边形;第3幅时,有2×3﹣1=5个平行四边形;第4幅时,有2×4﹣1=7个平行四边形;…;第n幅时,有2×n﹣1=2n﹣1个平行四边形;∴第6幅图时,有2×6﹣1=11个平行四边形,第7幅图,有2×7﹣1=13个平行四边形,∴第6幅和第7幅图中合计有11+13=24个平行四边形;故选:B.10.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且F恰好为DC的中点,DG⊥AE,垂足为G.若DG=1,则AE的长为()A.2B.4 C.4D.8[分析]由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.[解析]∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DF A,∴∠DAE=∠DF A,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF DC AB=2,在Rt△ADG中,根据勾股定理得:AG,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:C.二.填空题(共8小题,每题3分,满分24分)11.计算:(1)=.[分析]根据二次根式的乘除法则运算.[解析]原式.故答案为.12.某学生数学学科课堂表现为95分,平时作业为92分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是分.[分析]根据加权平均数的定义,将各成绩乘以其所占权重,即可计算出加权平均数.[解析]根据题意得:95×30%+92×30%+90×40%=92.1(分),答:该学生数学学科总评成绩是92.1分;故答案为:92.1.13.若关于x的方程(a﹣2)x2+(2a﹣3)x+a+1=0有两个不相等的实数根,则a的取值范围是.[分析]根据二次项系数非零结合根的判别式△>0,即可得出关于a的一元一次不等式组,解之即可得出结论.[解析]∵关于x的一元二次方程(a﹣2)x2+2ax+a﹣1=0有两个不相等的实数根,∴,解得a≠2.故a的取值范围是a≠2.故答案为:a≠2.14.设a、b是方程x2+x﹣202l=0的两个实数根,则(a﹣1)(b﹣1)的值为.[分析]根据根与系数的关系得出a+b=﹣1,ab=﹣2021,再代入计算即可.[解析]∵a、b是方程x2+x﹣2021=0的两个实数根,∴a+b=﹣1,ab=﹣2021,∴(a﹣1)(b﹣1)=ab﹣(a+b)+1=﹣2021+1+1=﹣2019,故答案为:﹣2019.15.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差(填“变大”、“不变”或“变小”).[分析]根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.[解析]∵李阳再跳一次,成绩分别为7.7m,∴这组数据的平均数是7.7,∴这7次跳远成绩的方差是:S2[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2],∴方差变小;故答案为:变小.16.某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为30%.[分析]增长率问题,一般用增长后的量=增长前的量×(1+增长率)2,如果设该公司这两年缴税的年平均增长率为x,首先表示出2006年的缴税额,然后表示出2007年的缴税额,即可列出方程.[解析]设该公司这两年缴税的年均增长率为x,依题意得:200(1+x)2=338,解得x=0.3=30%.故答案是:30%.17.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.[分析]由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.[解析]∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12.[分析]由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.[解析]∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC AB•AC4×6=12,∴S四边形AFBD=12.故答案为:12三.解答题(共8小题)19.计算:(1)263(2)()2+23[分析](1)直接化简二次根式进而合并得出答案;(2)直接化简二次根式进而利用二次根式的乘除运算法则计算得出答案.[解析](1)263=4612=4212=14;(2)()2+23=2+3﹣23=2+3﹣22=5.20.解方程(1)3x2﹣5x+2=0(2)(x+1)(x+3)=8[分析](1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.[解析](1)分解因式得:(3x﹣2)(x﹣1)=0,3x﹣2=0,x﹣1=0,x1,x2=1;(2)整理得:x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1.21.已知关于x的一元二次方程x2﹣(8+k)x+8k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.[分析](1)先计算△=(8+k)2﹣4×8k,整理得到△=(k﹣8)2,根据非负数的性质得到△≥0,然后根据△的意义即可得到结论;(2)先解出原方程的解为x1=k,x2=8,然后分类讨论:腰长为5时,则k=5;当底边为5时,则x1=x2,得到k=8,然后分别计算三角形的周长.[解析](1)证明:∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2,≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为5时,则k=5,∴周长=5+5+8=18;②当底边为5时,∴x1=x2,∴k=8,∴周长=8+8+5=21.22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛.在最近的五次选拔测试中,他俩的成绩分别如下表:1 2 3 4 5小王60 75 100 90 75小李70 90 80 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分) 中位数(分) 众数(分) 方差小王8075 75 190小李80 8080 40(2)在这五次测试中,哪位同学的成绩比较稳定?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖,那么你认为应选谁参赛比较合适?说明你的理由.[分析](1)根据平均数、中位数、众数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.[解析]小王的平均分80,小李的中位数=80,众数=80,方差40;(2)在这五次考试中,成绩比较稳定的是小李;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.23.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.[分析](1)①过相邻两边上的点作出直线即可求解;②过一个顶点和相邻边上的点作出直线即可求解;③过相邻两边非公共顶点作出直线即可求解;(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.[解析](1)如图所示:(2)设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?[分析](1)设一次函数解析式为:y=kx+b由题意得出:当x=2,y=120;当x=4,y=140;得出方程组,解方程组解可;(2)由题意得出方程(60﹣40﹣x)(10 x+100)=2090,解方程即可.[解析](1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)由题意得:(60﹣40﹣x)(10 x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元.25.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB 的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.[分析](1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.[解答](1)证明:∵Rt△OAB中,D为OB的中点,∴AD OB,OD=BD OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=84,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.26.在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.[分析](1)过A作AM⊥DC于M,得出平行四边形AMCB,求出AM,根据勾股定理求出DM即可;(2)根据平行四边形的对边相等得出方程,求出即可;(3)分为三种情况,根据题意画出符合条件的所有图形,根据三角形的面积得出方程,求出符合范围的数即可.[解析](1)如图1,过A作AM⊥DC于M,∵在四边形ABCD中,AB∥CD,∠BCD=90°,∴AM∥BC,∴四边形AMCB是矩形,∵AB=AD=10cm,BC=8cm,∴AM=BC=8cm,CM=AB=10cm,在Rt△AMD中,由勾股定理得:DM=6cm,CD=DM+CM=10cm+6cm=16cm;(2)如图2,当四边形PBQD是平行四边形时,PB=DQ,即10﹣3t=2t,解得t=2,此时DQ=4,CQ=12,BQ, 所以C▱PBQD=2(BQ+DQ);即四边形PBQD的周长是(8+8)cm;(3)当P在AB上时,如图3,即,S△BPQ BP•BC=4(10﹣3t)=20,解得;当P在BC上时,如图4,即,S△BPQ BP•CQ(3t﹣10)(16﹣2t)=20,、此方程没有实数解;当P在CD上时:若点P在点Q的右侧,如图5,即6<t,S△BPQ PQ•BC=4(34﹣5t)=20,解得,不合题意,应舍去;若P在Q的左侧,如图6,即,S△BPQ PQ•BC=4(5t﹣34)=20,解得;综上所述,当秒或秒时,△BPQ的面积为20cm2.。
浙教版数学八年级下学期《期中检测试卷》及答案
A.4、5、6B.3、5、6C. D.
[答案]C
[解析]
[分析]
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
[详解]解:A、42+52≠62,不能构成直角三角形,故此选项错误;
B、32+52≠62,不能构成直角三角形,故此选项错误;
C、( )2+( )2=( )2,能构成直角三角形,故此选项正确;
D、因为22+( )2≠( )2所以三条线段不能组成直角三角形, 故此选项错误.
故选:C
[点睛]本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
22.高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度 h(单位:m)近似满足公式 t= (不考虑风速的影响)
(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所 需时间t2是多少s;
(2)t2是t1的多少倍?
(3)经过1.5s,高空抛物下落的高度是多少?
A. 8B. 10C. 15D. 17
6.按如图所示的运算程序,若输入数字“9”,则输出的结果是
A. 7B. 11﹣6 C. 1D. 11﹣3
7.如图,在矩形ABCD中,对角线 相交于点 ,则AB的长是
A. 3cmB. 6cmC. 10cmD. 12cm
8.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 米,顶端距离地面 米 若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面 米,则小巷的宽度为
浙教版八年级下期中数学试卷含答案解析
八年级(下)期中数学试卷一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列计算正确的是()A. B.C.D.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列方程中,是一元二次方程的为()A.x2+3x=0 B.2x+y=3 C.D.x(x2+2)=0 4.用配方法将方程x2+6x﹣11=0变形,正确的是()A.(x﹣3)2=20B.(x﹣3)2=2C.(x+3)2=2D.(x+3)2=205.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等6.一个多边形的内角和等于外角和的一半,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形7.把一元二次方程(1﹣x)(2﹣x)=3﹣x2化成一般形式ax2+bx+c=0(a≠0)其中a、b、c分别为()A.2、3、﹣1 B.2、﹣3、﹣1 C.2、﹣3、1 D.2、3、1A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°9.若=1﹣2x,则x的取值范围是()A.x≥B.x≤C.x>D.x<10.如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A.55m B.60m C.65m D.70m三、认真填一填(本题有6个小题,每小题4分,共24分)11.当x=﹣5时,二次根式的值为.12.某组数据的方差计算公式为S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是,该组数据的平均数是.13.在▱ABCD中,若∠A+∠C=270˚,则∠B=.15.若(x2+y2)(x2+y2﹣1)=12,则x2+y2=.16.观察下列等式:,,请你从上述等式中找出规律,并利用这一规律计算(…+)(+)=.三、全面答一答(本题有7个小题,共66分)17.计算:(1);(2).18.选择适当的方法解下列一元二次方程:(1)(x﹣3)2﹣25=0(2)x(x+4)=x+4.19.已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.20.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动?21.某市政府共投资2亿元人民币建设了廉租房8万平方米,预计到底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,且设这个增长率为x.(1)的投资额为亿元,的投资额为亿元;(用含x的代数式表示)(2)求每年市政府投资的增长率.22.如图,请用三种不同方法将平行四边形ABCD分割成四个面积相等的三角形.(作图工具不限,保留作图痕迹,不写作法.)23.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)铺设地面所用瓷砖的总块数为(用含n的代数式表示,n表示第n个图形);(2)按上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.-学年浙江省杭州市萧山区戴村片八年级(下)期中数学试卷参考答案与试题解析一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列计算正确的是()A. B.C.D.【考点】实数的运算.【分析】根据平方根的意义与实数的加减运算即可求得答案.【解答】解:A、无意义,故此选项错误;B、﹣3+=﹣2,故此选项正确;C、3﹣2=,故此选项错误;D、=6,故此选项错误.故选B.【点评】此题考查了实数的运算与平方根的意义.题目比较简单,解题要细心.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:(A)、是轴对称图形,不是中心对称图形,故本选项错误;(B)、是轴对称图形,也是中心对称图形,故本选项正确;(C)、不是轴对称图形,是中心对称图形,故本选项错误;(D)、不是轴对称图形,是中心对称图形,故本选项错误.故选B.【点评】此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念,属于基础题.3.下列方程中,是一元二次方程的为()A.x2+3x=0 B.2x+y=3 C.D.x(x2+2)=0 【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程定义,正确;B、含有两个未知数,错误;C、不是整式方程,错误;D、未知数的最高次数是3,错误.故选A.【点评】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.4.用配方法将方程x2+6x﹣11=0变形,正确的是()A.(x﹣3)2=20B.(x﹣3)2=2C.(x+3)2=2D.(x+3)2=20【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣11移项后,应该在左右两边同时加上一次项系数6的一半的平方.【解答】解:把方程x2+6x﹣11=0的常数项移到等号的右边,得到x2+6x=11,方程两边同时加上一次项系数一半的平方,得到x2+6x+9=11+9,配方得(x+3)2=20.故选:D.【点评】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等【考点】平行四边形的判定与性质.【分析】根据平行四边形的判定定理与性质进行判断.【解答】解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.【点评】本题考查了平行四边形的判定与性质.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.6.一个多边形的内角和等于外角和的一半,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和等于外角和的一半,则多边形的内角和是180度,则这个多边形一定是三角形.【解答】解:∵多边形的外角和是360度,又∵内角和等于外角和的一半,∴多边形的内角和是180度,∴这个多边形是三角形.故本题选A.【点评】考查了多边形的外角和定理,是一个基本的题目.7.把一元二次方程(1﹣x)(2﹣x)=3﹣x2化成一般形式ax2+bx+c=0(a≠0)其中a、b、c分别为()A.2、3、﹣1 B.2、﹣3、﹣1 C.2、﹣3、1 D.2、3、1【考点】一元二次方程的一般形式.【分析】首先将已知方程进行整理,化为一元二次方程的一般形式,再来确定a、b、c的值.【解答】解:原方程可整理为:2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1;故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.当所给方程不是一般形式时,一定要化为一般形式,再确定各项系数的值.A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°【考点】反证法.【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.若=1﹣2x,则x的取值范围是()A.x≥B.x≤C.x>D.x<【考点】二次根式的性质与化简.【分析】由于≥0,所以1﹣2x≥0,解不等式即可.【解答】解:∵=1﹣2x,∴1﹣2x≥0,解得x≤.故选B.【点评】算术平方根是非负数,这是解答此题的关键.10.如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A.55m B.60m C.65m D.70m【考点】解直角三角形的应用-坡度坡角问题.【分析】利用坡比的比值关系,求出AE与BF的长度即可得出下底的长.【解答】解:∵DE=20m,DE:AE=4:3,∴AE=15m,∵CF=DE=20m,CF:BF=1:2,∴BF=40m,∴AB=AE+EF+BF=15+10+40=65m.故选C.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据坡比和已知条件求出三角形的边长.三、认真填一填(本题有6个小题,每小题4分,共24分)11.当x=﹣5时,二次根式的值为4.【考点】二次根式的定义.【分析】直接将x=﹣5代入求出即可.【解答】解:∵x=﹣5,∴==4,故答案为4,【点评】此题是二次根式的定义,解本题的关键是会化简二次根式.12.某组数据的方差计算公式为S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是8,该组数据的平均数是2.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】样本方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],其中n是这个样本的容量,是样本的平均数.利用此公式直接求解.【解答】解:由于S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],所以该组数据的样本容量是8,该组数据的平均数是2.故填8,2.【点评】熟练记住公式:S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中各个字母所代表的含义.13.在▱ABCD中,若∠A+∠C=270˚,则∠B=45°.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,再根据已知即可求解.【解答】解:在▱ABCD中,∠A=∠C,若∠A+∠C=270°,则∠A=135°,∠B=180°﹣∠A=45°.故答案为:45°.【点评】本题考查平行四边形的性质,在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.如果一个三角形中有两个角相等,那么这个三角形是等腰三角形.故答案为如果一个三角形中有两个角相等,那么这个三角形是等腰三角形.15.若(x2+y2)(x2+y2﹣1)=12,则x2+y2=4.【考点】换元法解一元二次方程.【分析】先设x2+y2=t,则方程即可变形为t2﹣t﹣12=0,解方程即可求得t即x2+y2的值.【解答】解:设t=x2+y2(t≥0),则原方程可化为:t(t﹣1)﹣12=0,即t2﹣t﹣12=0,∴(t﹣4)(t+3)=0,∴t=4,或t=﹣3(不合题意,舍去),∴x2+y2=4.故答案是:4.【点评】本题考查了换元法解一元二次方程.注意整体换元思想的运用,两边开平方,注意x2+y2是一个非负数.16.观察下列等式:,,请你从上述等式中找出规律,并利用这一规律计算(…+)(+)= 4020.【考点】分母有理化.【分析】先将第一个括号内的各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,由此可求出第一个括号内代数式的值,进而可根据平方差公式求出整个代数式的值.【解答】解:原式=2(﹣+﹣+﹣+…+﹣)(+)=2(﹣)(+)=2×2010=4020.故答案为:4020.【点评】本题考查了分母有理化的知识,能够发现式子中的规律是解答此题的关键.三、全面答一答(本题有7个小题,共66分)17.计算:(1);(2).【考点】二次根式的加减法.【分析】(1)先将二次根式化成最简二次根式,再合并同类二次根式即可;(2)先乘方、化简二次根式,再合并同类二次根式.【解答】解:(1)原式=4=;(2)原式=6﹣2=6.【点评】二次根式的加减实际就是合并同类二次根式,一般需要先化为最简二次根式,再合并.18.选择适当的方法解下列一元二次方程:(1)(x﹣3)2﹣25=0(2)x(x+4)=x+4.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)将方程(x﹣3)2﹣25=0移项得(x﹣3)2=25,然后再根据直接开平方法求解;(2)先移项,使方程的右边化为零,然后通过提取公因式x+4对等式的左边进行因式分解.【解答】解:(1)(x﹣3)2﹣25=0,移项得(x﹣3)2=25,x﹣3=±5,即x﹣3=5或x﹣3=﹣5,解得x1=8,x2=﹣2;(2)移项得x(x+4)﹣(x+4)=0,(x﹣1)(x+4)=0,x﹣1=0或x+4=0,解得x1=1,x2=﹣4.【点评】本题考查了解一元二次方程﹣因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.也考查了用直接开方法求一元二次方程的解.19.已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.【考点】平行四边形的判定与性质;三角形中位线定理.【分析】1、在▱ABCD中,AB=CD,AB∥CD,又E、F分别是边AB、CD的中点,所以BE=CF,因此四边形EBFD是平行四边形2、由AD=AE=2,∠A=60°知△ADE是等边三角形,又E、F分别是边AB、CD的中点,四边形EBFD是平行四边形,所以EB=BF=FD=DE=2,四边形EBFD是平行四边形的周长是2+2+2+2=8【解答】解:(1)在▱ABCD中,AB=CD,AB∥CD.∵E、F分别是AB、CD的中点,∴.∴BE=DF.∴四边形EBFD是平行四边形(2)∵AD=AE,∠A=60°,∴△ADE是等边三角形.∴DE=AD=2,又∵BE=AE=2,由(1)知四边形EBFD是平行四边形,∴四边形EBFD的周长=2(BE+DE)=8.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.20.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动?【考点】条形统计图;用样本估计总体;加权平均数;中位数;众数.【分析】(Ⅰ)根据加权平均数的公式可以计算出平均数;根据众数的定义:一组数据中出现次数最多的数据叫做众数,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,即可求出众数与中位数;(Ⅱ)利用样本估计总体的方法,用样本中的平均数×1200即可.【解答】解:(Ⅰ)观察条形统计图,可知这组样本数据的平均数是:==3.3次,则这组样本数据的平均数是3.3次.∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,=3次,∴这组数据的中位数是3次;(Ⅱ)∵这组样本数据的平均数是3.3次,∴估计全校1200人参加活动次数的总体平均数是3.3次,3.3×1200=3960.∴该校学生共参加活动约为3960次.【点评】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.21.2014年某市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2016年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,且设这个增长率为x.(1)2015年的投资额为2(1+x)亿元,2016年的投资额为2(1+x)2亿元;(用含x的代数式表示)(2)求每年市政府投资的增长率.【考点】一元二次方程的应用.【分析】(1)根据设这个增长率为x,再利用2014年某市政府共投资2亿元人民币建设了廉租房,在这两年内每年投资的增长率相同可表示出2015年和2016年的投资金额;(2)利用(1)中所求,进而表示出三年共累计投资,即可得出等式求出答案.【解答】解:(1)2015年的投资额为:2(1+x)亿元,2016年的投资额为:2(1+x)2亿元;故答案为:2(1+x);2(1+x)2;(2)由题意可得:2+2(1+x)+2(1+x)2=9.5,解得:x=0.5或x=﹣3.5(不符实际,舍去)答:每年市政府投资的增长率为50%.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出每年的投资金额是解题关键.22.如图,请用三种不同方法将平行四边形ABCD分割成四个面积相等的三角形.(作图工具不限,保留作图痕迹,不写作法.)【考点】作图—应用与设计作图;平行四边形的性质.【分析】①连接对角线AC、BD,可以把平行四边形分成四个面积相等的三角形;②连接AC,再作出△ABC和△ACD的中线,根据中线可以把三角形分成两个面积相等的部分画出图形;③连接BD,再作出△ABD和△BCD的中线,根据中线可以把三角形分成两个面积相等的部分画出图形;【解答】解:如图所示:.【点评】此题主要考查了作图与应用作图,关键是掌握三角形的中线可以把三角形的面积分成相等的两部分.23.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)铺设地面所用瓷砖的总块数为n2+5n+6或(n+2)(n+3);(用含n的代数式表示,n表示第n个图形);(2)按上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.【考点】一元二次方程的应用;规律型:图形的变化类.【分析】(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,第n个图形用的正方形的个数=(n+2)(n+3)个;(2)根据题意可得(n+2)(n+3)=506,解关于n的一元二次方程即可;(3)第一个图形中白色瓷块有1×2=2,黑色瓷块=2×5=10,第二个图形中白色瓷块有2×3=6,黑色瓷块=2×7=14,第三个图形中白色瓷块有3×4=12,黑色瓷块=2×9=18…那么依此类推第n个图形中有白色瓷块=n(n+1),黑色瓷块=2(2n+3),根据题意可得n (n+1)=2(2n+3),解关于n的方程即可.【解答】解:(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,第n个图形用的正方形的个数=(n+2)(n+3)个;故答案为:n2+5n+6或(n+2)(n+3);(2)根据题意得:n2+5n+6=506,解得n1=20,n2=﹣25(不符合题意,舍去);(3)根据题意得:n(n+1)=2(2n+3),解得n=(不符合题意,舍去),∴不存在黑瓷砖与白瓷砖块数相等的情形.【点评】本题考查了一元二次方程的应用,解题的关键主要是寻找规律,还使用了解一元二次方程的知识.。
浙教版数学八年级下学期《期中检测题》及答案
6.用反证法证明命题“在直角三角形中,至少有一个锐角不大于 ”时,应先假设().
A. 有一个锐角小于 B. 每一个锐角小于
C. 有一个锐角大于 D. 每一个锐角大于
7.化简二次根式 的结果是()
A. B. C. D.
8.把方程 的左边配方后可得方程()
[详解]解:∵平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、C(3,2)、D(2,0),
∴AB= = ,BC=3,
∵若点A关于BP的对称点为A',
∴BA′=BA= ,
在△BA′C中,由三角形三边关系可知A′C≥BC-BA′,
∴A′C≥3- ,即A′C的最小值为3- ,
故选B.
[点睛]本题考查平行四这形及轴对称的性质,利用三角形的三边关系得到A′C≥BC-BA′是解题的关键.
13.顺次连接四边形各边中点所得的四边形是________
[答案]平行四边形
[解析]
试题分析:根据中位线的性质可得四边形的对边分别平行且相等,则所得到的四边形为平行四边形.
14.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为 ,根据题意列出的方程是_________.
(1)若要围成总面积为36m2 花圃,边AB的长应是多少?
(2)花圃的面积能否达到36.75m2?若能,求出边AB的长;若不能,请说明理由.
答案与解析
一、选择题
1.下列图案,既是轴对称图形又是中心对称图形的个数是().
A.1B.2C.3D.4
[答案]C
[解析]
[分析]
根据轴对称图形与中心对称图形的概念求解.
浙教版八年级下学期数学《期中考试试题》附答案
解得, , (不符合题意,舍去)
∴ 5.
故答案为:5.
[点睛]本题考查了用换元法解一元二次方程,设 是解题的关键,注意:平方都是非负数.
14.如图,已知正六边形 ,连接 ,则 _________°.
[答案]60
[解析]
[分析]
作出正六边形的外接圆,连接OE,OA则可知∠AOE=120°,从而可得∠ECA的度数.
A. B. C. D.
[答案]D
[解析]
[分析]
根据题意直接利用二次根式有意义的条件得出x的取值范围进而得出答案.
[详解]解:式子 在实数范围内有意义,
则1-x≥0,
解得: .
故选:D.
[点睛]本题主要考查二次根式有意义的条件,正确掌握二次根式的性质是解题的关键.
2.一元二次方程 配方后可变形为().
浙 教 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 在实数范围内有意义,则 的取值范围是()
A. B. C. D.
2.一元二次方程 配方后可变形为().
A. B.
C. D.
3.下列运算中,正确的是()
A. B.
[答案]3
[解析]
[分析]
先求出 的取值范围,即可求出 的整数部分和小数部分,然后代入求值即可.
[详解]解:∵ < <
∴2< <3
∴ 的整数部分为2, 的小数部分为a= -2
∴(4 -2)( -2)=( +2)( -2)=7-4=3
故答案为:3.
[点睛]此题考查的是求一个数算术平方根的小数部分,掌握实数比较大小方法是解决此题的关键.
浙教版初中数学八年级下册期中测试卷(较易)(含答案解析)
浙教版初中数学八年级下册期中测试卷(较易)(含答案解析)考试范围:第一,二,三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,没有意义的是( )A. √x+3(x≥−3)B. √(x−1)2+1C. √3−πD. √5−π2. 若√(1−a)2=a−1,则a的取值范围是( )A. a>1B. a≥1C. a<1D. a≤13. 若√(5−x)2=x−5,则x的取值范围是( )A. x<5B. x≤5C. x≥5D. x>54. 已知直角三角形的两条直角边长恰好是方程x2−5x+6=0的两个根,则此直角三角形的斜边长是( )A. √13.B. √5.C. 13.D. 5.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )A. 180(1−x)2=461B. 180(1+x)2=461C. 368(1−x)2=442D. 368(1+x)2=4426. 用配方法解方程x2−6x−8=0时,配方结果正确的是( )A. (x−3)2=17B. (x−3)2=14C. (x−6)2=44D. (x−3)2=17. 甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如下表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员( )运动员甲乙丙丁x(环)8998S2(环 2)1 1.21 1.2A. 甲B. 乙C. 丙D. 丁8. 某校八年级学生的平均年龄为14岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是( )A. 平均年龄为14岁,方差改变B. 平均年龄为16岁,方差不变C. 平均年龄为16岁,方差改变D. 平均年龄为14岁,方差不变9. 有甲、乙两组数据,已知甲组数据的方差为0.4,乙组数据的方差为0.2,那么甲、乙两组数据的波动程度是( )A. 甲组数据的波动比较大.B. 乙组数据的波动比较大.C. 甲、乙两组数据的波动程度相同.D. 甲、乙两组数据的波动程度无法比较.10. −√2×√5=( )A. √10B. −√10C. √7D. −√711. 若式子√x+2有意义,则x的取值范围是( )x−1A. x≥−2且x≠1B. x>−2且x≠1C. x≥−2D. x>−212. 已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是( )A. b=−1B. b=−2C. b=0D. b=2第II卷(非选择题)二、填空题(本大题共3小题,共9.0分)13. 如果一个一元二次方程的两个非零实数根互为相反数,我们称这个方程为“根对称方程”.例如,方程x2−4=0就是“根对称方程”.请再写出一个根对称方程:.14. 若二次根式√m−3有意义,则m的取值范围是.15. 已知数据x1,x2,x3的平均数是2,数据x4,x5的平均数是4,则x1,x2,x3,x4,x5这组数据的平均数是.三、解答题(本大题共10小题,共75.0分。
【浙教版】初二数学下期中试卷(含答案)
一、选择题1.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形2.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是( ) A .6 B .8 C .10 D .123.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .25 4.某市为有效解决交通拥堵营造路网微循环,决定对一条长1200米的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加20%,结果提前5天完成任务,求实际每天改造道路的长度和实际施工的天数.一位同学列出方程()1200120050120%x x+-=+,则方程中未知数x 所表示的量是( ) A .实际每天改造的道路长度 B .实际施工的天数C .原计划施工的天数D .原计划每天改造的道路长度 5.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 6.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1C .-1D .2 7.下列各式中,从左到右变形是因式分解的是( ) A .()()22224a b a b a b +--=B .()()2633m m m -=+-C .()22542x x x x ++=++D .()()2933a a a -=+- 8.下列从左到右的变形属于因式分解的是( ) A .(x y)ax ay a +=+B .221(2)1x x x x ++=++C .21(1)(1)x x x -=+-D .2(2)(2)4x x x +-=-9.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .010.下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是( )A .B .C .D . 11.已知a b >,下列不等式中,不成立的是( )A .44a b +>+B .33a b ->- C.22a b> D .22a b ->- 12.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .2二、填空题13.如图,在四边形ABDC 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,并且E 、F 、G 、H 四点不共线.当AC =6,BD =8时,四边形EFGH 的周长是_____.14.在ABCD 中,AE 平分A ∠交边CD 于,E BF 平分B 交边CD 于,F 若4,1,AD EF ==则边AB 的长为________________________.15.对于每个非零自然数n ,x 轴上有(,0)n A x ,(,0)n B y 两点,以n n A B 表示这两点间的距离,其中n A ,n B 的横坐标分别是方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220202020A B A B A B +⋅⋅⋅++的值等于_______.16.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.17.因式分解:316m m -=________.18.如图,正方形ABCD 旋转后能与正方形CDEF 重合,那么点A ,B ,C ,D 中,可以作为旋转中心的有______个.19.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.20.如图,在Rt ABC 中,90C ∠=︒,32AC =,24BC =,AB 的垂直平分线分别交AB 、AC 于点D 、E ,则AE 的长是__________.三、解答题21.如图,ABCD 的对角线AC BD 、相交于点,,,3,5O AB AC AB BC ⊥==,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连接PO 并延长交BC 于点Q .设点P 的运动时间为t 秒.()1求BQ 的长(用含t 的代数式表示);()2问t 取何值时,四边形ABQP 是平行四边形?22.(1)计算:()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭ (2)化简:21111x x x ⎛⎫-÷ ⎪+-⎝⎭ (3)先化简,再求值:()()()22322a b a b a b +-+-,其中13a =,12b =-. 23.分解因式(1)22363ax axy ay -+ (2)()()22162x x x ---24.如图,已知△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4). (1)画出△ABC 关于y 轴的对称图形△111A B C ;(2)画出△ABC 沿y 轴向下平移3个单位得到△222A B C ;(3)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出点P 的坐标.25.某校运动会需购买,A B 两种奖品,A 单价是12元/件,B 单价是15元/件,已知购买A 种奖品x (件)与购买B 奖品y 件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)学校计划购买,A B 两种奖品的总费用不超过1290元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买,A B 两种奖品的总费用为w 元,请你设计购买,A B 两种奖品的方案,怎样购买才能使费用最少,w 的最小值是多少?26.如图,在ABC 中,30BAC ∠=︒,45ACB ∠=︒,//BD AC ,BD AB =,且C ,D 两点位于AB 所在直线两侧,射线AD 上的点E 满足60ABE ∠=︒.(1)AEB ∠=_____°;(2)图中与AC 相等的线段是BE ,证明此结论只需证明_____≌_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A 、∵对角线互相平分的四边形是平行四边形,∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形,∴选项D 不符合题意;故选:C .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键. 2.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.3.D解析:D【分析】已知AD是ABC的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=12BE=2;又因AD BE⊥,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.【详解】∵AD是ABC的中线,F为CE的中点,∴DF为△CBE的中位线,∴DF∥BE,DF=12BE=2;∵AD BE⊥,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴22224225AD DF+=+=故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.4.D解析:D【分析】根据提前天数+实际工作用天数-原计划天数=0,可以判断方程中未知数x表示的量.【详解】设原计划每天铺设管道x 米,则实际每天改造管道(1+20%)x ,根据题意,可列方程: ()1200120050120%x x+-=+, 所以所列方程中未知数x 所表示的量是原计划每天改造管道的长度,故选:D .【点睛】本题考查了由实际问题布列分式方程,解题的关键是依据所给方程等量关系.5.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 6.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.7.D解析:D【分析】根据因式分解的定义逐项判断即可得.【详解】A 、()()22224a b a b a b +--=是整式的乘法,此项不符题意;B 、()()2933m m m -=+-,则等式左右两边不相等,此项不符题意; C 、()22542x x x x ++=++没有将一个多项式转化成几个整式的乘积的形式,此项不符题意;D 、()()2933a a a -=+-,此项符合题意; 故选:D .【点睛】本题考查了因式分解的定义,掌握理解定义是解题关键.8.C解析:C【分析】根据因式分解的概念:把一个多项式转化成几个整式积的形式,依次判断可得答案.【详解】解:A 、没把一个多项式转化成几个整式积的形式,故A 错误;B 、没一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选C .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式. 9.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 10.C解析:C【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、是中心对称图形,故本选项正确;D 、不是中心对称图形,故本选项错误;故选C .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b >,原变形成立,故此选项不符合题意; D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.12.C解析:C【分析】过P 作//PF BC 交AC 于F ,得出等边三角形APF ,推出AP PF QC ==,根据等腰三角形性质求出EF AE =,证PFD QCD ∆≅∆,推出FD CD =,推出12DE AC =即可. 【详解】解:过P 作//PF BC 交AC 于F , //PF BC ,ABC ∆是等边三角形,PFD QCD ∴∠=∠,60APF B ∠=∠=︒,60AFP ACB ∠=∠=︒,60A ∠=︒, APF ∴∆是等边三角形,AP PF AF ∴==,PE AC ⊥,AE EF ∴=,AP PF =,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中PFD QCD PDF CDQ PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, PFD QCD ∴∆≅∆,FD CD ∴=,AE EF =,EF FD AE CD ∴+=+, 12AE CD DE AC ∴+==, 3AC =,32DE ∴=, 故选:C .【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.二、填空题13.14【分析】根据三角形中位线定理得到FG ∥EHFG =EH 根据平行四边形的判定定理和周长解答即可【详解】∵FG 分别为BCCD 的中点∴FG =BD =4FG ∥BD ∵EH 分别为ABDA 的中点∴EH =BD =4E解析:14【分析】根据三角形中位线定理得到FG ∥EH ,FG =EH ,根据平行四边形的判定定理和周长解答即可.【详解】∵F ,G 分别为BC ,CD 的中点,∴FG =12BD =4,FG ∥BD , ∵E ,H 分别为AB ,DA 的中点, ∴EH =12BD =4,EH ∥BD , ∴FG ∥EH ,FG =EH ,∴四边形EFGH 为平行四边形,∴EF =GH =12AC =3, ∴四边形EFGH 的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.14.或【分析】如图:根据题意可以作出两种不同的图形所以答案有两种情况因为在中平分交于点平分交于点所以;则求得的周长【详解】解:如图图①图②四边形是平行四边形平分平分由图①得:由图②得:为7或9故答案为: 解析:7或9【分析】如图:根据题意可以作出两种不同的图形,所以答案有两种情况.因为在ABCD 中,4=AD ,AE 平分DAB ∠交CD 于点E ,BF 平分ABC ∠交CD 于点F ,所以4DE AD CF BC ====;则求得ABCD 的周长.【详解】解:如图,图①图②四边形ABCD 是平行四边形,//AB CD ∴,4BC AD ==,AB CD =,EAB AED ∴∠=∠,ABF BFC ∠=∠,AE ∵平分DAB ∠,BF 平分ABC ∠,DAE BAE ∴∠=∠,CBF ABF ∠=∠,AED DAE ∴∠=∠,BFC CBF ∠=∠,AD DE ∴=,BC FC =,4DE CF AD ∴===,由图①得:4417CD DE CF EF =+-=+-=,7AB CD ∴==,由图②得:4419CD DE CF EF =++=++=,9AB ∴=,AB ∴为7或9.故答案为:7或9.【点睛】此题考查了平行四边形的性质:平行四边形的对边平行且相等.还考查了等腰三角形的判定与性质.注意如果有平行线与角平分线,一般会存在等腰三角形.解题时还要注意数形结合思想的应用.15.【分析】将n 看做已知数求出方程组的解表示出x 与y 列举出所求式子各项拆项后抵消即可得到结果【详解】解:方程组①+②得即将代入①得:∴∵n >0∴是该方程组的根∴则原代数式故答案为:【点睛】此题考查了分式 解析:20202021【分析】将n 看做已知数求出方程组的解表示出x 与y ,列举出所求式子各项,拆项后抵消即可得到结果.【详解】 解:方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩①②,①+②得22n x =,即1x n =, 将1x n =代入①得:11y n =+, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩, ∵n >0,∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩是该方程组的根, ∴111n n A B n n =-+, 则原代数式1111112020112232020202120212021=-+-+⋯+-=-=. 故答案为:20202021. 【点睛】 此题考查了分式的加减法,解二元一次方程组,以及坐标与图形性质,熟练掌握运算法则是解本题的关键.16.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 17.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m(m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.18.2【分析】根据旋转的性质分类讨论确定旋转中心【详解】把正方形ABCD 绕点D逆时针旋转90°能与正方形CDEF重合则旋转中心为点D;把正方形ABCD绕点C顺时针旋转90°能与正方形CDEF重合则旋转中解析:2【分析】根据旋转的性质,分类讨论确定旋转中心.【详解】把正方形ABCD绕点D逆时针旋转90°能与正方形CDEF重合,则旋转中心为点D;把正方形ABCD绕点C顺时针旋转90°能与正方形CDEF重合,则旋转中心为点C;综上,可以作为旋转中心的有2个.故答案为:2.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.19.【分析】根据函数的图象可知k<0且x=-6时y=0把(-60)代入y=kx+b得出k与b之间的关系式再利用一元一次不等式解法得出答案【详解】解:∵一次函数y=kx+b的图象过(-60)∴0=-6k+x解析:4【分析】根据函数的图象可知,k<0且x=-6时,y=0,把(-6,0)代入y=kx+b,得出k与b之间的关系式,再利用一元一次不等式解法得出答案.【详解】解:∵一次函数y=kx+b的图象过(-6,0),∴0=-6k+b,∴b=6k,∴3kx-2b=3kx-12k>0,∵函数图象经过第二、三、四象限,∴k<0,∴x-4<0,解得:x<4.故答案为:x<4.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.25【分析】首先连接BE根据线段垂直平分线的性质可得AE=BE然后设AE =x由勾股定理可得方程:x2=242+(32−x)2继而求得答案【详解】解:连接BE∵AB的垂直平分线分别交ABAC于点DE∴解析:25【分析】首先连接BE,根据线段垂直平分线的性质,可得AE=BE,然后设AE=x,由勾股定理可得方程:x2=242+(32−x)2,继而求得答案.【详解】解:连接BE,∵AB的垂直平分线分别交AB、AC于点D、E,∴AE=BE,设AE=x,则BE=x,EC=AC−AE=32−x,∵Rt△ABC中,∠C=90°,AC=32,BC=24,∴x2=242+(32−x)2,解得:x=25,故答案为:25,【点睛】此题考查了线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.三、解答题21.(1)5-t;(2)5 2【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=5-t ;(2)∵AP ∥BQ ,当AP=BQ 时,四边形ABQP 是平行四边形,即t=5-t ,52t =, ∴当52t =时,四边形ABQP 是平行四边形. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.22.(1)0;(2)-x+1;(3)21210ab b +,12【分析】(1)根据负指数幂和零指数幂计算即可;(2)根据分式的乘除化简即可;(3)先根据整式乘法进行化简,在代入求值即可;【详解】解:(1) ()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭, =-8+9-1,=0;(2)21111x x x ⎛⎫-÷⎪+-⎝⎭, =()()()11111x x x x x -++-+, =()()111x x x x x+--+, =1x -+; (3)()()()22322a b a b a b +-+-,=()222241294a ab b a b++--,=222241294a ab b a b ++-+, =21210ab b +, 当13a =,12b =-时,原式=12×12×12⎛⎫- ⎪⎝⎭+10×212⎛⎫- ⎪⎝⎭=12. 【点睛】本题主要考查了分式化简、整式化简求值、实数计算,准确计算是解题的关键. 23.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.24.(1)见解析;(2)见解析;(3)见解析;P (0,74). 【分析】(1)保持纵坐标不变,横坐标取相反数,确定对应的对称点,顺次连接三个对称点即得对称图形;(2)按照上加下减原理,在各点的纵坐标上实施这一运算,得到平移变换后的各点,依次连接三个点即得到平移后的三角形;(3)连接A 1C 或C 1A ,与y 轴的交点就是点P ,利用一次函数的解析式与y 轴的交点即可求得点P 的坐标.【详解】(1)∵A (1,1)、B (4,2)、C (3,4),∴关于y 轴的对称点分别为1A (-1,1),1B (-4,2), 1C (-3,4),顺次连接1A ,1B ,1C ,得到△111A B C ,如图示;(2)∵A (1,1)、B (4,2)、C (3,4),∴向下平移3个单位后的坐标分别为2A (1,-2),2B (4,-1), 2C (3,1),顺次连接2A ,2B ,2C ,得到△2A 2B 2C ,如图示;(3)连接A 1C ,交y 轴于点P ,此时△PAC 的周长最小,如图;设直线A 1C 的解析式为y=kx+b,根据题意,得134k b k b +=⎧⎨-+=⎩,解得3474 kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线的解析式为y=34-x+74,当x=0时,y=74,∴P的坐标为(0,74),故P7(0)4,.【点睛】本题考查了坐标系中的点对称,点的平移,动点到两个定点距离之和最小,一次函数解析式的确定,一次函数与y轴的交点,熟记对称点确定的基本原则,平移的基本规律和线段之和最小原理是解题的关键.25.(1)100=-+y x;(2)购买A种奖品75件,B种奖品25件,能使总费用最少为1275元【分析】(1)根据题意,由待定系数法,即可求出一次函数的解析式;(2)根据总费用=两种奖品的费用之和表示出w与x的关系式,并由条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.【详解】解:设y kx b=+,则20806040k nk b+=⎧⎨+=⎩解得:1100kb=-⎧⎨=⎩100y x∴=-+;()2解:由题意得()121510031500W x x x =+-+=-+()3150012903100x x x -+≤⎧∴⎨≤-+⎩解得:7075x ≤≤31500w x =-+,30k ∴=-<,w ∴随x 的增大而减小,75x ∴=时,1275w =最小,当75x =时,25y =;即应购买A 种奖品75件,B 种奖品25件,才能使总费用最少为1275元.【点睛】本题考查了一次函数的性质的运用,待定系数法求解析式,一元一次不等式组的运用,解答时求出一次函数的解析式是关键.26.(1)45°;(2)ABC ,BDE .【分析】(1)由平行线和等腰三角形的性质得出∠BDA =∠BAD =75°,求出∠DBE =∠ABE -∠ABD =30°,由三角形的外角性质即可得出答案;(2)证出△ABC ≌△BDE (AAS ),得出AC =BE ,即可得出答案.【详解】解:(1)∵BD ∥AC ,∴∠ABD =∠BAC =30°,∵BD =AB ,∴∠BDA =∠BAD =12(180°-30°)=75°, ∵∠ABE =60°,∴∠DBE =∠ABE -∠ABD =30°,∴∠AEB =∠ADB -∠DBE =75°-30°=45°;故答案为:45°;(2)在△ABC 和△BDE 中, BAC DBE ACB BED AB BD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△BDE (AAS ),∴AC =BE ;故答案为:ABC ,BDE .【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形的外角性质等知识;熟练掌握全等三角形的判定和等腰三角形的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)2x-4x=0 (2)42x-25=0
(3)2x(x-3)+x=3
21.已知三角形两边长分别为2和4,第三边是方程2x-4x+3=0的解,求这个三角形的周长.
22.已知下列n(n为正整数)个关于x的一元二次方程:①2x-1=0,②2x+x-2=0,
③2x+2x-3=0,…(n)2x+(n-1)x-n=0.
(1)请解上述一元二次方程①、②、③、(n);
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
23.我校工会于“三•八”妇女节期间组织女职工到国家级风景区“文成铜铃山”观光旅游.下面是领队与旅行社导游收费标准的一段对话:
【领队】组团去“文成铜铃山”旅游每人收费是多少?
【导游】如果人数不超过30人,人均旅游费用为360元.
【领队】超过30人怎样优惠呢?
【导游】如果超过30人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于300元.
我校按旅行社的收费标准组团浏览“文成铜铃山”结束后,共支付给旅行社12400元.设我校这次参加旅游的共有x人.
请你根据上述信息,回答下列问题:
(1)我校参加旅游的人数x的取值范围是 ________;
(2)我校参加旅游的人每人实际应收费 ________元(用含x的代数式表示);
(3)求我校这次到“文成铜铃山”观光旅游的女职工共有多少人?
(1)2x+3=4x
(2)22x-3x-1=0
(3)22x-4x-3=0
考核的知识点:解一元二次方程-因式分解法、解一元二次方程-直接开平方法、解一元二次方程-配方法、解一元二次方程-公式法
参考答案:
解:(1)2x+3=4x
整理得出:2x-4x+3=0,
(x-1)(x-3)=0,
考核的知识点:整式的混合运算、化简求值
参考答案:
22.
如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m.
(1)鸡场的面积能达到1502
m吗?
(2)鸡场的面积能达到1802m 吗?
如果能,请你给出设计方案;如果不能,请说明理由.
考核的知识点:一元二次方程的应用 参考答案:
解:设垂直于墙的边长为xm .
(1)x (35-2x )=150,
解得=1x 10,=2x 7.5.
当x =7.5时,35-2x =20>18,不合题意,舍去.
当x =10时,35-2x =15.
∴x =10.
答:垂直于墙的边长为10m ,平行于墙的边长为15米时,鸡场的面积为1502m ;(2)x (35-2x )=180,
22x -35x +180=0.
∵△<0,
∴此方程无解.
答:鸡场的面积不能达到1802m .
23.
2011年漳州市出口贸易总值为22.52亿美元,至2010年出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.
(1)求这两年漳州市出口贸易的年平均增长率;
(2)按这样的速度增长,请你预测2011年漳州市的出口贸易总值.
(温馨提示:2252=4×563,5067=9×563)
考点:一元二次方程的应用.
考核的知识点:一元二次方程的应用
参考答案:
解:(1)设年平均增长率为x,依题意得…(1分)
22.52 2)
=50.67,…(3分)
1(x
1+x=±1.5,
∴
x=0.5=50%,2x=-2.5(舍去).…(5分)
1
答:这两年漳州市出口贸易的年平均增长率为50%;…(6分)(2)50.67×(1+50%)=76.005(亿美元).…(9分)
答:预测2011年漳州市的出口贸易总值76.005亿美元.…(10分)。