湖南工业大学2013-2014年高数2试卷A ( 2014、7、1 )
(完整word版)2014年(全国卷II)(含答案)高考文科数学,推荐文档
2014年普通高等学校招生全国统一考试(2新课标H 卷)数学(文)试题一、选择题( 本大题共12题, 共计60分)1.已知集合A { 2,0,2}, B {x|x 2 x 20},则 A n B=()A. B. 2 C. {0}D. { 2}2.1 3i (1 i)A.1 2iB. 1 2iC. 1 2iD. 1 2i3.函数f (x)在x X o 处导数存在,若p: f(X o ) 0 : q:x X o 是f (x)的极值点,贝U( )A • p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件 4. 设向量 a,b 满足 a b J T0 , a b 76,则 a b=() A. 1 B. 2 C. 3 D. 55.等差数列{a n }的公差是2,若a 2,a 4,a 8成等比数列,贝U {a n }的前n 项和S n()1 (表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,贝U 切削的部分的体积A. n(n 1)B. n(n 1)C.咛D n(n 1)26.如图,网格纸上正方形小格的边长为27 D.1与原来毛坯体积的比值为( )7•正三棱柱ABC ABQ i 的底面边长为2,侧棱长为.3 , D 为BC 中点,则三棱锥A BQ® 的体积为A.3B.32C.128•执行右面的程序框图,如果输入的 x ,t 均为2, 则输出的S (A.4B.5C.6D. 7x 3y 3 0,10•设F 为抛物线C:y 2+3x 的焦点,过F 且倾斜角为是( )A 迈3B.6C.12D.7,311若函数f xkx Inx 在区间1,单调递增, 则k 的取值范围是()A., 2B., 1C. 2,D. 1,AB ()12.设点 M x o ,1,若在圆 O:x 2+y 2 1上存在点N ,使得 OMNx y 19.设x , y 满足约束条件x y 10,0,则z x 2y 的最大值为(A.8B.7C.2D.130的直线交C 于A, B 两点,则 45,则x o 的取值范围二、填空题:本大题共4小题,每小题5分.13•甲,乙两名运动员各自等可能地从红、白、蓝 3种颜色的运动服中选择1种,则他们 选择相同颜色运动服的概率为 ________ .14.函数 f(x) sin(x ) 2sin cosx 的最大值为 __________________ . 15•偶函数y f(x)的图像关于直线x 2对称,f(3)3,则f( 1)= __________ .116. ----------------------------------数列{a n }满足 a n 1 __________ ,a 8 2,则 &1 a n三、解答题:17. (本小题满分12分)四边形ABCD 的内角A 与C 互补,AB 1, BC 3, CD DA 2 . (1) 求 C 和 BD ; (2) 求四边形ABCD 的面积.A.[ -1,1]B. c.D. T-718. (本小题满分12分)如图,四棱锥P ABCD中,底面ABCD为矩形,PA 平面ABCD,E是PD的中点.(1)证明:PB〃平面AEC ;(2)设AP 1,AD 3,三棱锥P ABD的体积V求A到平面PBC的距离.19. (本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲輻门1-乙邯门3594404 4S97J1224566777X9976653321)0i 6«1 f 23 4 6昌E98K77766555554443J321007001134496655200S12334563222090 H 45610000(1) 分别估计该市的市民对甲、乙两部门评分的中位数;(2) 分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3) 根据茎叶图分析该市的市民对甲、乙两部门的评价.2 2设F I,F2分别是椭圆C:冷每1(a b 0)的左右焦点,M是C上一点且MF2与x轴a b垂直,直线MF i与C的另一个交点为N.3(1) 若直线MN的斜率为上,求C的离心率;4(2) 若直线MN在y轴上的截距为2,且|MN | 5| F i N |,求a,b.21.(本小题满分12分)已知函数f (x) x3 3X2 ax 2,曲线y f (x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求 a ;(2)证明:当k 1时,曲线y f (x)与直线y kx 2只有一个交点.20.(本小题满分12分)如图,P是eO外一点,PA是切线,A为切点,割线PBC与eO相交于B,C , PC 2PA , D为PC的中点,AD的延长线交eO于点E.证明:(1)BE EC ;2(2) AD DE 2PB2在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos , [0,].2(1)求C得参数方程;(2)设点D在C 上, C在D处的切线与直线l : y ,3x 2垂直,根据(1)中你得到的参数方程,确定D的坐标•23.(本小题满分10分)选修4-4:坐标系与参数方程24.(本小题满分10分)选修4-5:不等式选讲1设函数 f (x) |x | | x a | (a 0)a(1)证明:f(x) 2 ;(2)若f (3)5,求a的取值范围.2014年普通高等学校招生全国统一考试(2新课标U卷)1. B【解析】试题分析:由已知得,B 2, -1 ,故AI B 2,选B. 考点:集合的运算. 2. B【解析】试题分析:由已知得, S (1 3i)(1D1 2i ,选B.1 i (1 i)(1 i) 2考点:复数的运算. 3. C【解析】试题分析:若x X o 是函数f(x)的极值点,则f (X o ) 0 ;若f (X o ) 0,则X X o 不一定是 极值点,例如f (X ) X 3,当X 0时,f (0)0,但X 0不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4. A【解析】r 2 r r r 2r 2 r r r 2r r试题分析:由已知得, a 2a b b10, a 2a b b 6,两式相减得,4a b4,r r 故 a b 1.考点:向量的数量积运算. 5. A【解析】试题分析:由已知得,a 42 a 2 a 8,又因为{a n }是公差为2的等差数列,故(a 22d)2 a ? (a ? 6d),@ 4)2a ? (a ?12),解得 a ? 4,所以务 a ? (n 2)d 2n ,故 S n n(a1 an) n(n 1).2【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6. C【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体. 其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为 224 32 2 34而圆柱形毛坯体积为 32 6参考答案:数学(文)试题参考答案102754 ,故切削部分体积为20 ,从而切削的部分的体积与原来毛坯体积的比值为54 考点:三视图.7. C【解析】试题分析:如下图所示,连接AD,因为ABC是正三角形,且D为BC中点,则AD BC,又因为BB i 面ABC ,故BB i AD ,且BB i I BC B ,所以AD 面BCC i B i ,所以AD 是 三棱锥 A B 1DC 1 的高,所以 V A ^DS -S B ^DC . AD - ,3 -、3 1 .33考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8. D【解析】试题分析:输入x 2,t 2,在程序执行过程中,M,S,k 的值依次为M 1,S 3,k 1 ;M 2,S 5,k2 ;M 2,S 7,k3,程序结束,输出S 7 .考点:程序框图. 9. B【解析】试题分析:画出可行域,如图所示,将目标函数 z x 2y 变形为y lx -,当Z 取到2 2最大值时,直线y lx Z 的纵截距最大,故只需将直线 ylx 经过可行域,尽可能2 2 2平移到过A 点时,Z 取到最大值.10. C【解析】试题分析:由题意,得F (― ,0).又因为k tan300 -—,故直线AB 的方程为y —3 (x ―),43 3 4与抛物线y 2=3x 联立,得16x 2 168x 90,设A(x 1, y 1), B(x 2,y 2),由抛物线定义得,x 1 x 2 p3—12,选 C.21、抛物线的标准方程; 11. D【解析】x y 1 0x 3y 3 0,得A(3,2),所以ZmaxAB168 16 考点: 2、抛物线1 1 试题分析:f '(x ) k —,由已知得f '(x ) 0在x 1, 恒成立,故k —,因为x 1 ,xx所以0 1 1,故k 的取值范围是1,•x【考点】利用导数判断函数的单调性. 12. A【解析】试题分析:依题意,直线 MN 与圆0有公共点即可,即圆心0到直线MN 的距离小于等于1 即可,过0作OA MN,垂足为 A ,在Rt OMA 中,因为 OMA 45°,故 0A| OM|sin45° 亍|0M | 1,所以 0M 迈,则 J x °2 1 V2,解得 1 x 0 1 .【解析】试题分析:甲,乙两名运动员各自等可能地从红、 白、蓝3种颜色的运动服中选择1种有 9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白, 蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有 3种不同的结果,即 (红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为 P --.9 3考点:古典概型的概率计算公式. 14. 1 【解析】 试 题分 析: 由 已 知 得13.13sin( x)f (x) sin xcos cosxs in 2cos xs in sin xcos cosxs in1,故函数f(x) sin(x ) 2sin cosx的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15. 3【解析】试题分析:因为y f (x)的图像关于直线x 2对称,故f (3) f (1) 3,又因为y f(x)是偶函数,故f( 1)f(1) 3.考点:1、函数图象的对称性;2、函数的奇偶性.三、解答题(17) 解:(I )由题设及余弦定理得B D 2BC 2 CD 22BC CD cosC=13 12cosC①B D 22 2AB DA2AB DA cos A5 4cosC .②1._由①,②得 cosC —,故 C 600, BD 。
2014年高考理科数学湖南卷(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足ii z z +=(i 为虚数单位)的复数z =( )A .11i 22+B .11i 22-C .11i 22-+D .11i 22--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽 样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( ) A .123p p p =< B .231p p p =< C .132p p p =<D .123p p p ==3.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则 (1)(1)f g +=( )A .3-B .1-C .1D .3 4.51(2)2x y -的展开式中23x y 的系数是( )A .20-B .5-C .5D .205.已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )A .①③B .①④C .②③D .②④6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 ( )A .[6,2]--B .[5,1]--C .[4,5]-D .[3,6]-7.一块石材表示的几何体的三视图如图2所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .48.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A .2p q+ B .(1)(1)12p q ++-CD19.已知函数()sin()f x x ϕ=-,且2π30()d 0f x x =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x = 10.已知函数21()e (0)2x f x x x =+-<与2()ln()g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.(-∞ B.(-∞ C.( D.(二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :2cos ,1sin ,x y αα=+⎧⎨=+⎩(α为参数)交于A ,B 两点,且||2AB =.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 .12.如图3,已知AB ,BC 是O 的两条弦,AO BC ⊥,ABBC =则O 的半径等于 .13.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = . (二)必做题(14~16题)14.若变量x ,y 满足约束条件,4,,y x x y y k ⎧⎪+⎨⎪⎩≤≤≥且2z x y =+的最小值为6-,则k = .15.如图4,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过C ,F 两点,则ba= .16.在平面直角坐标系中,O 为原点,(1,0)A -,(0,3)B ,(3,0)C ,动点D 满足||1CD =,则||OA OB OD ++的最大值是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A 研发成功,预计企业可获利润120 万元;若新产品B 研发成功,预计企业可获利润100 万元,求该企业可获利润的分布列和数学期望.-----在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------姓名________________ 准考证号_____________图1图2图3图418.(本小题满分12分)如图5,在平面四边形ABCD 中,1AD =,2CD =,AC = (Ⅰ)求cos CAD ∠的值;(Ⅱ)若cos BAD ∠=sin 6CBA ∠=, 求BC 的长.19.(本小题满分12分)如图6,四棱柱1111ABCD A B C D -的所有棱长都相等,AC BD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形. (Ⅰ)证明:1O O ⊥底面ABCD ;(Ⅱ)若60CBA ∠=,求二面角11C OB D --的余弦值.20.(本小题满分13分)已知数列{}n a 满足11a =,1||n n n a a p +-=,*n ∈N .(Ⅰ)若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值; (Ⅱ)若12p =,且21{}n a -是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式.21.(本小题满分13分)如图7,O 为坐标原点,椭圆1C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线2C :22221x y a b -=的左、右焦点分别为3F ,4F ,离心率为2e .已知12e e =,且241F F =-. (Ⅰ)求1C ,2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值.21.(本小题满分13分)已知常数0a >,函数2()ln(1)2xf x ax x =+-+. (Ⅰ)讨论()f x 在区间(0+)∞,上的单调性;(Ⅱ)若()f x 存在两个极值点1x ,2x ,且12()()0f x f x +>,求a 的取值范围.图5图6图72014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案解析一、选择题 1.【答案】B【解析】由题意可知i i z z +=,所以i ()1z z =+,令z a bi =+,经化简可知1a ba b =-⎧⎨=+⎩,所以12a =,12b =-,即11i 22z =-,故选B.【提示】根据复数的基本运算即可得到结论. 【考点】复数的四则运算 2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,系统抽样和分层抽样都必须满足每个个体被抽到的概率相等,即123p p p ==.故选D.【提示】根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论. 【考点】随机抽样的概率 3.【答案】C【解析】因为()f x 为偶函数,()g x 为奇函数,所以()()f x f x -=,()()g x g x =--,即()()()()f x f x g x g x =-⎧⎨-=-⎩,联立3232()()1()()1f xg x x x f x g x x x ⎧-=++⎪⎨---=-++⎪⎩,得出2()1f x x =+,3()g x x =-,所以(1)(1)211f g +=-=,故选C.【提示】因为()f x 为偶函数,()g x 为奇函数,所以()()f x f x -=,()()g x g x =--,联立方程得出()f x 和()g x 的解析式,再令1x =即可. 【考点】对数奇偶性 4.【答案】A【解析】根据()()555122rr rr r C x y --⎛⎫- ⎪⎝⎭,所以23x y 的系数为23351(2)202C ⎛⎫-=- ⎪⎝⎭,故选A.【提示】利用二项式定理的展开式的通项公式,求解所求项的系数即可. 【考点】二项式定理 5.【答案】C【解析】根据不等式的性质可知,若x y >,则x y -<-成立,即p 为真命题,当1x =,1y =-时,满足x y >,但22x y >不成立,即命题q 为假命题,则①p q ∧为假命题;②p q ∨为真命题;③()p q ∧⌝为真命题;④()p q ⌝∨为假命题,故选:C.【提示】根据不等式的性质分别判定命题p ,q 的真假,利用复合命题之间的关系即可得到结论.【考点】非、或、且,真假命题 6.【答案】D【解析】当[2,0)t ∈-时,运行程序如下,221(1,9]t t =+∈,(26]3,S t -=∈-,当[0,2]t ∈时,[,1]33S t ∈--=-,则(2,6][3,1][3,6]S ∈---=-,故选D.【提示】根据程序框图,结合条件,利用函数的性质即可得到结论. 【考点】循环结构流程图 7.【答案】B【解析】由图可知该几何体的为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则628r r r -+=-,故选B.【提示】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r .【考点】几何体的体积 8.【答案】D【解析】由题意可知:设平均增长率为x ,由2(1)(1)(1)p q x ++=+,1x +=所以1x =,故选D.【提示】根据增长率之间的关系,建立方程关系即可得到结论. 【考点】增长率 9.【答案】A 【解析】由2π30⎰()0f x dx =,可以得出2πcos cos()3ϕϕ⎛⎫-=- ⎪⎝⎭,即π3ϕ=,所以()s i n 3f x x π⎛⎫=- ⎪⎝⎭,因此一条对称轴为πππ32x k -=+(k ∈Z )所以5π6x =,故选A. 【提示】由2π3⎰()0f x dx =,可以得到ϕ的值,可以知道对称轴x 从而求得x 的值.【考点】积分,对称轴,三角函数 10.【答案】B【解析】由题可得函数()f x 的图象上存在020001,e (0)2x P x x x ⎛⎫+-< ⎪⎝⎭关于y 轴对称的点02001,e 2x Q x x ⎛⎫-+- ⎪⎝⎭在函数2()l n ()g x x x a =++的图象上,从而0220001e ()ln()2x x x x a +-=-+-+,即001e ln()02x x a --+-=,问题等价于函数001()e ln()2xh x x a =--+-在(,0)x ∈-∞存在零点.即(a ∈-∞【提示】由题意可得001e ln()02xx a ---+=有负根,采用数形结合的方法可判断出a 的取值范围. 【考点】对称性 二、填空题11.【答案】(cos sin )1p θθ-=【解析】设直线方程y x b =+,联立22(2)(1)1x y y x b ⎧-+-=⎨=+⎩得出2222(3)420x x b b b --++-=,由韦达定理212422b b x x +-=,123x x b +=-,又有||2AB ===所以最后得出1b =-,故直线方程1x y -=,所以极坐标方程为(cos sin )1p θθ-=【提示】由题意可得直线l 的方程为y x b =+,曲线方程化为直角坐标,表示一个圆,由于弦长正好等于直径,可得圆心(2,1)在直线l 上,由此求得b 的值,可得直线的方程. 【考点】直线与参数方程的位置关系,极坐标12.【答案】32【解析】设线段AO 与BC 于点D 延长AO 交圆与另外一点E,则BD DC =,由ABD △的勾股定理可得1AD =,由双隔线定理可得2BD DC AD DE DE =⇒=,则直线332AE r =⇒=,故填32.【提示】设垂足为D ,O 的半径等于R ,先计算AD ,再计算R 即可. 【考点】勾股定理,双割线定理 13.【答案】3-【解析】由题可得523231233aa a ⎧--=⎪⎪⇒=-⎨⎪-=⎪⎩,故填:3- 【提示】由题可得52321233aa ⎧--=⎪⎪⎨⎪-=⎪⎩,可得a 的值.【考点】绝对值不等式 14.【答案】2-【解析】作出不等式组4y x x y y k ≤⎧⎪+≤⎨⎪≥⎩表示的区域,可以得出三条直线的交点(),k k ,(4),k k -,(2)2,,且y x ≤,4x y +≤的可行域,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当(4),k k -为最优解时,2(4)614k k k -+=-⇒=,因为2k ≤,所以2k =-,故填2-.【提示】做出不等式对应的平面区域,利用线性规划的知识,确定k 的值即可. 【考点】线性规划 15.1【解析】由,2a C a ⎛⎫- ⎪⎝⎭,,2a F b b ⎛⎫+ ⎪⎝⎭,则22122a pab a a b p b ⎧=⎪⇒=⎨⎛⎫=+ ⎪⎪⎝⎭⎩1. 【提示】可先由图中的点与抛物线的位置关系,写出C ,F 两点的坐标,再将坐标代入抛物线方程中,消去参数p 后,得到a ,b 的关系式,再寻求ba 的值.【考点】抛物线16.【答案】1]【解析】动点D 的轨迹为以C 为圆心的单位圆,设为(3cos ,sin )θθ+([0,2π))θ∈,则||OA OB OD ++==,因为2c o s 3s i nθθ的取值范围为[[=,827(11+=+1=,所以||OA OB OD ++的取值范围为1]+.【提示】由题意设点D 的坐标为(3c o s θθ+,求得||8OA OB OD ++=+.根据2cos sin θθ的取值范围,可得||OA OB OD ++的最大值.【考点】平面向量的基本运算 三、解答题 17.【答案】(Ⅰ)1315(Ⅱ)140【解析】(Ⅰ)记{}E =甲组研发新产品成功,{}F =乙组研发新产品成功.由题设知2()3P E =,1()3P E =,3()5P F =,2()5P F =,故所求的概率为13()()()()()()15P P F P E P E P F P E P F =++=. (Ⅱ)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因122(0)()3515P X P EF ===⨯=,133(100)()3515P X P EF ===⨯=,224(120)()3515P X P EF ===⨯=,236(220)()3515P X P EF ===⨯=,数学期望为30048013202100()0100120220140151515151515E X ++=⨯+⨯+⨯+⨯===. 【提示】(Ⅰ)利用对立事件的概率公式,计算即可, (Ⅱ)求出企业利润的分布列,再根据数学期望公式计算即可.【考点】分布列和数学期望,概率 18.【答案】(Ⅱ)3【解析】(Ⅰ)在ADC △中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠=故由题设知,cos CAD ∠==(Ⅱ)sin 14BAD ∠== 于是sin sin()BAC BAD CAD ∠=∠-∠sin cos cos sin BAD CAD BAD CAD =∠∠-∠∠27721⎛⎫=-- ⎪ ⎪⎝⎭ . 在ABC △中,由正弦定理,sin sin BC ACBAC CBA=∠∠,故37sin 3sin AC BACBC CBA∠===∠. 【提示】(Ⅰ)利用余弦定理,利用已知条件求得cos CAD ∠的值.(Ⅱ)根据cos CAD ∠,cos BAD ∠的值分别,求得sin BAD ∠和sin CAD ∠,进而利用两角和公式求得sin BAC ∠的值,最后利用正弦定理求得BC . 【考点】解三角形,余弦定理,正弦定理19.【答案】(Ⅰ)如图,因为四边形11ACC A 为矩形,所以1CC AC ⊥. 同理1DD BD ⊥.因为11CC DD ∥,所以1CC BD ⊥. 而ACBD O =,因此1C C B D C A ⊥底面.由题设知,11O O C C ∥. 故1C O B D O A ⊥底面.(Ⅱ)如图2,过1O 作11O H OB ⊥于H ,连接1HC . 由(Ⅰ)知,1C O B D O A ⊥底面, 所以11111O O A B C D ⊥底面, 于是111O O AC ⊥.又因为四棱柱1111A B ABC C D D -的所有棱长都相等, 所以四边形1111A B C D 是菱形,因此1111AC B D ⊥,从而1111AC BDD B ⊥平面, 所以111AC OB ⊥,于是111OB O HC ⊥平面, 进而11OB C H ⊥.故11C HO ∠是二面角11C OB D --的平面角. 不妨设2AB =.因为60CBA ∠=︒,所以OB =1OC =,1OB =. 在11Rt OO B △中,易知11111OO O B O H OB ==而111O C =,于是1C H故1111cos O H C HO C H∠==. 即二面角11C OB D --【提示】(Ⅰ)由已知中,四棱柱1111ABCD A B C D -的所有棱长都相等,ACBD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形.可得111O O CC BB ∥∥且1CC AC ⊥,1BB BD ⊥,进而1OO AC ⊥,1OO BD ⊥,再由线面垂直的判定定理得到1O O ABCD ⊥底面;(Ⅱ)由线面垂直,线线垂直推得111AC OB ⊥,11OB C H ⊥,所以11C HO ∠是二面角11C OB D --的平面角.再由三角函数求得二面角11C OB D --的余弦值.【考点】线线关系、线面关系,二面角20.【答案】(Ⅰ)13p =(Ⅱ)141(1)332nn n a --=+ 【解析】解(Ⅰ)因为{}n a 是递增数列,所以11||nn n n n a a a a p ++-=-=.而11a =,因此又1a ,22a ,33a 成等差数列, 所以21343a a a =+,因而230p p -=,解得13p =,0p =,当0p =时,1n n a a +=, 这与{}n a 是递增数列矛盾.故13p =.(Ⅱ)由于21{}n a -是递增数列,因而21210n n a a +-->,于是212221()()0n n n n a a a a +--+->①,但2211122n n -<,所以212221||||n n n n a a a a +--<-②, 由①②知,2210n n a a -->,因此21221221(1)122n nn nn a a ---⎛⎫⎪⎝⎭--==③, 因为{}n a 是递减数列,同理可得,2120n n a a +-<,故22121221(1)22nn n n na a ++⎛⎫ ⎪⎝⎭--=-=④,由③④即知,11(1)2n n n na a ++--=.于是 121321()()...()n n n a a a a a a a a ----=++++2111(1)1222nn --=+-++112121()1121n ---=++ 141(1)332nn --=+. 故数列{}n a 的通项公式为141(1)332nn n a --=+. 【提示】(Ⅰ)根据条件去掉式子的绝对值,分别令1n =,2代入求出2a 和3a ,再由等差中项的性质列出关于p 的方程求解,利用“{}n a 是递增数列”对求出的p 的值取舍;(Ⅱ)根据数列的单调性和式子“1||nn n a a p +-=”、不等式的可加性,求出221n n a a --和1n n a a +-,再对数列{}n a 的项数分类讨论,利用累加法和等比数列前n 项和公式,求出数列{}n a 的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来. 【考点】等差、等比数列,数列的单调性,通项公式21.【答案】(Ⅰ)1C 的方程为2212x y +=2C的方程为2212xy -=(Ⅱ)2【解析】(Ⅰ)因为12e e =,22a b +=44434a b a -=,因此222a b =,从而2(,0)F b,4,0)F , 24||1b F F -==, 所以1b =,22a =.故1C ,2C 的方程分别为2212x y +=,2212x y -=.(Ⅱ)因AB 不垂直于y 轴,且过点1(1,0)F -,故可设直线AB 的方程为1x my =-.由22112x my x y =-⎧⎪⎨+=⎪⎩,得22(2)210m y my +--=,易知此方程的判别式大于0. 设11(,)A x y ,22(,)B x y ,则1y ,2y 是上述方程的两个实根,所以12222m y y m +=+,12212y y m =-+,因此121224()22x x m y y m -+=+-=+,于是AB 的中点为222,22m M m m -⎛⎫ ⎪++⎝⎭, 故直线PQ 的斜率为2m-,PQ 的方程为2m y x =-,即20mx y +=.由22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得22(2)4m x -=, 所以220m ->,且2242x m =-,2222m y m=-,从而||PQ ==设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =. 因为点A 、B 在直线20mx y +=的异侧, 所以1122(2)(2)0mx y mx y ++<,于是11221122|2||2||22|mx y mx y mx y mx y +++=+--,从而22d =,又因为21221||m y y +-=,所以2212m d +=.故四边形APBQ 的面积22212213||2221222mS PQ d mm+===-+--. 而2022m <-≤,故当0m =时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.【提示】(Ⅰ)由斜率公式写出1e ,2e 把双曲线的焦点用含有a ,b 的代数式表示,结合已知条件列关于a ,b 的方程组求解a ,b 的值,则圆锥曲线方程可求;(Ⅱ)设出AB 所在直线方程,和椭圆方程联立后得到关于y 的一元二次方程,由根与系数的关系得到AB 中点M 的坐标,并由椭圆的焦点弦公式求出AB 的长度,写出PQ 的方程,和双曲线联立后解出P ,Q 的坐标,由点到直线的距离公式分别求出P ,Q 到AB 的距离,然后代入三角形面积公式得四边形APBQ 的面积,再由关于n 的函数的单调性求得最值.【考点】曲线标准方程,焦点、离心率,直线与曲线的位置关系,最值22.【答案】(Ⅰ)当1a ≥时,()f x 在区间(0,)+∞上单调递增当01a <<时,()f x 在区间⎛ ⎝上单调递减,在区间⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增 (Ⅱ)1,12⎛⎫⎪⎝⎭【解析】(Ⅰ)2222(2)24(1)()1(2)(1)(2)a x x ax a f x ax x ax x +-+-'=-=++++, 当1a ≥时,此时()f x 在区间(0,)+∞上单调递增.当01a <<时,由()0f x '<得1x =2x =-舍去). 当1(0,)x x ∈时()0f x '<;当11(,)x x ∈+∞时,()0f x '>, 故()f x 在区间1(0,)x 上单调递增,在区间1(,)x +∞上单调递增. 综上所述:当1a ≥时,()f x 在区间(0,)+∞上单调递增;当01a <<时,()f x 在区间⎛ ⎝上单调递减,在区间⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (Ⅱ)由(Ⅰ)式知.当1a ≥,()0f x '>,此时()f x 不存在极值点,因而要使得()f x 有两个极值点,必有01a <<. 又()f x 的极值点只可能是1x =2x =-,且由()f x 的定义可知,1x a >-且2x ≠-,所以1a -.2≠-,解得12a ≠. 此时,由上式易知,1x ,2x 分别是()f x 的极小值点和极大值点,而1221222()()ln(1)ln(1)22x xf x f x ax ax x x +=+-++-++ 21212ln[1()]a x x a x x =+++-1212121244()2()4x x x x x x x x +++++24(1)ln(21)21a a a -=--- 22ln(21)221a a =-+--, 令21a x -=,由01a <<且12a ≠知:当102a <<时,10x -<<;当112a <<时,01x <<. 记22()ln 2g x x x=+-.(ⅰ)当10x -<<时,2()2ln()2g x x x =-+-,所以222222()0x g x x x x -'=-=<. 因此,()g x 在区间(10)-,上单调递减,从而()(1)40g x g <-=-<, 故当102a <<时,12()()0f x f x +<.(ⅱ)当10x <<时,2()2ln 2g x x x =+-,所以222()0g x x x '=-<,因此.()g x 在区间(0)1,上单调递减,从而()(1)0g x g >=. 故当112a <<时,12()()0f x f x +>,综上所述.满足条件的a的取值范围为1,12⎛⎫ ⎪⎝⎭.【提示】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决. 【考点】函数单调性,极值,导数的性质与应用。
(24)--13-14学年高等代数(II)试卷及参考答案
得分 五、(10 分) 设 V 是数域 Ω 上的 n 维向量空间, σ 是 V 上线性变换. 证明: 存
在 V 上线性变换 τ , 使得 kerσ = τ (V ), kerτ = σ(V ).
第 5 页 (共 6 页)来自得分 六、(10 分) 设 A1, A2, . . . , Ak 均为 n 阶实对称矩阵, 并且对任意的 i, j 均有
¯ Ý:˦ ÈÙ u, v ∈ V , Þ
(σ + τ )(u)v = u(σ − τ )(v),
(1)
(σ + 2τ )(u)v = uσ(v).
Ý ¦ ÈÙ Þ (2) − (1)
u, v ∈ V ,
τ (u)v = uτ (v).
À τ Ï ©¦». Á Ý (1) ¸ (3) ¦ ÈÙ u, v ∈ V , Þ
b
a + 3b
0
1
下对应的矩阵为
.
5. 设 V 是数域 Ω 上的有限维向量空间, 若 V 上线性变换 σ 的特征多项式
为 f (λ) = nk=1(λ − k)k, 则 dim ker(σ − k∗)k =
, 其中 k = 1, 2, . . . , n.
6. 设 V 是 2014 维欧氏空间, 若 V 上线性变换 σ 既是正交变换, 又是反对称
变换, 则 σ 的特征多项式为
.
7. 设 1, 2 都是 30 阶方阵 A 的特征根, 1 的代数重数为 29, 几何重数为 27,
则满足此条件且互不相似的 A 的总个数为
.
第 1 页 (共 6 页)
得分 二、(15 分) 设 A, B 均是 n 阶实对称矩阵. 证明: A, B 都是半正定矩阵, 当且
13级《高等数学I、II》(上)期末考试卷及答案
2013—2014学年第一学期《高等数学I 、II 》考试试卷(A 卷)一、填空题(每小题3分,共48分)1. 2()ln(1)f x x =-, 已知 000()(2)3lim2h f x f x h h →--=, =0x 13- .2. 2sin 10()0ax x e x f x x a x ⎧+-≠⎪=⎨⎪=⎩在0x =处连续,则a = 1- . 3. 函数32()391f x x x x =--+的既递减又上凸的区间是 (1,1)- .4. 21tx t y e ⎧=+⎨=⎩,则22d d y x 4t t. 5. 设)(x f 在0=x 点处连续,且0()lim12x f x x→=,那么(0)f '= 2 6. 222||2x x dx x -++⎰ ln3 .7.x y dye dx+=的通解为 y x e e c --=+ 8. 设3(1)f x x +=,则(1)f x '-= 23(2)x - .9. 方程2610y e xy x ++-=确定隐函数()y y x =,则(0)y '= 0 。
10. 若函数)(x f 具有二阶连续导数,,0)()(21='='x f x f ),(0)( 21x f x f ''<<''则12(),().f x f x 的大小关系为 ).()(21x f x f >11. 变上限函数⎰21sin x tdt 的导数等于 2sin 2x x12. 设x ,x e ,x e -是二阶非齐次线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,则该方程的通解为x x e C x e C y x x +-+-=-)()(21。
得 分13. 广义积分21(ln )edx x x +∞⎰= 1 。
14. 微分方程052=+'-''y y y 的通解为12(cos 2sin 2)x y e c x c x =+ 15. ⎰⎰'+=dx x f x c x dx x f )( ,sin )(2 2sin 2sin x x x C -+ .16. 函数x e x f -=)(的四阶麦克劳林公式是)(!!!443243211x o xx x x ++-+-二、计算题(满分24分,每小题6分)17.求020()lim (0,0)ln(1)xt t xx a b dt a b t dt→->>+⎰⎰)(b a ≠原式=-+→limln()x x x a b x 0212 3分=-+→lim ln ln x x x a a b b x 0412=14lna b 3分18、求曲线xex y 12-+=)(的渐近线。
2014年高考数学试题湖南卷(理科)及答案详解word版
2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时间120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足(z i i i z+=为虚数单位)的复数z =( )A .1122i + B .1122i - C .1122i -+ D .1122i--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,p p p 则( )A .123p p p =< B .231pp p =< C .132pp p =< D .123pp p ==3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则(1)(1)f g +=()A .-3B .-1C .1D .34.51(2)2x y -的展开式中23x y 的系数是( )A .-20B .-5C .5D .205.已知命题:p 若x y >,则x y -<-,命题:q 若x y >,则22x y >.在命题:①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是( ) A .①③ B .①④ C .②③ D .②④6.执行如图右所示的程序框图,如果输入的[t ∈于( )A. [6,2]-- B .[5,1]-- C .[4,5]- D .[3,6]-7. 打磨,加工成球,则能得到的最大球的半径等于( ) A .1 B .2 C .3 D .48.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A .2p q + B .(1)(1)12p q ++- C D .19.已知函数()sin(),f x x ϕ=-且230()0f x dx π=⎰,则函数()f x 的图象的一条对称轴是( )正视图侧视图俯视图A .56x π= B .712x π= C .3x π= D .6x π=10.已知函数21()(0)2x f x x e x =+-<与2()ln()g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.(-∞ B.(-∞ C.( D.(二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分. (一)选做题(请考生在第11、12、13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为4π的直线l 与曲线2c os ,:(1sin x C y ααα=+⎧⎨=+⎩为参数)交于 A B 、两点,且||2AB =,以坐标原点O为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 .12.如图右,已知,AB BC 是O 的两条弦,,AO BC AB BC ⊥=则O 的半径等于.13.若关于x的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = .(二)必做题(14-16题)ABDCO14.若变量,x y 满足约束条件,4,y x x y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为-6,则k = .15.如图右,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <, 原点O 为AD 的中点,抛物线22(0)ypx p =>经过,C F 两点,则b a =.16.在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足||1CD =,则||OA OB OD ++的最大值是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.18.(本小题满分12分)如图右,在平面四边形ABCD 中,1,2,AD CD AC ===(Ⅰ)求cos CAD ∠的值;(Ⅱ)若cos BAD CBA ∠=∠=求BC 的长.19.(本小题满分12分)如图,四棱柱1111ABCD A B C D -的所有棱长都相等,11111,,ACBD O AC B D O ==四边形11ACC A 和四边形11BDD B 均为矩形.(Ⅰ)证明:1O O ⊥底面ABCD ;(Ⅱ)若60CBA ∠=,求二面角11C OB D --的余弦值.A 1B 1C 1D 1O 1ACDBO已知数列{}na 满足*111,||,.n n n aa a p n N +=-=∈(Ⅰ)若{}na 是递增数列,且123,2,3a a a 成等差数列,求p 的值; (Ⅱ)若12p =,且21{}n a-是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式.21.(本小题满分13分)如图右,O 为坐标原点,椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,离心率为1e ;双曲线22222:x y C a b-1=的左、右焦点分别为34,F F ,离心率为2e .已知12e e =且24|| 1.F F =(Ⅰ)求12,C C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦,AB M 为AB 的中点.当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.已知常数0a >,函数2()ln(1).2xf x ax x =+-+ (Ⅰ)讨论()f x 在区间(0,)+∞上的单调性;(Ⅱ)若()f x 存在两个极值点12,,x x 且12()()0,f x f x +>求a 的取值范围.参考答案一.选择题1【解】选B.由(1)1111(1)(1)222z i i i i i iz i zi i i +---=====-----,即选B.2【解】选D. 根据随机抽样的原理可得简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D.3【解】选C.由函数奇偶性,联想转 化:32(1)(1)(1)(1)(1)(1)11f g f g +=---=-+-+=.4【解】选A.二项式51(2)2x y -的通项为()5151()2,,2r r rr T C x y r r N -+=-≤5∈,令3r =时,()33223451()2202TC x y x y =-=-,故选A.5【解】选C.显然p 真q 假,6【解】选D. 由程序框图可知①当[)2,0t ∈-时,运行程序如下,(]2211,9,3t t S t =+∈=-∈②当[]0,2t ∈时,则[]33,1S t =-∈--;综上①②可知,(][][]2,63,13,6S ∈---=-故选D.7【解】选B.由三视图可得该几何体为三棱柱(正视图侧视图宽为6的矩形侧面与地面接触).易知不存在球与该三棱 柱的上、下底面及三个侧面同时相切,故最大的球是与其 三个侧面同时相切,所以最大球的半径为上(下)底面直角 三角形内切圆的半径r ,则681022r +-==,故选B.8【解】选D.设两年的年平均增长率为x , 则有()()()2111x p q +=++1x ⇒=,故选D.9【解】选A.由230()0f x dx π=⎰得,23cos()00x πϕ--=,即2cos cos()03πϕϕ--=,可化为3cos 02ϕϕ=,即tan ϕ可得,3k k Z πϕπ=+∈,也所以()sin()sin()3f x x x πϕ=-=±-,经检验可知A 选项符合.10【解】选B.依题意在曲线()g x 取一点(,())(0)x g x x >,则在曲线()f x 上存在一点(,())x f x --与之对应(关于y 轴对称),所以()()f xg x -=在0x >上有解,即221ln()2x x e x x a -+-=++,也即1ln()2x x a e -+=-在x >有解,由于121ln(),2x y x a y e -=+=-分别为(0,)+∞减函数,于是结合图象易知,方程1ln()2x x a e -+=-有解的充要条件为01ln 2a e -<-,即a 选B.二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分. 11【解】填(c o s s i n)ρθθ-=.依题意曲线C的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()2,1到直线l 的距离0d =,y AB O所以圆心在直线l 上,故1y x =-sinsin )1ρθθθ=-=. 12【解】填32.设AOBC D =,易知BD =ABD ∆中由勾股定理可得1AD =,连接2222232(1)2OB BD OD r r r =+⇔=+-⇒=. 13【解】填-3 .由题可得52331233a a ⎧--=⎪⎨-=⎪⎩3a ⇒=-,故填3-. (二)必做题(14-16题) 14【解】填 -2 .如右图所示,2k <,故当目标函数2y x z =-+过点(,)A k k 时,z 即63k -=,即2k =-.15【解】填1.由条件可知(,),(,)22a a C a Fb b + 上,代入C 点易得p a =,又代入F 点得2220b ab a --=,可化为2()210bb a a --=,得1b a =,又因为1b a >,所以1a=,即为所求.16【解】填1.由||1CD =知,动点(,)D x y 在:(C x 设(1,OA OB OD x y =++=-m ,则22||(1)(x y =-+m 其几何意义为C 上动点(,)D x y 与定点(1,E 如右图所示,由平面几何知,max||||1EC r =+=m .三.解答题A17【解】(Ⅰ)记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,E F相互独立,且23(),()35P E P F ==,又记事件 “至少有一种新产品研发成功”为M , 则2313()1()1()1()()13(1)(1)3515P M P M P EF P E P F =-=-=-=---= (6)分(Ⅱ)记该企业可获利润为ξ(万元),则ξ的可能取值有0,100,120,220. 且易知122133(0),(100)35153515P P ξξ==⨯===⨯=;224236(120),(220)35153515P P ξξ==⨯===⨯=; 故所求的分布列为(如右表所示): 且2346()010012022014015151515E ξ=⨯+⨯+⨯+⨯= (12)分18【解】(Ⅰ)如图右,在ADC ∆中,由余弦定理,得2227c o s 2AC AD CD CAD AC AD +-∠===⋅ (5)分(Ⅱ)设BAC α∠=,则BAD CAD α=∠-∠, 因为cos CAD BAD ∠∠=,且,(0,)CAD BAD π∠∠∈,所以sin CAD ∠==同理sin 14BAD ∠=, A CDBACDB于是sin sin()sin cos cos sin BAD CAD BAD CAD BAD CAD α=∠-∠=∠⋅∠-∠⋅∠,(147=-⋅=, (10)分所以在ABC ∆中,由正弦定理有sin 3sin AC BC CBAα===∠, 即为所求.………………12分19【解】(Ⅰ)证明:如图右,因为四边形11ACC A 为矩形,所以1C C A C ⊥,同理1DD BD ⊥, 因为11//CC DD ,所以1CCBD ⊥,而AC BD O =,因此1CC ⊥底面ABCD .由题设知11//OO CC ,故1O O ⊥底面ABCD ;………………6分(Ⅱ)解法1 如图右,由(Ⅰ)知1O O ⊥底面ABCD ,所以1O O ⊥底面1111A B C D ,于是1O O ⊥11AC .又由题设知四边形1111A B C D 是菱形,所以1111ACB D ⊥,而1111B D OO O =,故11AC ⊥平面11BDD B ,于是过点1O 作11O H B O ⊥于H ,连结1HC 则11HC B O ⊥(三垂线定理),故11C HO ∠是二面角11C OB D --的平面角.不妨设2AB =,因为60CBA ∠=,所以11,OB OC OB ===在11Rt OO B ∆中,11111OO O BO H OB ⋅==,而111OC=,于是1C H ==,A 1B 1HC 1D 1O 1ACDBO故11Rt HO C ∆中,有1111cos O H C HOC H ∠=== 即二面角11COB D --的余弦值为解法2 由题设知四边形ABCD 是菱形,所以AC 又(Ⅰ)已证1O O ⊥底面ABCD ,从而1,,OB OC OO 两两垂直,如图右,以O 为原点,1,,OB OC OO 所在直线分 别分x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -. 不妨设2AB =,因为60CBA ∠=,所以1OB OC =,于是相关各点的坐标为11(0,0,0),(0,1,2)O B C ,易知1(0,1,0)=n是平面11BDD B 的一个法向量.设2(,,)x y z =n 是平面11OB C 一个法向量,则21210,0,OB OC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20,20.z y z +=+=⎪⎩ ,令z =则2,x y ==,故2=n ,设二面角11C OB D --的大小为θ,由图可知θ为锐角,于是121212||cos |cos ,|||||θ⋅=<>===⨯n n n n n n ,故二面角11COB D --的余弦值为分20【解】(Ⅰ)因为{}na 是递增数列,所以11||n n n n n aa a a p ++-=-=,而11a =,因为2231,1ap a p p =+=++,又123,2,3a a a 成等差数列,所以21343aa a =+,因而230p p -=,解得1,3p =或0p =,1当0p =时,1n n aa +=,这与{}n a 是递增数列矛盾.故13p =;………………………………6分(Ⅱ)由于21{}n a -是递增数列,因而21210n n a a +-->,于是212221()()0n n n n a a a a +--+->,……①而22121222111||()||()22n n n n n n a a a a -+--=<-=,……②由①②知,2210n n a a -->,即212211()2n n n a a ---=,……③因为2{}na 是递减数列,同理可得2120n n aa +-<,故22121()2n n n a a +-=-……④由③④即知,11*111(1)()(),2,22n n n nn a a n n N ----=-=--≥∈,所以112211()()()(2)nn n n n aa a a a a a a n ---=-+-++-+≥121111[()()()]1222n n --=--+-++-+1111()141121()()1233212n n ----=--=--+, 又当1n =时,11a=也适合上式,故1*411(),332n n a n N -=--∈.………………………13分21【解】(Ⅰ)因为12e e =所以22221222(1)(1)b b e e a a =-+= 得222ab =,从而24(,0),,0)F b F ,24||1b F F -=,即21,2b a ==,故12,C C 的方程分别为22221,122x x y y +=-=(Ⅱ)由(Ⅰ)易知1(1,0)F -,依题意设:1AB x my =-,1122(,),(,)A x y B x y ,由221,22x my x y =-⎧⎨+=⎩,得22(2)210m y my +--=,显然0>恒成立, 所以12122221,21m y y y y m m -+==++, 故121224()22x x m y y m -+=+-=+,于是AB 的中点222(,)22mM m m -++, 故直线PQ 的斜率为2m k -=,即直线:2m PQ y x =-,即20mx y +=,由22,222m y x x y ⎧=-⎪⎨⎪-=⎩得22(2)4m x -=,即2224(2)2x m m =<-,由双曲线的对称性易PQ =,由M 为AB 的中点,显然,A B 到直线PQ 的距离相等,即d =,所以2d =,又因为,A B 在直线20mx y +=的两侧,故1122(2)(2)0mx y mx y +⋅+<,于是22d ==,又因为12||y y -==即2d ,故四边形APBQ的面积为21||22)2S PQ d m =⋅=≤<, 由2022m <-≤,故当0m =时,S 有最小值2,综上所述,四边形APBQ 面积的最小值为2.………………13分22【解】(Ⅰ)由2222(2)24(1)'()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++,(0x >)①当1a ≥时,'()0f x >;②当01a <<时,由()0f x '=得,12x x ==-舍去),且由于二次函数24(1)y ax a =+-的图象是开口向上的抛物线,故易知:当10x x <<时,'()0f x <,当1x x >时,'()0f x >,综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增; 当01a <<时,()f x在区间上递减,在区间)+∞上递增.……6分 (Ⅱ)由(Ⅰ)知224(1)'()(1)(2)ax a f x ax x +-=++,所以①当1a ≥时,()0f x '≥,此时()f x 不存在极值点. ②当01a <<时,'()0f x =的两根为12x x ==- 依题意12,x x 是()f x 定义域上的两个极值点,故必有221,2x x a=--≠-, 解得12a ≠,结合二次函数24(1)y ax a =+-的图象可知,当101,2a a <<≠时,12,x x 分别是()f x 的极小值、极大值点.且12124(1)0,a x x x x a-+==. 而1212121222()()ln(1)ln(1)22x x f x f x ax ax x x +=+-++-++,212121212121244()ln[1()]2()4x x x x a x x a x x x x x x ++=+++-+++224(1)2ln(21)ln(21)2,2121a a a a a -=--=-+--- 令21(1,0)(0,1)t a =-∈-,则2122()()()ln 2,(11,0)f x f x g t t t t t+==+--<<≠,于是22(1)'()0t g t t -=<,即()g t 在(1,0),(0,1)t ∈-上递减,所以 ①当10t -<<时,()(1)40g t g <-=-<,与12()()()0f x f x g t +=>的题意矛盾,舍去;②当01t <<时,()(1)0g t g >=,符合题意.综上可知,要使12()()0,f x f x +>则必须有21(0,1)t a =-∈,即1(,1)2a ∈为所求.……13分。
(NEW)湖南省2014届高三文科数学十三校第二次联考试卷及答案网页版
湖南省 2014 届高三·十三校联考第二次考试数学(文)试题总分: 150 分时量: 120 分钟注意事项:1.答题前,考生务势必自己的姓名、准考据号写在答题卡和本试题卷的封面上,并认真查对答题卡条形码上的姓名、准考据号和科目。
2.选择题和非选择题均须在答题卡上作答,在本试题卷和底稿纸上题无效。
考生在答题卡上按以下要求答题:(1)选择题部分请按题号用 2 B 铅笔填涂方框,改正时用橡皮擦洁净,不留印迹;(2)非选择题部分请按题号用 O. 5 毫米黑色墨水署名笔书写,不然作答无效;(3)请勿折叠答题卡。
保持字体工整、笔迹清楚、卡面洁净。
3.本试题卷共 6 页。
如缺页,考生须实时报告监考老师,不然结果自负。
4.考试结束后,将本试题卷和答题卡一并交回。
1.复数( 1+i )2 的虚部是A.0 B. 2 C.一 2 D.2i2.等差数列 {} 的前规项和为 Sn, S3=6,公差 d=3,则 a4=A.8 B.9 C.’ 11.D123.“ In x>1是“”x>l的’A.充要条件 B.必需非充足条件C.充足非必需条件D.既不充足也不用要条件4.向等腰直角三角形ABC(此中 AC=BC)内随意投一点M,则 AM 小于 AC 的概率为5、设平面向量等于6、阅读右侧的程序框图,则输出的S 等于A、14B、20C、30D、557.过抛物线焦点 F 的直线交抛物线于 A、 B 两点,若 A、B 在抛物线准线上的射影分别为A、30°B、45°C、60°D、90°湖南省 2014 届高三文科数学十三校第二次联考试卷及答案阅读版(可调整文字大小 )上一篇:湖南省2014 届高三理科数学十三校第二次联考试题及答案下一篇:天津市红桥区2014 届高三语文第一次模拟考试一试题及答案天津市红桥区 2014 届高三第一次模拟考试语文试题一、( 15 分)1.以下词语中加点字的读音,全都正确的一项为哪一项A.契( qi è)机倏( sh ū)忽沼( z ǎo)泽瞠( ch ē ng)目结舌B.宰( z ǎi)割斡( wò)旋抹煞( sh ā)转败为胜( y í)C.按捺( nài)宁谧( mì)拙( zhu ō)劣弱不由( j ìng)风D.徽( hūi)章稽( j í查)证券( qu àn)向隅( y ú)而泣2.以下词语中没有错别字的一项为哪一项A.锋利殷勤不即不离孤注一掷 B.罢黜裹胁鼓惑人心内心不安C.示威酬谢要言不烦不肖后代 D.虐疾唐突余韵悠久开启民智3.下边语段横线处应填入的词语,最适合的一项为哪一项自古以来,中国人都是以道德视角谈贪污问题,认为要贪污,一定提高官吏的道德水平,使他们有一种清亮如水的,才能够一文不取。
湖南省2014届高三.十三校二联理数试题及答案纯word版(16k)
湖南省2014届高三·十三校联考 第二次考试理科数学试卷考试时间:2014年4月12日15:00~17:00得分:一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置.1.已知集合1{|1},{|ln 0}1A xB x x x =≥=≤-,则A B = ( ) A. (,1)-∞ B. (0,1] C. [0,1) D.2.已知a R ∈,则“2a =”是“复数2(2)(1)(z a a a i i =--++为 虚数单位)为纯虚数”的( )A. 充分不必要条件B. 必要不充分条件C.充要条件 D. 既不充分也不必要条件 3.(2013·肇庆二模改编)若某程序框图如图所示,则该程序运行 后输出的值是( )A. 4B. 5C. 6D. 7 4.等差数列{}n a 的前n 项和为n S ,且2410,36S S ==,则过 点(,)n P n a 和*2(2,)()n Q n a n N ++∈的直线的斜率是( )A. 1B. 2C. 4D.145.若函数()y f x =的图象如图,则函数(1)y f x =-的图象大致为( )6.(2013•嘉兴一模)如图,给定由10个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是( )A. 12B. 13C. 15D. 167.若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( )A. 10cm 3B. 20cm 3C. 30cm 3 B. 40cm 3 8.已知双曲线22221(0,0)x ya b a b-=>>,12,A A 为实轴顶点,F 是右焦点,(0,)B b 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得12i PA A ∆构成以12A A 为斜边的 A B C 正视图侧视图 俯视图直角三角形,则双曲线离心率e 的取值范围是( )A. )+∞B. )+∞C.D. 9.(2013•金山区一模改编)若实数a ,b ,c 成等差数列,点(1,0)P -在动直线0ax by c ++=上的 射影为M ,点(3,3)N ,则||MN 的最大值是( )A. 5B. 5C. 5+D. 5-10.已知点G 是ABC ∆的重心,且11,tan tan tan AG BG A B Cλ⊥+=,则实数λ的值为( ) A. 13 B. 12 C.3 D. 2二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上. (一)选做题(请考生在11、12、13三题中任选两题作答,如果全做,则按前两题记分)11.(2011•天津卷改编)如图,已知圆中两条弦AB 与CD 相交于点,F E 是AB 延长线上一点,且2DF CF AF BF ==,若CE 与圆相切,且CE =,则BE = .12.在直角坐标系xOy 中,曲线C 的参数方程为2x t y t⎧=⎪⎨=⎪⎩为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 10ρθρθ-+=.则l 与C 的交点直角坐标为 .13.设,,,2280x y z R x y z ∈+++=,则222(1)(2)(3)x y z -+++-的最小值为 .(二)必做题(14 ~16题)14.定积分2101sin e dx xdx xπ-⎰⎰的值为 .15.(2013•昌平区一模)在Rt ABC ∆中,90,4,2,C AC BC ∠=== D 是BC 的中点,(1)()AB AC AD -⋅=.(2)E 是AB 的中点,P 是ABC ∆(包括边界)内任意一点,则AD EP ⋅的取值范围是 . 16.(2013•石景山区一模改编)给定有限单调递增数列*{}(n x n N ∈,数列{}n x 至少有两项)且0(1)i i x x n ≠≤≤,定义集合*{(,)|1,,,}i j A x x i j n i j N =≤≤∈且.若对任意点1A ∈A ,存在点2A ∈A 使得12OA OA ⊥(O 为坐标原点),则称数列{}n x 具有性质P . (1)给出下列四个命题,其中正确的是 .(填上所有正确命题的序号) ①数列{}:n x -2,2具有性质P ; ②数列{}n y :-2,-1,1,3具有性质P ;③若数列{}n x 具有性质P ,则{}n x 中一定存在两项,i j x x ,使得0i j x x +=; ④若数列{}n x 具有性质P ,121,0x x =->且1(3)n x n >≥,则21x =.(2)若数列{}n x 只有2014项且具有性质13,1,2P x x =-=,则{}n x 的所有项和2014S = .ACEB F D三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知ABC ∆的三内角分别为,,,3A B C B π=,向量(1cos2,2sin ),A C =+-m (tan ,A =ncos )C ,记函数()f A =⋅m n .(Ⅰ)若()0,2f A b ==,求ABC ∆的面积;(Ⅱ)若关于A 的方程()f A k =有两个不同的实数解,求实数k 的取值范围.18. (本小题满分12分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选. (Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.19. (本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//,AD BC AD CD ⊥,且2AD CD BC PA ====, 点M 在PD 上. (Ⅰ)求证:AB PC ⊥;(Ⅱ)若二面角M AC D --的大小为45 ,求BM 与平面 PAC 所成角的正弦值.AB D M P20. (本小题满分13分) 如图,矩形ABCD 是一个观光区的平面示意图,建立平面直角 坐标系,使顶点A 在坐标原点,O B D 、分别为x 轴、y 轴,3AD =(百米),AB a =(百米)(34a ≤<)观光区中间叶形阴影部分MN 是一个人工湖,它的左下方边缘曲线是函数2(12)y x x=≤≤的图象的一段.为了便于游客观光,拟在观光区铺设一条穿越该观光区的直 路(宽度不计),要求其与人工湖左下方边缘曲线段MPN 相切(切点 记为P ),并把该观光区分为两部分,且直线l 左下部分建设为花圃. 记点P 到AD 的距离为,()t f t 表示花圃的面积. (Ⅰ)求花圃面积()f t 的表达式; (Ⅱ)求()f t 的最小值.21.(本小题满分13分)已知12,F F 分另为椭圆22122:1(0)x y C a b a b+=>>的上、下焦点,1F 是抛物线22:4C x y =的焦点,点M 是1C与2C 在第二象限的交点, 且15||.3MF =(Ⅰ)求椭圆1C 的方程;(Ⅱ)与圆22(1)1x y ++=相切的直线:(),0l y k x t kt =+≠交椭1C 于,A B ,若椭圆1C 上一点P 满足OA OB OP λ+=,求实数λ的取值范围.22.(本小题满分13分)设x a =和x b =是函数21()ln (2)2f x x x m x =+-+的两个极值点,其中,a b m R <∈.(Ⅰ)求()()f a f b +的取值范围; (Ⅱ)若2(m e ≥-为自然对数的底数),求()()f b f a -的最大值.2014年湖南省十三校联考二理数参考答案一、选择题D C A C A C B D A B二、填空题11. 12.12. (1,2).13. 9 .14. 0 .15. (1) 2 ,(2) [-9,9] .16. (1) ①③④ ,(2)201322-.三、解答题17.【解】(Ⅰ)由()(1cos2)tan 2sin cos ,f A A A C C =⋅=+-m n 即2()2cos tan 2sin cos sin 2sin 2f A A A C C A C =⋅-⋅=-,又因为23A C π+=,所以23C A π=-代入上式得,41()s i n 2s i n 2s i n 2s i n (2)i n 2c o s 2s i n (2323f A A C A A AA ππ=-=--=+=+由()0f A =,得sin(2)03A π+=,又20,32A A ππ<<≠且,所以52333A πππ<+<,且4233A ππ+≠………………………5分 也所以2A ππ+=,即3A π=,从而ABC ∆为正三角形, 所以2ABC S ∆=8分(Ⅱ)由(Ⅰ)知()sin(2)3f A A π=+,令4452,(,)(,)33333x A x πππππ=+∈ ,则方程()f A k =有两个不同的实数解等价于sin k x =在445(,)(,)3333x ππππ∈ 上有两上不同实根,作出445sin ,(,)(,)333y x x ππππ=∈ 草图如右, 1k <<或1k -<<时,直线y k =与曲线 s i n y x =有两个交点,符合题意,故实数k 的取值范围为 (1,k ∈- .…………………………………………………………………12分 18.【解】(Ⅰ)设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.…………………1分且31155533101015(15),(0),1212C C C P X P X C C =-===== 21355533101051(15),(30)1212C C C P X P X C C ======………5分 乙的得分的分布列如右表,且1510515530115()122E X -⨯+⨯+⨯+⨯==……………8分(Ⅱ)由已知甲、乙至少答对2题才能入选, 记甲、乙入选的事件分别为,A B ,则由(Ⅰ)知,511()12122P B =+=,X -15 0 15 30 P 112 512 512 112又甲回答3题可以视为独立重复试验,故223332381()()()555125P A C =+=,于是甲、乙至少有一人入选的概率4411031()1P P A B =-⋅= 19.【解】(Ⅰ)如图,设E 为BC 的中点,连结AE , 则,//AD EC AD EC =,所以四边形AECD 故AE BC ⊥,又AE BE EC === 所以45ABC ACB ∠=∠=,故AB AC ⊥,又因为PA ⊥平面ABCD ,所以AB PA ⊥, 且PA AC A = ,所以AB ⊥平面PAC ,故有AB PC ⊥ (Ⅱ)如图,以A 为原点,分别以射线,,AE AD AP为,,x y z 轴的正半轴,建立空间直角坐标系A xyz -.则(0,0,0),(0,(0,0,2)A E B C D P -,设,2)(01)PM PD λλλ==-≤≤,易得,22)M λ-,设平面AMC 的一个法向量为1(,,)x y z =n ,则110(22)0AC AM y z λ⎧⋅=+=⎪⎨⋅=+-=⎪⎩n n, 令y 得21t x z t ==-,即12()1tt =-n .又平面ACD 的一个法向量为2(0,0,1)=n ,由题知1212122|||||cos ,|cos45||||λ⋅<>===⨯n n n n n n ,解得12λ=, 即(M BM =- ,而AB =-是平面PAC 的一个法向量,设平面BM 与平面PAC 所成的角为θ,则sin |cos ,|BM AB θ=<>== . 故直线BM 与平面PAC .…………………………………12分 20.【解】(Ⅰ)由题意可设2(,),12P t t t ≤≤,又因22y x'=-,所以过点P 的切线方程为222()y x t t t -=--,即224(2)y x i t t t=-+≤≤, 切线l 与x 轴交于点(2,0)F t ,与y 轴交于点4(0,)E t ,①当2,43,1t a tt ≤⎧⎪⎪≤⎨⎪≤≤2⎪⎩,即432a t ≤≤时,切线左下方区域为直角三角形.所以14()242f t t t=⨯=;②当2,43,1t a tt >⎧⎪⎪≤⎨⎪≤≤2⎪⎩,即2a t <≤2时,切线左下方区域为直角梯形.所以22214424()()2t a at a f t a t t t --=+=; ③当2,43,1t a t t ≤⎧⎪⎪>⎨⎪≤≤2⎪⎩,即413t ≤<时,切线左下方区域为直角梯形. 所以221439()(2)36224t t t f t t t -=+⨯=-; 综上有,222946,1,434()4,,324,2t t t a f t t at a at t ⎧-≤<⎪⎪⎪=≤≤⎨⎪⎪-<≤2⎪⎩…………………………………………………………7分(Ⅱ)①当413t ≤<时,22994()6()4443t f t t t =-=--+,当1t =时,min 15()44f t =<;②当22at <≤时,22442(2)(),()0at t at a t f t f t t t --'==<, 所以()f t 在(,2]2a上递减,所以2min ()(2)244a f t f a ==-<,下面比较224a a -与154的大小,由于2215815(3)(5)(2)04444a a a a a a -+----==≤,所以可知min 15()4f t =即求.………………………………………………………………13分22.【解】(Ⅰ)由题知1(0,1)F ,所以221a b -=,又由抛物线定义可知1513M MF y =+=,得23M y =,于是易知2()3M ,从而273MF =, 由椭圆定义知1224a MF MF =+=,得2a =,故23b =,从而椭圆的方程为22134x y +=……………………………………………………………6分(Ⅱ)设112200(,),(,),(,)A x y B x y P x y ,则由OA OB OP λ+=知,12012,x x x y y y λλ+=+=,且2200134x y +=,……①又直线:(),0l y k x t kt =+≠与圆22(1)1x y ++=相切,1=,由0k ≠,可得22(1,0)1tk t t t=≠±≠-……② 又联立22(),4312,y k x t x y =+⎧⎨+=⎩消去y 得22222(43)63120k x k tx k t +++-= 且0∆>恒成立,且2221212226312,4343k t k t x x x x k k -+=-=++, 所以121228()243kty y k x x kt k +=++=+,所以得22268(,)(43)(43)k t kt P k k λλ-++…………8分代入①式得422222222212161(43)(43)k t k t k k λλ+=++,所以2222443k t kλ=+ 又将②式代入得,22224,0,11()1t t t tλ=≠≠±1++,……………………………………10分易知2222221111()11,()13t t t t ++>++≠且,所以244(0,)(,4)3λ∈ ,所以λ的取值范围为{|22,0,}3λλλλ-<<≠≠±且且…………………………13分22.【解】(Ⅰ)函数()f x 的定义域为(0,)+∞,21(2)1'()(2)x m x f x x m x x-++=+-+=.依题意,方程2(2)10x m x -++=有两个不等的正根,()a b a b <,故有2(2)40,20m m +->⎧⎨+>⎩,解得0m >,且2,1a b m ab +=+=,所以221()()ln ()(2)()2f a f b ab a b m a b +=++-++,22211[()2](2)(2)122a b ab m m =+--+=-+-,又210,(2)132m m >-+-<-,所以()()f a f b +的取值范围是(,3)-∞-.……………6分(Ⅱ)由221()()ln ()(2)()2b f b f a b a m b a a -=+--+-,221ln ()()()2b b a b a b a a =+--+-2222111ln ()ln ln ()222b b b a b b ab a a a ab a a b-=--=-=--令1b t a =>,所以11()()()ln ()2f b f a g t t tt-==--,又因为2122(2)2m m m e e ≥-⇔+≥⇔+≥++, 所以221()111()2222a b a b e e t e e ab e t e++≥++⇔≥++⇔++≥++,可化为()(1)0t e te te --≥,因为1te e >>,所以得t e ≥,求11()ln ()2g t t t t=--在t e ≥上最大值,由222111(1)()(1)022t g t t t t -'=-+=-<,所以()g t 在[,e +∞)上递减,所以1()()122e g t g e e ≤=-+,故()()f b f a -的最大值为1122e e-+.…………………13分。
【原创·纯word版解析系列】数学文卷·2014届湖南省十三校高三第二次联考(2014.04)word版
湖南省2014届高三·十三校联考第二次考试数学(文)试题总分:1 50分 时量::1 20分钟注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和本试题卷的封面上,并认真核对答题卡条形码上的姓名、准考证号和科目。
2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上题无效。
考生在答题卡上按如下要求答题: (1)选择题部分请按题号用2 B 铅笔填涂方框,修改时用橡皮擦干净,不留痕迹; (2)非选择题部分请按题号用O .5毫米黑色墨水签字笔书写,否则作答无效; (3)请勿折叠答题卡。
保持字体工整、笔迹清晰、卡面清洁。
3.本试题卷共6页。
如缺页,考生须及时报告监考老师,否则后果自负。
4.考试结束后,将本试题卷和答题卡一并交回。
本套试卷从整体上来说,难度适中,重点知识基本覆盖全面,很好地遵循了“立意鲜明,背景新颖,设问灵活,层次清新”的特色,在考查基础知识的同时,注重考查了学生的能力。
本套试卷中考查了数形结合的数学思想、等价转化与化归的数学思想、分类讨论的数学思想、函数与方程的数学思想。
7题、10题、14题、15题等小题注重了基础知识考查的同时,还对学生的数学思想、数学能力的进一步考查。
1.复数(1+i )2的虚部是 A .0 B .2 C .一2 D .2i 【知识点】考查复数的基本运算,复数的实部、虚部的定义。
【答案解析】 B 2(1)2i i +=,虚部为2. 【思路点拨】平方展开。
2.等差数列{n a }的前规项和为S n ,S 3=6,公差d=3,则a 4=A .8B .9C .’11D .12 【知识点】等差数列的基本量运算,通项公式、等差数列的前n 项和公式。
【答案解析】 A 3114336,1,8S a d a a =+=∴=-=【思路点拨】通过前n 项和公式求出首项,再利用通项公式。
3.“In x>1”是“x>l"的 A .充要条件 B .必要非充分条件 C .充分非必要条件 D .既不充分也不必要条件 【知识点】对数不等式、充分必要条件的考查。
2013-2014年高数2试卷A考试参考答案及评分标准_28849
( A卷)
适用专业年级:理工科类2013级考试时间:120分钟
命题人:肖海青
一、选择题(每题4Байду номын сангаас,共20分)
1、B;2、C;3、D;4、C;5、A
二、填空题(每题4分,共20分)
1、 ;2、 ;3、 ;
4、 ;5、 (或者 )
三、计算题(每题7分,共42分)
1、 (3分)
1、解:两曲面投影区域为: (2分)
(9分)
2、解: 约束条件为 ,
(3分)
(6分)
,因为只有唯一驻点,此点即为 的最大点,最大值为54,即甲原料购进6吨,乙原料购进9吨,可使企业的效用达到最大值5400元(9分)
第1页共1页
(7分)
2、由对称性.
(7分)
3、在直线上取点 ,与已知点 构成向量 ,
直线的方向向量为 ,取 (5分)
所以平面方程为 即
4、取 ,逆时针方向,
=
= =
5、半球面和锥面在 面的投影区域为 (2分)
(4分)
= (7分)
6、 (2分)当 时,级数发散,收敛域为 (4分)
, (7分)
四、应用题(共18分)
2014年普通高等学校招生全国统一考试数学(湖南卷)文 (2)
2014年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014湖南,文1)设命题p:∀x∈R,x2+1>0,则 p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x∈R,x2+1≤0答案:B解析:因为全称命题的否定为特称命题,所以 p为∃x0∈R,x02+1≤0.故选B.2.(2014湖南,文2)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}答案:C解析:由交集的概念,结合数轴(数轴略)可得A∩B={x|2<x<3}.故选C.3.(2014湖南,文3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案:D解析:由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3,故选D.4.(2014湖南,文4)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x答案:A解析:由偶函数的定义知,A,B为偶函数.A选项,f'(x)=-2x3在(-∞,0)恒大于0;B选项,f'(x)=2x在(-∞,0)恒小于0.故选A.5.(2014湖南,文5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为()A.45B.35C.25D.15答案:B解析:由几何概型的概率公式可得P(X≤1)=35,故选B.6.(2014湖南,文6)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11答案:C解析:易知圆C1的圆心坐标为(0,0),半径r1=1.将圆C2化为标准方程(x-3)2+(y-4)2=25-m(m<25),得圆C2的圆心坐标为(3,4),半径r2=√25-m(m<25).由两圆相外切得|C1C2|=r1+r2=1+√25-m=5,解方程得m=9.故选C.7.(2014湖南,文7)执行如图所示的程序框图.如果输入的t∈[-2,2],则输出的S属于()A.[-6,-2]B.[-5,-1]C .[-4,5]D .[-3,6]答案:D解析:当t ∈[-2,0)时,执行以下程序:t=2t 2+1∈(1,9],S=t-3∈(-2,6];当t ∈[0,2]时,执行S=t-3∈[-3,-1],因此S ∈(-2,6]∪[-3,-1]=[-3,6].故选D .8.(2014湖南,文8)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4答案:B 解析:由三视图可得原石材为如右图所示的直三棱柱A 1B 1C 1-ABC ,且AB=8,BC=6,BB 1=12.若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆半径相等,故半径r=6+8-102=2.故选B .9.(2014湖南,文9)若0<x 1<x 2<1,则( ) A .e x 2−e x 1>ln x 2-ln x 1 B .e x 2−e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2答案:C解析:设f (x )=e x -ln x ,则f'(x )=x ·e x -1x.当x>0且x 趋近于0时,x ·e x -1<0;当x=1时,x ·e x -1>0,因此在(0,1)上必然存在x 1≠x 2,使得f (x 1)=f (x 2),因此A,B 不正确;设g (x )=e x x,当0<x<1时,g'(x )=(x -1)e xx 2<0,所以g (x )在(0,1)上为减函数.所以g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,所以x 2e x 1>x 1e x 2.故选C .10.(2014湖南,文10)在平面直角坐标系中,O 为原点,A (-1,0),B (0,√3),C (3,0),动点D 满足|CD ⃗⃗⃗⃗⃗ |=1,则|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |的取值范围是( ) A .[4,6] B .[√19-1,√19+1] C .[2√3,2√7] D .[√7-1,√7+1]答案:D解析:设动点D 的坐标为(x ,y ),则由|CD⃗⃗⃗⃗⃗ |=1得(x-3)2+y 2=1,所以D 点的轨迹是以(3,0)为圆心,1为半径的圆.又OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(x-1,y+√3),所以|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√(x -1)2+(y +√3)2,故|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |的最大值为(3,0)与(1,-√3)两点间的距离加1,即√7+1,最小值为(3,0)与(1,-√3)两点间的距离减1,即√7-1.故选D .二、填空题:本大题共5小题,每小题5分,共25分. 11.(2014湖南,文11)复数3+i i 2(i 为虚数单位)的实部等于 .答案:-3 解析:由题意可得3+i i2=3+i-1=-3-i,故复数的实部为-3.12.(2014湖南,文12)在平面直角坐标系中,曲线C :{x =2+√22t ,y =1+√22t(t 为参数)的普通方程为 .答案:x-y-1=0解析:两式相减得,x-y=2-1,即x-y-1=0.13.(2014湖南,文13)若变量x ,y 满足约束条件{y ≤x ,x +y ≤4,y ≥1,则z=2x+y 的最大值为 .答案:7解析:不等式组表示的平面区域如图阴影部分所示,作直线l 0:2x+y=0并平移,当直线经过点A (3,1)时,在y 轴上的截距最大,此时z 取得最大值,且最大值为7. 14.(2014湖南,文14)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是 . 答案:(-∞,-1)∪(1,+∞)解析:由题意知,机器人行进的路线为抛物线y 2=4x.由题意知过点P 的直线为y=kx+k (k ≠0),要使机器人接触不到过点P 的直线,则直线与抛物线无公共点,联立方程得k4y 2-y+k=0,即Δ=1-k 2<0,解得k>1或k<-1. 15.(2014湖南,文15)若f (x )=ln(e 3x +1)+ax 是偶函数,则a= . 答案:-32解析:由题意得f (-x )=ln(e -3x +1)-ax=ln 1+e 3xe 3x-ax=ln(1+e 3x )-ln e 3x -ax=ln(e 3x +1)-(3+a )x ,而f (x )为偶函数,因此f (-x )=f (x ),即ax=-(3+a )x ,所以a=-32.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)(2014湖南,文16)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.分析:在第(1)问中,通过S n 可求出a n ,在求解过程中要注意分n=1和n ≥2两种情况进行讨论;在第(2)问中,充分利用第(1)问的结论得到b n =2n +(-1)n n ,然后利用分组求和法分别计算(21+22+…+22n )和(-1+2-3+…+2n ),最后相加得到{b n }的前2n 项和. 解:(1)当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2+n 2−(n -1)2+(n -1)2=n.故数列{a n }的通项公式为a n =n.(2)由(1)知,b n =2n +(-1)n n.记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A=21+22+ (22),B=-1+2-3+4-…+2n ,则A=2(1-22n )1-2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n ]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.17.(本小题满分12分)(2014湖南,文17)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ) 其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.分析:在第(1)问中,通过已知条件可分别写出甲、乙两组的成绩,然后利用平均数公式分别计算甲、乙两组的平均成绩,再结合方差公式得到甲、乙两组的方差,进而比较甲、乙两组的研发水平;在第(2)问中,充分利用古典概型的概率公式,转化为计算基本事件的个数,从而求得概率. 解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23; 方差为s 甲2=115[(1-23)2×10+(0-23)2×5]=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为x 乙=915=35; 方差为s 乙2=115[(1-35)2×9+(0-35)2×6]=625. 因为x 甲>x 乙,s 甲2<s 乙2,所以甲组的研发水平优于乙组. (2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.故事件E 发生的频率为715.将频率视为概率,即得所求概率为P (E )=715.18.(本小题满分12分)(2014湖南,文18)如图,已知二面角α-MN-β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD=60°,E 是AB 的中点,DO ⊥面α,垂足为O. (1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.分析:在第(1)问中,可利用线面垂直的判定定理证明,由DO ⊥平面α可得到DO ⊥AB ,然后利用△ABD 为正三角形得到DE ⊥AB ,最后根据线面垂直的判定定理得出所证结论;在第(2)问中,充分利用第(1)问的结论AB ⊥平面ODE ,从而得到二面角α-MN-β的平面角,达到立几化平几的目的,即转化为求∠ADO 的余弦,然后利用解直角三角形的方法求出余弦值.解:(1)如图a,因为DO ⊥α,AB ⊂α,所以DO ⊥AB.图a连接BD ,由题设知,△ABD 是正三角形. 又E 是AB 的中点,所以DE ⊥AB. 而DO ∩DE=D ,故AB ⊥平面ODE.(2)因为BC ∥AD ,所以BC 与OD 所成的角等于AD 与OD 所成的角,即∠ADO 是BC 与OD 所成的角. 由(1)知,AB ⊥平面ODE ,所以AB ⊥OE.又DE ⊥AB ,于是∠DEO 是二面角α-MN-β的平面角,从而∠DEO=60°. 不妨设AB=2,则AD=2.易知DE=√3. 在Rt △DOE 中,DO=DE ·sin 60°=32. 连接AO ,在Rt △AOD 中,cos ∠ADO=DOAD=322=34.故异面直线BC 与OD 所成角的余弦值为34.19.(本小题满分13分)(2014湖南,文19)如图,在平面四边形ABCD 中,DA ⊥AB ,DE=1,EC=√7,EA=2,∠ADC=2π3,∠BEC=π3.(1)求sin ∠CED 的值; (2)求BE 的长.分析:在第(1)问中,通过已知条件,借助余弦定理得到CD 的长,然后在△CDE 中,利用正弦定理得到∠CED 的正弦值;在第(2)问中,利用∠CED 的正弦值求得其余弦值,然后利用角之间的关系表示出∠AEB ,进而表示出∠AEB 的余弦值,最后在Rt △EAB 中利用边角关系,求得BE 的长.解:如题图,设∠CED=α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC.于是由题设知,7=CD 2+1+CD ,即CD 2+CD-6=0. 解得CD=2(CD=-3舍去). 在△CDE 中,由正弦定理,得EC sin∠EDC=CDsinα. 于是,sin α=CD ·sin 2π3EC =2×√32√7=√217,即sin ∠CED=√217.(2)由题设知,0<α<π3,于是由(1)知,cos α=√1-sin 2α=√1-2149=2√77. 而∠AEB=2π3-α,所以cos ∠AEB=cos (2π3-α)=cos 2π3cos α+sin 2π3sin α=-12cos α+√32sin α=-12×2√77+√32×√217=√714.在Rt △EAB 中,cos ∠AEB=EA BE =2BE ,故BE=2cos∠AEB=2√714=4√7.20.(本小题满分13分)(2014湖南,文20)如图,O 为坐标原点,双曲线C 1:x 2a 12−y 2b 12=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P (2√33,1),且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ |?证明你的结论.分析:在第(1)问中,利用已知条件结合图形以及双曲线、椭圆中a ,b ,c 的几何意义,列出关于a 1,b 1,a 2,b 2的方程,得到它们的值,从而求出双曲线C 1、椭圆C 2的方程;在第(2)问中,首先对直线l 的斜率进行分类讨论,当斜率k 不存在时易得A ,B 两点的坐标,进而判断满足题设条件的直线l 不存在;当斜率k 存在时,可先设出l 的方程,然后代入曲线方程,利用根与系数的关系并结合向量的运算,依此判断满足题设条件的直线l 不存在. 解:(1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2.从而a 1=1,c 2=1.因为点P (2√33,1)在双曲线x 2-y 2b 12=1上,所以(2√33)2−1b 12=1.故b 12=3.由椭圆的定义知2a 2=√(2√33)2+(1-1)+√(2√33)2+(1+1)=2√3.于是a 2=√3,b 22=a 22−c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1. (2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x=√2或x=-√2. 当x=√2时,易知A (√2,√3),B (√2,-√3), 所以|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |=2√2,|AB ⃗⃗⃗⃗⃗ |=2√3. 此时,|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |≠|AB ⃗⃗⃗⃗⃗ |.当x=-√2时,同理可知,|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |≠|AB ⃗⃗⃗⃗⃗ |. ②若直线l 不垂直于x 轴,设l 的方程为y=kx+m. 由{y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx-m 2-3=0.当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由{y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx+2m 2-6=0.因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0. 化简,得2k 2=m 2-3,因此OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA⃗⃗⃗⃗⃗ 2+OB ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ ≠OA ⃗⃗⃗⃗⃗ 2+OB ⃗⃗⃗⃗⃗ 2-2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ , 即|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ 2|≠|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ 2|,故|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |≠|AB ⃗⃗⃗⃗⃗ |.综合①,②可知,不存在符合题设条件的直线.21.(本小题满分13分)(2014湖南,文21)已知函数f (x )=x cos x-sin x+1(x>0). (1)求f (x )的单调区间;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个零点,证明:对一切n ∈N *,有1x 12+1x 22+…+1x n 2<23.分析:在第(1)问中,通过已知条件,借助导数,转化为判断导数在(0,+∞)上的符号,进而得出函数的单调区间;在第(2)问中,充分利用第(1)问的结论,得到f (x )在(n π,(n+1)π)上存在零点,从而得出n π<x n+1<(n+1)π,然后分n=1,n=2,n ≥3三种情况讨论1x 12+1x 22+…+1x n 2的值与23的大小关系,即可得证. 解:(1)f'(x )=cos x-x sin x-cos x=-x sin x.令f'(x )=0,得x=k π(k ∈N *).当x ∈(2k π,(2k+1)π)(k ∈N )时,sin x>0,此时f'(x )<0;当x ∈((2k+1)π,(2k+2)π)(k ∈N )时,sin x<0,此时f'(x )>0.故f (x )的单调递减区间为(2k π,(2k+1)π)(k ∈N ),单调递增区间为((2k+1)π,(2k+2)π)(k ∈N ). (2)由(1)知,f (x )在区间(0,π)上单调递减. 又f (π2)=0,故x 1=π2.当n ∈N *时,因为f (n π)f ((n+1)π)=[(-1)n n π+1][(-1)n+1(n+1)π+1]<0,且函数f (x )的图象是连续不断的,所以f (x )在区间(n π,(n+1)π)内至少存在一个零点.又f (x )在区间(n π,(n+1)π)上是单调的,故n π<x n+1<(n+1)π.因此,当n=1时,1x 12=4π2<23; 当n=2时,1x 12+1x 22<1π2(4+1)<23;当n ≥3时,1x 12+1x 22+…+1x n 2<1π2[4+1+122+…+1(n -1)2] <1π2[5+11×2+…+1(n -2)(n -1)] <1π2[5+(1-12)+(12-13)+…+(1n -2-1n -1)] =1π2(6-1n -1)<6π2<23. 综上所述,对一切n ∈N *,1x 12+1x 22+…+1x n 2<23.。
2014年数学二真题及答案解析
2014年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y ∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.(22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2xx -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ ( )(A)1 (B)23(C)12(D)13【答案】D【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ 22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. 【答案】1 【解析】()()[]'210,2f x x x =-∈,且为偶函数则()()[]'212,0fx x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)limlim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0. (17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=⎰⎰12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x x zf e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x xz z z e y e x y ∂∂=+∂∂,代入得, ()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. 【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭,(I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTT e e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .。
湖南省2014届高三十三校联考第二次考试英语试卷及答案
湖南省2014届高三·十三校联考第二次考试英语试题本试卷分为四个部分,包括听力、语言知识运用、阅读和书面表达。
时量120分钟。
满分150分。
PartⅠ Listening Comprehension (30 marks)Section A(22. 5 marks)Directions: In this section, you will hear six conversations between two speakers. For each conversation, there are several questions and each question is followed by three choices marked A, B and C. Listen carefully and then choose the best answer for each question.You will hear each conversation TWICE.Conversation 11. How long has the woman lived in the house?A. 13 years.B. 15 years.C. 50 years.2. Why does the woman want to sell her house?A. She will live with her children.B. She is in need of money.C. She has to work in Los Angeles.Conversation 23. Who is the man?A. A repairman.B. A mover.C. A cleaner.4. Which of the following hasn’t the woman mentioned?A. The floor.B. The ceiling.C. The windows.Conversation 35. What did the woman do?A. She made a wrong turn.B. She failed to stop at a red light.C. She slowed down before the yellow light.6. What can we learn from the conversation?A. The woman was fined.B. Something was wrong with the traffic lights.C. The officer let the woman off with a warning.Conversation 47. What is the man doing?A. Making a pizza for the woman.B. Giving the woman a free sample of pizza.C. Bargaining with the woman.8. According to the man, what is the best part about the pizza?A. The price.B. The convenience.C. The amount of cheese.9. What will the woman do?A. Help the man sell pizza.B. Go to the frozen food section.C. Give the man some money.Conversation 510. When did the man arrive in Berlin?A. Two weeks ago.B. Three weeks ago.C. Four weeks ago11. Which part about German learning is difficult for the man?A. Pronunciation.B. Grammar.C. V ocabulary.12. What does the man say about his teacher?A. He’s like other Germans.B. He is humorous.C. He is impatient.Conversation 613. What does Nathan have to write down first?A. His personal information.B. His family history.C. His education background.14. Why does Nathan say he is in trouble?A. He got fired from his last job.B. He has never filled out an application before.C. He has never had a real job before.15. Who will Nathan probably choose as his personal reference?A. The woman.B. His parents.C. Mr. Nelson.Section B (7. 5 marks)Directions: In this section, you will hear a short passage. Listen carefully and then fill in the numbered blanks with the information you have heard. Fill in each blank with NO MORE THAN THREE WORDS.You will hear the short passage TWICE.Part n Language Knowledge (45 marks)Section A (15 marks)Directions: For each of the following unfinished sentences there are four choices marked A, B, C and D. Choose the one that best completes the sentence.21. It is our hope that more trees _____ here next year.A. will plantB. have plantedC. will be plantedD. have been planted22. After six hours7 drive, they finally reached _____ they thought was the place they had beendreaming of.A. thatB. whichC. whereD. what23. One important aim of education is to prepare us for the future _____ we can face all thechallenges with confidence.A. in caseB. so thatC. even ifD. so long as24. —Guess what? I happened to meet Fernando the other day.—If my memory serves me correctly, you _____ each other for ages.A. don't seeB. didn’t seeC. haven't seenD. hadn’t seen25. —Could you say something about the cause of the gas leak, sir?—Sorry. It _____ by a group of experts. It will be made clear the moment they get the answer.A. has been investigatedB. is being investigatedC. was investigatedD. was being investigated26. He’s looking for a new job _____ he can get more money to support his family.A. whenB. whereC. thatD. which27. It's time to go to bed. Forget you need to get up as early as you can _____ the early train?A. catchB. to catchC. catchingD. caught28. —The students English club is having a party on Saturday night. Can you come?—I would love to, but I _____ at a restaurant on weekend.A. workB. workedC. have workedD. had worked29. The number of people who _____ exposed to second-hand smoking in public places _____ upto 740 million in China.A. is; isB. are; areC. are; isD. is; are30. _____ the e-mail she was expecting, she made up her mind to go there herself.A. Not having receivedB. Having not receivedC. Not to receiveD. To have not received31. —We need a person very much to think up a creative idea.—_____the new manager have a try?A. MustB. ShouldC. ShallD. Need32. Since the "Clear your plate" campaign was launched, Chinese people _____more and moreattention to the waste of food.A. payB. are payingC. had paidD. have been paying33. When you long for life without difficulties, _____ yourself that diamonds are made underpressure.A. to remindB. remindC. remindingD. reminded34. Malaysia Airlines says it has lost contact with a plane _____ from Kuala Lumpur to Beijing,with 239 people on board.A. travelledB. travellingC. to travelD. having travelled35. Not until the press reported the pollution _____ why the water supply had been cut off.A. people did knowB. people had knownC. did people knowD. had people knownSection B(18 marks)Directions; For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.context.Last year I was on a team travelling in a foreign country with some friends and some strangers. We were all given 36 to perform, such as cleaning and cooking. I was in the team serving meals.On the first day I tried hard to 37 everyone, but it was hard to do so. Some people liked it when you served them fast and some people preferred it slow; some even didn’t know what I was serving on their plates as they didn’t speak English. If they weren’t' t served in the way they wanted, some grew 38 .So the next day, I tried a different way. I learned how to say "Would you like. . . " in several languages and tried to make sure that they understood me. So when people 39 to me, I smiled at them and said " Would you like some 40 ?" Whether they said yes or no, I just 41 back.I even said something personal to them, like their beautiful hats or cool sunglasses. To be honest, I wasn't sure if I was making them smile, or just 42 them! I was so enthusiastic that we actually ran out of beans before everyone got served.Then we 43 to do other things for people that weren’t' t our duty too, like cleaning up, or washing dishes when everyone was supposed to do their own.At first people were 44 when we did this, then they realized that they were getting a favour without giving anything in return and they would be 45 After a few days, whenever I saw people I had served they smiled and thanked me, saying how it had 46 their day and that we hadn't just put food on their plates. We were even awarded as the best servers at the end! So sometimes a smile or a 47 attitude makesall the difference!36. A. chances B. duties C. experiments D. roles37. A. comfort B. please C. inform D. meet38. A. impatient B. sensitive C. generous D. hungry39. A. turned over B. brought back C. came up D. made sense40. A. soup B. salt C. beans D. beef41. A. smiled B. fought C. talked D. shouted42. A. encouraging B. annoying C. injuring D. bearing43. A. managed B. aimed C. explained D. volunteered44. A. satisfied B. surrounded C. impressed D. confused45. A. serious B. curious C. grateful D. respectful46. A. brightened up B. dealt with C. filled up D. swept off47. A. modest B. careful C. determined D. positive Section C (12 marks)Directions: Complete the following passage by filling in each blank with one word that best fits the context.There was a boy who was sent to a boarding school. He used to be the brightest student in his class. He was at the top in every competition, 48 things changed after that. His grades started dropping. He hated being in a group. He was lonely all the time. He felt worthless and that 49 one loved him.His parents began to worry. But they even didn't know what was wrong. So his dad decided to visit the school and talk with him. They sat on the bank of the lake near the school. The father started asking him casual questions 50 his classes, teachers and sports. Then he asked, "Do you know, son, 51 I am here today?" The boy said, "To check my grades?" "No," his dad replied, "I am here to tell you that you are the 52 important person for me. I want to see you happy. I don't care about grades. I care about you. I care about 53 happiness. YOU ARE MY LIFE. "Now the boy had everything that he wanted. He knew there was someone on this earth 54 cared for him deeply. He meant 55 world to someone. Thanks a lot, Dad. YOU ARE MY LIFE. Part m Reading Comprehension (30 marks)Directions: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage .AWASHINGTON The head of the World Bank says for the first time in human history, it is possible to end poverty around the world. Jim Yong Kim told a Washington audience Tuesday, he wants to make ending world poverty by 2030 a top goal for the bank and governments around the world.World Bank President Jim Yong Kim says that the problems of poverty, hunger and inequality are wide, urgent and a matter of survival of millions."We know that despite the great successes of the last decade, there are still about 1. 3 billion people living in extreme poverty, 870 million who go hungry every day, and 6. 9 million children under five dying every year," he said.But Kim told a Washington audience that the previous successful efforts to cut the number of people living in extreme poverty by half give them hope."We are at an auspicious moment in history, when the successes of past decades and an increasingly favourable economic outlook (前景:)combine to give developing countries a chance-for the first time ever-to end extreme poverty within a generation," he said in a speech at Georgetown University. "Our duty now must be to ensure that these favourable circumstances are matched with deliberate decisions to realize this historic opportunity. "Kim says success will require increasing the speed of economic growth, particularly in South Africa and South Asia.But he warned that civil unrest (动乱)could happen if economic growth does not help people at all income levels, and also include women and youth.Kim says that the World Bank and other development agencies will have more resources toget this job done right. "Meeting this 2030 goal will take extraordinary effort," he said.However, Kim warned that all the progress in fighting poverty could be destroyed by climate disasters unless the nations of the world do more to prevent climate change.56. In the opinion of Jim Yong Kim, world poverty _____.A. is not quite hard to end by 2030B. exists only in Africa and AsiaC. is difficult but hopeful to end by 2030D. will be sure to disappear by 203057. Which of the following gives Jim Yong Kim the hope to end world poverty?A. A decreasing number of people are living in poverty.B. Great successes have been achieved in science and technology.C. Economic growth is increasing in developing countries.D. All countries have started to fight poverty.58. The underlined word "auspicious" in Paragraph 5 most probably means "_____".A. unforgettableB. luckyC. disappearingD. important59. According to Jim Yong Kim, in order to end world poverty, _____.A. we must prevent civil unrest from happeningB. we can't ignore the needs of women and youthC. we must make more people realize the importance of fighting povertyD. the countries across the world must work together to stop climate change60. What s the passage mainly about?A. The key of ending world poverty is preventing climate changeB. A top goal - ending world poverty will possibly be achieved by 2030C. The success of ending poverty - economic growthD. The progress in fighting povertyBNowadays some students in middle school date with their classmates. According to a new study from the University of Georgia, those students have much worse study skills and are four times more likely to stop schooling. They use twice as much alcohol and tobacco than their single classmates."Romantic relationships are a trademark of adolescence, but very few studies have examined how adolescents differ in the development of these relationships," said Pamela Orpinas, study author and professor in the College of Public Health and Head of the department of Health Promotion and Behaviour.Orpinas followed a group of 624 students over a seven-year period from 6th to 12th grades.Each year, the group of students completed a survey indicating whether they had dated and reported the frequency of different behaviours, including the use of drugs and alcohol. Their teachers completed questionnaires about the students7 academic efforts. He found some students never or hardly ever reported dating from middle to high school, and these students had consistently the best study skills according to their teachers. Other students dated infrequently in middle school but increased the frequency of dating in high school."At all points in time, teachers rated the students who reported the lowest frequency of dating as having the best study skills and students with highest dating as having the worst study skills,"according to the journal article. Study skills refer to behaviours that lead to academic success such as doing homework for extra credit, being well organized, finishing homework, working hard and reading assigned chapters."Dating a classmate may have the same emotional complications (并发症)of dating a co-worker," Orpinas said. "When the couple break up, they have to continue to see each other in class and perhaps witness the ex-partner (前伴侣)dating someone else. It is reasonable to think this could be linked to depression and distract (分散注意力)them from studying. ""Dating should not be considered a ceremony of growth in middle school," Orpinas concluded.61. We can learn from the passage that students who date in middle school may _____.A. be less likely to use alcohol and tobaccoB. enjoy better school livesC. be more likely to hurt othersD. have poorer academic performances62. During his study, Orpinas _____.A. found study skills have connection with their frequency of datingB. completed questionnaires about the students7 academic effortsC. completed a survey and a report each yearD. followed a group of students of 6th and 12th63. Study skills may include the following behaviors and qualities except _____.A. being kind and helpfulB. being well organizedC. being diligentD. finishing assigned schoolwork64. What can possibly happen to those who date in middle school after they break up?A. They will think it reasonable to get depressed.B. They will miss their ex-partners sometimes.C. Their attention to studying will be affected.D. They don't want to see each other any longer.65. According to the passage, Orpinas holds a(n)_____ attitude towards dating in middle school.A. indifferentB. negativeC. positiveD. supportiveCIf you are a fan of J. K Rowling and her Harry Potter book series, you may be fascinated with the idea of an invisible coat. You are not alone. Scientists have been working hard to produce a material which will make buildings as well as people invisible. Now a Canadian company claims to have succeeded with magical textile (纺织品)called "Quantum Stealth".British Columbia based on Hyperstealth Technology Corporation claims that the material makes its wearers completely invisible, even to people with night glasses.Also, just like the young wizard's coat, it is light-weight and does not need cameras, batteries, lights or mirrors to operate. But best of all, it is cheap to make.As to how it really works, the company keeps it a top secret. Besides stating that they havesuccessfully managed to bend light waves, so that they go round the material instead of through it, the company is not giving out any details. What it does detail is all the good uses that Quantum Stealth could be put to-ranging from protecting US and Canadian soldiers forced to step into enemy region, to allowing special armed forces to carry out surprise attack without any fear of being seen. And if that is not enough they even imagine creating aircrafts and submarines (潜水艇)that can go completely undetected.To prove that Quantum Stealth really exists, the company has released photos and even a video showing its magical properties. For those that are still sceptical, they have only one thing to say both the US and Canadian military officials have witnessed it live and are so impressed that they are working with Hyper stealth Technology to create the next generation "survival blanket" that could make the soldier invisible all at once! If this is indeed true, we have only one question: When will this magical fabric beavailable to the rest of us?66. What’s the purpose of the first paragraph?A. To bring in the topic.B. To draw peopled attention to J. K Rowling and her idea.C. To make the article interesting.D. To introduce the Canadian company.67. According to the passage, Quantum Stealth is _____.A. an invisible coat worn by the wizard in the film "Harry Potter"B. a type of material making its users invisibleC. an equipment employed as an alternative for camerasD. an advanced weapon used to attack enemies68. Which of the following words can be used to describe the coat?A. Convenient but not expensive.B. Creative but heavy.C. Ordinary and light.D. Magical and imaginary.69. The third paragraph is mainly about _____.A. there are no details about the materialB. whether the material is true or falseC. the materials theory and functionsD. the material has been put into practice70. Which of the following statements is TRUE according to the passage?A. The material is invisible only to those with night glasses.B. Quantum Stealth will be widely used in our life soon.C. People have no faith in the photos and video provided at all.D. The new product can still be improved for better use.Part ]Y Writing (45 marks)Section A (10 marks)Directions: Read the following passage. Fill in the numbered blanks by using the information from the passage.Write NO MORE THAN THREE WORDS for each answer.When it comes to mental health, what immediately occur to our mind are depression, stress and anxiety. People will also think about the causes of poor mental health, such as someone livingin poor conditions, someone living in an abusive situation or someone who is suffering an addiction. There are many things in life that can contribute to poor mental health and there are just as many things a person can do to improve their mental health.Many have heard that maintaining one' s physical health can go a long way in helping to maintain a person's mental health. Others will tell you that eating well, getting enough sleep and having some confidence are all things that a person can do in order to improve and maintain their good mental health. However, another deciing thing that appears to help with improving a person's mental health is that most people tend to feel better after cleaning their living space thoroughly. Taking the time to clean the home from top to bottom is like cleaning one’s life. The dirt and dust are done away with and the house has a fresher, more comfortable atmosphere that the person can feel happier and more relaxed in. Of course, it might also be a good idea to consult a therapist (治疗专家). Online therapists are always available for inquiries about how one can improve their mental health in other ways besides cleaning their home. Anyone who finds that they are suffering from an overall decline in their mental health should seriously consider contacting an online therapist. The online therapists can help work with the patients to find out why they might be feeling down, and they can then suggest what the patients could do in order to improve their mental health. Life is meant to be enjoyed and those who are not happy and have a depressed outlook on life can't fully enjoy life.Title: Maintaining 71B (10 marks)Directions: Read the following passage. Answer the questions according to the information given in the passage.Millions of people all over the world are fond of playing soccer, but there have only been a few players who were really great. How did these players get that way-was it through training and practice, or are great players "born, not made"?First, the birthplace plays an important role. These players come from places that have had famous stars in the past-players that a young boy can look up to and try to imitate. In the history of soccer, only six countries have ever won the World Cup-three from South America and three from Western Europe. There has never been a great national team-or a really great player-rom North America or from Asia.Second, these players have all had years of practice in the game. Alfredo Di Stefano was the son of a soccer player, as was Pele. Most players begin playing the game at the age of three or four. Finally, many great players come from the same kind of neighbourhood-a poor, crowded area where a boy's dream is not to be a doctor, lawyer, or businessman, but to become a rich, famous athlete or entertainer. For example, Liverpool which produced the Beatles (甲壳虫乐队),had one of the best English soccer teams in recentyears. Pele practiced in the street with a "ball" made of rags (破布). And George Best learned the tricks that made him famous by bouncing the ball off a wall in the slums (贫民窟)of Belfast.All great players have a lot in common, but that doesn’t explain why they are great. Hundreds of boys played in those Brazilian streets, but only one became Pele. The greatest players are born with some unique quality that sets them apart from all the others.81. Where do the countries that have ever won the World Cup usually come from? (No more than5 words)82. What' s the purpose of using the underlined sentence in the last paragraph ' only one becamePele"'? (No more than 11 words)83. List three factors that contribute to the soccer players becoming great. (No more than 8words)84. Why are Liverpool and Brazilian streets mentioned in the passage? (No more than 13 words)Section C (25 marks)Directions: Write an English composition according to the instructions given below in Chinese.近日,一长沙市民李先生在上班途中刮擦了路边一停靠私家车后主动留下联系方式,这一新闻引起了社会对诚信问题的热议。
2013-14-2高等数学试题答案A
2013-14-2高等数学(A )期末考试试题A 卷答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、()()()1211ln 11y y xy dz y xy dx xy xy dy xy -⎛⎫=+++++ ⎪+⎝⎭ 2、30x y z ---=3、1 4、313h π 5、()1,3x ∈二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分) 1、C 2、A 3、B 4、D 5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对,x y 分别求偏导数,有00z z zz e yz xy xx z z e xz xy y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪--=∂∂⎪⎩,………………6分解得:,z z z yz z z xz zx e xy xz x y e xy yz y∂∂====∂--∂--.…………………………………………8分2、解:作图(略). 原式=()()2220x t y t π⎡+⎣⎰………………………2分()()()()()2223240cos sin sin cos 22a t t t a t t t atdt a πππ⎡⎤=++-=+⎣⎦⎰.………………………8分 3、解:经计算,该级数的收敛域为()1,1x ∈-.…………………………………………2分 其次计算该级数的和函数. 设()()23421111234(1)()()1,1nnn n n n s x nx x x x x n x x s x s x x ∞∞∞=====++++=+-=-∈-∑∑∑ ,…4分 ()2321(1)234n n s x n x x x x ∞==+=+++∑ ,则()()()()()22234222211x x x s x s x dx x x x x x '⎛⎫-''==++== ⎪--⎝⎭⎰ ,11()1nn x s x x x ∞===-∑.………7分 综上所述,()()()22212()1,1111nn x x x xs x nx x x x x ∞=-==-=∈----∑………………………………8分四、解答下列各题(本大题共3小题,每小题8分,总计24分)1、解:作图(略).设内接长方体在第一卦限的内接点坐标为(),,P x y z ,有如下结论:(),,P x y z 一定在球面上面,满足球面方程;其次,长方体的长宽高一定分别为2,2,2x y z .因此,可建立如下数学模型:2222max 8..,,0V xyz x y z a s t x y z =⎧++=⎨>⎩…………………………………………………………4分 利用Lagrange 乘数法进行求解,构造辅助函数为:()22228L xyz x y z a λ=+++-,有:22228208208200x yz L yz x L xz y L xy z L x y z a λλλλ=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩………………………………6分 解得唯一驻点(),,x y z ⎫=⎪⎭,因该问题一定存在最大值,故该唯一驻点一定是该问题的最大值点,最大值为3max V =.……………………………………………8分2、解:作图(略).原式=()()221222D x y x y xy dxdy ⎡⎤+++++⎣⎦⎰⎰=()221D x y dxdy ++⎰⎰…4分 =()22224200011121242d d πθρρρπρρπ⎛⎫+=+= ⎪⎝⎭⎰⎰……………………………………………8分3、解:作图(略). 原式=()(,xyx y z x y ∑++⎰⎰,其中,5z y =-,(){}22,25,,xy x y xy x y R ∑=+≤∈.………………………………………………………………4分故原式=(5xyx ∑+=⎰⎰……………………………………………………………8分 五、解答下列各题 (本大题共2小题,每小题6分,总计12分)1、解:作图(略). 本题利用第二类曲线积分的定义或格林公式均可以处理. 这里利用格林公式处理. 添加辅助有向直线段:0,0AO y x π→=≤≤,从而构成封闭平面区域D .设()()()2,sin 2,,21P x y x Q x y x y ==-,显然,,P Q 在区域D 内满足格林公式.…………1分=4D L AO AO DQ P d Pdx Qdy Pdx Qdy xyd x y σσ→→+⎛⎫∂∂-=-+=-+ ⎪∂∂⎝⎭⎰⎰⎰⎰⎰⎰ 原式-…………………3分 故原式=2sin 00044sin 22x D AO xyd Pdx Qdy dx xydy xdx πππσ→--+=--=-⎰⎰⎰⎰⎰⎰.………………6分2、解:因()()222324421()2211,1141t x t x f x t t t t x t ==-'==-=--+-+∈-++=()()2244662201121222212,22nn nn x x x x x ∞=⎛⎫--+-+=--∈- ⎪⎝⎭∑ …………………………3分 故()()246357012222()arctan 2012357x x f x f x dx x x x x f x ⎛⎫-'===--+-++ ⎪+⎝⎭⎰()22121121,42122n nn n x x n π∞+=⎛⎫=--∈- ⎪+⎝⎭∑………………………………………………………5分 故()22112211()arctan 21,1242122n n n n x f x x x x n π∞+=-⎛⎤==--∈- ⎥++⎝⎦∑(因为()f x 在12x =处连续,而级数在该点处收敛).……………………………………………………………………………6分。
2013年普通高等学校招生全国统一考试湖南卷
2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)本试题卷包括选择题、填空题、解答题三部分,共5页,时量 120分钟,满分 150分一、 选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目的要求的。
二、复数()i i z +∙=1(i 为虚数单位),在复平面上对应的点位于A 、第一象限B 、第二象限C 、第三象限D 、第四象限解析:选B. 考察了复数的概念和运算以及复数在坐标系中的几何意义.2、“12x <<”是“2x <”成立的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件 解析:选A.考察集合大小和充要条件的关系.3、某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了解他们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =A 、9B 、10C 、12D 、13 解析:选D. 考察了分层抽样的概念. 4、已知()f x 是奇函数,()g x 是偶函数,且()()()()112,114f g f g -+=+-=则()1g 等于A 、4B 、3C 、2D 、1 解析:选B. 考察了函数的奇偶性和解二元一次方程.5、在锐角ABC ∆中,角B A ,所对的边长分别为b a ,,若b B a 3sin 2=,则角A 等于 A 、3π B 、4π C 、6π D 、12π 解析:选D 。
考察了解三角形中的边角关系,求角所以我们把边化成角,根据三角函数的值反求角度。
6、函数()ln f x x =的图像与函数2()44g x x x =-+的图像的交点个数为A 、0B 、1C 、2D 、3解析:选B 。
考察了函数交点问题,即函数零点问题,针对零点问题,我们有如下方法解决:图像法,零点存在法,特殊值法及求导考察单调性法。