初二数学教案:命题与证明

合集下载

八年级数学上册 13.1 命题与证明教案 (新版)冀教版-(新版)冀教版初中八年级上册数学教案

八年级数学上册 13.1 命题与证明教案 (新版)冀教版-(新版)冀教版初中八年级上册数学教案
难点:理解证明的必要性.
┃教学过程设计┃
教学过程
设计意图
一、创设情境,导入新课
情境:小亮和小刚正在津津有味地阅读《我们爱科学》.
小亮:“哈!这个黑客终于被逮住了.”
小刚:“是的,现在网络广泛运用于我们的生活中,给我们带来了方便,但……”.
坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着.
“这个黑客是小偷吗?”
让学生完成教材32页“做一做”,指出原命题和逆命题的真假性.
教师在学生思考的基础上指导学生注意语言的规X和逻辑性.
强调:每个命题都有逆命题,但原命题正确,它的逆命题未必正确.要说明一个命题是假命题,只要举出反例即可.
例如:“若|a|=|b|,则a=b”这个命题是假命题,只要举出两个数的绝对值相等,但这两个数不相等的情况就可以判断这个命题是假命题.如|5|=|-5|,但5≠-5.
说明:教师要重点关注学生的证明过程书写是否符合要求.
一般地,证明命题按如下步骤进行:
(1)画出图形;(2)写出已知、求证;(3)写出证明过程.
教师讲解:如果一个定理的逆命题是真命题,那么这个逆命题也就成了定理.这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.
我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是真命题,所以它们都是定理,因此它们就是互逆定理.
13.1命题与证明
【教学目标】
1.理解逆命题的概念,能够判断命题的真假.
2.了解逆定理及证明的概念,会对一个真命题进行证明.
3.通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力.
4.通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.

初中命题与证明教案

初中命题与证明教案

教案:初中命题与证明教学目标:1. 理解命题的概念,能够区分题设和结论。

2. 学会写出完整的证明过程,掌握证明的基本步骤。

3. 能够运用逻辑推理解决实际问题。

教学重点:1. 命题的概念和结构。

2. 证明的基本步骤和方法。

教学难点:1. 理解命题的逻辑关系。

2. 运用证明解决实际问题。

教学准备:1. PPT课件。

2. 教学案例和练习题。

教学过程:一、导入(5分钟)1. 引入话题:我们日常生活中经常听到“真理”和“谬误”这两个词,那么它们与数学有什么关系呢?2. 学生思考,教师引导得出数学中的命题。

二、概念讲解(15分钟)1. 讲解命题的概念:命题是陈述性语句,它由题设和结论两部分组成。

2. 举例说明:如“如果一个数是正数,那么它的平方也是正数”。

3. 学生跟随老师一起分析命题的结构。

三、证明的基本步骤(20分钟)1. 讲解证明的概念:证明是用逻辑推理的方法来确定一个命题的真假。

2. 讲解证明的基本步骤:a. 明确题设和结论。

b. 写出已知条件和要证明的结论。

c. 给出证明过程。

d. 得出最终结论。

3. 举例演示一个简单的证明过程。

四、练习与讨论(15分钟)1. 学生分组练习,尝试自己证明给出的命题。

2. 教师选取几组学生的证明过程,进行讨论和评价。

五、应用拓展(10分钟)1. 教师给出一个实际问题,要求学生运用逻辑推理解决。

2. 学生思考并解答问题,教师进行指导和评价。

六、总结与反思(5分钟)1. 学生回顾本节课所学的内容,总结命题和证明的关系。

2. 教师强调命题和证明在数学中的重要性。

教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生练习和讨论的积极性和参与度。

3. 学生对实际问题的解决能力和逻辑推理能力。

教学反思:本节课通过讲解命题的概念和结构,以及证明的基本步骤,使学生掌握了命题与证明的基本知识。

在练习和讨论环节,学生能够主动参与,通过逻辑推理解决实际问题。

但在教学过程中,仍需注意以下几点:1. 加强对学生逻辑思维能力的培养,提高他们的证明能力。

冀教版初中数学八年级上册 13.1 命题与证明 教案

冀教版初中数学八年级上册  13.1  命题与证明  教案
⑷如果 ,那么
(引导学生找出命题与逆命题之间的关系)
归纳:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
2、自学课本P32完成后面问题:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.这两命题一个称为,一个成为。
自学指导(二)
小组
(一)合作学习(P32,做一做)
(二)自学课本P33完成以下问题
1、
,这种推理的过程叫做证明
2、自学例题后总结命题证明的基本步骤:
①:
②:
③:
3、如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.
4、每个命题都有它的________,但每个真命题的逆命题不一定是真命题.
当堂训练
独学
如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.
①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.
题设(已知):
结论(求证):
提升训练
1、下列说法中,正确的是()
A.每一个命题都有逆命题B.假命题的逆命题一定是假命题
七、板书设计:八、教学反思:课题命题与证明
一、教学目标:
1、了解每个命题都有它的逆命题,命题有真假之分,并会举出反例。
2、初步了解证明的基本步骤和书写格式
二、教学重点、难点:
1、会识别两个命题是否互逆命题,会写出一个命题的逆命题,了解原命题成立,其逆命题不一定成立.

冀教初中数学八上《13.1命题与证明》word教案(1)

冀教初中数学八上《13.1命题与证明》word教案(1)

冀教初中数学八上《13.1命题与证明》word教案(1)13.2 命题与证明第1课时命题与证明(一)教学目标【知识与技能】1.理解真命题、假命题、公理、原命题、逆命题等概念.2.会判断一个命题的真假,能区分公理、定理和命题.3.理解证明的含义,体验证明的必要性和数学推理的严密性. 【过程与方法】1.通过一些简单命题的证明,训练学生的逻辑推理能力.2.根据命题的证明需要,要求学生画出图形,写出已知、求证,训练学生将命题转化为数学语言的能力.【情感、态度与价值观】1.通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.2.让学生积极参与数学活动,对数学定理、命题的由来产生好奇心和求知欲,让学生认识数学与人类生活的密切联系,提高学生学习数学的积极性. 重点难点【重点】学习命题的概念和命题、公理、定理的区分. 【难点】严密完整地写出推理过程. 教学过程一、创设情境,导入新知教师多媒体出示:有一根比地球赤道长1m的铜线将地球赤道绕一圈,想一想,铜线与地球赤道之间的空隙有多大?能放进一颗枣吗?能放进一个苹果吗?学生交流讨论后回答. 生甲:都放不进去.生乙:枣能放进,苹果放不进. 生丙:都能放进.师:我们现在用这个式子来算,设赤道的长为C,则铜线与地球赤道之间的间隙是-=≈0.26(m),可见,枣和苹果都能放进去.通过这个例子,你们受到了什么启发?生:有些东西想象的或感觉的不一定可靠,要具体分析.师:对,我们要做到有理有据.上一节研究三角形的性质时,我们通过折叠、剪拼、度量等方法得到三角形的内角和是180°,但对这种方法,有的同学提出这样的疑问:在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值; 度量三个角,然后相加,不一定能准确地得到180°.这两种情况怎么解释呢? 学生思考、交流、讨论.师:是这样的,研究几何图形时,从观察和实验得到的认识,有时会有误差,难以使人确信其结果一定正确.因此,就得在观察的基础上有理有据地说明理由,这就是说,要判断数学命题的真假,需要做必要的逻辑推理.二、共同探究,获取新知师:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断. 教师多媒体出示: (1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等; (3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除. 教师找一名学生回答,然后集体订正.师:在逻辑学中,凡是可以判断出真(即正确)、假(即错误)的语句叫做命题.上面的(1)、(2)、(4)都是正确的命题,我们称之为真命题;(3)是错误的命题,我们称之为假命题.如果一个语句没有对某一事件的正确与否作出任何判断,那么它就不是命题,比如感叹句、疑问句、祈使句等.教师多媒体出示: (1)请关上窗户; (2)你明天骑车来上学吗? (3)天真冷啊! (4)今天晚上不会下雨. (5)昨天我们去旅游了.师:请同学们判断一下哪些语句是命题? 学生讨论后回答,然后集体订正.师:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常写成“如果……那么……”的形式.有时我们为了简便,省略关联词“如果”、“那么”,如命题“如果两个角是对顶角,那么这两个角相等”,可以写成“对顶角相等”.以“如果……那么……”为关联词的命题的一般形式是“如果p,那么q”,或者说成“若p,则q”,其中p是这个命题的条件(或假设),q是这个命题的结论(或题断).三、边讲边练教师多媒体出示:【例1】指出下列命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行; (2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.生甲:(1)中“两条直线平行于同一条直线”是条件,“两条直线平行”是结论. 生乙:“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论. 四、层层推进,深入探究师:将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.我们在前面学习了命题都可以判断真假,当一个命题是真命题时,它的逆命题也是真命题吗?学生交流讨论后发表意见.师:我们可以看这样一个例子,“如果∠1与∠2是对顶角,那么∠1=∠2”是真命题,它的逆命题是什么?生:它的逆命题是“如果∠1=∠2,那么∠1与∠2是对顶角”. 师:它是真命题还是假命题呢? 生:假命题.师:你是怎么判断它是假命题的呢? 学生交流讨论后回答. 教师多媒体出示下图.师:对.我们可以举一个例子,比如角平分线分成的两个角,∠1=∠2,但显然,这里∠1与∠2就不是对顶角.像这种符合命题条件,但不满足命题结论的例子,我们称之为反例.若要说明一个命题是假命题,只要举出一个反例即可.五、练习新知,加深讨论师:请同学们看教材中本节例1后练习的第2题. 教师找学生回答,然后集体订正得到: (1)假命题.反例:|-1|=|1|,但-1≠1. (2)假命题.反例:(-1)×(-1)>0,但-1是负数. (3)真命题. (4)假命题.若两条不平行的直线与第三条直线相交,同位角不相等. 师:我们来看第3题.教师找学生回答,然后集体订正得到: (1)真命题,(2)真命题,(3)真命题.师:在数学命题的研究中,为了确认某些命题是真还是假,需要对命题的正确性进行论证,在论证过程中,必须追本求源,真理不需要再作论证,其正确性是人们在长期实践中检验所得的真命题,作为判断其他命题真假的依据,这些作为原始根据的真命题称为公理.同学们想一下,我们学过哪些公理?生甲:经过两点有一条直线,并且只有一条直线. 生乙:两点之间的所有连线中,线段最短.生丙:经过直线外一点,有且只有一条直线平行于这条直线,师:对,这些都是公理.有些命题,它们的正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理.谁能举几个例子?生甲:对顶角相等.生乙:三角形的三个内角和等于180°. 生丙:等角的补角相等.师:对.推理的过程叫做证明.下面,我们来证明一个七年级时用过的定理“内错角相等,两直线平行”.教师多媒体出示:【例2】已知:如图所示,直线c与直线a、b相交,且∠1=∠2. 求证:a∥b.师:若已知“同位角相等,两直线平行”这个定理,怎么证明“内错角相等,两直线平行”这个结论?学生交流讨论,教师巡视指导. 学生口述,教师板书推理过程. 证明:∵∠1=∠2,(已知) 又∵∠1=∠3,(对顶角相等) ∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)教师强调:证明中的每一步推理都要有根据,不能想当然.这些根据,可以是已知条件,也可以是定义、公理、已经学过的定理.【例3】已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC. 求证:OE⊥OF.证明:∵OE平分∠AOB,OF平分∠BOC(已知) ∴∠1=∠AOB,∠2=∠BOC.(角平分线的定义) 又∵∠AOB+∠BOC=180°,(已知) ∴∠1+∠2=(∠AOB+∠BOC) =90°.(等式性质)∴OE⊥OF.(垂直的定义) 六、课堂小结师:我们今天学习了什么内容? 学生回答,教师补充完善. 教学反思在这节课上,通过举反例判定一个命题是假命题,培养学生学会从反面思考问题的方法.通过强调正面的严密性,让学生理解证明的必要性和推理过程要步步有据.在教学方法上我主要采用“举一”,让学生独立思考、自由交流、集思广益,从而达到“反三”的目的.尽可能地调动更多学生主动参与、交流、沟通,通过自身思维碰撞构建新的认知结构,从而准确地判断命题的真假,对于假命题举出反例.对于命题的证明,要求学生能写出证明的一般步骤并能做到步步有据.第2课时命题与证明(二)教学目标【知识与技能】1.掌握三角形内角和定理及其三个推论.2.熟悉并掌握较简单命题的证明方法及其表述.3.探索并理解三角形的内角和定理.4.会灵活地运用三角形内角和定理的几个推论解决实际问题. 【过程与方法】1.经历探索并证明三角形内角和定理的过程.2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论. 【情感、态度和价值观】1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.3.通过生动的教学活动,发展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣. 重点难点【重点】三角形内角和定理的证明,三角形内角和定理及其推理. 【难点】三角形内角和定理的证明. 教学过程一、创设情境,导入新知师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗? 学生回答.师:我们用什么方法证明过这个命题? 生:用折叠、剪拼和度量的方法.师:很好!在上节课我们学习了定理的概念,大家还记得吗?生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.二、共同探究,获取新知教师多媒体出示:【例1】证明三角形内角和定理:三角形的三个内角和等于180°.师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;再结合图形,写出已知、求证.这个命题的条件和结论分别是什么?生:条件是一个三角形,结论是它的内角和等于180°.感谢您的阅读,祝您生活愉快。

13.1命题与证明-冀教版八年级数学上册教案

13.1命题与证明-冀教版八年级数学上册教案

13.1 命题与证明-冀教版八年级数学上册教案一、知识目标•了解命题的概念及其分类;•掌握命题符号的使用与否定、合取、析取等运算;•理解命题的等价关系;•学会利用数学归纳法证明命题或结论。

二、教学重点•命题的概念、分类及符号的运用;•利用数学归纳法证明命题或结论。

三、教学难点•命题的等价关系;•归纳证明的基本思路。

四、教学过程1. 导入新知识引入命题的概念,提高学生对于命题符号的敏感度,为后续学习打下基础。

2. 呈现新概念•命题的定义命题是陈述一个有确定真假的句子。

•命题的分类简单命题:只陈述一个事件或关系的真值的命题。

复合命题:由多个简单命题组成的命题。

•命题符号命题符号使我们能够简洁地表达命题。

•命题的运算否定:否定命题中的真值。

合取:如P∧Q表示两个简单命题P,Q同时为真。

析取:如P∨Q表示两个简单命题P,Q其中一个为真。

•命题的等价关系如果两个命题所代表的真假表相同,则称这两个命题是等价的。

3. 案例分析及练习提供命题的复合结构及其等价变形的案例进行分析及讨论,并将案例所示列表格收集到课本中便于查看。

4. T&R活动利用老师给出的命题和符号对,学生们进行T&R活动,练习分析命题结构及运算。

5. 归纳证明引入数学归纳法的概念及其思路,利用数学归纳法证明命题结论。

五、教学方式探究式教学法:通过引导学生提出自己的疑问和观点,并通过观察和实验来帮助学生形成概念。

六、教学评价通过课堂的讨论和实践活动,学生们掌握了命题的概念、分类以及常用的运算符号,并理解了命题的等价证明方法。

最后,通过归纳证明的实践活动,增强了学生们的数学证明能力。

2.2命题与证明-湘教版八年级数学上册教案

2.2命题与证明-湘教版八年级数学上册教案

2.2 命题与证明-湘教版八年级数学上册教案
一、教学目标
1.了解命题的定义和分类。

2.掌握简单命题的证明方法。

3.培养学生的逻辑思维和推理能力。

二、教学重难点
1.命题的定义和分类概念的理解。

2.命题简单证明的方法。

三、教学内容及活动安排
1. 课前预习(10分钟)
让学生在课前预习相关内容,并自主思考命题的定义和分类,以及简单命题的证明方法。

2. 导入新知(10分钟)
引导学生回顾上次课学习的内容,并通过提问,引出命题和证明的概念。

3. 讲解命题与证明的概念(20分钟)
A. 命题的定义和分类(10分钟)
命题是能够判断真假的陈述句,它具有真和假两个值。

分类包括简单命题和复合命题,其中复合命题包括合取命题、析取命题、蕴含命题和等价命题。

B. 简单命题的证明方法(10分钟)
1.直接证明法:利用已知条件,推导证明所要证的结论。

2.反证法:假设所要证的结论不成立,导出矛盾,从而推出结论成立。

3.数学归纳法:通过证明基础情形和归纳假设后,证明所有情形都成立。

4. 学生活动(20分钟)
分组讨论,并进行简单的命题练习和证明。

老师在课堂上进行指导和点评,引导学生掌握证明方法。

5. 深化练习(20分钟)
作业布置:练习册相关练习题。

四、教学反思
1.通过本节课的学习,学生掌握了命题的定义和分类,以及简单命题的证明方法。

2.学生在课上有较为积极的参与和讨论,并表现出较好的学习兴趣和思维能力。

3.下一步需要继续深化学生对命题证明方法的理解和应用能力,加强练习和巩固。

初中八年级数学 《命题与证明》教案

初中八年级数学 《命题与证明》教案

学习目标2、培养我观察问题和分析问题的能力.3、我通过探究交流,体验成功的乐趣.学习重点学习难点自主学习一、知识回顾对名称和术语的含义加以描述,作出明确的规定,这就是给出它们的____________.例如:(1)“具有中华人民共和国国籍的人,叫做中华人民共和国公民”是“中华人民共和国公民”的_________.(2)“两点之间线段的长度,叫做这两点之间的距离”是________________的定义.(3)_________________________________________是“无理数”的定义.(4)_________________________________________是“多边形”的定义.(5)等腰三角形的定义是_________________________________________.二、合作探究1、小组内互相讨论并完成下列问题.2、回答下列问题.两直线平行,同位角相等.也可以写成:如果____________,那么____________.题设(条件)____________,结论____________.(1)三条边对应成比例的两个三角形相似;条件是:____________结论是:____________改写成:____________(2)两角对应相等的两个三角形相似;条件是:____________结论是:____________改写成:____________三、回答下列问题.反例_________________________________________.四、小结.这节课你学会了什么?第1页共1页。

最新冀教版八年级数学上册《命题与证明》教学设计(精品教案)

最新冀教版八年级数学上册《命题与证明》教学设计(精品教案)

13.1 命题与证明一、教学目标(一)知识目标1.理解互逆命题、原命题、逆命题、真命题、假命题、逆定理等概念.2.理解证明的必要性,熟练证明的步骤与书写格式.3.进一步熟练使用规范性语言进行证明.4.能说出证明过程每一步的依据.(二)能力目标1.培养学生分析问题、解决问题的逻辑思维能力.2.培养学生规范的数学解题能力.(三)情感目标培养学生学数学,用数学的意识,培养学生的探索意识和创新意识,同时又尊重客观事实的科学态度,培养学生勇于探索、创新、解疑的科学精神.二、教学重点对一些几何问题进行正确的逻辑证明;证明过程中规范性语言的使用.三、教学难点证明过程中逻辑推理以及推理的依据.四、教学方法引导法,分析法,讨论法、探究法.五、教学用具多媒体.六、教学过程(一)引入在前面的学习过程中,我们通过看一看、画一画、折一折、比一比、想一想、猜一猜等方法,学习了许多几何图形的性质与结论,现在我们学习了公理、定理以及证明,可以对一些几何图形问题进行逻辑证明,也可以对前面得到的性质与结论进行逻辑证明.下面我们从具体的例子中进行学习.(二)自主学习阅读课本,完成下面问题1.命题都是由和两部分组成.命题分两种,命题和命题,.2.判断一个命题是假命题,就可以了.3.什么是逆命题、逆定理、互逆命题和互逆定理?4.证明的步骤是什么?(三)合作探究仿照33页例题完成1 如图1,已知AB∥DC,AD∥BE,求证:∠ABE=∠D.分析:运用平行线公理及定理等进行逻辑证明.证明:因为AB∥DC(已知),所以∠ABE=∠BEC(两直线平行,内错角相等).因为AD∥BE(已知),所以∠D=∠BEC(两直线平行,同位角相等).图1所以∠ABE=∠D(等量代换).例2 请填写下面题目中的逻辑证明每一步的理由.已知:如图2,BD⊥AC,EF⊥AC,D、F是垂足,∠1=∠2.求证:∠ADG=∠C.证明:因为BD⊥AC,EF⊥AC( ),所以∠3=∠4=90°( ), 所以BD∥EF( ),所以∠2=∠CBD( ).因为∠1=∠2( ),所以∠1=∠CBD( ).所以GD∥BC( ).图2所以∠ADG=∠C( ).先请同学们自行填写,然后小组同学讨论、互相校对.分析:从填写逻辑证明每一步理由的过程中,逐渐体会逻辑证明的过程.练习教材第33页“做一做”. 34页练习。

最新湘教版八年级数学上册《命题与证明1》教学设计(精品教案)

最新湘教版八年级数学上册《命题与证明1》教学设计(精品教案)

课题:2.2.1命题与证明(1)教学目标1.了解定义、命题的含义.2.了解命题的结构,会把一个命题写成“如果……那么……”的形式.3、区别命题与定义,通过练习题高概念意识,树立科学严谨的学习方法。

能用数学的眼光观察、分析生活中的实际问题。

重点:定义、命题的概念,命题的结构。

难点:命题与定义的本质区别。

教学过程:一、创设情景,导入新课(出示ppt课件)前面我们学习了许多的概念,请举例说明:如:不在同一直线上的三条线段首尾相接所构成的图形叫作三角形;三角形的一边与另一边的延长线所组成的角叫作三角形的外角. 分母含有未知数的方程叫分式方程。

在同一平面内,没有公共点的两条直线叫做两直线平行。

还有很多,大家回顾一下这些概念。

如:等腰三角形、等边三角形以及三角形的高线、中线、角平分线,一元一次方程,代数式,因式分解,轴对称图形等二、探究交流(出示ppt课件)1.定义概念的教学:从以上两个问题中引入定义这个概念:像这样,对一个概念的含义加以描述说明或作出明确规定的语句叫作这个概念的定义。

例如:“把数与表示数的字母用运算符号连接而成的式子叫作代数式”是“代数式”的定义.“同一平面内没有公共点的两条直线叫作平行线”是“平行线”的定义.2、做一做:说出下列概念的定义:(1)方程;(2)因式分解,(3)三角形角平分线注意:定义必须能清楚地规定出概念最本质的特征。

3、命题概念的教学(1)命题的定义:下列叙述事情的语句中,哪些是对事情作出了判断?(1)三角形的内角和等于180°;(2)如果| a | = 3,那么a = 3;(3)1月份有31天;(4)作一条线段等于已知线段;(5)一个锐角与一个钝角互补吗?(6)请把手机交出来!一般地,对某一件事情作出判断的语句(陈述句)叫作命题. 上述语句(1)(2)(3)都是对事物作出判断;语句(4)(5)(6)没有对事情作出判断,就不是命题.命题与定义有什么区别?命题是一个陈述句,就是判断一件事情的句子。

冀教版数学八年级上册13.1《命题与证明》教学设计

冀教版数学八年级上册13.1《命题与证明》教学设计

冀教版数学八年级上册13.1《命题与证明》教学设计一. 教材分析冀教版数学八年级上册13.1《命题与证明》是学生在学习了初中数学基础知识后,进一步深化对数学概念、性质、法则的理解和运用的一个重要章节。

本节内容主要包括命题的概念、分类及证明的方法,是学生初步接触数学证明的起点,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

二. 学情分析学生在学习本节内容前,已经掌握了基本的数学运算能力和一定的逻辑思维能力,但对数学证明的概念和方法还比较陌生。

因此,在教学过程中,需要注重引导学生理解命题的概念,掌握证明的方法,并能够运用证明解决实际问题。

三. 教学目标1.了解命题的概念,能够正确判断一个语句是否为命题。

2.掌握命题的分类,能够区分各类命题的特点。

3.学习证明的方法,能够运用证明解决实际问题。

四. 教学重难点1.命题的概念和分类。

2.证明的方法和步骤。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论,自主探索命题的概念和分类,培养学生的逻辑思维能力。

2.通过案例分析和实践操作,让学生掌握证明的方法和步骤,提高学生解决问题的能力。

3.利用多媒体教学手段,提供丰富的教学资源,增加学生的学习兴趣和参与度。

六. 教学准备1.准备相关的教学案例和练习题,用于引导学生进行思考和练习。

2.准备多媒体教学课件,用于辅助讲解和展示。

七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些实际问题,引导学生思考如何用数学语言来表述这些问题,从而引出命题的概念。

2.呈现(15分钟)讲解命题的概念,让学生理解什么是命题,如何判断一个语句是否为命题。

并通过一些例子,让学生区分各类命题的特点。

3.操练(15分钟)让学生分组讨论,分析一些给定的命题,判断它们属于哪一类命题,并说明理由。

每组选取一个代表性的例子进行汇报。

4.巩固(15分钟)讲解证明的方法和步骤,让学生了解如何用数学语言来进行证明。

并通过一些简单的例子,让学生尝试进行证明。

湘教版数学八年级上册2.2《命题的证明》教学设计2

湘教版数学八年级上册2.2《命题的证明》教学设计2

湘教版数学八年级上册2.2《命题的证明》教学设计2一. 教材分析湘教版数学八年级上册2.2《命题的证明》是学生在掌握了命题与定理的基本概念后,进一步学习命题证明的方法和技巧。

本节内容通过具体的例子,引导学生学习用演绎推理的方法证明命题,培养学生的逻辑思维能力和证明能力。

教材中给出了几个常见的证明方法,如直接证明、反证法、归纳法等,并配有相应的例题和练习题。

二. 学情分析学生在学习本节内容前,已经学习了命题与定理的基本概念,对演绎推理有一定的了解。

但学生对证明的方法和技巧还不够熟悉,需要通过具体的例子和练习来进一步掌握。

学生的逻辑思维能力和证明能力参差不齐,因此在教学过程中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。

三. 教学目标1.让学生掌握命题证明的基本方法和技巧。

2.培养学生运用演绎推理能力解决实际问题的能力。

3.提高学生的逻辑思维能力和证明能力。

四. 教学重难点1.教学重点:命题证明的基本方法和技巧。

2.教学难点:如何运用证明方法解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论,发现证明的方法和技巧。

2.用具体的例子和练习题,让学生通过动手操作和思考,巩固所学内容。

3.分组讨论和合作交流,培养学生的团队协作能力和沟通能力。

4.及时反馈和评价,激发学生的学习兴趣和积极性。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和测试题,用于巩固和评估学生的学习效果。

3.准备黑板和粉笔,用于板书和展示。

七. 教学过程1.导入(5分钟)通过一个简单的数学问题,引导学生思考证明的方法和技巧。

例如,证明:任意两个正整数的和都是偶数。

让学生尝试用自己的语言和逻辑推理来解释这个问题。

2.呈现(10分钟)呈现教材中的例题和相关的证明方法,如直接证明、反证法、归纳法等。

用PPT或黑板展示,并配以讲解,让学生理解和掌握这些证明方法。

3.操练(10分钟)让学生分组讨论和合作,解决一些类似的证明题目。

八年级数学命题与证明教案

八年级数学命题与证明教案

第4章命题与证明目录4.1定义与命题(1) (1)4.1 定义与命题(2) (4)4.2证明(1) (5)4.2证明(2) (6)4.2证明(3) (8)4.3反例与证明 (11)4.1定义与命题(1)【教学目标】1.了解定义的含义.2.了解命题的含义.3.了解命题的结构,会把一个命题写成“如果……那么……”的形式.【教学重点、难点】重点:命题的概念.难点:象范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…”形式学生会感到困难,是本节课的难点.【教学过程】一、创设情景,导入新课(1)阅读新华社酒泉2005年10月11日这篇报导:神舟六号载人飞船将于10月12日上午发射,……神舟六号飞船搭乘两名航天员,执行多天飞行任务.按计划,飞船将从中国酒泉卫星发射中心发射升空,运行在轨道倾角42.4°、近地点高度为200千米、远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报导,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度). 二、合作交流,探求新知 1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.象问题(1)中的轨道倾角、近地点高度、远地点高度、变轨的含义必须有明确的规定,即需要给出定义. 完成做一做请说出下列名词的定义:(1)无理数;(2)直角三角形;(3)一次函数;(4)频率;(5)压强. 2.命题概念的教学 教师提出问题:判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断? (1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a ,b 两条直线平行吗? (5)鸟是动物; (6)若42=a ,求a 的值; (7)若22b a =,则b a =.答案:句子(1)(3)(5)(7) 对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中 (1)(3)(5)判断是正确的,(7)判断是错误的.在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.说明:讲解定义、命题的含义时,要突出语句的作用.句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系. 3.命题的结构的教学告诉学生现阶段我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行, 同位角相等”可以改写成“如果两条直线平行,那么同位角相等”. 三、师生互动 运用新知下面通过书本中的范例介绍如何找出一个命题的条件和结论,并改写成“如果……那么……”的形式.例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式: (1)三条边对应相等的两个三角形全等; (2)在同一个三角形中,等角对等边;(3)对顶角相等; (4)同角的余角相等;(5)三角形的内角和等于180°; (6)角平分线上的点到角的两边距离相等.分析:找出命题的条件和结论是本节课的难点,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写是注意把时要把省略的词或句子添加上去. (1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”. (2)学生可能会说条件是“在同一个三角形中”,结论是“等角对等边”.教学时可作这样引导:“等角对等边含义”是指有两个角相等所对的两条边相等,`然后提问学生,一个三角形满足什么条件时,有两条边相等?这个命题的条件是什么?结论是什么?值得注意的是,命题中包含了一个前提条件:“在一个三角形中”,在改写时不能遗漏. (3)可作如下启发:对顶角指两个角的关系,相等指两个角相等.把“两个角”添补上去,写成“是对顶角的两个角相等”,这样学生不难得出这个命题的条件是“两个角是对顶角”,结论是“两个角相等”.这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”. (4)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.这个命题可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.(5)条件是“三个角是一个三角形的三个内角”,结论是“这三个角的和等于180°”.这个命题可以改写如果“三个角是一个三角形的三个内角,那么这三个角的和等于180°”; (6) 如果“一个点在一个角的平分线上,那么这个点到这个角的两边距离相等”. 例2 下列语句中,哪些是命题,哪些不是命题? (1)若a<b ,则a b -<-; (2)三角形的三条高交于一点;(3)在ΔABC 中,若AB>AC ,则∠C>∠B 吗? (4)两点之间线段最短; (5)解方程0322=--x x ; (6)1+2≠3.答案:(1)(2)(4)(6)是命题,(3)(5)不是命题. 例3(1) 请给下列图形命名,,并给出名称的定义:① ②答案:略(2)观察下列这些数,找出它们的共同特征,给以名称,并作出定义: -52,-2,0,2,8,14,20,… 答案:能被2整除的整数是偶数. 四、应用新知 体验成功课内练习:教材中安排了4个课内练习,第1题是为定义这个概念配置的,第2题是为命题这个概念配置的,第3、4题是为命题的结构配置的.第4题可以通过同伴或同桌的合作交流完成.五、总结回顾,反思内化学生自由发言,这节课学了什么?教师做补充.三个内容:⎪⎩⎪⎨⎧分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一六、布置作业 巩固新知 课本P72作业题.4.1 定义与命题(2)【教学目标】知识目标:理解真命题、假命题、公理和定义的概念能力目标:会判断一个命题的真假,会区分定理、公理和命题。

2019八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

2019八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

13.2命题与证明第1课时命题与证明◇教学目标◇【知识与技能】1.了解命题、真命题、假命题的意义,了解公理、定理、证明的概念;2.了解原命题、逆命题的意义;3.会判断一个命题的真假,能用举反例的方法判断命题的真假,会写出一个命题的逆命题.【过程与方法】通过一些简单命题的证明,训练学生的逻辑思维.【情感、态度与价值观】通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.让学生积极参与教学活动,对数学定理、命题的由来产生好奇心和求知欲.◇教学重难点◇【教学重点】学习命题的概念和命题、公理、定理的区别.【教学难点】严密完整地写出推理过程.◇教学过程◇一、情境导入上一节课中,我们研究三角形的性质是通过折叠、剪拼或度量得到三角形的内角和为180°的,但这些做法都会出现很多误差,会存在疑问.有没有更准确更严格的方法得出结论呢?二、合作探究问题1:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.例如:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.判断哪些是正确的,哪些是错误的?结论:(1)(2)(4)是正确的,(3)是错误的.问题2:什么叫命题?什么叫真命题?什么叫假命题?结论:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,其中正确的命题称为真命题,错误的命题称为假命题.典例1判断下面语句中哪些是命题?(1)请关上窗户;(2)你明天上学吗?(3)天真冷啊!(4)昨天我们去旅游了。

[解析](4)是命题,(1)(2)(3)不是命题问题3:(1)命题的一般形式是什么?(2)什么叫原命题、逆命题?(3)什么叫反例?结论:(1)命题的一般形式是“如果p,那么q”或“如果p,则q”.(2)将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个就叫做原命题的逆命题.(3)符合命题条件,但不满足命题结论的例子,我们称之为反例.典例2指出下列命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.[解析](1)“两条直线都平行于同一条直线”是条件,“两条直线平行”是结论.(2)“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论.写出下列命题的逆命题,并判断所得逆命题的真假,如果是假命题,请举一个反例:(1)内错角相等,两直线平行;(2)如果a=0,那么ab=0.[解析](1)逆命题是“两直线平行,内错角相等”,是真命题.(2)逆命题是“如果ab=0,那么a=0”,是假命题.反例,当a=1,b=0时,ab=0.典例3已知:如图,直线c与直线a,b相交,且∠1=∠2.求证:a∥b.[解析]∵∠1=∠2,(已知)又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.[解析]∵OE平分∠AOB,OF平分∠BOC,(已知)∴∠1=错误!未找到引用源。

初二数学命题与证明教学

初二数学命题与证明教学

初二数学命题与证明教学
一、目标设定
1.通过教学,使学生掌握数学命题与证明的基本概念及其基本方法;
2.帮助学生了解数学命题与证明的基本准则,培养学生抽象思维和归纳演绎的能力;
3.激发学生的探究兴趣,培养学生的解决实际问题的能力。

二、教学内容
1.让学生理解数学命题及其证明,从而掌握数学命题与证明的基本概念及其基本方法;
2.教师给学生提供具体的数学命题和练习,介绍数学命题证明的基本准则和方法,督促学生结合课堂所学知识,认真完成数学命题证明练习,掌握实践技能;
3.通过练习,运用归纳演绎的思维方式,培养学生的抽象思维和推理能力,激发学生的探究兴趣,运用自然科学的方法解决实际问题。

三、教学方法
1.讲授讲解教学法:通过教师的讲解,发现问题、解决问题,让学生认识数学命题与证明;
2.示范操作法:教师示范操作,帮助学生更好地理解一般情况下的数学命题、证明和例题的解题步骤;
3.合作探究学习法:让学生认真完成数学命题证明练习,结合所学知识,采用合作探究的方式,让学生训练抽象思维能力和归纳演绎的能力。

四、教学条件
1.教师需要有较强的熟悉数学命题及。

初中命题定理证明教案

初中命题定理证明教案

教案:初中命题定理证明教学目标:1. 理解命题定理的概念和意义;2. 学会使用命题定理进行证明;3. 培养逻辑思维能力和证明能力。

教学重点:1. 命题定理的概念和意义;2. 命题定理的证明方法。

教学难点:1. 理解命题定理的证明过程;2. 灵活运用命题定理进行证明。

教学准备:1. 教材或教学资源;2. 黑板或投影仪。

教学过程:一、导入(5分钟)1. 引入话题:介绍数学中的证明和定理;2. 提问:什么是命题?什么是定理?它们之间有什么关系?二、新课讲解(15分钟)1. 讲解命题定理的概念和意义;2. 通过示例介绍命题定理的证明方法;3. 引导学生理解命题定理的证明过程。

三、课堂练习(15分钟)1. 提供几个简单的命题定理,让学生尝试证明;2. 引导学生运用命题定理解决实际问题。

四、巩固练习(15分钟)1. 提供一些练习题,让学生独立完成;2. 引导学生运用命题定理进行证明。

五、课堂小结(5分钟)1. 回顾本节课所学内容;2. 强调命题定理的概念和证明方法。

教学延伸:1. 进一步学习其他类型的定理和证明方法;2. 参加数学竞赛或研究数学问题。

教学反思:本节课通过引入命题定理的概念和意义,让学生了解数学中的证明过程。

通过课堂练习和巩固练习,学生能够学会运用命题定理进行证明。

在教学过程中,要注意引导学生理解命题定理的证明过程,培养他们的逻辑思维能力和证明能力。

同时,也要注重学生的个别差异,给予不同的学生不同的指导和帮助,提高他们的学习效果。

湘教版八上数学2.2《命题与证明》第1课时教学设计

湘教版八上数学2.2《命题与证明》第1课时教学设计

编写时间:年月日执行时间:月日总序第个教案课题:命题与证明(1)课型:第课时
批注:
主备人:
教学目标
1. 理解什么是定义,知道一个概念的定义的含义;
2. 知道什么
是命题、原命题、逆命题;3. 能分析组成命题的条件和结论,知道命
题的表达方式;4. 营造轻松愉悦的课堂气氛,激发学生学习数学的激
情。

教学重点
1. 理解定义、命题的含义;
2. 分析组成命题的条件和结论,能
准确叙述一些概念的定义,学会表述命题。

教学难点
1. 命题的含义的理解;
2. 找出命题的条件和结论,表述命题。

教学过程
一、情景导入
1.一个小故事:
爸爸在家里辅导儿子晕晕做作业。

爸爸说:“你画一个三角形吧。


儿子很快就画好了。

2.导入新课:晕晕所画的图正确吗?为什么?
二、教学新知
(一)讲解定义的含义
1.初步感知:
①不在同一条直线上的三条线段首尾相接所构成的图形叫作三角形。

②三角形的一边与另一边的延长线所组成的角叫作三角形的外角。

分析:这些语句都对一个概念的含义进行准确的说明,作出了明确的
规定。

2. 抽象概括:。

新湘教版八年级上册初中数学 2.2 命题与证明 教案

新湘教版八年级上册初中数学 2.2 命题与证明 教案

2.2 命题与证明(第1课时)【教学目标】1、正确掌握定义的概念,能运用适当的数学语言去描述定义。

2、了解命题的含义。

3、了解命题的结构,会把一个命题写成“如果……,那么……”的形式。

【教学重点】命题的概念【教学难点】条件和结论不明显的命题改写成“如果……,那么……”的形式。

【教学过程】一、新课导入1、什么叫三角形?什么叫三角形的外角?2、刚才我们是给三角形和三角形的外角两个概念下了定义,这节课我们来学习什么叫定义等。

二、自主探究阅读教材,完成下列问题:1、叫作这个概念的定义。

1)叙述下列概念的定义:(1)有理数(2)无理数(3)绝对值2)下列语句,属于定义的是()A、两点确定一条直线B、同角的余角相等C、两直线平行,内错角相等D、点到直线的距离是该点到这条直线的垂线段的长度2、叫作命题。

命题的结构:命题通常可以写成“如果……,那么……”的形式。

是条件,“那么”引出的部分是结论。

1)下列语句,是命题的是()A、如果x²=4,那么x=2B、延长线段AB至CC、对顶角相等吗?D、三角形一个外角等于两不相邻的内角和E、一年有四季2)指出下列命题的条件与结论,并改写成“如果……,那么……”的形式。

3、逆命题与互逆命题上述命题④与⑤的条件和结论之间有什么联系?称为互逆命题,其中一个叫作,另外一个叫作。

三、应用迁移(一)典例精析例1、请将下列命题改成“如果……,那么……”的形式,并写出它的逆命题。

⑴若,yx=则yx=;⑵若,0,0>>ba则0>ab;(3)同角或等角的余角相等;(4)内错角相等,两直线平行。

【题后交流与反思】(3)和(4)都是用汉语的简略表达方式,要写成“如果… ,那么…”的形式,分清命题的条件和结论,就要弄清楚命题中涉及的元素及其因果关系,例如(3)中涉及三个或者四个角;而(4)中关于内错角,则必有两直线被第三条直线所截,这个大前提必须要交待清楚。

这是写文字命题的逆命题所要注意的地方,有时候还要画出图形帮助分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学教案:命题与证明
第二十四章证明与命题(一)复习
一、教学目标:
1、了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。

2、会在简单情况下判断一个命题的真假。

理解反例的作用,知道利用反例可证明一个命题是错误的。

3 、了解证明的含义,理解证明的必要性,体会证明的过程要步步有据。

4、会根据一些基本事实证明简单命题。

5、通过实例,体会反证法的含义。

了解反证法的基本步骤。

6、初步会综合运用命题、证明以及相关知识解决简单的实际问题。

二、本章知识结构框架图:
三、教学过程:
(一)知识回顾
1、一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题分为真命题与假命题。

2、说明一个命题是假命题,通常只用找出一个反例,但要说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子。

(二)说一说
1.指出下列句子,哪些是命题,哪些不是命题?
(1)有两个角和夹边对应相等的三角形是全等的三角形;
(2)有两条边对应相等的两个三角形全等;
(3)作A的平分线;
(4)若a=b 则a2= b2
(5) 同位角相等吗?
2.说出一个已学过定理:
说出一个已学过公理:
3、下列把命题改写成如果,那么的形式。

并判断下列命题的真假.
(1)不相等的角不可能是对顶角.
(2)垂直于同一条直线的两直线平行;
(3)两个无理数的乘积一定是无理数.
(三)练一练
1. 用反例证明下列命题是假命题:
(1) 若x(5-x)=0,则x=0;
(2) 等腰三角形一边上的中线就是这条边上的高;
(3) 相等的角是内错角;
(4)若x2,则分式有意义.
(四)例题分析
例1求证:全等三角形对应角的平分线相等.
证明命题的一般步骤:
(1)根据题意,画出图形;
(2)用符号语言写出已知和求证
(3)分析证明思路;
(4) 写出证明过程;
例2已知:如图,△ABC中,C=2B ,BAD=DAC.
求证:AB=AC+CD
还有其他方法吗?
A A
E
B D
C B
D C
(第三题) (第二题)
例3已知:如图D,E分别是BC,AB上的一点,BC、BD的长度之比为3:1, △ECD的面积是△ABC的面积的一半.
求证:BE=3AE[来源:学|科|网]
例4、已知:如图,直线AB,CD,EF在同一平面内,且AB ∥ EF,CD ∥ EF,[来源:]
求证:AB ∥ CD。

证明:假设AB∥CD,那么AB与CD一定相交于一点P
∵AB ∥ EF,CD ∥ EF(已知)
过点P有两条直线AB,CD都与直线EF平行。

这与经过直线外一点,有一条而且只有一条直线和这条直线
平行矛盾。

[来源:]
AB ∥ CD不能成立。

AB ∥ CD
反证法的一般步骤:[来源:]
1.反设(否定结论);
2.归谬(利用已知条件和反设,进行推理,得出与已学过的公理、定理、定义或与已知条件矛盾);
3.写出结论(肯定原命题成立)。

练习:
如图,已知:AB=AE,BC=DE,B= E,
AFCD于F.
求证:CF=DF.
(五)小结:
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

(六)作业布置:练习一份
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

相关文档
最新文档