2019年高考高三数学一轮统考综合训练题理科(2)

合集下载

2019届高三理科数学第一次大联考试题附答案

2019届高三理科数学第一次大联考试题附答案

2019届高三理科数学第一次大联考试题附答案姓名准考证号(在此卷上答题无效)绝密★启用前三湘名校教育联盟•2019届高三第一次大联考理科数学本试卷共4页。

全卷满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={ <0},B={ >1},则=A. (1,3)B. (1,6)C. (2,3)D. (2,6)2.已知复数z满足,则其共轭复数的虚部为A.-2B.-1C.1D.23.设向量,则下列结论中正确的是A.a//bB.(a+b)丄bC.(a-b)丄bD.|a-b|=|b|4.已知x,y满足约束条件,则的最小值为A. B. 1 C. D.25.“”是“函数为奇函数”的A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为A.8B.16C.24D.487.设,则A. a<b〈cB. b<a<cC.c〈a〈bD. c<b〈a8.中国有个名句“运筹帷幄之中,决胜千里之外”。

其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位用纵式表示,十位,千位,十万位用横式表示,以此类推,例如2268用算筹表示就是=||丄|||.执行如图所示程序框图,若输人的x=1, y = 2,则输出的S用算筹表示为9.过双曲线C: (a>b>0)的一个焦点F向其一条渐近线引垂线,垂足为E,0为坐标原点,若△OEF的面积为1,其外接圆面积为,则C的离心率为A. B. C.2 D.10.设>0,>0,将函数的图像向左平移个单位长度得到图像C1,将函数的图像向右平移个单位长度得到图像C2,若C1与C2重合,则A. B. C. D.11.在正方体ABCD-A1B1C1D1中,三棱锥A1-BC1D内切球的表面积为,则正方体外接球的体积为A. B. C. D.12.已知函数,若且,则的最小值为A. B. C. D. 2二、填空题:本题共4小题,每小题5分,共20分。

2019届高三数学一轮复习第一次检测考试试题 理(含解析)

2019届高三数学一轮复习第一次检测考试试题 理(含解析)

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三一轮复习第一次检测考试数学(理科)试题一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【答案】C【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】【分析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】根据题意得,分段函数图象分段画即可,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2﹣x)=﹣f(x),且当x≥1时,函数f(x)=lnx,若a=f(2﹣0.3),b=f(log3π),c=f(﹣)则a,b,c大小关系是()A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。

2019年高考高中三年级数学一轮统考综合训练题理科

2019年高考高中三年级数学一轮统考综合训练题理科

高三理科数学一轮统考综合训练题(五)一、选择题:共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1AD24.AD5.是两个不同的平面,则下列命题正确的是A BC D6.一个四面体的三视图如图所示,则该四面体的表面积是()A.1.2+C.7..若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8B.15C.16D.328.设,z x y =+其中实数,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为12,则z 的最小值为A .3-B .6-C .3D .69.函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,若12,(,63x x ππ∈-,且12()()f x f x =,则12()f x x +=A . 1B .21C .22 D .2310.在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有 A .34种 B .48种C .96种D .144种11. 函数2()ln(2)f x x =+的图象大致是12.如图,从点0(,4)M x 发出的光线,沿平行于抛物线28y x =的 对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线:100l x y --=上 的点N ,经直线反射后又回到点M ,则0x 等于A .5B .6C .7D .8二、填空题:本大题共4小题,每小题5分,共20分. 13.圆22:2440C x y x y +--+=的圆心 到直线:3440l x y ++=的距离d = ; 14.如图是某算法的程序框图,若任意输入[1,19]中的实数x ,则输出的x 大于49的概率为 ;15.已知,x y 均为正实数,且3xy x y =++, 则xy 的最小值为__________;16. 如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1x y e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为 .三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在数列{}n a )N (*∈n 中,其前n 项和为n S ,满足22n n S n -=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎪⎩⎪⎨⎧=+-=⋅=k n nn k n n b n a n 2,2112,22(k 为正整数),求数列{}n b 的前n 2项和n T 2.18.(本小题满分12分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量X 的概率分布及数学期望()E X .19.(本小题满分12分)如图,四棱锥P ABCD -中, PA ⊥面ABCD ,E 、F 分别为BD 、PD 的中点,=1EA EB AB ==,PFAD2PA =.(Ⅰ)证明:PB ∥面AEF ;(Ⅱ)求面PBD 与面AEF 所成锐角的余弦值. 20.(本小题满分12分) 已知函数()1x f x e x =--. (Ⅰ)求()f x 的最小值;(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设2()(()1)(1)g x f x x '=+-,试问函数()g x 在(1,)+∞上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由. 21.(本小题满分12分)设1F ,2F 分别是椭圆D :)0(12222>>=+b a by a x 的左、右焦点,过2F 作倾斜角为3π的直线交椭圆D 于A ,B 两点, 1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4.(Ⅰ)求椭圆D 的方程;(Ⅱ)已知点),(01-M ,设E 是椭圆D 上的一点,过E 、M 两点的直线l 交y 轴于点C ,若CE EM λ=, 求λ的取值范围;(Ⅲ)作直线1l 与椭圆D 交于不同的两点P ,Q ,其中P 点的坐标为(2,0)-,若点),0(t N 是线段PQ 垂直平分线上一点,且满足4=⋅NQ NP ,求实数t 的值.请考生在第22、23两题中任选一题作答,如果多选,则按所做的第一题计分. 22、(本题10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系, 已知曲线),0(cos 2sin:2>=a a C θθρ过点)4,2(--P 的直线l 的参数方程为:)( 224222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+-=+-=,直线l 与曲线C 分别交于N M 、两点. (Ⅰ)写出曲线C 和直线l 的普通方程;(Ⅱ)若PN MN PM 、、成等比数列,求a 的值. 23、(本题10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f . (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式1)(-<a x f 的解集非空,求实数a 的取值范围.数学一轮统考综合训练题(五)答案一、选择题: C A D A D B C B D C D B 二、填空题: 13. 3 14. 2315.9 16.②③ 三、解答题: 17.解:(Ⅰ)由题设得:22n n S n -=,所以)2()1(1221≥---=-n n n S n所以n S S a n n n -=-=-11 )2(≥n ……………2分当1=n 时,011==S a ,数列{}n a 是01=a 为首项、公差为1-的等差数列 故n a n -=1.……………5分(Ⅱ)由(Ⅰ)知: ⎪⎩⎪⎨⎧=+-=⋅=-k n n n k n n b n n 2,)2(112,21 ……………6分 n n b b b b T 23212++++=02462212325272(21)2n n ----⎡⎤=⋅+⋅+⋅+⋅+-⋅⎣⎦⎥⎦⎤⎢⎣⎡+-++-+-+-+)22121()8161()6141()4121(21n n 02462212325272(21)24(1)n n n n ----⎡⎤==⋅+⋅+⋅+⋅+-⋅+⎣⎦+ ……………9分设246221325272(21)2n T n ----=+⋅+⋅+⋅++-⋅229n C C 则2246822222325272(23)2(21)2n n T n n -------⋅=+⋅+⋅+⋅++-⋅+-⋅两式相减得:2468222312(22222)(21)24n n T n ------⋅=++++++--⋅整理得:2202420992nn T +=-⋅ ……………11分 所以222024209924(1)n n n n T n +=-+⋅+ ……………12分 18.解:(Ⅰ)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为 ……………2分由题意知229512n C C =,化简得2300n n --=.解得6n =或5n =-(舍去)……………………5分 故袋中原有白球的个数为6……………………6分 (Ⅱ)由题意,X 的可能取值为1,2,3,4. 2(1)3P X ==; 361(2)984P X ⨯===⨯; 3261(3)98714P X ⨯⨯===⨯⨯;32161(4)987684P X ⨯⨯⨯===⨯⨯⨯.所以取球次数X 的概率分布列为:……………10分所求数学期望为211110()12343414847E X =⨯+⨯+⨯+⨯=…………………12分19. (Ⅰ)因为E 、F 分别为BD 、PD 的中点, 所以EF ∥PB ……………………2分 因为EF ⊂面AEF ,PB ⊄面AEF 所以PB ∥面AEF ……………………4分 (Ⅱ)因为=1EA EB AB == 所以60ABE ∠= 又因为E 为BD 的中点所以ADE DAE ∠=∠所以2()180BAE DAE ∠+∠=得90BAE DAE ∠+∠=,即BA AD ⊥……………6分 因为=1EA EB AB ==,所以AD 分别以,,AB AD AP 为,,x y z 轴建立坐标系所以1(1,0,0),(0,0,2),(2B D P F E 则133(1,0,2),(0,3,2),(,,0),(0,2PB PD AE AF =-=-==………8分 设1111(,,)n x y z =、2222(,,)n x y z =分别是面PBD 与面AEF 的法向量则11112020x z z -=⎧⎪-=,令1n =又22220102y z x y +=⎨⎪+=⎪⎩,令2(n =……………11分所以12121211cos ,19n n n n n n ⋅==……………12分20.解:(Ⅰ)求导数,得()1x f x e =-'.令0()f x '=,解得0x =. ……………2分当0x <时,0()f x '<,所以()f x 在()0-∞,上是减函数; 当0x >时,0()f x '>,所以()f x 在(0,)+∞上是增函数. 故()f x 在0x =处取得最小值(0)0f =. ……………6分 (Ⅱ)函数()g x 在()1,+∞上不存在保值区间,证明如下: 假设函数()g x 存在保值区间[],a b ,由2()(1)x g x x e =-得:2()(21)xg x x x e '=+-因1x >时, ()0g x '>,所以()g x 为增函数,所以22()(1)g()(1)abg a a e ab b e b⎧=-=⎪⎨=-=⎪⎩ 即方程2(1)xx e x -=有两个大于1的相异实根 ……………9分设2()(1)(1)xx x e x x ϕ=-->2()(21)1x x x x e ϕ'=+--因1x >,()0x ϕ'>,所以()x ϕ在(1,)+∞上单增所以()x ϕ在区间()1,+∞上至多有一个零点 ……………11分 这与方程2(1)xx e x -=有两个大于1的相异实根矛盾所以假设不成立,即函数()h x 在()1,+∞上不存在保值区间. ……………12分21.解:(Ⅰ)设1F ,2F 的坐标分别为)0,(),0,(c c -,其中0>c由题意得AB 的方程为:)(3c x y -=因1F 到直线AB 的距离为3,所以有31333=+--cc ,解得3=c ……………2分所以有3222==-c b a ……① 由题意知:42221=⨯⨯b a ,即2=ab ……② 联立①②解得:1,2==b a所求椭圆D 的方程为1422=+y x ……………4分 (Ⅱ)由(Ⅰ)知椭圆D 的方程为1422=+y x 设11(,)E x y ,),0(m C ,由于CE EM λ=,所以有),1(),(1111y x m y x ---=-λλλλ+=+-=∴1,111my x ……………6分 又E 是椭圆D 上的一点,则1)1(4)1(22=+++-λλλm 所以04)2)(23(2≥++=λλm解得:23λ≥-或2λ≤- ……………8分(Ⅲ)由)0,2(-P , 设),(11y x Q根据题意可知直线1l 的斜率存在,可设直线斜率为k ,则直线1l 的方程为)2(+=x k y 把它代入椭圆D 的方程,消去y ,整理得: 0)416(16)41(2222=-+++k x k x k由韦达定理得22141162k k x +-=+-,则2214182kk x +-=,=+=)2(11x k y 2414k k + 所以线段PQ 的中点坐标为,418(22k k +-)4122kk + (1)当0=k 时, 则有)0,2(Q ,线段PQ 垂直平分线为y 轴 于是),2(),,2(t NQ t NP -=--=由442=+-=⋅t ,解得:22±=t ……………10分(2) 当0≠k 时, 则线段PQ 垂直平分线的方程为-y +-=+x k k k (14122)41822kk+ 因为点),0(t N 是线段PQ 垂直平分线的一点 令0=x ,得:2416kkt +-= 于是),(),,2(11t y x t -=--=由4)41()11516(4)(2222411=+-+=---=⋅k k k t y t x NQ NP ,解得:714±=k 代入2416k kt +-=,解得: 5142±=t 综上, 满足条件的实数t 的值为22±=t 或5142±=t . ……………12分.2,2)Ⅰ(.222-==x y ax y ……………5分).(224222)Ⅱ(为参数的参数方程为直线t t y tx l ⎪⎪⎩⎪⎪⎨⎧+-=+-= ),4(8),4(22,0)4(8)4(222212122a t t a t t a t a t ax y +=⋅+=+=+++-=则有,得到代入,2PN PM MN ⋅= ,4)()(2121221221t t t t t t t t =⋅-+=-∴).(41.0432舍去或解得即-===-+a a a a ……………10分WORD 格式整理专业资料 值得拥有 23.解:(Ⅰ)原不等式等价于⎩⎪⎨⎪⎧x>32,(2x +1)+(2x -3)≤6或⎩⎪⎨⎪⎧-12≤x ≤32,(2x +1)-(2x -3)≤6或⎩⎪⎨⎪⎧x<-12,-(2x +1)-(2x -3)≤6,解得32<x ≤2或-12≤x ≤32或-1≤x<-12. 故不等式的解集为{x|-1≤x ≤2}. ……………5分(Ⅱ)∵f(x)=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|a -1|>4,解此不等式得a<-3或a>5.……………10分。

2019届浙江高三数学一轮复习综合检测卷2含解析

2019届浙江高三数学一轮复习综合检测卷2含解析

2019届浙江高三数学一轮复习综合检测(二)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,集合A ={x |x ≥3},B ={x |0≤x <5},则集合(∁U A )∩B 等于( ) A .{x |0<x <3} B .{x |0≤x ≤3} C .{x |0<x ≤3}D .{x |0≤x <3}2.已知函数f (x )=lg(1+4x 2+2x )+2,则f (ln 2)+f ⎝⎛⎭⎫ln 12等于( ) A .4 B .2 C .1 D .03.(2017·丽水质量水平测试)已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的体积为( )A .1 B.23 C.12 D.324.在△ABC 中,a ,b ,c 为角A ,B ,C 的对边,aBC →+(6-2)bCA →+(6+2)cAB →=0,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .无法确定5.(2017·丽水质量水平测试)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若m ∥α,n ⊥β,且α⊥β,则m ∥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥α,n ⊥β,m ⊥n ,则α⊥βD .若m ⊥n ,m ⊂α,n ⊂β,则α⊥β6.(2017·丽水质量水平测试)要得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =12sin 2x +32cos 2x 的图象( )A .向左平移π8个单位长度B .向右平移π2个单位长度C .向右平移π3个单位长度D .向左平移π4个单位长度7.已知f (x )=1+x 2,a ≠b ,则|f (a )-f (b )|与|a -b |的大小关系为( ) A .|f (a )-f (b )|>|a -b | B .|f (a )-f (b )|<|a -b | C .|f (a )-f (b )|=|a -b | D .不确定8.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .49.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为( ) A .0.02 B .0.08 C .0.18D .0.7210.(2017·丽水质量水平测试)设F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·F 2P →=0(O 为坐标原点),且|PF 1|=3|PF 2|,则椭圆的离心率为( ) A.3-1 B.2-1 C.3-12D.2-12第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)11.(2018届浙东北联盟期中考试)已知复数z 的共轭复数为z ,z (1+i)=3-i(i 是虚数单位),则z ·z =__________.12.(2017·丽水质量水平测试)已知函数f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (4))=________;f (x )的最大值是________.13.(2017·丽水质量水平测试)已知数列{a n }是公比为q 的单调递增的等比数列,且a 1+a 4=9,a 2a 3=8,a 1=____________;q =____________.14.设圆C :(x -k )2+(y -2k +1)2=1,则圆C 的圆心轨迹方程是________;若直线l :3x +ty -1=0截圆C 所得的弦长与k 无关,则t =________. 15.(2017·丽水质量水平测试)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于3,则m 的值为________.16.已知圆C :x 2+(y +1)2=3,设EF 为直线l :y =2x +4上的一条线段,若对于圆C 上的任意一点Q ,∠EQF ≥π2,则|EF |的最小值是__________.17.(2017·杭州二模)已知随机变量ξ的分布列为则E (ξ)=________,D (ξ)=________.三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 18.(14分)在锐角△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,向量m =(1,cos B ),n =(sin B ,-3),且m ⊥n . (1)求角B 的大小;(2)若△ABC 的面积为332,且3ac =25-b 2,求a ,c 的值.19.(15分)如图,在四棱锥P -ABCD 中,四边形ABCD 是菱形,△P AD ≌△BAD ,平面P AD ⊥ 平面ABCD ,AB =4,P A =PD ,M 在棱PD 上运动.(1)当M 在何处时,PB ∥平面MAC ;(2)当PB ∥平面MAC 时,求直线PC 与平面MAC 所成角的正弦值.20. (15分)(2017·丽水质量水平测试)如图,过抛物线C 1:x 2=2py (p >0)上的一点Q 与抛物线C 2:x 2=-2py 相切于A ,B 两点,若抛物线C 1:x 2=2py 的焦点F 1到抛物线C 2:x 2=-2py 的焦点F 2的距离为12.(1)求抛物线C 1的方程;(2)求证:直线AB 与抛物线C 1相切于一点P .21.(15分)设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ). (1)当a =0时,求函数f (x )在点P (e ,f (e))处的切线方程;(2)若对任意的x ∈[1,+∞),函数f (x )≥0恒成立,求实数a 的取值范围.22.(15分)(2017·浙江省91高中联盟联考)数列{a n }满足:a 1=2,当n ∈N *,n >1时,a 2+a 3+…+a n =4(a n -1-1).(1)求a 2,a 3,并证明:数列{a n +1-2a n }为常数列;(2)设c n =12⎝⎛⎭⎫a n +1a n+5,若对任意n ∈N *,2a <c 1+c 2+…+c n <10a 恒成立,求实数a 的取值范围.答案精析1.D [∁U A ={x |x <3},所以(∁U A )∩B ={x |0≤x <3},故选D.] 2.A [由函数的解析式可得,f (x )+f (-x )=lg(1+4x 2+2x )+2+lg(1+4x 2-2x )+2 =lg(1+4x 2-4x 2)+4=4,∴f (ln 2)+f ⎝⎛⎭⎫ln 12=f (ln 2)+f (-ln 2)=4.] 3.B [∵四棱锥P -ABCD 的三视图的俯视图为正方形且边长为1,正视图和侧视图的高为2,故四棱锥P -ABCD 的底面面积S =1,高h =2,故四棱锥P -ABCD 的体积V =13×1×2=23.] 4.B [∵aBC →+(6-2)bCA →+(6+2)cAB →=0, ∴a (AC →-AB →)+(6-2)bCA →+(6+2)cAB →=0, 即[(6-2)b -a ]CA →+[](6+2)c -a AB →=0,∵CA →,AB →不共线,故有⎩⎨⎧(6-2)b -a =0,(6+2)c -a =0,即⎩⎪⎨⎪⎧b =6+24a ,c =6-24a ,∴b 2+c 2=(2+3)4a 2+(2-3)4a 2=a 2.可得△ABC 的形状为直角三角形.]5.C [A ,若m ∥α,n ⊥β,且α⊥β,则m ,n 平行、相交或异面,不正确; B ,α∥β,m ⊂α,n ⊂β,m ,n 共面时,m ∥n ,不正确;C ,m ⊥α,n ⊥β,m ⊥n ,利用平面与平面垂直的判定定理,可得α⊥β,正确;D ,m ⊥n ,m ⊂α,n ⊂β,则α,β平行或相交,不正确. 故选C.]6.D [∵y =12sin 2x +32cos 2x =sin ⎝⎛⎭⎫2x +π3, y =cos ⎝⎛⎭⎫2x +π3=sin ⎝⎛⎭⎫2x +π3+π2=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, ∴要得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数的图象向左平移π4个单位长度.] 7.B [|f (a )-f (b )|=||1+a 2-1+b 2 =⎪⎪⎪⎪⎪⎪a 2-b 21+a 2+1+b 2=|a +b ||a -b |1+a 2+1+b 2 <|a +b ||a -b ||a |+|b |≤|a -b |(|a |+|b |)|a |+|b |=|a -b |,所以|f (a )-f (b )|<|a -b |,故选B.] 8.B [如图,圆(x +1)2+y 2=3的圆心为M (-1,0), 圆的半径|AM |=3,圆心M (-1,0)到直线x +y -1=0的距离 |MC |=|-1+0-1|2=2, ∴直线x +y -1=0被圆(x +1)2+y 2=3 截得的弦长|AB |=2(3)2-(2)2=2.]9.D [设“这批水稻种子发芽”为事件A ,P (A )=0.8, “出芽后幼苗成活”为事件B ,P (B )=0.9, ∴这粒种子能成长为幼苗的概率 P =P (A )P (B )=0.8×0.9=0.72.] 10.A [如图所示,设点M 为PF 2的中点, ∵OP →+OF 2→=2OM →,∴(OP →+OF 2→)·F 2P →=2OM →·F 2P →=0,OM ⊥PF 2, 由O ,M 分别是F 1F 2,PF 2的中点可得OM ∥PF 1,∴PF 1⊥PF 2,设|PF 2|=m (m >0), 则|PF 1|=3m ,由勾股定理得|F 1F 2|2=|PF 1|2+|PF 2|2, 即4c 2=3m 2+m 2,∴c =m ,由椭圆的定义2a =|PF 1|+|PF 2|=(3+1)m , 则椭圆的离心率e =c a =m3+12m =3-1.]11.5解析 ∵z (1+i)=3-i ,∴z (1+i)(1-i)=(3-i)(1-i),2z =2-4i , z =1-2i ,z =1+2i ,z ·z =(1-2i)(1+2i)=5. 12.121 解析 函数f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,可得f (4)=1-4=-1,f (f (4))=f (-1)=2-1=12,当x ≥0时,f (x )=1-x 递减,即有f (x )≤1; 当x <0时,f (x )=2x ∈(0,1). 综上可得当x =0时,取得最大值1. 故f (f (4))=12;f (x )的最大值是1.13.1 2解析 ∵a 1+a 4=9,a 2a 3=8,∴⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 1qa 1q 2=a 21q 3=8, 且a 1>0,q >1,解得a 1=1,q =2. 14.y =2x -1 -32解析 设圆心坐标为(x ,y ),由圆的方程可得⎩⎪⎨⎪⎧x =k ,y =2k -1,消去k 可得圆心的轨迹方程为y=2x -1.若弦长与k 无关,则圆心到直线3x +ty -1=0的距离与k 无关,因为圆心在直线y =2x -1上,故当两直线平行时弦长即为定值,即-3t =2,解得t =-32.15.2解析 作出不等式组对应的平面区域如图,若表示的平面区域为三角形,由⎩⎪⎨⎪⎧ x +y -2=0,x +2y -2=0,得⎩⎪⎨⎪⎧x =2,y =0,即A (2,0),则A (2,0)在直线x -y +2m =0的下方, 即2+2m >0,则m >-1,则A (2,0),D (-2m,0),由⎩⎪⎨⎪⎧ x -y +2m =0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1-m ,y =1+m , 即B (1-m,1+m ),由⎩⎪⎨⎪⎧x -y +2m =0,x +2y -2=0,解得⎩⎨⎧x =2-4m 3,y =2+2m 3,即C ⎝⎛⎭⎫2-4m 3,2+2m 3.则三角形ABC 的面积S △ABC =S △ADB -S △ADC =12|AD ||y B -y C |=12(2+2m )⎝⎛⎭⎫1+m -2+2m 3 =(1+m )⎝⎛⎭⎫1+m -2+2m 3=3,即(1+m )×1+m3=3,即(1+m )2=9,解得m =2或m =-4(舍),故m =2. 16.2(5+3)解析 若对于圆C 上的任意一点Q ,∠EQF ≥π2,则圆C 上的任意一点都在以线段EF 为直径的圆内,圆心C (0,-1)到直线l 的距离为d =|1+4|5=5,所以圆上的点到直线l 的距离的最大值为5+3,所以以线段EF 为直径的圆的半径的最小值为5+3,则|EF |的最小值是2(5+3). 17.1 1218.解 (1)由m ⊥n ,m =(1,cos B ),n =(sin B ,-3), 得sin B -3cos B =0,即tan B =3, 又B ∈⎝⎛⎭⎫0,π2,∴B =π3. (2)由(1)得B =π3,∴S △ABC =12ac sin B =34ac =332,∴ac =6.①又3ac =25-b 2,得b 2=7, 由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,②联立①②,解得⎩⎪⎨⎪⎧ a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.19.解 (1)当M 为PD 的中点时,PB ∥平面MAC .∵设AC ∩BD =N ,连接MN ,在△PBD 中,MN 为中位线,即MN ∥PB , 又PB ⊄平面MAC ,MN ⊂平面MAC , ∴PB ∥平面MAC .(2)∵四边形ABCD 是菱形,△P AD ≌△BAD ,P A =PD , ∴△P AD ,△BAD 均为等边三角形. 取AD 的中点的O ,连接OP , ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊥AD , ∴OP ⊥平面ABCD .以O 为坐标原点,射线OA ,OB ,OP 分别为x ,y ,z 轴的正方向建立如图所示的空间坐标系,则O (0,0,0),A (2,0,0),B (0,23,0),C (-4,23,0),D (-2,0,0), P (0,0,23),M (-1,0,3),∴AC →=(-6,23,0),AM →=(-3,0,3),PC →=(-4,23,-23).设平面MAC 的法向量m =(x ,y ,z ),则由m ⊥AC →,m ⊥AM →,得⎩⎪⎨⎪⎧m ·AC →=-6x +23y =0,m ·AM →=-3x +3z =0, 取x =3,得m =(3,3,3).记直线PC 与平面MAC 所成角为θ,则sin θ=||m ·PC →|m ||PC →| =||-4×3+23×3+(-23)×316+12+12×3+9+9=7035. 20.(1)解 设抛物线C 1的焦点坐标为F 1⎝⎛⎭⎫0,p 2,抛物线C 2的焦点坐标为F 2⎝⎛⎭⎫0,-p 2, 则|F 1F 2|=p =12, 所以抛物线C 1的方程为y =x 2.(2)证明 设点Q (x 0,x 20),A (x 1,-x 21),B (x 2,-x 22),切线AQ 的方程是y +x 21=k 1(x -x 1),因为AQ 与抛物线C 2:y =-x 2相切,则x 2+k 1x -k 1x 1-x 21=0,则Δ1=k 21+4k 1x 1+4x 21=0,则k 1=-2x 1,∴直线AQ 的方程是y =-2x 1x +x 21,同理直线BQ 的方程是y =-2x 2x +x 22,联立可以得⎩⎪⎨⎪⎧x 1+x 2=2x 0,x 1x 2=-x 20, 而直线AB 的方程是y =-(x 1+x 2)x +x 1x 2,即y =-2x 0x -x 20,联立C 1:y =x 2,可以得到x 2+2x 0x +x 20=0,Δ2=4x 20-4x 20=0,则直线AB 与抛物线C 1:y =x 2相切.21.解 (1)当a =0时,f (x )=-x ln x +x -1,则f ′(x )=-ln x ,则f ′(e)=-1,f (e)=-1,所以函数f (x )在点P (e ,f (e))处的切线方程为y +1=-(x -e),即x +y +1-e =0.(2)f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x ,易知,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1),当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立, 所以f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0符合题意.所以a ≥12. 当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,所以f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0显然不满足题意,故a ≤0舍去.当0<a <12时,由ln x ≤x -1,得ln 1x ≤1x-1, 即ln x ≥1-1x, 则f ′(x )≤2a (x -1)-⎝⎛⎭⎫1-1x =x -1x·(2ax -1). 因为0<a <12,所以12a>1. 当x ∈⎣⎡⎦⎤1,12a 时,f ′(x )≤0恒成立,此时f (x )在⎣⎡⎦⎤1,12a 上单调递减,f (x )≤f (1)=0不满足题意,所以0<a <12舍去. 综上可得,实数a 的取值范围为⎣⎡⎭⎫12,+∞.22.解 (1)当n =2时,a 2=4(a 1-1)=4,a 2+a 3=4(a 2-1),所以a 3=8,因为a 2+a 3+…+a n =4(a n -1-1),①a 2+a 3+…+a n -1=4(a n -2-1),②①-②得a n =4(a n -1-a n -2),所以a n -2a n -1=2(a n -1-2a n -2)(n >2),因为a 2-2a 1=4-2×2=0,所以a n -2a n -1=0,n ∈N *,n >1,故数列{a n +1-2a n }为常数列.(2)由(1)的结论可知a n =2n ,a n +1-a n -1=2a n -12a n =32a n , 计算知c 1=110,c 2=227,当n >2时, 由c n =a n 2a 2n +5a n +2=a n (2a n +1)(a n +2)=12a n (a n +1+1)(a n -1+1)=12·23·(a n +1+1)-(a n -1+1)(a n +1+1)(a n -1+1)=13⎝⎛⎭⎫1a n -1+1-1a n +1+1, c 1+c 2+…+c n =110+13⎣⎡⎝⎛⎭⎫1a 1+1-1a 3+1+⎝⎛⎭⎫1a 2+1-1a 4+1+…+ ⎦⎤⎝⎛⎭⎫1a n -1+1-1a n +1+1 =110+13⎛⎭⎫1a 1+1+1a 2+1-13⎝⎛⎭⎫1a n +1+1a n +1+1, (对n =1,2也成立)因为c n >0,所以c 1+c 2+…+c n ≥c 1=110, 又c 1+c 2+…+c n <110+13⎝⎛⎭⎫1a 1+1+1a 2+1 =110+13⎝⎛⎭⎫12+1+14+1=518, 从而2a <110,且10a ≥518,解得136≤a <120.。

2019年高考高三年级数学一轮统考综合训练题理科

2019年高考高三年级数学一轮统考综合训练题理科

高三理科数学一轮统考综合训练题(五)一、选择题:共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1AD24.AD5.是两个不同的平面,则下列命题正确的是A BC D6.一个四面体的三视图如图所示,则该四面体的表面积是()A.1.2+C.7..若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8B.15C.16D.328.设,z x y =+其中实数,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为12,则z 的最小值为A .3-B .6-C .3D .69.函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,若12,(,63x x ππ∈-,且12()()f x f x =,则12()f x x +=A . 1B .21C .22D .2310.在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有 A .34种 B .48种C .96种D .144种11. 函数2()ln(2)f x x =+的图象大致是12.如图,从点0(,4)M x 发出的光线,沿平行于抛物线28y x =的 对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线:100l x y --=上 的点N ,经直线反射后又回到点M ,则0x 等于A .5B .6C .7D .8二、填空题:本大题共4小题,每小题5分,共20分. 13.圆22:2440C x y x y +--+=的圆心 到直线:3440l x y ++=的距离d = ; 14.如图是某算法的程序框图,若任意输入[1,19]中的实数x ,则输出的x 大于49的概率为 ;15.已知,x y 均为正实数,且3xy x y =++, 则xy 的最小值为__________;16. 如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1x y e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为 .三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在数列{}n a )N (*∈n 中,其前n 项和为n S ,满足22n n S n -=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎪⎩⎪⎨⎧=+-=⋅=k n n n k n n b n a n 2,2112,22(k 为正整数),求数列{}n b 的前n 2项和n T 2.18.(本小题满分12分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量X 的概率分布及数学期望()E X .19.(本小题满分12分)如图,四棱锥P ABCD -中, PA ⊥面ABCD ,E 、F 分别为BD 、PD 的中点,=1EA EB AB ==,PFEAD2PA =.(Ⅰ)证明:PB ∥面AEF ;(Ⅱ)求面PBD 与面AEF 所成锐角的余弦值. 20.(本小题满分12分) 已知函数()1x f x e x =--. (Ⅰ)求()f x 的最小值;(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设2()(()1)(1)g x f x x '=+-,试问函数()g x 在(1,)+∞上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由. 21.(本小题满分12分)设1F ,2F 分别是椭圆D :)0(12222>>=+b a by a x 的左、右焦点,过2F 作倾斜角为3π的直线交椭圆D 于A ,B 两点, 1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4.(Ⅰ)求椭圆D 的方程;(Ⅱ)已知点),(01-M ,设E 是椭圆D 上的一点,过E 、M 两点的直线l 交y 轴于点C ,若CE EM λ=, 求λ的取值范围;(Ⅲ)作直线1l 与椭圆D 交于不同的两点P ,Q ,其中P 点的坐标为(2,0)-,若点),0(t N 是线段PQ 垂直平分线上一点,且满足4=⋅NQ NP ,求实数t 的值.请考生在第22、23两题中任选一题作答,如果多选,则按所做的第一题计分. 22、(本题10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系, 已知曲线),0(cos 2sin:2>=a a C θθρ过点)4,2(--P 的直线l 的参数方程为:)( 224222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+-=+-=,直线l 与曲线C 分别交于N M 、两点.(Ⅰ)写出曲线C 和直线l 的普通方程;(Ⅱ)若PN MN PM 、、成等比数列,求a 的值. 23、(本题10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f . (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式1)(-<a x f 的解集非空,求实数a 的取值范围.数学一轮统考综合训练题(五)答案一、选择题: C A D A D B C B D C D B 二、填空题: 13. 3 14. 2315.9 16.②③ 三、解答题: 17.解:(Ⅰ)由题设得:22n n S n -=,所以)2()1(1221≥---=-n n n S n所以n S S a n n n -=-=-11 )2(≥n ……………2分当1=n 时,011==S a ,数列{}n a 是01=a 为首项、公差为1-的等差数列 故n a n -=1.……………5分(Ⅱ)由(Ⅰ)知: ⎪⎩⎪⎨⎧=+-=⋅=-k n n n k n n b n n 2,)2(112,21 ……………6分 n n b b b b T 23212++++=02462212325272(21)2n n ----⎡⎤=⋅+⋅+⋅+⋅+-⋅⎣⎦⎥⎦⎤⎢⎣⎡+-++-+-+-+)22121()8161()6141()4121(21n n 02462212325272(21)24(1)n n n n ----⎡⎤==⋅+⋅+⋅+⋅+-⋅+⎣⎦+ ……………9分设246221325272(21)2n T n ----=+⋅+⋅+⋅++-⋅则2246822222325272(23)2(21)2n n T n n -------⋅=+⋅+⋅+⋅++-⋅+-⋅两式相减得:2468222312(22222)(21)24n n T n ------⋅=++++++--⋅229n C C 整理得:2202420992nn T +=-⋅ ……………11分 所以222024209924(1)n n n n T n +=-+⋅+ ……………12分 18.解:(Ⅰ)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为 ……………2分由题意知229512n C C =,化简得2300n n --=.解得6n =或5n =-(舍去)……………………5分 故袋中原有白球的个数为6……………………6分 (Ⅱ)由题意,X 的可能取值为1,2,3,4. 2(1)3P X ==; 361(2)984P X ⨯===⨯; 3261(3)98714P X ⨯⨯===⨯⨯;32161(4)987684P X ⨯⨯⨯===⨯⨯⨯.所以取球次数X 的概率分布列为:……………10分所求数学期望为211110()12343414847E X =⨯+⨯+⨯+⨯=…………………12分19. (Ⅰ)因为E 、F 分别为BD 、PD 的中点, 所以EF ∥PB ……………………2分 因为EF ⊂面AEF ,PB ⊄面AEF 所以PB ∥面AEF ……………………4分 (Ⅱ)因为=1EA EB AB == 所以60ABE ∠= 又因为E 为BD 的中点所以ADE DAE ∠=∠所以2()180BAE DAE ∠+∠=得90BAE DAE ∠+∠=,即BA AD ⊥……………6分因为=1EA EB AB ==,所以AD 分别以,,AB AD AP 为,,x y z 轴建立坐标系所以1(1,0,0),(0,0,2),(2B D P F E 则133(1,0,2),(0,3,2),(,,0),(0,2PB PD AE AF =-=-==………8分 设1111(,,)n x y z =、2222(,,)n x y z =分别是面PBD 与面AEF 的法向量则11112020x z z -=⎧⎪-=,令1n =又22220102y z x y +=⎨⎪+=⎪⎩,令2(n =……………11分所以12121211cos ,19n n n n n n ⋅==……………12分20.解:(Ⅰ)求导数,得()1x f x e =-'.令0()f x '=,解得0x =. ……………2分当0x <时,0()f x '<,所以()f x 在()0-∞,上是减函数; 当0x >时,0()f x '>,所以()f x 在(0,)+∞上是增函数. 故()f x 在0x =处取得最小值(0)0f =. ……………6分 (Ⅱ)函数()g x 在()1,+∞上不存在保值区间,证明如下: 假设函数()g x 存在保值区间[],a b ,由2()(1)x g x x e =-得:2()(21)xg x x x e '=+-因1x >时, ()0g x '>,所以()g x 为增函数,所以22()(1)g()(1)abg a a e ab b e b⎧=-=⎪⎨=-=⎪⎩ 即方程2(1)xx e x -=有两个大于1的相异实根 ……………9分 设2()(1)(1)xx x e x x ϕ=-->2()(21)1x x x x e ϕ'=+--因1x >,()0x ϕ'>,所以()x ϕ在(1,)+∞上单增所以()x ϕ在区间()1,+∞上至多有一个零点 ……………11分这与方程2(1)xx e x -=有两个大于1的相异实根矛盾所以假设不成立,即函数()h x 在()1,+∞上不存在保值区间. ……………12分21.解:(Ⅰ)设1F ,2F 的坐标分别为)0,(),0,(c c -,其中0>c由题意得AB 的方程为:)(3c x y -=因1F 到直线AB 的距离为3,所以有31333=+--cc ,解得3=c ……………2分所以有3222==-c b a ……① 由题意知:42221=⨯⨯b a ,即2=ab ……② 联立①②解得:1,2==b a所求椭圆D 的方程为1422=+y x ……………4分 (Ⅱ)由(Ⅰ)知椭圆D 的方程为1422=+y x 设11(,)E x y ,),0(m C ,由于CE EM λ=,所以有),1(),(1111y x m y x ---=-λλλλ+=+-=∴1,111my x ……………6分 又E 是椭圆D 上的一点,则1)1(4)1(22=+++-λλλm 所以04)2)(23(2≥++=λλm解得:23λ≥-或2λ≤- ……………8分(Ⅲ)由)0,2(-P , 设),(11y x Q根据题意可知直线1l 的斜率存在,可设直线斜率为k ,则直线1l 的方程为)2(+=x k y 把它代入椭圆D 的方程,消去y ,整理得: 0)416(16)41(2222=-+++k x k x k由韦达定理得22141162k k x +-=+-,则2214182kk x +-=,=+=)2(11x k y 2414k k + 所以线段PQ 的中点坐标为,418(22k k +-)4122k k + (1)当0=k 时, 则有)0,2(Q ,线段PQ 垂直平分线为y 轴于是),2(),,2(t NQ t NP -=--=由442=+-=⋅t NQ NP ,解得:22±=t ……………10分(2) 当0≠k 时, 则线段PQ 垂直平分线的方程为-y +-=+x k k k (14122)41822k k+因为点),0(t N 是线段PQ 垂直平分线的一点 令0=x ,得:2416k kt +-=于是),(),,2(11t y x NQ t NP -=--=由4)41()11516(4)(2222411=+-+=---=⋅k k k t y t x NQ NP ,解得:714±=k 代入2416k kt +-=,解得: 5142±=t 综上, 满足条件的实数t 的值为22±=t 或5142±=t . ……………12分.2,2)Ⅰ(.222-==x y ax y ……………5分).(224222)Ⅱ(为参数的参数方程为直线t t y tx l ⎪⎪⎩⎪⎪⎨⎧+-=+-= ),4(8),4(22,0)4(8)4(222212122a t t a t t a t a t ax y +=⋅+=+=+++-=则有,得到代入,2PN PM MN ⋅= ,4)()(2121221221t t t t t t t t =⋅-+=-∴).(41.0432舍去或解得即-===-+a a a a ……………10分23.解:(Ⅰ)原不等式等价于⎩⎪⎨⎪⎧x>32,(2x +1)+(2x -3)≤6或⎩⎪⎨⎪⎧-12≤x ≤32,(2x +1)-(2x -3)≤6或⎩⎪⎨⎪⎧x<-12,-(2x +1)-(2x -3)≤6,解得32<x ≤2或-12≤x ≤32或-1≤x<-12.WORD格式整理故不等式的解集为{x|-1≤x≤2}.……………5分(Ⅱ)∵f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,∴|a-1|>4,解此不等式得a<-3或a>5. ……………10分专业技术参考资料。

2019年高考(理科)数学总复习综合试题(二)含答案及解析

2019年高考(理科)数学总复习综合试题(二)含答案及解析

绝密 ★ 启用前2019年高考(理科)数学总复习综合试题(二)总分:150分,时间:120分钟注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12个小题,每小题5分,共60分. 1.i 是虚数单位,复数21-i =a +b i(a ,b ∈R ),则a +b =( )A .0B .2C .1D .-22.设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪x 24+y 216=1,B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .13.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝⎛⎭⎫α+2π3等于( ) A .-45B .-35C .45D .354.为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这3种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为( )A .150B .180此卷只装订不密封级 姓名 准考证号 考场号 座位号C .200D .2805.执行如图所示的程序框图,若输出的S 值为-4,则条件框内应填写( )A .i >3?B .i <5?C .i >4?D .i <4?6.直三棱柱ABC -A 1B 1C 1中,底面是正三角形,三棱柱的高为3,若P 是△A 1B 1C 1的中心,且三棱柱的体积为94,则P A 与平面ABC 所成的角大小是( )A .π6B .π4C .π3D .2π37.函数f (x )=2sin(πx )-11-x ,x ∈[-2,4]的所有零点之和为( )A .2B .4C .6D .88.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为( )A .4 3B .4 2C .6D .2 59.已知对任意平面向量AB →=(x ,y ),把AB →绕其起点沿逆时针旋转θ角得到向量AP →=(x cos θ-y sin θ,x sin θ+y cos θ),叫做把点B 绕点A 逆时针方向旋转角θ得到点P ,设平面内曲线C 上的每一点绕原点逆时针方向旋转π4后得到点的轨迹是曲线x 2-y 2=2,则原来曲线C的方程是( )A .xy =-1B .xy =1C .y 2-x 2=2D .y 2-x 2=110.已知F 1、F 2分别为双曲线C :x 24-y 25=1的左、右焦点,P 为双曲线C 右支上一点,且|PF 1|=2|PF 2|,则△PF 1F 2外接圆的面积为( )A .4π15B .16π15C .64π15D .256π1511.如图.在△ABC 中,D 是BC 的中点,E 、F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是( )A .4B .8C .78D .3412.《数学统综》有如下记载:“有凹线,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和大于最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数f (x )=x 2-2x +2,在⎣⎡⎦⎤13,m 2-m +2上任取三个不同的点(a ,f (a )),(b ,f (b )),(c ,f (c )),均存在以f (a ),f (b ),f (c )为三边长的三角形,则实数m 的取值范围为( )A .[0,1]B .⎣⎡⎭⎫0,22 C .⎝⎛⎦⎤0,22 D .⎣⎡⎦⎤22,2 二、填空题:本大题共4小题,每小题5分.共20分. 13.⎝⎛⎭⎫x -2x 26展开式中第三项为________. 14.设函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0-2x -1,x ≤0,D 是由x 轴和曲线y =f (x )及该曲线在点(1,0)处的切线所围成的封闭区域,则z =x 2+y 2+2x +2y 在D 上的最小值为________.15.已知a n =⎠⎛0n (2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为________.16.已知函数f (x )=log 1e ⎝⎛⎭⎫x 2+1e -⎪⎪⎪⎪x e ,则使得f (x +1)<f (2x -1)成立x 的范围是________. 三、解答题:17.(12分)已知向量m =(sin x ,-1),向量n =⎝⎛⎭⎫3cos x ,-12,函数f (x )=(m +n )·m . (1)求f (x )的最小正周期T ;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,A 为锐角,a =23,c =4,且f (A )恰是f (x )在⎣⎡⎦⎤0,π2上的最大值,求A 和b .18.(12分)《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4 (1)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;(2)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.下面的临界值表仅参考:(参考公式:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)19.(12分)如图,在多面体ABCDEF中,底面ABCD为正方形,平面AED⊥平面ABCD,AB=2EA=2ED,EF∥BD.(1)证明:AE⊥CD;(2)在棱ED上是否存在点M,使得直线AM与平面EFBD所成角的正弦值为63?若存在,确定点M的位置;若不存在,请说明理由.20.(12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.(1)设e =12,求|BC |与|AD |的比值;(2)若存在直线l ,使得BO ∥AN ,求椭圆离心率e 的取值范围.21.(12分)已知函数f (x )=(ax +2)ln x -(x 2+ax -a -1)(a ∈R ). (1)若函数f (x )的图象在x =e 处的切线的斜率为2e -2e ,求f (x )的极值;(2)当x >1时,f (x )的图象恒在x 轴下方,求实数a 的取值范围.以下两题请任选一题:选修4-4:坐标系与参数方程选讲22.(10分)在极坐标中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.选修4-5:不等式选讲23.(10分)(1)如果关于x的不等式|x+3|+|x-2|<a的解集不是空集,求参数a的取值范围;(2)已知正实数a,b,且h=min{a,ba2+b2},求证:0<h≤22.2019年高考(理科)数学总复习综合试题(二)答案及解析一、选择题:本大题共12个小题,每小题5分,共60分. 1.i 是虚数单位,复数21-i =a +b i(a ,b ∈R ),则a +b =( )A .0B .2C .1D .-2解析:21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i ,∵21-i=a +b i(a ,b ∈R ),∴a =b =1,∴a +b =2.故选B . 答案:B2.设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪x 24+y 216=1,B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1解析:∵集合A =⎩⎨⎧⎭⎬⎫(x ,y )|x 24+y 216=1,B ={(x ,y )|y =3x },∴A ∩B 为椭圆:x 24+y216=1和指数函数y =3x 图象的交点构成的集合,如图可知其有两个不同交点,记为A 1、A 2,则A ∩B 的子集应为∅,{A 1},{A 2},{A 1,A 2}共四种,故选A .答案:A3.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝⎛⎭⎫α+2π3等于( ) A .-45B .-35C .45D .35解析:∵sin ⎝⎛⎭⎫α+π3+sin α=-435, ∴32sin α+32cos α=-435,∴32sin α+12cos α=-45, ∴cos ⎝⎛⎭⎫α-π3=-45,∴cos ⎝⎛⎭⎫α+2π3=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫α-π3=-cos ⎝⎛⎭⎫α-π3=45.故选C . 答案:C4.为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这3种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为( )A .150B .180C .200D .280解析:人数分配上有两种方式即1,2,2与1,1,3. 若是1,1,3,则有C 35×A 33=60种;若是1,2,2,则有C 25C 23A 22×A 33=90种,所以共有150种不同的方法.故选A .答案:A5.执行如图所示的程序框图,若输出的S 值为-4,则条件框内应填写( )A .i >3?B .i <5?C .i >4?D .i <4?解析:模拟执行程序,可得i =1,S =10,满足判断框内的条件,第1次执行循环体,S =10-21=8,i =2, 满足判断框内的条件,第2次执行循环体,S =8-22=4,i =3, 满足判断框内的条件,第3次执行循环体,S =4-23=-4,i =4,此时,应该不满足判断框内的条件,退出循环,输出的S 值为-4,则条件框内应填写:i <4?,故选D .答案:D6.直三棱柱ABC -A 1B 1C 1中,底面是正三角形,三棱柱的高为3,若P 是△A 1B 1C 1的中心,且三棱柱的体积为94,则P A 与平面ABC 所成的角大小是( )A .π6B .π4C .π3D .2π3解析:由题意设底面正△ABC 的边长为a ,过P 作PO ⊥平面ABC ,垂足为O ,则点O 为底面△ABC 的中心,故∠P AO 即为P A 与平面ABC 所成角,∵|OA |=23×32a =33a ,|OP |=3,又∵直三棱柱ABC -A 1B 1C 1中体积为94,∴由直棱柱体积公式得V =34×a 2×3=94,解得a =3,∴tan ∠P AO =333a =3,∴∠P AO =π3,∴P A 与平面ABC 所成的角为π3.故选C .答案:C7.函数f (x )=2sin(πx )-11-x ,x ∈[-2,4]的所有零点之和为( )A .2B .4C .6D .8解析:令f (x )=0得2sin(πx )=11-x, 作出y =2sin πx 与y =11-x的函数图象,如图所示:由图象可知两图象在[-2,4]上共有8个交点,∴f (x )共有8个零点,又两图象都关于点(1,0)对称,∴8个交点两两关于点(1,0)对称,∴8个零点之和为4×2=8.故选D .答案:D8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为( )A .4 3B .4 2C .6D .2 5解析:利用“三线交汇得顶点”的方法,该几何体为三棱锥P -ABC ,如图所示,其中,正方体棱长为4,点P 是正方体其中一条棱的中点,则:AB =AC =4,PC =42+22=25,BC =42,AP =BP =42+42+22=6, 所以最长棱为6.故选C . 答案:C9.已知对任意平面向量AB →=(x ,y ),把AB →绕其起点沿逆时针旋转θ角得到向量AP →=(x cos θ-y sin θ,x sin θ+y cos θ),叫做把点B 绕点A 逆时针方向旋转角θ得到点P ,设平面内曲线C 上的每一点绕原点逆时针方向旋转π4后得到点的轨迹是曲线x 2-y 2=2,则原来曲线C的方程是( )A .xy =-1B .xy =1C .y 2-x 2=2D .y 2-x 2=1解析:设平面内曲线C 上的点P (x ,y ),则其绕原点沿逆时针方向旋转π4后得到点P ′⎝⎛⎭⎫22(x -y ),22(x +y ),∵点P ′在曲线x 2-y 2=2上,∴⎣⎡⎦⎤22(x -y )2-⎣⎡⎦⎤22(x +y )2=2,整理得xy =-1.故选A . 答案:A10.已知F 1、F 2分别为双曲线C :x 24-y 25=1的左、右焦点,P 为双曲线C 右支上一点,且|PF 1|=2|PF 2|,则△PF 1F 2外接圆的面积为( )A .4π15B .16π15C .64π15D .256π15解析:双曲线C :x 24-y 25=1的两个焦点F 1(-3,0),F 2(3,0),|F 1F 2|=6,a =2,由|PF 1|=2|PF 2|,设|PF 2|=x ,则|PF 1|=2x ,由双曲线的性质知,2x -x =4,解得x =4.∴|PF 1|=8,|PF 2|=4,∵|F 1F 2|=6,∴p =4+6+82=9,∴△PF 1F 2的面积S =9(9-4)(9-6)(9-8)=315.在△PF 1F 2中,由余弦定理可知:cos ∠PF 1F 2=|PF 1|2+|F 1F 2|2-|PF 2|22|PF 1||F 1F 2|=78,由0<∠PF 1F 2<π,则sin ∠PF 1F 2=158,|PF 2|sin ∠PF 1F 2=2R ,R 为△PF 1F 2外接圆的半径,则R =1615,∴△PF 1F 2外接圆的面积S =πR 2=256π15,故选D .答案:D11.如图.在△ABC 中,D 是BC 的中点,E 、F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是( )A .4B .8C .78D .34解析:∵D 是BC 的中点,E ,F 是AD 上的两个三等分点,∴BF →=BD →+DF →,CF →=-BD →+DF →,BA →=BD →+3DF →,CA →=-BD →+3DF →,∴BF →·CF →=DF →2-BD →2=-1,BA →·CA →=9DF →2-BD→2=4,∴DF →2=58,BD →2=138,又∵BE →=BD →+2DF →,CE →=-BD →+2DF →,∴BE →·CE →=4DF →2-BD →2=78,故选C .答案:C12.《数学统综》有如下记载:“有凹线,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和大于最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数f (x )=x 2-2x +2,在⎣⎡⎦⎤13,m 2-m +2上任取三个不同的点(a ,f (a )),(b ,f (b )),(c ,f (c )),均存在以f (a ),f (b ),f (c )为三边长的三角形,则实数m 的取值范围为( )A .[0,1]B .⎣⎡⎭⎫0,22 C .⎝⎛⎦⎤0,22 D .⎣⎡⎦⎤22,2 解析:由题意,三点的纵坐标中两个较小数之和小于等于2,∵f (x )=x 2-2x +2=2,∴x =0或2,∴m 2-m +2≤2,∴0≤m ≤1,故选A .答案:A二、填空题:本大题共4小题,每小题5分.共20分. 13.⎝⎛⎭⎫x -2x 26展开式中第三项为________. 解析:展开式的通项公式为: T r +1=C r 6×x 6-r×⎝⎛⎭⎫-2x 2r , 令r =2,可得T 2+1=C 26×x 4×⎝⎛⎭⎫-2x 22=15×4=60. 答案:6014.设函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0-2x -1,x ≤0,D 是由x 轴和曲线y =f (x )及该曲线在点(1,0)处的切线所围成的封闭区域,则z =x 2+y 2+2x +2y 在D 上的最小值为________.解析:当x >0时,f ′(x )=1x ,则f ′(1)=1,所以曲线y =f (x )及该曲线在点(1,0)处的切线为y =x -1,D 是由x 轴和曲线y =f (x )及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分.而z =x 2+y 2+2x +2y =(x +1)2+(y +1)2-2,表示以(-1,-1)为圆心,以(-1,-1)与阴影部分内的点为半径的平方再减2,显然(-1,-1)到直线AC 的距离最小,由C ⎝⎛⎭⎫-12,0,A (0,-1)得AC 的方程是:2x +y +1=0,此时,r =d =|-2-1+1|5=255,r 2=45,故z 的最小值是45-2=-65.答案:-6515.已知a n =⎠⎛0n (2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为________.解析:a n =⎠⎛0n (2x +1)d x =(x 2+x )|n 0=n 2+n ,∴1a n =1n 2+n =1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n =1a 1+1a 2+…+1a n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,又b n =n -8,n∈N *,则b n S n =n n +1×(n -8)=n +1+9n +1-10≥29-10=-4,等号当且仅当n +1=9n +1,即n =2时成立,故b n S n 的最小值为-4.答案:-416.已知函数f (x )=log 1e ⎝⎛⎭⎫x 2+1e -⎪⎪⎪⎪x e ,则使得f (x +1)<f (2x -1)成立x 的范围是________. 解析:∵f (x )=log 1e ⎝⎛⎭⎫x 2+1e -⎪⎪⎪⎪x e ,∴f (-x )=f (x ),∴f (x )是偶函数,x >0时,f (x )=log 1e⎝⎛⎭⎫x 2+1e -x e ,∴f (x )为减函数,∴当x <0时,f (x )为增函数若f (x +1)<f (2x -1),则|x +1|>|2x -1|,解得:0<x <2. 答案:(0,2) 三、解答题:17.(12分)已知向量m =(sin x ,-1),向量n =⎝⎛⎭⎫3cos x ,-12,函数f (x )=(m +n )·m . (1)求f (x )的最小正周期T ;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,A 为锐角,a =23,c =4,且f (A )恰是f (x )在⎣⎡⎦⎤0,π2上的最大值,求A 和b . 解:(1)∵向量m =(sin x ,-1),向量n =⎝⎛⎭⎫3cos x ,-12, ∴f (x )=(m +n )·m =sin 2x +1+3sin x cos x +12=1-cos 2x 2+1+32sin 2x +12=32sin 2x -12cos 2x +2=sin ⎝⎛⎭⎫2x -π6+2, ∵ω=2,∴函数f (x )的最小正周期T =2π2=π; (2)由(1)知:f (x )=sin ⎝⎛⎭⎫2x -π6+2, ∵x ∈⎣⎡⎦⎤0,π2,∴-π6≤2x -π6≤5π6, ∴当2x -π6=π2时,f (x )取得最大值3,此时x =π3,∴由f (A )=3得:A =π3,由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴12=b 2+1 6-4b ,即(b -2)2=0, ∴b =2.18.(12分)《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4 (1)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;(2)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X ,求X 的分布列及数学期望.下面的临界值表仅参考:(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )解:(1)由题意知列联表为:K 2=100(45×25-15×15)260×40×60×40≈14.063>10.828,∴有99.9%的把握认为喜欢《最强大脑》与性别有关. (2)X 的可能取值为0,1,2,P (X =0)=C 22C 25=110,P (X =1)=C 12C 13C 25=35,P (X =2)=C 23C 25=310,∴X 的分布列为:E (X )=0×110+1×35+2×310=65.19.(12分)如图,在多面体ABCDEF 中,底面ABCD 为正方形,平面AED ⊥平面ABCD ,AB =2EA =2ED ,EF ∥BD .(1)证明:AE ⊥CD ;(2)在棱ED 上是否存在点M ,使得直线AM 与平面EFBD 所成角的正弦值为63?若存在,确定点M 的位置;若不存在,请说明理由.(1)证明:∵四边形ABCD 是正方形,∴CD ⊥AD ,又平面AED ⊥平面ABCD ,平面AED ∩平面ABCD =AD ,CD ⊂平面ABCD , ∴CD ⊥平面AED ,∵AE ⊂平面AED , ∴AE ⊥CD .(2)解:取AD 的中点O ,过O 作ON ∥AB 交BC 于N ,连接EO ,∵EA =ED ,∴OE ⊥AD ,又平面AED ⊥平面ABCD ,平面AED ∩平面ABCD =AD ,OE ⊂平面AED ,∴OE ⊥平面ABCD ,以O 为原点建立空间直角坐标系O -xyz ,如图所示:设正方形ABCD 的边长为2,EMED=λ,则A (1,0,0),B (1,2,0),D (-1,0,0),E (0,0,1),M (-λ,0,λ) ∴AM →=(-λ-1,0,λ),DE →=(1,0,1),DB →=(2,2,0), 设平面BDEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0n ·DE →=0,即⎩⎪⎨⎪⎧2x +2y =0x +z =0,令x =1得n =(1,-1,-1),∴cos 〈AM →,n 〉=AM →·n |AM →||n |=-2λ-13×2λ2+2λ+1, 令⎪⎪⎪⎪⎪⎪-2λ-13×2λ2+2λ+1=63,方程无解, ∴棱ED 上不存在点M ,使得直线AM 与平面EFBD 所成角的正弦值为63. 20.(12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M 、N 在x 轴上,椭圆C 2的短轴为MN ,且C 1、C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点纵坐标从大到小依次为A 、B 、C 、D .(1)设e =12,求|BC |与|AD |的比值;(2)若存在直线l ,使得BO ∥AN ,求椭圆离心率e 的取值范围.解:(1)因为C 1、C 2的离心率相同,故依题意可设C 1:x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x 2a 2=1,(a >b >0).设直线l :x =t (|t |<a )分别和C 1、C 2的方程联立, 求得A (t ,aba 2-t 2),B (t ,baa 2-t 2).当e =12时,b =32a ,分别用y A 、y B 表示A 、B 的纵坐标,∴|BC ||AD |=2|y B |2|y A |=b 2a 2=34. |BC |与|AD |的比值34;(2)t =0时的l 不符合题意,t ≠0时,BO ∥AN ,当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即b aa 2-t 2t =ab a 2-t 2t -a ,解得t =-ab 2a 2-b2=-1-e 2e 2·a . 因为|t |<a ,又0<e <1, 所以1-e 2e 2<1,解得22<e <1.∴当22<e <1时,存在直线l ,使得BO ∥AN ,即离心率e 的取值范围是⎝⎛⎭⎫22,1, ∴椭圆离心率e 的取值范围⎝⎛⎭⎫22,1.21.(12分)已知函数f (x )=(ax +2)ln x -(x 2+ax -a -1)(a ∈R ). (1)若函数f (x )的图象在x =e 处的切线的斜率为2e -2e ,求f (x )的极值;(2)当x >1时,f (x )的图象恒在x 轴下方,求实数a 的取值范围. 解:(1)∵f ′(x )=ax +2x +a ln x -(2x +a )=a ln x -2x +2x ,x >0,∴f ′(e)=a -2e +2e =2e -2e ,∴a =0,∴f (x )=2ln x -x 2+1,∴f ′(x )=2x -2x =2-2x 2x =-2(x +1)(x -1)x ,令f ′(x )>0,解得0<x <1,函数f (x )递增, 令f ′(x )<0,解得x >1,函数f (x )递减, ∴f (x )极大值=f (1)=0,无极小值,(2)由(1)可知f ′(x )=a ln x -2x +2x,x >0,令g (x )=a ln x -2x +2x,∴g ′(x )=a x -2-2x 2=1x ⎝⎛⎭⎫a -2x -2x , 当x >1时,x +1x >2,有a -2x -2x<a -4,①若a -4≤0,即a ≤4时,g ′(x )<0,故g (x )在区间(1,+∞)上单调递减, 则当x >1时,g (x )<g (1)=0,即f ′(x )<0,故f (x )在区间(1,+∞)上单调递减, 故当x >1时,f (x )<f (1)=0,故当a ≤4,x >1时,f (x )的图象恒在x 轴的下方,②若a -4>0,即a >4时,令g ′(x )>0,可得1<x <a +a 2-164,故g (x )在区间⎝ ⎛⎭⎪⎫0,a + a 2-164上单调递减,故当1<x <a +a 2-164时,g (x )>g (1)=0,故f (x )在区间⎝ ⎛⎪⎫1,a +a 2-164上单调递增,故当1<x <a +a 2-164时,f (x )>f (1)=0,故当a >4,x >1时,函数f (x )的图象不可恒在x 轴下方, 综上可知,a 的取值范围是(-∞,4].以下两题请任选一题:选修4-4:坐标系与参数方程选讲22.(10分)在极坐标中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:∵点P ⎝⎛⎭⎫2,π4, ∴x =2cos π4=1,y =2sin π4=1,∴点P (1,1).∵直线ρsin ⎝⎛⎭⎫θ-π3=-32,展开为 12ρsin θ-32ρcos θ=-32, ∴y -3x =-3,令y =0,则x =1,∴直线与x 轴的交点为C (1,0).∴圆C 的半径r =|PC |=(1-1)2+(1-0)2=1.∴圆C 的方程为:(x -1)2+y 2=1,展开为:x 2-2x +1+y 2=1,化为极坐标方程:ρ2-2ρcos θ=0,即ρ=2cos θ.∴圆C 的极坐标方程为:ρ=2cos θ. 选修4-5:不等式选讲23.(10分)(1)如果关于x 的不等式|x +3|+|x -2|<a 的解集不是空集,求参数a 的取值范围;(2)已知正实数a ,b ,且h =min{a ,b a 2+b 2},求证:0<h ≤22.(1)解:∵|x +3|+|x -2|≥|(x +3)-(x -2)|=5,当且仅当-3≤x ≤2时,等号成立,故|x +3|+|x -2|的最小值为5, 如果关于x 的不等式|x +3|+|x -2|<a 的解集不是空集,则a >5. (2)证明:∵已知正实数a ,b ,且h =min ⎩⎨⎧⎭⎬⎫a ,b a 2+b 2,∴0<h ≤a,0<h ≤ba 2+b2,∴0<h 2≤ab a 2+b 2≤ab 2ab =12,∴0<h ≤22.。

2019年普通高等学校招生第一次统一模拟考试 理科数学 参考答案

2019年普通高等学校招生第一次统一模拟考试 理科数学 参考答案

解: ( Ⅰ ) 由题意知 B 0, b , F2 1,0 ,设 D x, y 则 BF2 1,b , F2 D x 1, y ∵ BF2 2 F2 D ,
3 x 2 1 2 x 1 ,即 b b 2y y 2
*
( n 2 ),其 中 S n 为 {a n } 的
1 , {bn } 的 前 n 项 和 (1 + log 4 an )(3 + log 4 an )
为 Tn , 且 对 任 意 的 正 整 数 n 都 有 Tn m , 求 m 的 最 小 值 . 解: ( Ⅰ ) ∵ an = 3S n -1 + 1 , n 2 , ∴ an+1 = 3S n + 1 两式相减得 an+1 - an = 3an , n 2 ∴
(Ⅱ) 由柱状图知,流失的教师数不大于 18 的频率为 0.46;流失的教师数不大于 19 的频率为 0.7,所以 n 的 最 小 值 为 19. (Ⅲ)若每所乡村中学在今年都招聘 19 名教师,则未来四年内这 100 所乡村中学中有 70 所在招聘教师上费用为 38 万元,20 所的费用为 43 万元,10 所的费用为 48 万元,因此这 100 所乡村中学未来四年内在招聘教师上所需费用的平均数为 :
高三理科数学答案 第
6 页
(共 8 页)
取 x = 2,得 n =(2,0,﹣1) , 由 DF =(﹣1,

,4) .
设平面 DEF 的法向量为 m =(a,b,c) ,
ì ï m × DE = a + 3b + 2c = 0 , ï 则í ï ï ï îm × DF = -a + 3b + 4c = 0

2019年高三一轮测试(理)3数列(2)(通用版)

2019年高三一轮测试(理)3数列(2)(通用版)

2019年高三一轮测试(理)数 列—————————————————————————————————————【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.题目要求的)1.设数列{a n }的通项公式a n =f (n )是一个函数,则它的定义域是( )A .非负整数B .N *的子集 C .N * D .N *或{1,2,3,…,n }2.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n ,a n -1)在直线x -y -6=0上,则a 3-a 5+a 7的值为( )A .27B .6C .81D .93.设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,则a 2a 1等于( )A .1B .2C .3D .44.记数列{a n }的前n 项和为S n ,且S n =2n (n -1),则该数列是( )A .公比为2的等比数列B .公比为12的等比数列C .公差为2的等差数列D .公差为4的等差数列5.据科学计算,运载“神七”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟6.数列{a n }的前n 项和S n =3n-c ,则“c =1”是“数列{a n }为等比数列”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分又不必要条件7.设等差数列{a n }的公差d 不为0,a 1=9d .若a k 是a 1与a 2k 的等比中项,则k =( )A .2B .4C .6D .88.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010=( )A .-2B .-13C .-12D .39.在函数y =f (x )的图象上有点列{x n ,y n },若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭⎫34x10.若数列{a n }的通项公式为a n =1+22n -7(n ∈N *),{a n }的最大项为第x 项,最小项为第y 项,则x+y 的值为( )A .5B .6C .7D .811.在等差数列{a n }中,a 11a 10<-1,若它的前n 项和S n 有最大值,则下列各数中是S n 的最小正数的是( )A .S 17B .S 18C .S 19D .S 2012.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .13413.设等比数列{a n }的前n 项和为S n .若a 1=1,S 6=4S 3,则a 4=________. 14.设数列{a n }的通项为a n =2n -7(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.15.若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”.已知数列{1x n }为“调和数列”,且x 1+x 2+…+x 20=200,则x 3x 18的最大值是________.16.已知S n 是公差为d 的等差数列{a n }的前n 项和,且S 6>S 7>S 5,则下列四个命题:①d <0;②S 11>0;③S 12<0;④S 13>0中真命题的序号为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知等差数列{a n }中,a 2=9,a 5=21. (1)求{a n }的通项公式;(2)令b n =2a n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)已知数列{a n },a n ∈N *,前n 项和S n =18(a a +2)2.(1)求证:{a n }是等差数列;(2)若b n =12a n -30,求数列{b n }的前n 项和的最小值.19.(本小题满分12分)某市2008年11月份曾发生流感,据统计,11月1日该市流感病毒新感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日为止,该市在这30日内该病毒新感染者共有8 670人,问11月几日,该市新感染此病毒的人数最多?并求这一天的新感染人数.20.(本小题满分12分)在平面直角坐标系中,已知三个点列{A n }、{B n }、{C n },其中A n (n ,a n )、B n (n ,b n )、C n (n -1,0)满足:向量A n A n +1与共线,且点列{B n }在方向向量为(1,6)的直线上,a 1=a ,b 1=-a .(1)试用a 与n 表示a n (n ≥2);(2)若a 6与a 7两项中至少有一项是a n 的最小值,试求a 的取值范围. 21.(本小题满分12分)已知数列{a n },a 1=1,a n =λa n -1+λ-2(n ≥2).(1)当λ为何值时,数列{a n }可以构成公差不为零的等差数列?并求其通项公式;(2)若λ=3,令b n =a n +12,求数列{b n }的前n 项和S n .22.(本小题满分12分)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+b 3+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.答案: 一、选择题 1.D2.A 由题意得a n -a n -1-6=0,即a n -a n -1=6,得数列{a n }是等差数列,且首项a 1=3,公差d =6,而a 3-a 5+a 7=a 7-2d =a 5=a 1+4d =3+4×6=27.3.C 由S 1,S 2,S 4成等比数列, ∴(2a 1+d )2=a 1(4a 1+6d ). ∵d ≠0,∴d =2a 1. ∴a 2a 1=a 1+d a 1=3a 1a 1=3. 4.D 由条件可得n ≥2时,a n =S n -S n -1=2n (n -1)-2(n -1)(n -2)=4(n -1), 当n =1时,a 1=S 1=0, 代入适合,故a n =4(n -1),故数列{a n }表示公差为4的等差数列.5.C 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d2=240,即2n +n (n -1)=240, 解得n =15,故选C.6.C 数列{a n }的前n 项和S n =3n -c ,且c =1,则a n =2×3n -1(n ≥1),从而可知c =1是数列{a n }为等比数列的充要条件,故选C 项.7.B 因为a k 是a 1与a 2k 的等比中项,则a 2k =a 1a 2k ,[9d +(k -1)d ]2=9d ·[9d +(2k -1)d ], 又d ≠0,则k 2-2k -8=0,k =4或k =-2(舍去). 8.B 由条件可得:a 1=-2,a 2=-13,a 3=12,a 4=3,a 5=-2,…,即{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13,故选B.9.D 结合选项,对于函数f (x )=⎝⎛⎭⎫34x 上的点列{x n ,y n },有y n =⎝⎛⎭⎫34x n .由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n=⎝⎛⎭⎫34x n +1⎝⎛⎭⎫34x n =⎝⎛⎭⎫34xn +1-x n=⎝⎛⎭⎫34d ,这是一个与n 无关的常数,故{y n }是等比数列. 10.C 由函数f (n )=1+22n -7(n ∈N *)的单调性知,a 1>a 2>a 3,且a 4>a 5>a 6>…>0,又a 1=35,a 2=13,a 3=-1,a 4=3,故a 3为最小项,a 4为最大项,x +y 的值为7. 11.C ∵等差数列{a n }的前n 项和S n 有最大值,∴a 1>0,且d <0,由a 11a 10<-1得a 10>0,a 11<-a 10,即a 10+a 11<0,∴S 20=10(a 1+a 20)<0, S 19=19a 10>0,又由题意知当n ≥11时, a n <0,∴n ≥11时,S n 递减,故S 19是最小的正数. 12.C 由题意可知, lg a 3=b 3,lg a 6=b 6.又∵b 3=18,b 6=12,则a 1q 2=1018,a 1q 5=1012,∴q 3=10-6.即q =10-2,∴a 1=1022. 又∵{a n }为正项等比数列, ∴{b n }为等差数列, 且d =-2,b 1=22.故b n =22+(n -1)×(-2)=-2n +24.∴S n =22n +n (n -1)2×(-2)=-n 2+23n =-⎝⎛⎭⎫n -2322+5294.又∵n ∈N *,故n =11或12时,(S n )max =132. 二、填空题 13.【解析】 设等比数列的公比为q ,则由S 6=4S 3知q ≠1,∴S 6=1-q 61-q =4(1-q 3)1-q .∴q 3=3.∴a 1q 3=3. 【答案】 3 14.【解析】 |a 1|+|a 2|+…+|a 15|=5+3+1+1+3+5+…+23=153. 【答案】 15315.【解析】 因为数列{1x n}为“调和数列”,所以x n +1-x n =d (n ∈N *,d 为常数),即数列{x n }为等差数列,由x 1+x 2+…+x 20=200得20(x 1+x 20)2=20(x 3+x 18)2=200,即x 3+x 18=20,易知x 3、x 18都为正数时,x 3x 18取得最大值,所以x 3x 18≤(x 3+x 182)2=100,即x 3x 18的最大值为100.【答案】 100 16.【解析】 解答本题要灵活应用等差数列性质.由已知条件⎩⎪⎨⎪⎧S 6>S 7⇒S 6>S 6+a 7⇒a 7<0S 7>S 5⇒S 5+a 6+a 7>S 5⇒a 6+a 7>0,S 6>S 5⇒S 5+a 6>S 5⇒a 6>0即a 6>0,a 7<0,a 6+a 7>0, 因此d <0,①正确; S 11=11a 6>0②正确;S 12=12(a 1+a 12)2=12(a 6+a 7)2>0,故③错误;S 13=12(a 1+a 13)2=12a 7<0,故④错误,故真命题的序号是①②. 【答案】 ①② 三、解答题 17.【解析】 (1)设数列{a n }的公差为d ,由题意得 ⎩⎪⎨⎪⎧a +d =9a 1+4d =21, 解得a 1=5,d =4,∴{a n }的通项公式为a n =4n +1. (2)由a n =4n +1得b n =24n +1,∴{b n }是首项为b 1=25,公比q =24的等比数列.∴S n =25(24n -1)24-1=32×(24n -1)15.18.【解析】 (1)证明:∵a n +1 =S n +1-S n =18(a n +1+2)2-18(a n +2)2, ∴8a n +1=(a n +1+2)2-(a n +2)2,∴(a n +1-2)2-(a n +2)2=0,(a n +1+a n )(a n +1-a n -4)=0. ∵a n ∈N *,∴a n +1+a n ≠0, ∴a n +1-a n -4=0.即a n +1-a n =4,∴数列{a n }是等差数列.(2)由(1)知a 1=S 1=18(a 1+2),解得a 1=2.∴a n =4n -2,b n =12a n -30=2n -31,由⎩⎪⎨⎪⎧2n -31≤02(n +1)-31≥0得 292≤n <312.∵n ∈N *,∴n =15, ∴{a n }前15项为负值,以后各项均 为正值. ∴S 5最小.又b 1=-29,∴S 15=15(-29+2×15-31)2=-22519.【解析】 设第n 天新感染人数最多,则从第n +1天起该市医疗部门采取措施,于是,前n 天流感病毒新感染者的人数,构成一个首项为20,公差为50的等差数列,其前n 项和S n =20n +n (n -1)2×50=25n 2-5n (1≤n <30,n ∈N ),而后30-n 天的流感病毒新感染者的人数,构成一个首项为20+(n -1)×50-30=50n -60,公差为-30,项数为30-n 的等差数列,其前30-n 项的和T 30-n =(30-n )(50n -60)+(30-n )(29-n )2×(-30)=-65n 2+2 445n -14 850,依题设构建方程有,S n +T 30-n =8 670,∴25n 2-5n+(-65n 2+2 445n -14 850)=8 670,化简得n 2-61n +588=0,∴n =12或n =49(舍去),第12天的新感染人数为20+(12-1)·50=570人.故11月12日,该市新感染此病毒的人数最多,新感染人数为570人.20.【解析】 (1)A n A n +1 =(1,a n +1-a n ), =(-1,-b n ).因为向量A n A n +1与向量共线, 则a n +1-a n -b n =1-1,即a n +1-a n =b n .又{B n }在方向向量为(1,6)的直线上, 有b n +1-b n n +1-n=6, 即b n +1-b n =6.所以b n =-a +6(n -1),a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a 1+b 1+b 2+…+b n -1=a +3(n -1)(n -2)-a (n -1) =3n 2-(9+a )n +6+2a (n ≥2).(2)二次函数f (x )=3x 2-(9+a )x +6+2a 的图象是开口向上,对称轴为x =a +96拋物线.又∵在a 6与a 7两项中至少有一项是a n 的最小值,故对称轴x =a +96在⎝⎛⎭⎫112,152内,即112<a +96<152, ∴24<a <36. 21.【解析】 (1)a 2=λa 1+λ-2=2λ-2, a 3=λa 2+λ-2=2λ2-2λ+λ-2=2λ2-λ-2, ∵a 1+a 3=2a 2,∴1+2λ2-λ-2=2(2λ-2), 得2λ2-5λ+3=0,解得λ=1或λ=32.当λ=32时,a 2=2×32-2=1,a 1=a 2,故λ=32不合题意舍去;当λ=1时,代入a n =λa n -1+λ-2可得a n -a n -1=-1, ∴数列{a n }构成首项为a 1=1,公差为-1的等差数列, ∴a n =-n +2.(2)由λ=3可得,a n =3a n -1+3-2,即a n =3a n -1+1.∴a n +12=3a n -1+32,∴a n +12=3⎝⎛⎭⎫a n -1+12,即b n =3b n -1(n ≥2),又b 1=a 1+12=32,∴数列{b n }构成首项为b 1=32,公比为3的等比数列,∴b n =32×3n -1=3n2,∴S n =32(1-3n )1-3=34(3n -1). 22.【解析】 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28, 得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8, 解之得⎩⎨⎧q =2a 1=2,或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴q =2,a 1=2,∴a n =2n ,(2)b n =2n ·log 122n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ①-2S n =1×22+2×23+…+(n -1)2n +n ·2n +1②①-②得,S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1由S n +(n +m )a n +1<0,即2n +1-2-n ·2n +1+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立,∴m ·2n +1<2-2n +1. 对任意正整数n ,m <12n -1恒成立.∵12n -1>-1,∴m ≤-1. 即m 的取值范围是(-∞,-1].。

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴 在答题卡上的指定位置。

2 •选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和 答题卡上的非答题区域均无效。

4 •考试结束后,请将本试题卷和答题卡一并上交。

目要求的.C . 1兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取 礼物都满意,则选法有( )、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题a i1. [2019南昌一模]已知复数za R 的实部等于虚部,则xx 3n 1,n N , B6,8,10,12,14,则集合AI B 中元素的个数为()A .2B . 33. [2019菏泽一模 ]已知向量 a 1, 1 , b22AB .554. [2019 •州期末 ]已知圆C 2x 1 y A. x y 3 0B . x y 3 0C . 4D . 52,3 ,且a a mb ,则 m ( )5,则过P 3,0 的C 的切线方程为( )又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、A . 30 种B . 50 种C . 60 种D . 90 种2. [2019梅州质检]已知集合A6. [2019汕尾质检]某空间几何体的三视图如图所示,正视图是底边长为边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为(3的等腰三角形,侧视图是直角)函数g x 的图象,则下列说法正确的是()A •函数g x 的图象关于点 -,0对称 12B •函数g x 的周期是上2C .函数g x 在0, n上单调递增6 D .函数g x 在0, n上最大值是16& [2019临沂质检]执行如图所示的程序框图,输出的值为()开始/输出s/ 结束A.B .2C . 1D . 19. [2019重庆 中严门80 COS70cos20( )A .3B.1 C.3 D . 2 10..[2019揭阳一模]函数 f x 在 0, 单调递减,且为偶函数.若f 2 1,则满足f x 3 1的x的取值范围是( )A C7. [2019合肥质检]将函数f x2sin才 ------- 、\zWK'SC . n6n D .—181的图象上各点横坐标缩短到原来的 -(纵坐标不变)得到 2S=O, k=【页2第2 211. [2019陕西联考]已知双曲线C:£ 召数为(C . 3、填空题:本大题共 4小题,每小题 5分,共20 分.13. [2019江门一模]已知a 、b 、c 是锐角△ ABC 内角A 、B 、C 的对边,S 是厶ABC 的面积,若 a 8 , b 5, S 10丽,则 c _____________ . 14. [2019景山中学]已知a , b 表示直线, , , 表示不重合平面①若1 a , b , a b ,贝U;②若a ,a 垂直于 内任意一条直线,则;③若 ,I a , I b ,则 a b ;④若a ,b, a // b ,则//.上述命题中, 正确命题的序号是15. [2019林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音 主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同 学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学 不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的 课程是 (填影视配音、广播电视、公共演讲、播音主持)216. ____________________________________________________________________________________ [2019河南联考]若一直线与曲线 y elnx 和曲线y mx 相切于同一点P ,则实数m _____________________三、解答题:本大题共 6大题,共 70分,解答应写出文字说明、证明过程或演算步骤.17. (12分)[2019长郡中学]设正项数列 务 的前n 项和为S n ,且.盘 是a n 与a n 1的等比中项,其中 *n N .1 a 0,b 0的右焦点为F 2,若C 的左支上存在点M ,使得直线bx ay 0是线段MF 2的垂直平分线,则C 的离心率为( C . 512. [2019临川一中]若函数f x 在其图象上存在不同的两点A x i ,y i ,B X 2,y 2,其坐标满足条件: XX 2-2 2 %■ X 2忌的最大值为0,则称fx 为柯西函数 ”,则下列函数:①:②f Xln x 0 xe :③f xcosx ;2X 1•其中为柯西函数”的个(1)求数列a n的通项公式;18. ( 12分)[2019维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项 目,大桥建设需要许多桥梁构件•从某企业生产的桥梁构件中抽取 100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间55,65 , 65,75 , 75,85内的频率之比为4: 2:1 .(1) 求这些桥梁构件质量指标值落在区间 75,85内的频率; (2) 若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取 3件,记这3件桥梁构件中质量指标值 位于区间45,75内的桥梁构件件数为 X ,求X 的分布列与数学期望.⑵设b n n 12a n 1,记数列b n 的前n 项和为T n ,求证:T 2n 1 .a n an 119. (12 分)[2019 淄博模拟]如图,在四棱锥P ABCD 中,AB// CD , AB 1 , CD 3 , AP 2 , DP 2.3 , PAD 60 , AB 平面PAD,点M 在棱PC 上.(1)求证:平面PAB 平面PCD ;(2)若直线PA//平面MBD,求此时直线BP与平面MBD所成角的正弦值.线被椭圆C i截得的线段长为.2 .(1)求椭圆C i的方程;2 2 X y20. ( 12分)[2019泰安期末]已知椭圆G:2 2a b 1 a b 0的离心率为2,抛物线C2: y22 4x的准(2)如图,点A、F分别是椭圆G的左顶点、左焦点直线I与椭圆G交于不同的两点M、N ( M、N都在x轴上方).且AFM OFN .证明:直线I过定点,并求出该定点的坐标.21. (12分)[2019衡水中学]已知函数f x x2 3ax lnx, a R .1(1) 当a 时,求函数f x的单调区间;33(2) 令函数x x2 f x,若函数x的最小值为,求实数a的值.2请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22. (10分)【选修4-4:坐标系与参数方程】[2019揭阳一模]以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为2COS2 a2(a R , a为常数)),过点P 2,1、倾斜角为30的直线I的参数方程满足x 2 邑 ,(t2为参数).(1)求曲线C的普通方程和直线I的参数方程;(2)若直线I与曲线C相交于A、B两点(点P在A、B之间),且PA PB 2,求a和|| PA PB||的值.23. (10分)【选修4-5:不等式选讲】[2019汕尾质检]已知f x 2x 2 x 1的最小值为t .行::求t的值;1 '若实数a , b满足2a2 2b2 t,求J J 的最小值.a2 1 b222019届高三第三次模拟考试卷理科数学(二)答案12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C2.【答案】A3.【答案】A4.【答案】B【解析】•/ z L2ii a i T~2i-a i 的实部等于虚部,•-2 2 2-,即a 1 .故选C . 2【解析】由题意, 集合A3n 1,n N , B 6,8,10,12,14 • AI B 8,14•••集合 AI B 中元素的个数为2 .故选A .【解析】a mb 1,12m,3m2m,3m 结合向量垂直判定,建立方程, 可得2m 3m0 ,解得m2-,故选A . 5【解析】根据题意,圆 P 的坐标为 3,0 ,2 2 则有3 1 0 2 8,则P 在圆C 上,此时K CP 1,则切线的斜率k 1,则切线的方程为y x3,即x y 3 0,故选B .5.【答案】B 【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的 10中任意选,二共有 C ; 20 , 若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的 10中任意选,•共有 C 3 C 10 30 , •共有20 30 50种.故选B . 6.【答案】A【解析】由三视图可知,该几何体是圆锥的一部分,正视图是底边长为3的等腰三角形,侧视图是直角边长为 1的等腰直角三角形,圆锥的高为 1,底面半径为俯视图是扇形,圆心角为2n,3、选择题:本大题共11.【答案】C几何体的体积为1 11 2n1 n.故选A .3 2397.【答案】C【解析】将函数f x 横坐标缩短到原来的—后,得到g x 2sin 2x —1,2 6 当x上时, f 上1,即函数 gx的图象关于点-,1对称,故选项A 错误;121212周期T 2n2n ,故选项 B 错误;当x0, n 时,2x nn n函数g x 在 0,n上单调递增,故选项 C 正确;6 66 26.•函数g x 在 0,n上单调递增,• g xn dg66即函数g x 在0,n上没有最大值,故选项 D 错误.故选C .6&【答案】A【解析】第一次循环,k 1 , S cosO 1 , k 1 1 2, k 4不成立; 第二次循环, k 2 , S 1n . cos 1 1-,k 2 13 , k 4不成立;3 2 2第三次循环, k 3 , S 3 2 n cos — 3 11 , k 31 4 , k 4不成立;2 3 2 2第四次循环, k 4 , S 1 cos n 11 0 , k 4 15 , k 4成立,退出循环,输出S 0,故选A .9.【答案】C10.【答案】Ax 31 f2 等价于 f X3 f 2 , .•函数f x 在0, 单调递减,••• x 32 , 2 x3 2 , 1 x 5,故选A .【解析】..2sin80 cos70cos202sin 60 20 cos70cos202sin 60 cos20 2cos60 sin 20 cos702sin 60 cos20 sin 20 cos70cos20cos202sin 60 cos20cos202sin 603 .故选 C . 【解析】.•函数f x 为偶函数,【解析】F2 C,0,直线bx ay 0是线段MF?的垂直平分线,可得F?到渐近线的距离为|F?Pbe b,即有|OP ■. e2b a ,由0P MF1F2的中位线,可得|MF i 2 OP 2a,MF2 2b,可得|MF^ |MF i 2a,即为2b 2a 2a,即b 2a,可得e eai :2 i 4 5 •故选C.12.【答案】B【解析】由柯西不等式得:对任意实数X i , y i , X2 , y2, XX2 2y i y220恒成立, (当且仅当X i y2 X2 y i取等号)若函数f x在其图象上存在不同的两点x i,y i ,冷,y2,其坐标满足条件: XX2 y i y2 * y i2X22y22的最大值为0,则函数f x在其图象上存在不同的两点 A x i, y i , 冷,y2uuu UUU,使得OA , OB共线,即存在过原点的直线y kx与y f x的图象有两个不同的交点:对于①,方程kx x ix 0,即k ix2X i,不可能有两个正根,故不存在;由图可知不存在;,由图可知存在;,由图可知存在,柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分.13. 【答案】7【解析】根据三角形面积公式得到1S abs inC si nC22•••三角形为锐角三角形,故得到角C为丄,31 2再由余弦疋理得到cos —---- ------- .2 2b cc 7 .故答案为73 2 2ab14. 【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确,对于②,a , a垂直于内任意一条直线,满足线面垂直的定理,即可得到又a ,则,故正确,对于③,,I a , I b,则a b或a// b,或相交,故不正确,对于④,可以证明/ ,故正确.故答案为②④.15. 【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视;由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音,故答案为影视配音.116. 【答案】丄2e 2【解析】曲线y elnx的导数为y',曲线y mx2的导数为y 2mx ,x由2mx, x 0且m 0,得x ,即切点坐标应为玉,代入y e|n x得eln J e,解得m丄,故答案为—•V2m 2 2 2三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 【答案】(1) a n n ; (2)见解析.【解析】(1)^ . 2S?是a n 与a n 1的等比中项,••• 2S n a n a n 1 a n 2 a n ,当 n 1 时,2a i a i Q ,…a 1 .【解析】(1)设区间75,85内的频率为x ,则区间55,65 ,依题意得 0.004 0.012 0.019 0.03 10 4x 2x x 1,解得 x•这些桥梁构件质量指标值落在区间75,85内的频率为0.05 .(2)从该企业生产的该种桥梁构件中随机抽取 3件,相当于进行了 3次独立重复实验,• X 服从二项分布B n, p ,其中n 3 . 由(1 )得,区间 45,75内的频率为0.3 0.2 0.1 0.6 ,将频率视为概率得 p 0.6 .v X 的所有可能取值为 0, 1 , 2, 3, 且 P X 0C 0 0.60 0.430.064 , P X 1 C ; 0.61 0.420.288 ,22133P X 2C 3 0.6 0.4 0.432 , P X 3 C 3 0.6 0.4 0.216 .• X 的分布列为:X 服从二项分布B n, p , • X 的数学期望为EX 3 0.6 1.8 .当n 2时,2a n a n 1,整理得 a n a n 1a n a n 1 1又a n 0 anan 11 n2,即数列 an…ana 1n 1 d 1n 1 n .n 12n 1n 111(2) b n11n n 1n n 1 --T 2nb 1 b 2 b 3 Lb 2n1 1 1 1223111 .2n 1是首项为1,公差为1的等差数列.1 1 L 4 1 1 1 1 3 2n 1 2n 2n 2n 165,75内的频率分别为4x 和2x .0.05 .2S n 2S n 1 2a n a n2 an 118.【答案】(1)19.【答案】(1)见解析;(2) —V195 .65 【解析】(1)v AB平面PAD , • AB DP ,1,①2又••• DP 2.3 , AP 2 , PAD 60 ,由—PDsin PADPA sin PDA 可得 sin PDA2, PDA 30 , APD 90 DP AP ,••• AB I AP A ,二DP 平面PAB , ••• DP 平面 PCD ,•••平面 PAB 平面 PCD ; (2)以点A 为坐标原点,AD 所在的直线为y 轴,AB 所在的直线为z 轴, 如图所示,建立空间直角坐标系, 其中 A 0,0,0 , B 0,0,1 , C 0,4,3uu r uuu从而BD 0,4, 1 , AP 3,1,0uuuu uuiu设PM PC ,从而得M .3 3 设平面MBD 的法向量为n x, y,z,3uu u PC 若直线 PA//平面MBD ,满足 nCBAvITD,D 0,4,0 , P 3,1,0 3,3,3 , 1,3uuu u ,BM,31,3uju u BMUJL TBDuuu AP uuuA得 —,取 n .3, 3, 12,且 BP 4 0,即 3,1, 直线BP 与平面MBD 所成角的正弦值等于 sin 4y 3x 2X 220.【答案】(1) — y 1 ; (2)直线l 过定点 【解析】(1)由题意可知,抛物线 又椭圆G 被准线截得弦长为 2 ,讨2 2,…e 2由①②联立,解得a 22 , b 2uuu BPj-tuu nBp2156 12,52195.65C 2的准线方程为x 1 •••点详在椭圆上, •椭圆2b 2,②, C 1的标准方程为1 2b 2y 2 1.1 ,21.【答案】(1)见解析;(2)(2)设直线 I : y kx m ,设M x, y ,N X 2,y 2 ,把直线1代入椭圆方程, 整理可得2k 2 1 x 24 km2m 22 0,2 2 16k m 4 2k 21 2m22 16k 2 8m 28 0 , 即 2k 2 m 24km2m 2 2…X 1 X 2 2 , X 122k 12k 1y 1 • K FM ,K FNy 2 -,M 、N 都在x 轴上方,且 AFMOFN1 0,x 1 1 X 2 1kFN,y 1 X 1 1 ~^y-,即 x 2 1 kx i kx 2 m x i1 ,整理可得 2kx 1x 2 k m x 1 X 22m 2m 2 20 ,• 2k 厂 2 k 2 14km 2k 2 12m即 4 km 2 2 24k 4k m 4km 4k2m2k ,•直线I 为y kx 2k k x,•直线 l 过定点2,0 .令f ''x 0 ,解得X-或 x 1,而 X 0,故x1,2则当 x 0,1 时,f X 0, 即f X在区1 间内递减, 当x1,时,f X, 即f X 在区间'可内递增.(2) 由f X2x 3axln x ,f X 2x 13a —X则 2X X f x 2x 33ax 2X ,故X 6x 26 ax 1 ,又26a4 6 1,故方程 X0有2个不同的实根,不妨记 己为石,,X 2,且儿 X2,又• X^-0 ,故 X 06 X 2 ,当X 0,X 2 时,x 0X 递减,当X X 2,时,x 0,X 递增,故 Xminx 22x 233a x :22X 2 , ①又 X 20 ,• 6X226ax21 0 , 即a1 6X 22 ,②xx6x 222x x2x 11【解析】(1) a -时,f x3 lnx ,贝U f将a宜6x22代入—式,得2X2 321 6x2 2X26x2X2 31 32x2 x? 3x22X2由题意得 3 1X2 X22 专,即2x23X2即x21 2x222x23 0,解得X25将X2 1代入■式中,得a6X2请考生在22、23两题中任选一题作答, 如果多做, 则按所做的第一题记分2 2 22.【答案】(1)x y 3t2( t为参数);(2) t2【解析】(1)由2cos2a2得2 2 . 2 2cos sin a ,又x cos , y sin ,得x2 y2a2,••• C的普通方程为•••过点P 2,1、倾斜角为30的直线I的普通方程为y——X3y12t「直线1的参数方程为32t2(t为参数).(2)将2代入x2£2a2,得t2 2 2.3 a20,依题意知a20,则上方程的根1、t2就是交点A、V t1 t2 a2,由参数t的几何意义知PA PB b| |t2| |t1 t2 ,得t1 对应的参数,2 ,•••点P在A、B之间,「• 1t2 0 ,…t1t22,9即2 3a22,解得a 4 (满足0 ),二a 2 ,•- p A PB t1 t2 t1 t2,又t1 t24.323.【答案】(1)2; (2)3x 【解析】(1) f x2x 1,xx 3, 13x 1,x1 ,故当x 1时,函数f x 有最小值2,.・.t 2 .(2)由( 1)可知2 2 222a 2b 2,故 a 1 b 24,2 2 212 22b a 1 1 1 1 a 1 b 22 a 1 b 22 1a 2 1b 2 22 2a 1b 2441?当且仅当a 2 1 b 2 2 2,即a 2 1 , b 20时等号成立,故1a 21 2的最小值为1 .b 2。

山东省2019届高三第一次大联考理科数学试题(含解析)

山东省2019届高三第一次大联考理科数学试题(含解析)

一、选择题1.已知集合3{(,)|}A x y y x ==,{(,)|}B x y y x ==,则A B 的元素个数是()A.0B. 1C. 2D. 3 答案: D 解答:【评析】本题考查集合的表示、交集的运算,考查幂函数的图像.凸显了直观想象考查.解答本题首先要能理解集合,A B 表示的是点集,表示的是两个幂函数的图像上所有点组成的集合,其次需要熟悉常见幂函数的图像,最后要理解集合A B 的元素个数就是这两个函数图像交点的个数.由幂函数3,y x y x ==的图像可以知道,它们有三个交点(1,1),(0,0),(1,1)--,所以集合A B有三个元素.2.已知在复平面内,复数12,z z 对应的点分别是12(2,1),(1,1)Z Z -,则复数12z z 对应的点在() A.第一象限 B. 第二象限 C. 第三象限D.第四象限 答案: D 解答:【评析】本题考查复数的几何意义、复数运算,突显数学运算、直观想象的考查.解答本题首先 要理解复平面内点与复数的对应关系,其次要能熟练进行复数的四则运算.122i (2i)(1i)13i 1i 22z z ----===+,对应的点的坐标是13(,)22-,在第四象限. 3.已知{}n a 是等差数列,且12343,6a a a a +=-+=-,则{}n a 的前10项和等于()A. 15-B. 25-C. 45-D. 60- 答案: C 解答:【评析】本题考查等差数列的判定、通项公式、前n 项和公式,考查方程思想.突显了数学建模的考查.解答本题首先要知道{}n a 是等差数列,则212{}nn a a 也是等差数列,建立等差数列模型,其次是要找好新等差数列的首项123a a +=-及公差3412'()()d a a a a ,最后需要理解到{}n a 的前10项和即为数列212{}nn a a 的前5项和.解答本题也可以首先根据条件列出两个关于1,a d的方程,从而求出1,a d,再利用前n 项和公式求解.101234910()()()3(12345)45S a a a a a a =++++++=-⨯++++=-.4.已知向量(1,0),(3,4)a b ==-的夹角为θ,则cos θ2等于()A. 725-B.725 C. 2425-D.2425答案: A 解答:【评析】本题考查向量的坐标运算、二倍角公式,突显了数学抽象的考查.解答本题首先要根据 向量夹角公式和坐标运算公式求出cos ,再利用二倍角的余弦公式求解.33cos 155θ-==-⨯,所以27cos 22cos 125θθ=-=-. 5.已知00(,)A x y 是抛物线24y x =上的点,点F 的坐标为(1,0),则“0[1,3]x ∈”是“||[3,4]AF ∈”的()A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 答案: B 解答:【评析】本题考查抛物线的定义、标准方程、充要条件的判定,突显了逻辑推理的考查.解答本题首先要根据抛物线的标准方程和定义找到||AF 与0x的关系,从而发现||[3,4]AF 的等价条件,其次要正确理解条件与结论的关系,准确作出判断.||[3,4]AF ∈001[3,4][2,3]x x ⇔+∈⇔∈,因为[2,3][1,3]⊂≠,所以选B .6.下图是相关变量,x y 的散点图,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归方程:22y b x a =+,相关系数为2r .则()A.1201r r <<<B. 2101r r <<<C. 1210r r -<<<D. 2110r r -<<< 答案: D 解答:【评析】本题考查线性回归分析,重点考查散点图、相关系数,突显了数据分析、直观想象的考查.解答本题首先要能理解散点图,其次需要理解相关系数与正负相关的关系,最后还需要理解相关系数的意义:其绝对值越接近1,说明两个变量越具有线性相关性.负相关,所以12,0r r <,因为剔除点(10,21)后,剩下点数据更具有线性相关性,||r 更接近1,所以2110r r -<<<.7.设23342,log 15,log 20a b c ===,则,,a b c 的大小关系是() A.a b c << B. a c b << C. b c a << D. c b a << 答案: B 解答:【评析】本题考查对数运算,考查指数、对数函数的性质,考查不等式的性质,考查函数与方程思想,突显了数学运算、数学建模的考查.解答本题首先需要根据对数运算将,b c 化简,然后建立指数函数、对数函数模型,根据指数函数、对数函数的性质判断,,a b c 与2的大小关系,最后还需要根据换底公式、不等式性质等判断出,b c 的大小关系.122a <=,3log 92b >=,4log 162c >=,所以a 最小,341log 5,1log 5b c =+=+,因为11lg 5lg 50lg 3lg 4lg 3lg 4lg 3lg 4b c <<⇒>⇒>⇒>. 8.执行如图所示程序框图,输出的结果是()A.5B. 6C. 7D. 8 答案: B 解答:【评析】本题考查程序框图、等比数列的判定、等比数列的前n项和公式,突显了数学运算、数学建模的考查.解答本题首先要根据程序框图正确得到等比数列模型,再根据等比数列前n 项和公式求解.该题易错点是B 是数列1{2}n 的前1n 项和,而不是数列{2}n 的前n 项和. 如图所示i n =时,B 是等比数列1{2}n -的前1n +项和,即21122221n n B +=++++=-,由1100210117n B n +≥⇒≥⇒+≥,所以输出的是6.9.过两点(4,0),(4,0)A B -分别作斜率不为0且与圆226290(0)x y x my m +--+=≠相切的直线,AC BC ,当m 变化时,交点C 的轨迹方程是()A.221(3)97x y x -=> B. 221(4)169x y x -=>C. 212(0)y x x => D. 216(0)y x x => 答案: A 解答:【评析】本题考查圆的方程、双曲线的定义及其标准方程.突显了直观想象、逻辑推理的考查.解答本题首先要正确根据圆的方程找到圆心和半径,然后根据圆的切线性质发现动点C 满足的几何条件,从而判断出动点C 的轨迹,再根据双曲线的标准方程找出轨迹方程.圆方程为222(3)()x y m m -+-=与x 轴相切于点(3,0)M ,设,AC BC 与圆的切点分别为,N P ,则||||||||||||6AC BC AN BP AM BM -=-=-=,所以点C 的轨迹是以,A B 为焦点且实轴长为6的双曲线的右支,所以选A .10.在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边,,a b c 直接求三角形的面积,据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式即()()()S p p a p b p c =---,其中1()2p a b c =++.我国南宋著名数学家秦九韶(约1202-1261)也在《数书九章》里面给出了一个等价解法,这个解法写成公式就是2221()4S c a =-∆,这个公式中的∆应该是() A.2()2a cb ++ B.2a c b+- C. 2222c a b +-D.2a b c++ 答案: C 解答:【评析】本题考查余弦定理、三角形面积公式、同角三角函数关系式,弘扬中国古代数学文化,突显了数学抽象的考查.解答本题首先要注意观察、联想三角形面积公式1sin 2Sca B ,从而发现∆应该等于|cos |ca B ,再根据余弦定理得到答案.因为222cos 2c a b ac B +-=1sin 2ac B S ==.11.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,QH BC //,则正方体中过AD 且与平面PHQ 平行的截面面积是()A.B.C.D. 答案: C 解答:【评析】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.解答本题首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O,则O 是底面QRH 的中心.设OR HQ G =,则EAB PGO ∠=∠,又因为23RG RO OG ===,3PO ==,所以sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=.12.已知函数e ,0,()2e (1),0xx m mx x f x x x -⎧++<⎪=⎨⎪-≥⎩(e 为自然对数的底),若方程()()0f x f x -+=有且仅有四个不同的解,则实数m 的取值范围是() A.(0,e) B. (e,+)∞ C. (0,2e) D.(2e,)+∞答案: D 解答:【评析】本题考查函数的奇偶性、函数零点、导数的几何意义,考查函数与方程思想、数形结合思想、转化与化归思想,突显了直观想象、数学抽象、逻辑推理的考查.解答本题首先需要根据方程特点构造函数()()()F x f x f x ,将方程根的问题转化为函数零点问题,并根据函数的奇偶性判断出函数()F x 在(0,)上的零点个数,再转化成方程1e ()2x x m x =-解的问题,最后利用数形结合思想,构造两个函数,转化成求切线斜率问题,从而根据斜率的几何意义得因为函数()()()F x f x f x =-+是偶函数,(0)0F ≠,所以零点成对出现,依题意,方程有两个不同的正根,又当0x >时,()e 2x mf x mx -=-+,所以方程可以化为: e e e 02x x x m mx x -++-=,即1e ()2x x m x =-,记()e x g x x =,()e (1)x g x x '=+,设直1()2y m x =-与()g x 图像相切时的切点为(,e )tt t ,则切线方程为e e (1)()tty t t x t -=+-,过点1(,0)2,所以1e e (1)()12t t t t t t -=+-⇒=或12-(舍弃),所以切线的斜率为2e ,由图像可以得2e m >. 二、填空题13.5(2)(1)a b c --的展开式中,32a b c 的系数是. 答案:40-解答:【评析】本题考查二项式定理,突显了数学运算的考查.解答本题首先要将5(2)(1)a b c --化成55(2)(2)a b c a b ---,并注意到5(2)a b -的展开式中不会出现32a b c ,最后用二项式定理求5(2)c a b -⋅-中32a b c 的系数,从而得解.依题意,只需求5(2)c a b -⋅-中32a b c 的系数,是225(2)40C -⋅-=-.14. 已知ABC ∆是等腰直角三角形,||||1AC BC ==,()(R,0)CP CA CB λλλ=+∈>,4AP BP ⋅=,则λ等于.2解答:【评析】本题考查向量的运算、坐标法,考查方程思想,突显直观想象的考查.解答本题首先需要依据直观想象,根据条件建立直角坐标系,将向量的几何运算转化为坐标运算,其次需要根据条件建立关于实数的方程,通过解方程得到解.以,CA CB 所在直线分别为x 轴,y 轴,建立直角坐标系,则(1,0),(0,1),(0,0),(,)A B C P λλ,所以(1,),(,1)AP BP λλλλ=-=-, 所以2(1)4λλ-=,解得2λ=或1-(舍去).15. 如图,已知四棱锥P ABCD -底面是边长为4的正方形,侧面PBC 是一个等腰直角三角形,PB PC =,平面PBC ⊥平面ABCD ,四棱锥P ABCD -外接球的表面积是.答案:32π解答:【评析】本题考查两平面垂直的性质、球的性质及表面积公式,考查空间想象能力,突显了直观想象的考查.解答本题首先要理解到外接球球心与各面中心连线垂直该面,从而通过找两个面的中心,并依据面面垂直的性质过中心作垂线,找到外接球的球心,然后确定外接球的半径,并计算球的表面积得到解.DCBAP过PBC ∆的外心即BC 的中点E 作平面PBC 的垂线,该垂线过正方形的中心O ,所以点O 为该四棱锥外接球的球心,其半径R OA ==2432S R ππ==.16. 已知等比数列{}n a 的前n 项和为n S ,满足12,a =-2S 是34,S S 的等差中项.设m 是整数,若存在N n +∈,使得等式3(1)402n n n S a m a m ++⋅+=成立,则m 的最大值是. 答案:16解答:【评析】本题考查等差中项、等比数列的通项公式及前n 项和公式,考查函数思想.突显了数学运算、数学建模的考查.解答本题首先需要依据条件求出等比数列的通项公式及前n 项和公式,然后要利用函数思想,为了求m 的最值,需要把m 表示成n 的函数,最后根据,m n 是整数确定这个函数的定义域,从而找到这个函数值域,得到m 的最大值. 因为2S 是34,S S 的等差中项,所以34243234322222S S S S S S S a a q +=⇒-=-⇒=-⇒=-,所以(2)nn a =-,12(2)3n n S +---=,等式3(1)402n n n S a m a m ++⋅+=,化为:2(2)[(2)4]0n n m -+-+=, OE DCB AP因此2(2)16(2)4(2)4(2)4n nn n m --==--+-+-+,因为m 为整数,所以|(2)4|161,2,3nn -+≤⇒=,当1n =时,2482m m -=--+⇒=-, 当2n =时,164428m m -=-+⇒=-, 当3n =时,1684164m m -=--+⇒=-. 三、解答题17.如图,点,A B 分别是圆心在原点,半径为1和2的圆上的动点.动点A 从初始位置0(cos,sin )33A ππ开始,按逆时针方向以角速度s /rad 2作圆周运动,同时点B 从初始位置)0,2(0B 开始,按顺时针方向以角速度s /rad 2作圆周运动.记t 时刻,点B A ,的纵坐标分别为12,y y .(Ⅰ)求4t π=时刻,,A B 两点间的距离;(Ⅱ)求12yy y =+关于时间(0)t t >的函数关系式,并求当(0,]2t π∈时,这个函数的值域.答案:(Ⅰ)7;(Ⅱ)[2.解答:【评析】考查余弦定理、三角函数的定义、两角和与差的三角函数公式、三角函数的图像,考查函数思想、数形结合思想,突显了数学建模的考查.解答本题第一问首先要确定π4t=时刻,A B两点的坐标及,OA OB的长度、夹角,再利用两点距离公式或余弦定理求解;解答本题第二问,需要根据三角函数的定义先确定12,y y与t的函数关系式,从而得到所求函数关系式,再利用两角和与差的三角函数公式将函数关系式化成sin()y A x k(或cos()y A x k)的形式,最后根据三角函数图像确定值域.(Ⅰ)4tπ=时,,232xOA xOBπππ∠=+∠=,所以23AOBπ∠=,…… 2分又||1,||2OA OB==,所以2222||12212cos73ABπ=+-⨯⨯=,即,A B两点间的距离为7. ………………6分(Ⅱ)依题意,1sin(2)3y tπ=+,ty2sin22-=,………………8分所以3sin(2)2sin22sin2)323y t t t t tππ=+-=-=+,即函数关系为)(0)3y t tπ=+>,………………10分当(0,]2tπ∈时,2(,]333tπππ4+∈,所以1cos(2)[1,)32tπ+∈-,[2y∈.…12分18.已知四棱锥ABCD P -的底面ABCD 是等腰梯形,CD AB //,ACBD O =,AC PB ⊥,222====CD AB PB PA ,3=AC .(Ⅰ)证明:平面⊥PBD 平面ABCD ;(Ⅱ)点E 是棱PC 上一点,且//OE 平面PAD ,求二面角A OB E --的余弦值. 答案: (Ⅰ)见解析;(Ⅱ)2-. 解答:【评析】本题考查线面、面面垂直关系的判定,考查线面平行的性质,考查空间向量的应用,考查二面角的计算,考查转化与化归思想,考查空间想象能力,突显了直观想象、数学运算的考查.解答本题第一问首先需要在面ABCD 内发现垂直关系,再利用判定定理转化为线面垂直,从而得到面面垂直;解答本题第二问首先要通过垂直关系的判定正确建立空间直角坐标系找好,,A B P 的坐标,然后将线面平行即//OE 平面PAD 转化为线线平行PA OE //,从而确定平面的法向量,最后根据法向量求出二面角的余弦.本题特色是通过平行关系的转化避开了计算点E 的坐标,简化了求法向量的运算,本题要特别注意的是所求二面角是钝角,其余弦值为负.(Ⅰ)证明:等腰梯形ABCD 中,OAB ∆∽OCD ∆,所以2OA ABOC CD==,又3AC =,所以2OA =,所以2=OB . 所以222OA OB AB +=,所以OB OA ⊥,即BD AC ⊥,………………3分 又因为AC PB ⊥,且BDPB 于点B ,所以⊥AC 平面PBD ,又因为AC ⊂平面ABCD ,因此平面⊥PBD 平面ABCD . …6分 (Ⅱ)连接PO ,由(Ⅰ)知,⊥AC 平面PBD ,所以PO AC ⊥,所以222=-=OA PA PO ,所以222PO OB PB +=,即OB PO ⊥,………………7分 如图以,,OA OB OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,0,0),(0,2,0),(0,0,2)A B P ,平面AOB 的法向量(0,0,1)m =, 因为//OE 平面PAD ,⊂OE 平面PAC , 平面PAC平面PA PAD =,所以PA OE //,………………9分设平面EOB 的法向量为(,,)n x y z =,则n OB ⊥,即0=y ,(,,)(2,0,2)0n OE n AP x y z x z ⊥⇒⊥⇒⋅-=⇒=,令1x =,则(1,0,1)n =,……11分所以cos ,2m n <>==,所以所求二面角的余弦值是2-.……………12分19.某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100 元.(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=)答案: (Ⅰ)80.2; (Ⅱ)30万元; (Ⅲ)见解析. 解答:【评析】本题考查频率分布直方图、样本平均数的估算、独立事件的概率、随机变量的分布列及数学期望、正态分布,突显了数学建模、数据分析的考查.解答本题第一问首先要根据频率分布直方图确定各组的频率及中间值,再根据样本平均数的计算公式计算得到平均数;解答本题第二问首先要确定随机变量X 的所有可能取值,再根据独立事件的概率公式求出分布列,最后利用数学期望公式求X 的数学期望;本题第三问首先要根据正态分布的性质确定好,2μσμσ--等,然后类似第二问求出随机变量Y 的分布列及数学期望,最后根据随机变量,X Y 的数学期望的大小决策.本题特色综合考察概率统计的几个主要模型、体现概率统计在实际中的主要应用:用于决策. (Ⅰ)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯=.…3分 (Ⅱ)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)x >0.25=,(7478P x <≤或8286)x <≤0.45=,(7882)0.3P x <≤=,………………4分设生产一件产品的利润为X 元,则(100)P X ==0.20.250.40.450.60.30.41⨯+⨯+⨯=, (60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=,(100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=,………………7分所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元,所以一条流水线一年能为该公司带来利润的估计值是30万元. ………………8分 (Ⅲ)374,78,82,386μσμσμσμσ-=-=+=+=,………………9分 设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=, (60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=,(100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=,………………11分所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元, 增加收入55.23020 5.2--=万元, 综上,应该引入该设备.………………12分20.已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12(1,0),(1,0)F F -,点000(,)(0)P x y y >是椭圆C 上的一个动点,当直线OP的斜率等于2时,2PF x ⊥轴. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 且斜率为02x y -的直线1l 与直线2:2l x =相交于点Q ,试判断以PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由. 答案:(Ⅰ)2212x y +=; (Ⅱ)见解析. 解答:【评析】本题考查椭圆的标准方程与几何性质、直线方程,考查数形结合思想、特殊与一般思想,突显了直观想象、数学运算、逻辑推理的考查.解答本题第一问首先要根据题设给的点P 的特殊位置,建立关于,,a b c 的等式,再通过解方程求出,,a b c ,从而得到所求标准方程;解答本题第二问首先要根据条件利用直线方程的点斜式得到直线1l 的方程,并能利用椭圆方程整理化简方程,然后求出点Q 的坐标,再根据圆的知识转化成向量垂直,待定出定点坐标.本题特色是回避了直线与椭圆方程联立,利用韦达定理求解.(Ⅰ)依题意22b a ac =⇒=,………………2分又因为221a b -=,所以2a =2=a .所以椭圆C 的方程为2212x y +=. ………………5分(Ⅱ)直线1l 的方程:0000()2x y y x x y -=--即22000022y y x x x y =-++,………………6分依题意,有220012x y +=,即220022x y +=,所以1l 的方程为0022x x y y +=,所以点01(2,)x Q y -,………………8分 设定点(,0)M m ,由000010()(2)0x MP MQ x m m y y -⋅=⇒--+⋅=,………………10分 即20(1)(1)0m x m -+-=,所以1m =,综上,存在定点(1,0)M 符合条件.………………12分 21.已知函数x xax a x f e )(e )(2-+=(e 为自然对数的底,a 为常数,a R ∈)有两个极值点21,x x ,且210x x <<.(Ⅰ)求a 的取值范围;(Ⅱ)若0)(2121<++x x m x x 恒成立,求实数m 的取值范围. 答案:(Ⅰ)(2e,)+∞;(Ⅱ)]21,(--∞.解答: 【评析】本题考查导数运算、导数的应用,考查函数与方程思想、转化与化归思想、数形结合思想、分类与整合思想,突显了数学抽象、数学建模、逻辑推理的考查.解答本题第一问首先要通过导数运算将极值点问题转化为方程解的问题,从而转化成两个函数图像交点问题,再根据导数的应用确定函数的极值点、单调性,从而画出简图,判断出所求范围;解答本题第二问首先要灵活根据隐含条件消元,将不等式转化为关于12x x 的不等式,从而构造函数,建立函数模型,再通过分类讨论该函数的单调性,确定实数m 的取值范围.(Ⅰ)xxax x f e e 2)(2-=',由0)(='x f 得xa xe 2=,………………2分依题意,该方程有两个不同正实数根,记x x h x e 2)(=,则2)1(e 2)(x x x h x -=',当01x <<时,()0h x '<;当1>x 时,()0h x '>,所以函数()h x 在1x =处取得最小值(1)2e h =,所以a 的取值范围是(2e,)+∞.…………5分(Ⅱ)由(Ⅰ)得:21(1,)x x ∈+∞,且112e xax =,所以112ln ln ln x x a +=+,222ln ln ln x x a +=+,所以1212ln ln x x x x -=-,………………6分因此0)(2121<++x x m x x 恒成立,即22122121(ln ln )()0x x x x m x x -+-<恒成立,即22221112ln 0x x x m x x x -+<,设21x t x =,即1ln ()0t m t t +-<在(1,)t ∈+∞上恒成立,从而0m <,记1()ln ()g t t m t t =+-,(1)0g =,211()(1)g t m t t'=++22(1)m t tt ++=,…8分 ① 当12m ≤-时,t t 212>+,所以t t m -<+)1(2,从而()0g t '<, 则()g t 在区间[1,)+∞上单调递减,所以当1t >时,()(1)0g t g <=恒成立;……………10分② 102m -<<时,()0g t '>等价于2110t t m ++<,2140m∆=->, 所以2110t t m ++=有两根21,t t ,且121211,0t t t t m=+=->,可以不妨设2110t t <<<, ()0g t '>在),1(2t t ∈时成立,所以()g t 在区间),1(2t 上单调递增,当),1(2t t ∈时,()(1)0g t g >=,即1ln ()0t m t t+-<在(1,)t ∈+∞上不恒成立,综上,m 的取值范围是]21,(--∞.………………12分四、选做题(2选1)22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos (0)ρθρ=>.M 为曲线1C 上的动点,点P 在射线OM 上,且满足||||20OM OP ⋅=. (Ⅰ)求点P 的轨迹2C 的直角坐标方程;(Ⅱ)设2C 与x 轴交于点D ,过点D 且倾斜角为56π的直线l 与1C 相交于,A B 两点,求||||DA DB ⋅的值.答案: (Ⅰ)5x =; (Ⅱ)5. 解答:【评析】本题考查直线与圆的极坐标方程、极坐标方程与直角坐标方程的互化、直线参数方程的应用,突显了直观想象的考查.解答本题第一问首先要依据动点,P M 的极坐标的关系找到点P 的极坐标方程,再化为直角坐标方程;解答本题第二问首先要根据条件确定直线l 的参数方程,依据参数t 的几何意义,结合解方程,利用韦达定理得到解.(Ⅰ)设P 的极坐标为)0)(,(>ρθρ,M 的极坐标为)0)(,(11>ρθρ,由题设知1,4cos OP OM ρρθ===.所以20cos 4=θρ,………………2分即2C 的极坐标方程cos 5(0)ρθρ=>,所以2C 的直角坐标方程为5x =.………………5分(Ⅱ)交点)0,5(D ,所以直线l的参数方程为5,212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数), 曲线1C 的直角坐标方程)0(0422≠=-+x x y x , 代入得:05332=+-t t ,70∆=>,………………8分设方程两根为12,t t ,则12,t t 分别是,A B 对应的参数, 所以5||||||21==⋅t t DB DA .………………10分 23.选修4-5:不等式选讲 已知函数|1|||)(-++=x a x x f .(Ⅰ)当1=a 时,求不等式4)(+≥x x f 的解集;(Ⅱ)若不等式1)(2-≥a x f 恒成立,求实数a 的取值范围.答案:(Ⅰ)4{|3x x ≤-或4}x ≥; (Ⅱ)[1,2]-. 解答:【评析】本题考查绝对值不等式的解法、绝对值不等式定理,考查转化与化归思想、分类与整合思想,突显了数学运算、逻辑推理的考查.解答本题第一问首先要通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;解答本题第二问首先要利用绝对值不等式定理得到函数()f x 的最小值,将不等式恒成立问题转化为关于a 的不等式解的问题,再通过对绝对值内式子符号的讨论,转化为不含绝对值的不等式组,最后求解不等式组.(Ⅰ)不等式为4|1||1|+≥-++x x x ,可以转化为:1,114x x x x ≤-⎧⎨---+≥+⎩或11,114x x x x -<<⎧⎨+-+≥+⎩或1,114x x x x ≥⎧⎨++-≥+⎩,………………2分 解得43x ≤-或4x ≥,所以原不等式的解集是4{|3x x ≤-或4}x ≥. ………………5分 (Ⅱ)|1||)1()(|)(min +=--+=a x a x x f ,所以1|1|2-≥+a a ⎩⎨⎧-≥---<⇔11,12a a a 或2111a a a ≥-⎧⎨+≥-⎩,………………8分 解得a ∈∅或21≤≤-a .所以实数a 的取值范围是[1,2]-.………………10分。

山东省高2019届高三第一次大联考理科数学试题及参考答案

山东省高2019届高三第一次大联考理科数学试题及参考答案

一、选择题1.已知集合3{(,)|}A x y y x ==,{(,)|}B x y y x ==,则A B 的元素个数是( )A. 0B. 1C. 2D. 3 答案: D 解答:【评析】本题考查集合的表示、交集的运算,考查幂函数的图像.凸显了直观想象考查.解答本题首先要能理解集合,A B 表示的是点集,表示的是两个幂函数的图像上所有点组成的集合,其次需要熟悉常见幂函数的图像,最后要理解集合A B 的元素个数就是这两个函数图像交点的个数.由幂函数3,y x y x ==的图像可以知道,它们有三个交点(1,1),(0,0),(1,1)--,所以集合A B有三个元素.2.已知在复平面内,复数12,z z 对应的点分别是12(2,1),(1,1)Z Z -,则复数12z z 对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 答案: D 解答:【评析】本题考查复数的几何意义、复数运算,突显数学运算、直观想象的考查.解答本题首先 要理解复平面内点与复数的对应关系,其次要能熟练进行复数的四则运算.122i (2i)(1i)13i1i 22z z ----===+,对应的点的坐标是13(,)22-,在第四象限. 3.已知{}n a 是等差数列,且12343,6a a a a +=-+=-,则{}n a 的前10项和等于( )A. 15-B. 25-C. 45-D. 60- 答案: C 解答:【评析】本题考查等差数列的判定、通项公式、前n 项和公式,考查方程思想.突显了数学建模的考查.解答本题首先要知道{}n a 是等差数列,则212{}n n a a -+也是等差数列,建立等差数列模型,其次是要找好新等差数列的首项123a a +=-及公差3412'()()d a a a a =+-+,最后需要理解到{}n a 的前10项和即为数列212{}n n a a -+的前5项和.解答本题也可以首先根据条件列出两个关于1,a d 的方程,从而求出1,a d ,再利用前n 项和公式求解.101234910()()()3(12345)45S a a a a a a =++++++=-⨯++++=-.4. 已知向量(1,0),(3,4)a b ==-的夹角为θ,则cos θ2等于( )A. 725-B.725C. 2425-D.2425答案: A 解答:【评析】本题考查向量的坐标运算、二倍角公式,突显了数学抽象的考查.解答本题首先要根据 向量夹角公式和坐标运算公式求出cos q ,再利用二倍角的余弦公式求解.33cos 155θ-==-⨯,所以27cos 22cos 125θθ=-=-. 5.已知00(,)A x y 是抛物线24y x =上的点,点F 的坐标为(1,0),则“0[1,3]x ∈”是 “||[3,4]AF ∈”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 答案: B 解答:【评析】本题考查抛物线的定义、标准方程、充要条件的判定,突显了逻辑推理的考查.解答本题首先要根据抛物线的标准方程和定义找到||AF 与0x 的关系,从而发现||[3,4]AF Î的等价条件,其次要正确理解条件与结论的关系,准确作出判断.||[3,4]AF ∈001[3,4][2,3]x x ⇔+∈⇔∈,因为[2,3][1,3]⊂≠,所以选B .6.下图是相关变量,x y 的散点图,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归方程:22y b x a =+,相关系数为2r .则( )A. 1201r r <<<B. 2101r r <<<C. 1210r r -<<<D. 2110r r -<<< 答案: D 解答:【评析】本题考查线性回归分析,重点考查散点图、相关系数,突显了数据分析、直观想象的考查.解答本题首先要能理解散点图,其次需要理解相关系数与正负相关的关系,最后还需要理解相关系数的意义:其绝对值越接近1,说明两个变量越具有线性相关性.负相关,所以12,0r r <,因为剔除点(10,21)后,剩下点数据更具有线性相关性,||r 更接近1,所以2110r r -<<<.7. 设23342,log 15,log 20a b c ===,则,,a b c 的大小关系是( ) A. a b c << B. a c b <<C. b c a <<D. c b a << 答案: B 解答:【评析】本题考查对数运算,考查指数、对数函数的性质,考查不等式的性质,考查函数与方程思想,突显了数学运算、数学建模的考查.解答本题首先需要根据对数运算将,b c 化简,然后建立指数函数、对数函数模型,根据指数函数、对数函数的性质判断,,a b c 与2的大小关系,最后还需要根据换底公式、不等式性质等判断出,b c 的大小关系.122a <=,3log 92b >=,4log 162c >=,所以a 最小,341log 5,1log 5b c =+=+,因为11lg5lg50lg3lg 4lg3lg 4lg3lg 4b c <<⇒>⇒>⇒>. 8. 执行如图所示程序框图,输出的结果是( )A. 5B. 6C. 7D. 8 答案: B 解答:【评析】本题考查程序框图、等比数列的判定、等比数列的前n 项和公式,突显了数学运算、数学建模的考查.解答本题首先要根据程序框图正确得到等比数列模型,再根据等比数列前n 项和公式求解.该题易错点是B 是数列1{2}n -的前1n +项和,而不是数列{2}n的前n 项和. 如图所示i n =时,B 是等比数列1{2}n -的前1n +项和,即21122221n n B +=++++=-,由1100210117n B n +≥⇒≥⇒+≥,所以输出的是6.9.过两点(4,0),(4,0)A B -分别作斜率不为0且与圆226290(0)x y x my m +--+=≠相切的直线,AC BC ,当m 变化时,交点C 的轨迹方程是( )A.221(3)97x y x -=> B. 221(4)169x y x -=>C. 212(0)y x x =>D. 216(0)y x x => 答案: A 解答:【评析】本题考查圆的方程、双曲线的定义及其标准方程.突显了直观想象、逻辑推理的考查.解答本题首先要正确根据圆的方程找到圆心和半径,然后根据圆的切线性质发现动点C 满足的几何条件,从而判断出动点C 的轨迹,再根据双曲线的标准方程找出轨迹方程.圆方程为222(3)()x y m m -+-=与x 轴相切于点(3,0)M ,设,AC BC 与圆的切点分别为,N P ,则||||||||||||6AC BC AN BP AM BM -=-=-=,所以点C 的轨迹是以,A B 为焦点且实轴长为6的双曲线的右支,所以选A .10. 在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边,,a b c 直接求三角形的面积,据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式即()()()S p p a p b p c =---,其中1()2p a b c =++.我国南宋著名数学家秦九韶(约1202-1261)也在《数书九章》里面给出了一个等价解法,这个解法写成公式就是2221()4S c a =-∆,这个公式中的∆应该是( ) A. 2()2a cb ++ B.2a c b+- C. 2222c a b +-D.2a b c++ 答案:C 解答:【评析】本题考查余弦定理、三角形面积公式、同角三角函数关系式,弘扬中国古代数学文化,突显了数学抽象的考查.解答本题首先要注意观察、联想三角形面积公式1sin 2S ca B=,从而发现∆应该等于|cos |ca B ,再根据余弦定理得到答案.因为222cos 2c a b ac B +-=,1sin 2ac B S ==.11.如图,1111ABCD A BC D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,QH BC //,则正方体中过AD 且与平面PHQ 平行的截面面积是( )A.B.C.D. 答案: C 解答:【评析】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.解答本题首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面Q R H 的中心.设ORHQ G =,则EAB PGO ∠=∠,又因为2RG RO OG ===,3PO =,所以sin sin 3PO EAB PGO PG ∠=∠==,所以4EA EA =⇒=,所以四边形AEFD的面积4S =⨯=12.已知函数e ,0,()2e (1),0xx m mx x f x x x -⎧++<⎪=⎨⎪-≥⎩(e 为自然对数的底),若方程()()0f x f x -+=有且仅有四个不同的解,则实数m 的取值范围是( ) A. (0,e) B. (e,+)∞ C. (0,2e) D. (2e,)+∞ 答案: D 解答:【评析】本题考查函数的奇偶性、函数零点、导数的几何意义,考查函数与方程思想、数形结合思想、转化与化归思想,突显了直观想象、数学抽象、逻辑推理的考查.解答本题首先需要根据方程特点构造函数()()()F x f x f x =+-,将方程根的问题转化为函数零点问题,并根据函数的奇偶性判断出函数()F x 在(0,)+?上的零点个数,再转化成方程1e ()2xx m x =-解的问题,最后利用数形结合思想,构造两个函数,转化成求切线斜率问题,从而根据斜率的几何意义得到解. 因为函数()()()F x f x f x =-+是偶函数,(0)0F ≠,所以零点成对出现,依题意,方程有两个不同的正根,又当0x >时,()e 2xmf x mx -=-+,所以方程可以化为:e e e 02x x x m mx x -++-=,即1e ()2x x m x =-,记()e x g x x =,()e (1)x g x x '=+,设直1()2y m x =-与()g x 图像相切时的切点为(,e )t t t ,则切线方程为e e (1)()t t y t t x t -=+-,过点1(,0)2,所以1e e (1)()12t tt t t t -=+-⇒=或12-(舍弃),所以切线的斜率为2e ,由图像可以得2e m >.二、填空题13.5(2)(1)a b c --的展开式中,32a b c 的系数是 . 答案:40-解答:【评析】本题考查二项式定理,突显了数学运算的考查.解答本题首先要将5(2)(1)a b c --化成55(2)(2)a b c a b ---,并注意到5(2)a b -的展开式中不会出现32a b c ,最后用二项式定理求5(2)c a b -⋅-中32a b c 的系数,从而得解.依题意,只需求5(2)c a b -⋅-中32a b c 的系数,是225(2)40C -⋅-=-.14. 已知ABC ∆是等腰直角三角形,||||1AC BC ==,()(R,0)CP CA CB λλλ=+∈>u u r u u r u u r,4AP BP ⋅=uu u r uu r,则λ等于 .答案:2解答:【评析】本题考查向量的运算、坐标法,考查方程思想,突显直观想象的考查.解答本题首先需要依据直观想象,根据条件建立直角坐标系,将向量的几何运算转化为坐标运算,其次需要根据条件建立关于实数l 的方程,通过解方程得到解.以,CA CB 所在直线分别为x 轴,y 轴,建立直角坐标系,则(1,0),(0,1),(0,0),(,)A B C P λλ,所以(1,),(,1)AP BP λλλλ=-=-u u u r u u r,所以2(1)4λλ-=,解得2λ=或1-(舍去).15. 如图,已知四棱锥P ABCD -底面是边长为4的正方形,侧面PBC 是一个等腰直角三角形,PB PC =,平面PBC ⊥平面ABCD ,四棱锥P ABCD -外接球的表面积是 .答案:32π解答:【评析】本题考查两平面垂直的性质、球的性质及表面积公式,考查空间想象能力,突显了直观想象的考查.解答本题首先要理解到外接球球心与各面中心连线垂直该面,从而通过找两个面的中心,并依据面面垂直的性质过中心作垂线,找到外接球的球心,然后确定外接球的半径,并计算球的表面积得到解.过PBC ∆的外心即BC 的中点E 作平面PBC 的垂线,该垂线过正方形的中心O ,所以点O 为该四棱锥外接球的球心,其半径R OA ==,所以外接球的表面积是2432S R ππ==.16. 已知等比数列{}n a 的前n 项和为n S ,满足12,a =-2S 是34,S S 的等差中项.设m 是整数,若存在N n +∈,使得等式3(1)402n n n S a m a m ++⋅+=成立,则m 的最大值是 . 答案:DCBAPOE DCB AP16解答:【评析】本题考查等差中项、等比数列的通项公式及前n 项和公式,考查函数思想.突显了数学运算、数学建模的考查.解答本题首先需要依据条件求出等比数列的通项公式及前n 项和公式,然后要利用函数思想,为了求m 的最值,需要把m 表示成n 的函数,最后根据,m n 是整数确定这个函数的定义域,从而找到这个函数值域,得到m 的最大值. 因为2S 是34,S S 的等差中项,所以34243234322222S S S S S S S a a q +=⇒-=-⇒=-⇒=-,所以(2)nn a =-,12(2)3n n S +---=,等式3(1)402n n n S a m a m ++⋅+=,化为:2(2)[(2)4]0n n m -+-+=, 因此2(2)16(2)4(2)4(2)4n nn n m --==--+-+-+, 因为m 为整数,所以|(2)4|161,2,3n n -+≤⇒=, 当1n =时,2482m m -=--+⇒=-, 当2n =时,164428m m -=-+⇒=-, 当3n =时,1684164m m -=--+⇒=-. 三、解答题17.如图,点,A B 分别是圆心在原点,半径为1和2的圆上的动点.动点A 从初始位置0(cos,sin )33A ππ开始,按逆时针方向以角速度s /rad 2作圆周运动,同时点B 从初始位置)0,2(0B 开始,按顺时针方向以角速度s /rad 2作圆周运动.记t 时刻,点B A ,的纵坐标分别为12,y y .(Ⅰ)求4t π=时刻,,A B 两点间的距离;(Ⅱ)求12y y y =+关于时间(0)t t >的函数关系式,并求当(0,]2t π∈时,这个函数的值域.答案:(Ⅰ)7;(Ⅱ)[2. 解答:【评析】考查余弦定理、三角函数的定义、两角和与差的三角函数公式、三角函数的图像,考查函数思想、数形结合思想,突显了数学建模的考查.解答本题第一问首先要确定π4t =时刻,A B 两点的坐标及,OA OB 的长度、夹角,再利用两点距离公式或余弦定理求解;解答本题第二问,需要根据三角函数的定义先确定12,y y 与t 的函数关系式,从而得到所求函数关系式,再利用两角和与差的三角函数公式将函数关系式化成sin()y A x k w j =++(或cos()y A x k w j =++)的形式,最后根据三角函数图像确定值域. (Ⅰ)4t π=时,,232xOA xOB πππ∠=+∠=,所以23AOB π∠=, …… 2分 又||1,||2OA OB ==,所以2222||12212cos73AB π=+-⨯⨯=, 即,A B 两点间的距离为7. ………………6分(Ⅱ)依题意,1sin(2)3y t π=+,t y 2sin 22-=, ………………8分所以3sin(2)2sin 22sin 2)3223y t t t t t ππ=+-=-=+,即函数关系为)(0)3y t t π=+>, ………………10分当(0,]2t π∈时,2(,]333t πππ4+∈,所以1cos(2)[1,)32t π+∈-,[y ∈.…12分18.已知四棱锥ABCD P -的底面ABCD 是等腰梯形,CD AB //,AC BD O =I ,AC PB ⊥,222====CD AB PB PA ,3=AC .(Ⅰ)证明:平面⊥PBD 平面ABCD ;(Ⅱ)点E 是棱PC 上一点,且//OE 平面PAD ,求二面角A OB E --的余弦值. 答案: (Ⅰ)见解析;(Ⅱ)2-. 解答:【评析】本题考查线面、面面垂直关系的判定,考查线面平行的性质,考查空间向量的应用,考查二面角的计算,考查转化与化归思想,考查空间想象能力,突显了直观想象、数学运算的考查.解答本题第一问首先需要在面ABCD 内发现垂直关系,再利用判定定理转化为线面垂直,从而得到面面垂直;解答本题第二问首先要通过垂直关系的判定正确建立空间直角坐标系找好,,A B P 的坐标,然后将线面平行即//OE 平面PAD 转化为线线平行PA OE //,从而确定平面的法向量,最后根据法向量求出二面角的余弦.本题特色是通过平行关系的转化避开了计算点E 的坐标,简化了求法向量的运算,本题要特别注意的是所求二面角是钝角,其余弦值为负. (Ⅰ)证明:等腰梯形ABCD 中,OAB ∆∽OCD ∆,所以2OA ABOC CD==,又3AC =,所以2OA =,所以2=OB . 所以222OA OB AB +=,所以OB OA ⊥,即BD AC ⊥, ………………3分 又因为AC PB ⊥,且BD PB I 于点B ,所以⊥AC 平面PBD ,又因为AC ⊂平面ABCD ,因此平面⊥PBD 平面ABCD . …6分 (Ⅱ)连接PO ,由(Ⅰ)知,⊥AC 平面PBD ,所以PO AC ⊥,所以222=-=OA PA PO ,所以222PO OB PB +=,即OB PO ⊥, ………………7分如图以,,OA OB OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,0,0),(0,2,0),(0,0,2)A B P ,平面AOB 的法向量(0,0,1)m =u r,因为//OE 平面PAD ,⊂OE 平面PAC ,平面PAC I 平面PA PAD =,所以PA OE //, ………………9分设平面EOB 的法向量为(,,)n x y z =r ,则n OB ⊥r u u u r,即0=y ,(,,)(2,0,2)0n OE n AP x y z x z ⊥⇒⊥⇒⋅-=⇒=r u u u r r u u u r ,令1x =,则(1,0,1)n =r,……11分所以cos ,2m n <>==u r r,所以所求二面角的余弦值是2-.……………12分19.某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=)答案: (Ⅰ)80.2; (Ⅱ)30万元; (Ⅲ)见解析. 解答:【评析】本题考查频率分布直方图、样本平均数的估算、独立事件的概率、随机变量的分布列及数学期望、正态分布,突显了数学建模、数据分析的考查.解答本题第一问首先要根据频率分布直方图确定各组的频率及中间值,再根据样本平均数的计算公式计算得到平均数;解答本题第二问首先要确定随机变量X 的所有可能取值,再根据独立事件的概率公式求出分布列,最后利用数学期望公式求X 的数学期望;本题第三问首先要根据正态分布的性质确定好,2μσμσ--等,然后类似第二问求出随机变量Y 的分布列及数学期望,最后根据随机变量,X Y 的数学期望的大小决策.本题特色综合考察概率统计的几个主要模型、体现概率统计在实际中的主要应用:用于决策. (Ⅰ)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯= . …3分 (Ⅱ)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)x >0.25=,(7478P x <≤或8286)x <≤0.45=,(7882)0.3P x <≤=, ………………4分设生产一件产品的利润为X 元,则(100)P X ==0.20.250.40.450.60.30.41⨯+⨯+⨯=, (60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=,(100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=, ………………7分所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元,所以一条流水线一年能为该公司带来利润的估计值是30万元. ………………8分 (Ⅲ)374,78,82,386μσμσμσμσ-=-=+=+=, ………………9分 设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=,(60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=,(100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=, ………………11分所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元, 增加收入55.23020 5.2--=万元,综上,应该引入该设备. ………………12分20.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12(1,0),(1,0)F F -,点000(,)(0)P x y y >是椭圆C 上的一个动点,当直线OP 的斜率等于2时,2PF x ⊥轴.(Ⅰ)求椭圆C 的方程; (Ⅱ)过点P 且斜率为02x y -的直线1l 与直线2:2l x =相交于点Q ,试判断以PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.答案:(Ⅰ)2212x y +=; (Ⅱ)见解析. 解答:【评析】本题考查椭圆的标准方程与几何性质、直线方程,考查数形结合思想、特殊与一般思想,突显了直观想象、数学运算、逻辑推理的考查.解答本题第一问首先要根据题设给的点P 的特殊位置,建立关于,,a b c 的等式,再通过解方程求出,,a b c ,从而得到所求标准方程;解答本题第二问首先要根据条件利用直线方程的点斜式得到直线1l 的方程,并能利用椭圆方程整理化简方程,然后求出点Q 的坐标,再根据圆的知识转化成向量垂直,待定出定点坐标.本题特色是回避了直线与椭圆方程联立,利用韦达定理求解.(Ⅰ)依题意22b a ac =⇒=, ………………2分又因为221a b -=, 所以2a =解得2=a .所以椭圆C 的方程为2212x y +=. ………………5分(Ⅱ)直线1l 的方程:0000()2x y y x x y -=--即22000022y y x x x y =-++,………………6分 依题意,有220012x y +=,即220022x y +=, 所以1l 的方程为0022x x y y +=,所以点01(2,)x Q y -, ………………8分 设定点(,0)M m ,由000010()(2)0x MP MQ x m m y y -⋅=⇒--+⋅=uuu r uuu r , ………………10分即20(1)(1)0m x m -+-=,所以1m =,综上,存在定点(1,0)M 符合条件. ………………12分 21.已知函数x xax a x f e )(e )(2-+=(e 为自然对数的底,a 为常数,a R ∈)有两个极值点21,x x ,且210x x <<.(Ⅰ)求a 的取值范围;(Ⅱ)若0)(2121<++x x m x x 恒成立,求实数m 的取值范围. 答案:(Ⅰ)(2e,)+∞; (Ⅱ)]21,(--∞. 解答:【评析】本题考查导数运算、导数的应用,考查函数与方程思想、转化与化归思想、数形结合思想、分类与整合思想,突显了数学抽象、数学建模、逻辑推理的考查.解答本题第一问首先要通过导数运算将极值点问题转化为方程解的问题,从而转化成两个函数图像交点问题,再根据导数的应用确定函数的极值点、单调性,从而画出简图,判断出所求范围;解答本题第二问首先要灵活根据隐含条件消元,将不等式转化为关于12x x 的不等式,从而构造函数,建立函数模型,再通过分类讨论该函数的单调性,确定实数m 的取值范围.(Ⅰ)xxax x f e e 2)(2-=',由0)(='x f 得xa xe 2=, ………………2分依题意,该方程有两个不同正实数根,记x x h x e 2)(=,则2)1(e 2)(x x x h x -=',当01x <<时,()0h x '<;当1>x 时,()0h x '>,所以函数()h x 在1x =处取得最小值(1)2e h =,所以a 的取值范围是(2e,)+∞. …………5分(Ⅱ)由(Ⅰ)得:21(1,)x x ∈+∞,且112e x ax =,所以112ln ln ln x x a +=+,222ln ln ln x x a +=+,所以1212ln ln x x x x -=-, ………………6分 因此0)(2121<++x x m x x 恒成立,即22122121(ln ln )()0x x x x m x x -+-<恒成立,即22221112ln 0x x x m x x x -+<,设21x t x =,即1ln ()0t m t t +-<在(1,)t ∈+∞上恒成立,从而0m <,记1()ln ()g t t m t t =+-,(1)0g =,211()(1)g t m t t '=++22(1)m t tt++=,…8分 ① 当12m ≤-时,t t 212>+,所以t t m -<+)1(2,从而()0g t '<, 则()g t 在区间[1,)+∞上单调递减,所以当1t >时,()(1)0g t g <=恒成立; ……………10分② 102m -<<时,()0g t '>等价于2110t t m ++<,2140m∆=->, 所以2110t t m ++=有两根21,t t ,且121211,0t t t t m=+=->,可以不妨设2110t t <<<,()0g t '>在),1(2t t ∈时成立,所以()g t 在区间),1(2t 上单调递增,当),1(2t t ∈时,()(1)0g t g >=,即1ln ()0t m t t+-<在(1,)t ∈+∞上不恒成立,综上,m 的取值范围是]21,(--∞. ………………12分 四、选做题(2选1)22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos (0)ρθρ=>.M 为曲线1C 上的动点,点P 在射线OM 上,且满足||||20OM OP ⋅=. (Ⅰ)求点P 的轨迹2C 的直角坐标方程;(Ⅱ)设2C 与x 轴交于点D ,过点D 且倾斜角为56π的直线l 与1C 相交于,A B 两点,求||||DA DB ⋅的值.答案: (Ⅰ)5x =; (Ⅱ)5. 解答:【评析】本题考查直线与圆的极坐标方程、极坐标方程与直角坐标方程的互化、直线参数方程的应用,突显了直观想象的考查.解答本题第一问首先要依据动点,P M 的极坐标的关系找到点P 的极坐标方程,再化为直角坐标方程;解答本题第二问首先要根据条件确定直线l 的参数方程,依据参数t 的几何意义,结合解方程,利用韦达定理得到解.(Ⅰ)设P 的极坐标为)0)(,(>ρθρ,M 的极坐标为)0)(,(11>ρθρ,由题设知1,4cos OP OM ρρθ===.所以20cos 4=θρ, ………………2分 即2C 的极坐标方程cos 5(0)ρθρ=>,所以2C 的直角坐标方程为5x =. ………………5分(Ⅱ)交点)0,5(D ,所以直线l的参数方程为5,12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 曲线1C 的直角坐标方程)0(0422≠=-+x x y x ,代入得:05332=+-t t ,70∆=>, ………………8分 设方程两根为12,t t ,则12,t t 分别是,A B 对应的参数,所以5||||||21==⋅t t DB DA . ………………10分23.选修4-5:不等式选讲已知函数|1|||)(-++=x a x x f .(Ⅰ)当1=a 时,求不等式4)(+≥x x f 的解集;(Ⅱ)若不等式1)(2-≥a x f 恒成立,求实数a 的取值范围.答案:(Ⅰ)4{|3x x ≤-或4}x ≥; (Ⅱ)[1,2]-.解答:【评析】本题考查绝对值不等式的解法、绝对值不等式定理,考查转化与化归思想、分类与整合思想,突显了数学运算、逻辑推理的考查.解答本题第一问首先要通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;解答本题第二问首先要利用绝对值不等式定理得到函数()f x 的最小值,将不等式恒成立问题转化为关于a 的不等式解的问题,再通过对绝对值内式子符号的讨论,转化为不含绝对值的不等式组,最后求解不等式组.(Ⅰ)不等式为4|1||1|+≥-++x x x ,可以转化为:1,114x x x x ≤-⎧⎨---+≥+⎩或11,114x x x x -<<⎧⎨+-+≥+⎩或1,114x x x x ≥⎧⎨++-≥+⎩, ………………2分 解得43x ≤-或4x ≥,所以原不等式的解集是4{|3x x ≤-或4}x ≥. ………………5分 (Ⅱ)|1||)1()(|)(min +=--+=a x a x x f ,所以1|1|2-≥+a a ⎩⎨⎧-≥---<⇔11,12a a a 或2111a a a ≥-⎧⎨+≥-⎩, ………………8分 解得a ∈∅或21≤≤-a .所以实数a 的取值范围是[1,2]-. ………………10分。

2019届高考数学人教A版理科第一轮复习综合测试卷 含解析 精品

2019届高考数学人教A版理科第一轮复习综合测试卷 含解析 精品

综合测试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知x,y∈R,i是虚数单位,若2+x i与互为共轭复数,则(x+y i)2=()A.3iB.3+2iC.-2iD.2i2.若集合A={x|lo(2x+1)>-1},集合B={x|1<3x<9},则A∩B=()A. B. C.(0,2) D.3.设a=,b=,c=logπ,则()A.c<a<bB.c<b<aC.a<b<cD.b<a<c4.根据下边程序框图,当输入x为2 017时,输出的y=()A.2B.4C.10D.285.(2017山东,理5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为x+.已知x i=225,y i=1 600,=4,该班某学生的脚长为24,据此估计其身高为()A.160B.163C.166D.1706.若将函数f sin x-cos x的图象向右平移m(0<m<π)个单位长度,得到的图象关于原点对称,则m=()A.B.C.D.7.若椭圆+y2=1(m>1)与双曲线-y2=1(n>0)有共同的焦点F1,F2,P是两曲线的一个交点,则△F1PF2的面积是()A.3B.1C.D.8.已知变量x,y满足约束条件,则实数a的取值范围是()A.(0,1]B.[0,1)C.[0,1]D.(0,1)9.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a2=b2+c2+bc.若a=,S为△ABC的面积,则S+3cos B cos C的最大值为()A.3B.C.2D.10.直线y=kx+1与曲线f(x)=x3+ax+b相切于点A(1,3),则2a+b的值等于()A.2B.-1C.1D.-211.对∀α∈R,n∈[0,2],向量c=(2n+3cos α,n-3sin α)的长度不超过6的概率为()A. B. C. D.12.已知数列{a n}满足a1=15,=2,则的最小值为()A.7B.2-1C.9D.二、填空题(本大题共4小题,每小题5分,共20分)13.(x2-x+y)5的展开式中x3y2项的系数等于.14.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且|AB|=,则=.15.若函数f(x)=在其定义域上只有一个零点,则实数a的取值范围是.16.(2017山东,理13)由一个长方体和两个圆柱构成的几何体的三视图如图,则该几何体的体积为.三、解答题(本大题共6小题,共70分)17.(12分)若数列{a n}满足:a1=,a2=2,3(a n+1-2a n+a n-1)=2.(1)证明:数列{a n+1-a n}是等差数列;(2)求使+…+成立的最小的正整数n.18.(12分)某电脑公司有6名产品推销员:(1)求年推销金额y与工作年限x之间的相关系数;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.参考数据:≈1.02;由检验水平0.01及n-2=3,查表得r0.01=0.959.参考公式:线性相关系数公式r=;线性回归方程系数公式:x+,其中.19.(12分)如图,已知在长方形ABCD中,AB=2AD,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若E是线段DB的中点,求AE与平面BDM所成角的正弦值.20.(12分)已知椭圆=1(a>b>0)的离心率为,且过点(2,).(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若k AC·k BD=-.①求的最值;②求证:四边形ABCD的面积为定值.21.(12分)设函数f(x)=a e x(x+1)(其中e=2.718 28…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(1)求函数f(x),g(x)的解析式;(2)求函数f(x)在区间[t,t+1](t>-3)上的最小值;(3)若对∀x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,过点P作倾斜角为α的直线l与曲线C:(x-1)2+(y-2)2=1相交于不同的两点M,N.(1)写出直线l的参数方程与曲线C的极坐标方程;(2)求的取值范围.[选修4—5:不等式选讲]23.(10分)已知函数f(x)=|x-2|+2|x+a|(a>0).(1)当a=1时,解不等式f(x)>8;(2)若不等式f(x)≥3在区间(-∞,+∞)内恒成立,求实数a的取值范围.答案:1.D解析∵=,∴解得∴(x+y i)2=(1+i)2=2i.2.A解析∵A={x|lo(2x+1)>-1}=,B={x|1<3x<9}={x|0<x<2},∴A∩B=,故选A.3.B解析设d=,由指数函数f(x)=与g(x)=的单调性知,a>d,b>,再由幂函数h(x)=的单调性知,d>b,故a>b>.又π>e,所以c<.所以c<b<a.故选B.4.B解析由程序框图可知,每运行一次,x的值减少2,当程序框图运行了1 009次后,x=-1,此时终止循环,由y=3-x+1可知,y=3-(-1)+1=4,故输出y的值为4,故选B.5.C解析由已知得x i=22.5,y i=160,又=4,所以=160-4×22.5=70,故当x=24时,=4×24+70=166.故选C.6.A解析f(x)=sin x-cos x=sin,图象向右平移m(0<m<π)个单位长度,得到y=sin,由于得到的图象关于原点对称,故是奇函数,所以--m=kπ,k∈Z,当k=-1时,m=.7.B解析设两个圆锥曲线的焦距为2c,椭圆的长轴长为2,双曲线的实轴长为2,由题意,得m-1=n+1,即m-n=2.不妨令P在双曲线的右支上,则|PF1|-|PF2|=2, ①由椭圆的定义,知|PF1|+|PF2|=2, ②①2+②2,得|PF1|2+|PF2|2=2(m+n),即有|PF1|·|PF2|=m-n=2,又|F1F2|=2,可得|PF1|2+|PF2|2=4(m-1),|F1F2|2=4(m-1),即|PF1|2+|PF2|2=|F1F2|2,则△F1PF2为直角三角形.即有△PF1F2的面积为|PF1|·|PF2|=×2=1.8.C解析表示区域内的点(x,y)与定点A(2,0)连线的斜率k.作出约束条件所表示的平面区域如图所示.观察上图可知,当BC与y轴重合时,|k|≤k AC=;当BC向右移动时,|k|≤k AC<.综上可知,a∈[0,1].9.A解析由cos A==-,可知A=,又a=,故S=bc sin A=·a sin C=3sin B sin C.因此S+3cos B cos C=3sin B sin C+3cos B cos C=3cos(B-C),于是当B=C时,S+3cos B cos C取得最大值3.10.C解析依题意知,f'(x)=3x2+a,则由此解得所以2a+b=1.11.C解析由题意,知|c|≤6,即(2n+3cos α)2+(n-3sin α)2≤36,整理,得5n2+6n(2cos α-sin α)≤27,即6n cos(α+θ)≤27-5n2,即当n=0时,不等式成立;当n≠0时,不等式等价于cos(α+θ)≤,要使cos(α+θ)≤恒成立,则1≤,即5n2+6n-27≤0,解得≤n≤.∵n∈[0,2],∴0<n≤.综上,0≤n≤.故所求的概率为,故选C.12.D解析由题意知,a n+1-a n=2n,所以a2-a1=2,a3-a2=2×2,……,a n-a n-1=2(n-1),将以上(n-1)个式子相加,得a n-a1=2(1+2+3+…+n-1)==n2-n, 所以a n=n2-n+15,所以=n+-1,令g(x)=x+-1,则g'(x)=1-,当x∈[0,3]时,g'(x)<0,当x∈[4,+∞),g'(x)>0,g(3)=7,g(4)=,故最小值为. 13.-10解析(y+x2-x)5的展开式的通项公式T r+1=y5-r(x2-x)r,令5-r=2,解得r=3.(x2-x)3的展开式的通项公式T k+1=(x2)3-k(-x)k=(-1)k x6-k,令6-k=3,解得k=3.故(x2-x+y)5的展开式中x3y2项的系数为-=-10.14.-解析如图,作OC⊥AB于点C,|AB|=,在Rt△OAC中,因为AC=,OA=1,所以∠AOC=60°,则∠AOB=120°,所以=1×1×cos 120°=-.15.(16,+∞)解析当x≤0时,y=-x与y=3x的图象有一个交点,而f(x)在其定义域上只有一个零点,所以当x>0时,f(x)没有零点.当x>0时,f'(x)=x2-4,令f'(x)=0,得x=2,所以f(x)在(0,2)内单调递减,在(2,+∞)内单调递增,f(x)在x=2处取得最小值f(2)=>0,解得a>16.16.2+解析由三视图还原几何体如图所示,故该几何体的体积V=2×1×1+2×π×12×1=2+.17.(1)证明由3(a n+1-2a n+a n-1)=2可得,a n+1-2a n+a n-1=,即(a n+1-a n)-(a n-a n-1)=,故数列{a n+1-a n}是以a2-a1=为首项,为公差的等差数列.(2)解由(1)知a n+1-a n=(n-1)=(n+1),于是累加求和得a n=a1+(2+3+…+n)=n(n+1),故=3,因此+…+=3-,可得n>5,故最小的正整数n为6.18.解(1)由(x i-)(y i-)=10,(x i-)2=20,(y i-)2=5.2,可得r=≈0.98;即年推销金额y与工作年限x之间的相关系数约为0.98.(2)由(1)知,r=0.98>0.959=r0.01,故可以认为年推销金额y与工作年限x之间具有较强的线性相关关系.设所求的线性回归方程为x+,则=0.5,=0.4.因此年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).故可以估计第6名推销员的年推销金额为5.9万元.19.(1)证明∵四边形ABCD是矩形,AB=2AD,M为CD的中点,∴AM=BM=AD.∴AM2+BM2=AB2,∴AM⊥BM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面ADM.∵AD⊂平面ADM,∴AD⊥BM.(2)解过M作平面ABCM的垂线Mz,以M为原点,以MA,MB,Mz为坐标轴建立空间直角坐标系,如图所示.设AD=1,则AM=BM=,M(0,0,0),A(,0,0),B(0,,0),D,E.∴=(0,,0),.设平面BMD的法向量为n=(x,y,z),则令z=1,得n=(-1,0,1).∴n·.∴cos<n,>=.∴AE与平面BDM所成角的正弦值为.20.解(1)由题意,知e==1,又a2=b2+c2,解得a2=8,b2=4,∴椭圆的标准方程为=1.(2)设直线AB的方程为y=kx+m,设A(x1,y1),B(x2,y2),联立得(1+2k2)x2+4kmx+2m2-8=0,Δ=(4km)2-4(1+2k2)(2m2-8)=8(8k2-m2+4)>0,(*)∵k OA·k OB=-=-,∴=-.y1y2=-x1x2=-=-,又y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2·+km·+m2=,∴-,∴-(m2-4)=m2-8k2,∴4k2+2=m2.①=x1x2+y1y2==2-,∴-2=2-4≤<2.当k=0(此时m2=2满足(*)式),即直线AB平行于x轴时,取最小值为-2.又直线AB的斜率不存在时,=2,∴的最大值为2.②证明:设原点到直线AB的距离为d,则S△AOB=|AB|·d=·|x2-x1|·====2=2,∴=4S△AOB=8,即四边形ABCD的面积为定值.21.解(1)f'(x)=a e x(x+2),g'(x)=2x+b.由题意,两函数在x=0处有相同的切线.∴f'(0)=2a,g'(0)=b,∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,∴f(x)=2e x(x+1),g(x)=x2+4x+2.(2)f'(x)=2e x(x+2),由f'(x)>0得x>-2,由f'(x)<0得x<-2,∴f(x)在区间(-2,+∞)内单调递增,在区间(-∞,-2)内单调递减.∵t>-3,∴t+1>-2.①当-3<t<-2时,f(x)在区间[t,-2]上单调递减,在区间[-2,t+1]上单调递增,∴f(x)min=f(-2)=-2e-2.②当t≥-2时,f(x)在区间[t,t+1]上单调递增,∴f(x)min=f(t)=2e t(t+1);∴f(x)min=(3)令F(x)=kf(x)-g(x)=2k e x(x+1)-x2-4x-2,由题意当x≥-2,F(x)min≥0.∵∀x≥-2,kf(x)≥g(x)恒成立,∴F(0)=2k-2≥0,∴k≥1.F'(x)=2k e x(x+1)+2k e x-2x-4=2(x+2)(k e x-1).∵x≥-2,由F'(x)>0,得e x>,∴x>ln;由F'(x)<0,得x<ln.∴F(x)在区间上单调递减,在区间内单调递增.①当ln<-2,即k>e2时,F(x)在区间[-2,+∞)内单调递增,F(x)min=F(-2)=-2k e-2+2=(e2-k)<0,不满足F(x)min≥0.②当ln=-2,即k=e2时,由①知,F(x)min=F(-2)=(e2-k)=0,满足F(x)min≥0.③当ln>-2,即1≤k<e2时,F(x)在区间上单调递减,在区间内单调递增.F(x)min=F=ln k(2-ln k)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].22.解(1)由题意,直线l的参数方程为(t为参数).由(x-1)2+(y-2)2=1得,x2+y2-2x-4y+4=0,将y=ρsin θ,x=ρcos θ,ρ2=x2+y2代入得,ρ2-2ρcos θ-4ρsin θ+4=0.(2)把直线l的参数方程(t为参数)代入x2+y2-2x-4y+4=0,得t2+(2cos α-sin α)t+=0,由Δ>0,得|2cos α-sin α|>1.故=4|2cos α-sin α|∈(4,4].23.解(1)当a=1时,f(x)=|x-2|+2|x+1|,①当x≤-1时,f(x)=2-x-2(x+1)=-3x,由f(x)>8,得-3x>8,解得x<-;②-1<x≤2时,f(x)=2-x+2(x+1)=x+4,由f(x)>8,得x>4,∴此时不等式无解;③当x>2时,f(x)=x-2+2(x+1)=3x,由f(x)>8,得3x>8,解得x>.综上,不等式f(x)>3的解集为.(2)∵a>0,∴-a<0<2,f(x)=|x-2|+2|x+a|=∴f(x)min=f(-a)=a+2,f(x)≥3,即a+2≥3,解得a≥1.。

高三数学一轮复习第一次检测考试试题 理(含解析)

 高三数学一轮复习第一次检测考试试题 理(含解析)

——————————教育资源共享步入知识海洋————————2019高三一轮复习第一次检测考试数学(理科)试题一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【答案】C【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】【分析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】根据题意得,分段函数图象分段画即可,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2﹣x)=﹣f(x),且当x≥1时,函数f(x)=lnx,若a=f(2﹣0.3),b=f(log3π),c=f(﹣)则a,b,c大小关系是()A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。

河北省衡水中学2019届高三下学期大联考卷Ⅱ理科数学试卷及答案

河北省衡水中学2019届高三下学期大联考卷Ⅱ理科数学试卷及答案

18.(12 分 )
如图,四边形 ABCD 为 菱 形,PD ⊥ 平 面 ABCD ,M ,N 分 别 是
PC,PA 的中点,AB=2,PD =a,∠DAB=60°.
(1)求证:MN ⊥平面 PBD .
(2)若 直 线 BM
与 平 面 PAD 所 成 角 的 余 弦 值 为
13,求 4
a
的值. 19.(12 分 )
(1)试 估 计 该 高 中 参 加 2018 年 高 考 的 1000 名 考 生 的 平 均 分 数 与 全 市 平 均 分 数 的 高 低 情 况 ; (2)请 估 计 全 市 分 数 不 低 于 550 分 的 考 生 人 数 ;
(3)若
该高

不低
于 650
分的
考生

女生
所占

例为
2 5
,现
C.-4
D.-5
5.设函数f(x)=ex -e-x +3,则 曲 线y=f(x)在 x=0 处 的 切 线 与 坐 标 轴 围 成 的 三 角 形 的 面
积为
A.9
3 B.2
9 C.2
9 D.4
理科数学试题 第1页(共4页)
6.已知抛物线 C:y2=2px(p>0)的焦点为 F,点 M 是 抛 物 线C 上 一 点,直 线 MF 与 抛 物 线 的 准线l 交于点 N ,且FN→=-2FM→,若|MF|=6,则p=






650






机挑选3人为高二年级的学生作学习经验报告,试求女生被选到的人数 X 的分布列及数
学期望.
附 :425×0.0018+475×0.0034+525×0.008+575×0.0064+625×0.0002+675×0.0002=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学一轮统考综合训练题(五)一、选择题:共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1AD24.AD5.是两个不同的平面,则下列命题正确的是A BC D6.一个四面体的三视图如图所示,则该四面体的表面积是()A.1B.2C.1+D.7..若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8B.15C.16D.328.设,z x y =+其中实数,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为12,则z 的最小值为A .3-B .6-C .3D .69.函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,若12,(,63x x ππ∈-,且12()()f x f x =,则12()f x x +=A . 1B .21C .22D .2310.在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有 A .34种 B .48种C .96种D .144种11. 函数2()ln(2)f x x =+的图象大致是12.如图,从点0(,4)M x 发出的光线,沿平行于抛物线28y x =的 对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线:100l x y --=上 的点N ,经直线反射后又回到点M ,则0x 等于A .5B .6C .7D .8二、填空题:本大题共4小题,每小题5分,共20分. 13.圆22:2440C x y x y +--+=的圆心 到直线:3440l x y ++=的距离d = ; 14.如图是某算法的程序框图,若任意输入[1,19]中的实数x ,则输出的x 大于49的概率为 ;15.已知,x y 均为正实数,且3xy x y =++, 则xy 的最小值为__________;16. 如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1x y e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为 .三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在数列{}n a )N (*∈n 中,其前n 项和为n S ,满足22n n S n -=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎪⎩⎪⎨⎧=+-=⋅=k n n n k n n b n a n 2,2112,22(k 为正整数),求数列{}n b 的前n 2项和n T 2.18.(本小题满分12分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量X 的概率分布及数学期望()E X .19.(本小题满分12分)如图,四棱锥P ABCD -中, PA ⊥面ABCD ,E 、F 分别为BD 、PD 的中点,=1EA EB AB ==,PFEAD2PA =.(Ⅰ)证明:PB ∥面AEF ;(Ⅱ)求面PBD 与面AEF 所成锐角的余弦值. 20.(本小题满分12分) 已知函数()1x f x e x =--. (Ⅰ)求()f x 的最小值;(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设2()(()1)(1)g x f x x '=+-,试问函数()g x 在(1,)+∞上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由. 21.(本小题满分12分)设1F ,2F 分别是椭圆D :)0(12222>>=+b a by a x 的左、右焦点,过2F 作倾斜角为3π的直线交椭圆D 于A ,B 两点, 1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4.(Ⅰ)求椭圆D 的方程;(Ⅱ)已知点),(01-M ,设E 是椭圆D 上的一点,过E 、M 两点的直线l 交y 轴于点C ,若CE EM λ=, 求λ的取值范围;(Ⅲ)作直线1l 与椭圆D 交于不同的两点P ,Q ,其中P 点的坐标为(2,0)-,若点),0(t N 是线段PQ 垂直平分线上一点,且满足4=⋅NQ NP ,求实数t 的值.请考生在第22、23两题中任选一题作答,如果多选,则按所做的第一题计分. 22、(本题10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系, 已知曲线),0(cos 2sin:2>=a a C θθρ过点)4,2(--P 的直线l 的参数方程为:)( 224222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+-=+-=,直线l 与曲线C 分别交于N M 、两点.(Ⅰ)写出曲线C 和直线l 的普通方程;(Ⅱ)若PN MN PM 、、成等比数列,求a 的值. 23、(本题10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f . (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式1)(-<a x f 的解集非空,求实数a 的取值范围.数学一轮统考综合训练题(五)答案一、选择题: C A D A D B C B D C D B 二、填空题: 13. 3 14. 2315.9 16.②③ 三、解答题: 17.解:(Ⅰ)由题设得:22n n S n -=,所以)2()1(1221≥---=-n n n S n所以n S S a n n n -=-=-11 )2(≥n ……………2分当1=n 时,011==S a ,数列{}n a 是01=a 为首项、公差为1-的等差数列 故n a n -=1.……………5分(Ⅱ)由(Ⅰ)知: ⎪⎩⎪⎨⎧=+-=⋅=-k n n n k n n b n n 2,)2(112,21 ……………6分 n n b b b b T 23212++++=02462212325272(21)2n n ----⎡⎤=⋅+⋅+⋅+⋅+-⋅⎣⎦⎥⎦⎤⎢⎣⎡+-++-+-+-+)22121()8161()6141()4121(21n n 02462212325272(21)24(1)n n n n ----⎡⎤==⋅+⋅+⋅+⋅+-⋅+⎣⎦+ ……………9分设246221325272(21)2n T n ----=+⋅+⋅+⋅++-⋅则2246822222325272(23)2(21)2n n T n n -------⋅=+⋅+⋅+⋅++-⋅+-⋅两式相减得:2468222312(22222)(21)24n n T n ------⋅=++++++--⋅229n C C 整理得:2202420992nn T +=-⋅ ……………11分 所以222024209924(1)n n n n T n +=-+⋅+ ……………12分 18.解:(Ⅰ)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为 ……………2分由题意知229512n C C =,化简得2300n n --=.解得6n =或5n =-(舍去)……………………5分 故袋中原有白球的个数为6……………………6分 (Ⅱ)由题意,X 的可能取值为1,2,3,4. 2(1)3P X ==; 361(2)984P X ⨯===⨯; 3261(3)98714P X ⨯⨯===⨯⨯;32161(4)987684P X ⨯⨯⨯===⨯⨯⨯.所以取球次数X 的概率分布列为:……………10分所求数学期望为211110()12343414847E X =⨯+⨯+⨯+⨯=…………………12分19. (Ⅰ)因为E 、F 分别为BD 、PD 的中点, 所以EF ∥PB ……………………2分 因为EF ⊂面AEF ,PB ⊄面AEF 所以PB ∥面AEF ……………………4分 (Ⅱ)因为=1EA EB AB == 所以60ABE ∠= 又因为E 为BD 的中点所以ADE DAE ∠=∠所以2()180BAE DAE ∠+∠=得90BAE DAE ∠+∠=,即BA AD ⊥……………6分因为=1EA EB AB ==,所以AD 分别以,,AB AD AP 为,,x y z 轴建立坐标系所以1(1,0,0),(0,0,2),(2B D P F E 则133(1,0,2),(0,3,2),(,,0),(0,2PB PD AE AF =-=-==………8分 设1111(,,)n x y z =、2222(,,)n x y z =分别是面PBD 与面AEF 的法向量则11112020x z z -=⎧⎪-=,令1n =又22220102y z x y +=⎨⎪+=⎪⎩,令2(n =……………11分所以12121211cos ,19n n n n n n ⋅==……………12分20.解:(Ⅰ)求导数,得()1x f x e =-'.令0()f x '=,解得0x =. ……………2分当0x <时,0()f x '<,所以()f x 在()0-∞,上是减函数; 当0x >时,0()f x '>,所以()f x 在(0,)+∞上是增函数. 故()f x 在0x =处取得最小值(0)0f =. ……………6分 (Ⅱ)函数()g x 在()1,+∞上不存在保值区间,证明如下: 假设函数()g x 存在保值区间[],a b ,由2()(1)x g x x e =-得:2()(21)xg x x x e '=+-因1x >时, ()0g x '>,所以()g x 为增函数,所以22()(1)g()(1)abg a a e ab b e b⎧=-=⎪⎨=-=⎪⎩ 即方程2(1)xx e x -=有两个大于1的相异实根 ……………9分 设2()(1)(1)xx x e x x ϕ=-->2()(21)1x x x x e ϕ'=+--因1x >,()0x ϕ'>,所以()x ϕ在(1,)+∞上单增所以()x ϕ在区间()1,+∞上至多有一个零点 ……………11分这与方程2(1)xx e x -=有两个大于1的相异实根矛盾所以假设不成立,即函数()h x 在()1,+∞上不存在保值区间. ……………12分21.解:(Ⅰ)设1F ,2F 的坐标分别为)0,(),0,(c c -,其中0>c由题意得AB 的方程为:)(3c x y -=因1F 到直线AB 的距离为3,所以有31333=+--cc ,解得3=c ……………2分所以有3222==-c b a ……① 由题意知:42221=⨯⨯b a ,即2=ab ……② 联立①②解得:1,2==b a所求椭圆D 的方程为1422=+y x ……………4分 (Ⅱ)由(Ⅰ)知椭圆D 的方程为1422=+y x 设11(,)E x y ,),0(m C ,由于CE EM λ=,所以有),1(),(1111y x m y x ---=-λλλλ+=+-=∴1,111my x ……………6分 又E 是椭圆D 上的一点,则1)1(4)1(22=+++-λλλm 所以04)2)(23(2≥++=λλm解得:23λ≥-或2λ≤- ……………8分(Ⅲ)由)0,2(-P , 设),(11y x Q根据题意可知直线1l 的斜率存在,可设直线斜率为k ,则直线1l 的方程为)2(+=x k y 把它代入椭圆D 的方程,消去y ,整理得: 0)416(16)41(2222=-+++k x k x k由韦达定理得22141162k k x +-=+-,则2214182kk x +-=,=+=)2(11x k y 2414k k + 所以线段PQ 的中点坐标为,418(22k k +-)4122k k + (1)当0=k 时, 则有)0,2(Q ,线段PQ 垂直平分线为y 轴于是),2(),,2(t NQ t NP -=--=由442=+-=⋅t NQ NP ,解得:22±=t ……………10分(2) 当0≠k 时, 则线段PQ 垂直平分线的方程为-y +-=+x k k k (14122)41822k k+因为点),0(t N 是线段PQ 垂直平分线的一点 令0=x ,得:2416k kt +-=于是),(),,2(11t y x NQ t NP -=--=由4)41()11516(4)(2222411=+-+=---=⋅k k k t y t x NQ NP ,解得:714±=k 代入2416k kt +-=,解得: 5142±=t 综上, 满足条件的实数t 的值为22±=t 或5142±=t . ……………12分.2,2)Ⅰ(.222-==x y ax y ……………5分).(224222)Ⅱ(为参数的参数方程为直线t t y tx l ⎪⎪⎩⎪⎪⎨⎧+-=+-= ),4(8),4(22,0)4(8)4(222212122a t t a t t a t a t ax y +=⋅+=+=+++-=则有,得到代入,2PN PM MN ⋅= ,4)()(2121221221t t t t t t t t =⋅-+=-∴).(41.0432舍去或解得即-===-+a a a a ……………10分23.解:(Ⅰ)原不等式等价于⎩⎪⎨⎪⎧x>32,(2x +1)+(2x -3)≤6或⎩⎪⎨⎪⎧-12≤x ≤32,(2x +1)-(2x -3)≤6或⎩⎪⎨⎪⎧x<-12,-(2x +1)-(2x -3)≤6,解得32<x ≤2或-12≤x ≤32或-1≤x<-12.故不等式的解集为{x|-1≤x≤2}.……………5分(Ⅱ)∵f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,∴|a-1|>4,解此不等式得a<-3或a>5. ……………10分11。

相关文档
最新文档