九年级数学上册第二章一元二次方程测试题
九年级数学(上)第二章一元二次方程检测题有答案
第二章一元二次方程检测题〔本试卷总分值:120分,时间:120分钟〕一、选择题〔每题3分,共30分〕1.以下对于错误!未找到引用源。
的方程:①错误!未找到引用源。
;②错误!未找到引用源。
;③错误!未找到引用源。
;④〔错误!未找到引用源。
〕错误!未找到引用源。
;⑤x1=错误!未找到引用源。
-1,此中一元二次方程的个数是〔〕A.1B.2C.3D.42.用配方法解一元二次方程x2-4x=5时,此方程可变形为〔〕A.〔x+2〕2=1B.〔x-2〕2=1C.〔x+2〕2=9D.〔x-2〕2=93.假定错误!未找到引用源。
为方程错误!未找到引用源。
的解,那么错误!未找到引用源。
的值为〔〕A.12B.64.假定x26x9y30,那么x y的值为〔〕A.0B.-6 D.以上都不对5.当前我国已成立了比较完美的经济困难学生资助系统.某校昨年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的均匀增添率为x,那么下面列出的方程中正确的选项是〔〕A.438错误!未找到引用源。
=389错误!未找到引用源。
=438C.389(1+2x)=438D.438(1+2x)=3896.依据以下表格对应值:xax2bx c判断对于x的方程ax2bxc0(a0)的一个解x的范围是〔〕A.x<<x<<x<<x<7.错误!未找到引用源。
分别是三角形的三边长,那么一元二次方程错误!未找到引用源。
的根的状况是〔〕A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.x1,x2是一元二次方程x22x 1的两个根,那么11的值为〔〕x1x211 D.错误!未找到引用源。
A. C.229.对于x的方程x22kx k10的根的状况描绘正确的选项是〔〕A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.依据k的取值不一样,方程根的状况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种某城市为了申办冬运会,决定改良城市面貌,绿化环境,方案用两年时间,使绿地面积增添44%,这两年均匀每年绿地面积的增添率是〔 〕A.19%B.20%C.21%D.22%二、填空题〔每题3分,共24分〕11. 对于实数a,b,定义运算“*〞:错误!未找到引用源。
(典型题)初中数学九年级数学上册第二单元《一元二次方程》测试题(含答案解析)
一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14 D .k >-14且k ≠0 2.已知方程240x x n ++=可以配方成()23x m +=,则()2015m n -=( ) A .1 B .-1 C .0 D .43.一次围棋比赛,参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为( )A .12x (x ﹣1)=45B .12x (x+1)=45 C .x (x ﹣1)=45D .x (x+1)=45 4.已知关于x 的一元二次方程240x x k +-=,当40k -<<时,该方程解的情况是( )A .有两个不相等的实数根B .没实数根C .有两个相等的实数根D .不能确定 5.下列方程中,是一元二次方程的是( )A .12x +=B .21x y +=C .243x x -=D .35-=xy 6.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2230x x -+=C .22x x -=D .23420x x -+= 7.若关于x 的一元二次方程2(2)20a x x --+=有实数根,则整数a 的最大值为( ) A .−2B .−1C .1D .2 8.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 9.用配方法解方程28110x x -+=的过程中,配方正确的是( )A .228(4)5x x -+-=B .228(4)31x x -+-=C .2(4)5x +=D .2(4)11x -=- 10.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( )A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -=D .22000(1)2420x +=11.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定12.一元二次方程2x =﹣3x 的根是( ) A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3 二、填空题13.设m 、n 分别为一元二次方程2370x x +-=的两个实数根,则2mn m n --=______.14.设12,x x 是一元二次方程2750x x --=的两个实数根,则实数1211+x x 的值为____. 15.如图,四边形ACDE 是证明勾股定理时用到的一个图形,a ,b ,c 是Rt ABC 和Rt BED 边长,易知2=AE c ,这时我们把关于x 的形如220++=ax cx b 的一元二次方程称为“勾系一元二次方程”.若1x =-是“勾系一元二次方程”220++=ax cx b 的一个根,且2ABC S =,则四边形ACDE 的周长是_________.16.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个_____三角形.17.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 18.已知:(x 2+y 2)(x 2+y 2﹣1)=20,那么x 2+y 2=_____.19.定义新运算“⊕”如下:当a b ≥时,a b ab b ⊕=+;当a b <时,a b ab a ⊕=-.若(21)(2)0x x -⊕+=,则x =______________.20.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.三、解答题21.阅读下面材料,并完成问题.任意给定一个矩形A ,若存在另一个矩形B ,使它的周长和面积分别是矩形A 的一半,则称矩形,A B 是“兄弟矩形”.探究:当矩形A 的边长分别为7和1时,是否存在A 的“兄弟矩形”B ?小亮同学是这样探究的:设所求矩形的两边分别是x 和y ,由题意,得472x y xy +=⎧⎪⎨=⎪⎩①② 由①,得4y x =-,③把③代入②,得7(4)2x x -=, 整理,得22870-+=x x .24645680b ac -=-=>,A ∴的“兄弟矩形”B 存在.(1)若已知矩形A 的边长分别为3和2,请你根据小亮的探究方法,说明A 的“兄弟矩形”B 是否存在?(2)若矩形A 的边长为m 和n ,当A 的“兄弟矩形”B 存在时,求,m n 应满足的条件. 22.解方程:2(2)3(2)x x +=+23.解方程(1)2523x x += (2)22(21)(34)x x -=-24.已知:关于x 的方程x 2+kx -6=0,(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是3,求另一个根及k 值.25.阅读下列材料:已知实数x ,y 满足()()22221163x y x y +++-=,试求22x y +的值. 解:设22x y a +=,则原方程变为(1)(1)63a a +-=,整理得2163a -=,264a =,根据平方根意义可得8a =±,由于220x y +,所以可以求得228x y +=.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x ,y 满足(223)(223)27x y x y +++-=,求x y +的值. (2)已知a ,b 满足方程组22223212472836a ab b a ab b ⎧-+=⎨++=⎩;求112a b +的值; (3)填空:已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩,则关于x ,y 的方程组21111122222222a x a x b y c a a x a x b y c a ⎧-+=-⎨-+=-⎩的解是_______. 26.在ABC 中,90,10cm B AB BC ∠===,点P 、Q 分别从A 、C 两点同时出发,均以1cm/s 的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,设点P 运动时间为(s)t ,PCQ △的面积为()2cm S .当P 运动到几秒时625ABC S S =?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k2≠0,且△=b2-4ac≥0,建立关于k的不等式组,求出k的取值范围.【详解】解:由题意知,k2≠0,且△=b2-4ac=(2k+1)2-4k2=4k+1≥0.解得k≥-14且k≠0.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.A解析:A【分析】将配方后的方程转化成一般方程即可求出m、n的值,由此可求得答案.【详解】解:由(x+m)2=3,得:x2+2mx+m2﹣3=0,∴2m=4,m2﹣3=n,∴m=2,n=1,∴(m﹣n)2015=1,故选:A.【点睛】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键. 3.A解析:A【分析】关系式为:棋手总数×每个棋手需赛的场数÷2=45,把相关数值代入即可.【详解】解:本次比赛共有x 个参赛棋手, 所以可列方程为:12x (x -1)=45. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2. 4.A解析:A【分析】计算根的判别式,根据k 的范围,判断判别式的属性,根据性质求解即可.【详解】解:∵一元二次方程240x x k +-=,∴△= 22444b ac k -=+=16+4k ,∵40k -<<,∴1640k -<<,∴16+4k >0,∴△>0,∴原方程有两个不相等的实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,熟记公式,并根据字母范围确定判别式的属性是解题的关键.5.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A 、是一元一次方程,不符合题意;B 、是二元一次方程,不符合题意;C 、是一元二次方程,符合题意;D 、是二元二次方程,不符合题意;故选:C .【点睛】此题考查一元二次方程,熟记定义是解题的关键.6.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x 2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x -+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22x x -=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题意;D.23420x x -+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题意.故选C .【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.C解析:C【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出a 的范围,确定出所求即可.【详解】解:∵关于x 的一元二次方程2(2)20a x x --+=有实数根,∴△=1−8(a−2)≥0,且a−2≠0,解得:a≤178且a≠2, 则整数a 的最大值为1.故选C .【点睛】此题考查了一元二次方程根的判别式,以及一元二次方程的定义,掌握一元二次方程根与判别式的关系是解本题的关键.8.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x 2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 9.A解析:A【分析】用配方法解方程即可.【详解】解:28110x x -+=,移项得,2811-=-x x ,配方得,228(4)1116x x -+-=-+,即228(4)5x x -+-=,故选:A .【点睛】本题考查了配方法解一元二次方程,能够熟练按照配方法的步骤进行解题是关键. 10.D解析:D【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论.【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.A解析:A【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题. 12.C解析:C【分析】移项,利用因式分解求解即可.【详解】解:∵2x =﹣3x ,移项,得2x +3x =0,分解因式,得x (x+3)=0,∴x =0,或x+3=0,解得1x =0,2x =﹣3,故选:C .【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3mn=-7将其代入中即可求出结论【详解】解:∵mn 分别为一元二次方程的两个实数根∴m+n=-3mn=-7则故答案为:-11【点睛】本题解析:-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3,mn=-7,将其代入22()mn m n mn m n --=-+中即可求出结论.【详解】解:∵m ,n 分别为一元二次方程2370x x +-=的两个实数根,∴m+n=-3,mn=-7,则22()2(7)(3)14311mn m n mn m n =--=-+⨯---=-+=-.故答案为:-11.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=-2,mn=-1是解题的关键.14.【分析】根据根的判别式变形计算即可;【详解】∵是一元二次方程的两个实数根∴∴;故答案是:【点睛】本题主要考查了一元二次方程根与系数的关系准确计算是解题的关键 解析:75- 【分析】根据根的判别式变形计算即可;【详解】∵12,x x 是一元二次方程2750x x --=的两个实数根, ∴127b x x a+=-=,125c x x a ==-, ∴2112121175x x x x x x ++==-; 故答案是:75-. 【点睛】本题主要考查了一元二次方程根与系数的关系,准确计算是解题的关键. 15.12【分析】根据题意可以求得a+b 的值再根据勾股定理可以求得c 的值从而可以求得四边形ACDE 的周长【详解】解:∵x=-1是勾系一元二次方程的一个根∴∴∵S △ABC=2a2+b2=c2∴=2得ab=4解析:12【分析】根据题意可以求得a +b 的值,再根据勾股定理可以求得c 的值,从而可以求得四边形ACDE 的周长.【详解】解:∵x =-1是“勾系一元二次方程”20++=ax b 的一个根,∴0a b -+=,∴a b +=,∵S △ABC =2,a 2+b 2=c 2,∴2ab =2,得ab =4, ∴(a +b )2=a 2+2ab +b 2=c 2+2ab =c 2+8, (a +b )2=()2222c c =,∴c 2+8=2c 2,解得,c =22或22-(舍去),∵四边形ACDE 的周长是:a +b +a +b +2c =22c +2c =32c =12,故答案为:12.【点睛】本题考查一元二次方程的解、三角形的面积、勾股定理的证明,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.直角【分析】利用因式分解法求出方程的解得到另两边长利用勾股定理的逆定理即可确定出三角形为直角三角形【详解】解:x2-14x+48=0分解因式得:(x-6)(x-8)=0解得:x=6或x=8∵62+8解析:直角【分析】利用因式分解法求出方程的解得到另两边长,利用勾股定理的逆定理即可确定出三角形为直角三角形.【详解】解:x 2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,∵62+82=102,∴这是一个直角三角形.故答案为:直角【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.17.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3【分析】 先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可.【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2∴x 1+x 2=4,x 1⋅x 2=1∴x 1+x 2-x 1⋅x 2=4-1=3.故答案为3.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 18.5【分析】应用换元法得到一元二次方程解方程问题可解【详解】解:设t =x2+y2(t≥0)则t (t ﹣1)=20整理得(t ﹣5)(t+4)=0解得t =5或t =﹣4(舍去)所以x2+y2=5故答案是:5【解析:5【分析】应用换元法,得到一元二次方程,解方程问题可解.【详解】解:设t =x 2+y 2(t ≥0),则t (t ﹣1)=20.整理,得(t ﹣5)(t +4)=0.解得t =5或t =﹣4(舍去).所以x 2+y 2=5.故答案是:5.【点睛】本题考查了换元法和解一元二次方程的知识,解答关键是根据题意选择合适未知量使用换元法法解题.19.或【分析】分类讨论当和当两种情况时根据所给的新运算法则列出二元一次方程求解即可注意所求的解要符合题意【详解】分类讨论①当时即此时解得:由于所以两个根都舍去②当时即此时解得:由于所以两个根都符合题意故 解析:12或1-. 【分析】分类讨论当212x x -≥+和当212x x -<+两种情况时,根据所给的新运算法则列出二元一次方程求解即可.注意所求的解要符合题意.【详解】分类讨论①当212x x -≥+时,即3x ≥.此时2212(21)(2)(2)240x x x x x x x -⊕+=-+++=+=,解得:1202x x ==-,.由于3x ≥,所以两个根都舍去.②当212x x -<+时,即3x <.此时2212(21)(2)(21)210x x x x x x x -⊕+=-+--=+-=,解得:34112x x ==-,. 由于3x <,所以两个根都符合题意. 故答案为:12或1-. 【点睛】本题考查新定义下的实数运算和解一元二次方程.利用分类讨论的思想是解答本题的关键.20.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.三、解答题21.(1)不存在;(2)2260m mn n -+【分析】(1)按照小亮的方法,进行计算即可;(2)先根据小亮的方法列出方程组,转化为一元二次方程,利用根的判别式列不等式即可.【详解】解:(1)设所求矩形的两边分别是x 和y ,由题意,得5,23.x y xy ⎧+=⎪⎨⎪=⎩①②由①,得52y x =-,③ 把③代入②,得532x x ⎛⎫-=⎪⎝⎭,整理,得22560x x -+=,242548230b ac -=-=-<,A ∴的“兄弟矩形”B 不存在.(2)设所求矩形的两边分别是x 和y , 由题意,得,2.2m n x y mn xy +⎧+=⎪⎪⎨⎪=⎪⎩①② 由①,得2m n y x +=-,③ 把③代入②,得22m n mn x x +⎛⎫-=⎪⎝⎭, 整理,得22()0x m n x mn -++=,22224()86b ac m n mn m mn n -=+-=-+,又,x y 都是正数,∴当2260m mn n -+时,A 的“兄弟矩形”B 存在.【点睛】本题考查了一元二次方程的应用以及根的判别式,解题的关键是熟练运用一元二次方程根的判别式.22.122,1x x =-=.【分析】利用因式分解法求解即可.【详解】∵2(2)3(2)x x +=+,∴()()22320x x +-+= ∴()()2230x x ++=⎡⎤⎣⎦-∴()()210x x +-=解得:122,1x x =-=.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解法的实质,灵活准确求解是解题的关键.23.(1)12x =,213x =-;(2)13x =,21x = 【分析】(1)将方程化为一般式,利用公式法求解即可.(2)直接运用开平方法求解方程即可.【详解】(1)23520x x --=3a =,5b =-,2c =-224(5)43(2)490b ac -=--⨯⨯-=>557236x ±±∴==⨯ 12x ∴=,213x =- (2)()()222134x x -=-方程两边直接开平方得,()2134x x -=±- ∴2134x x -=-,2134x x -=-+解得:13x =,21x =【点睛】本题考查了解一元二次方程,熟练掌握直接开平方法和公式法是解答此题的关键. 24.(1)见解析;(2)k=-1,另一根为-2【分析】(1)由于方程有两个不相等的实数根,则△>0,据此列出关于k 的方程,解答即可; (2)将x =3代入方程x 2+kx -6=0,求出k 的值,根据求出的k 的值,得到一元二次方程,从而求出方程的根.【详解】解:(1)证明:2240k =+>∴方程x 2+kx -6=0有两个不相等的实数根;(2)把x =3代入方程x 2+kx ﹣6=0,得:9+3k-6=0,解得k=-1,将k=-1代入原方程得x 2-x -6=0,解得123,2x x ==-∴k=-1,另一根为x =-2.【点睛】本题考查了根的判别式和一元二次方程的解法,解题的关键是熟练掌握根的判别式和一元二次方程的解法.25.(1)±3;(2)54±;(3)45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩【分析】(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,解之求得a 的值,继而可得x y +的值;(2)设a ²+4b ²=x ,ab=y ,可将原方程组变形为二元一次方程组,解出x 、y 的值再代入即可.(3)将原方程组变为21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩,由题意得出2(1)95x y ⎧-=⎨=⎩,即可得出答案. 【详解】解:(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,整理,得:2927a -=,即236a =,解得:6a =±,则226x y +=±,3x y ∴+=±;(2)令224a b x +=,ab y =,则原方程变为:3247236x y x y -=⎧⎨+=⎩,解之得:172x y =⎧⎨=⎩, ∴22417a b +=,2ab =,∴()22224417825a b a ab b +=++=+=, ∴25a b +=±, ∴1125224b a a b ab ++==±; (3)由方程组21111122222222a x a x b yc a a x a x b y c a ⎧-+=-⎨-+=-⎩,得21111122222222a x a x a b y c a x a x a b y c ⎧-++=⎨-++=⎩, 整理,得:21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩, ∴方程组21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩的解是:2(1)95x y ⎧-=⎨=⎩, 13x ∴-=±,且5y =,解得:45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩. 【点睛】本题主要考查换元法解方程、方程组及因式分解,根据方程和代数式的特点设出合适的新元是解题的关键.26.4秒、6秒或12秒【分析】先根据三角形面积公式可得S △ABC ,根据S =625S △ABC ,可求△PCQ 的面积,再分两种情况:P 在线段AB 上;P 在线段AB 的延长线上;进行讨论即可求得P 运动的时间.【详解】解:∵S△ABC=12AB•BC=50cm2,625S△PCQ=12cm2,设当点P运动x秒时,S=625S△ABC,当P在线段AB上,此时CQ=x,PB=10-x,S△PCQ=12x(10-x)=12,化简得 x2-10 x+24=0,解得x=6或4,P在线段AB的延长线上,此时CQ=x,PB=x-10,S△PCQ=12x(x-10)=12,化简得 x2-10 x+24=0,x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时,S=625S△ABC.【点睛】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.。
九年级数学解一元二次方程专项练习题(带答案)【40道】
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
九年级数学上册_第二章_一元二次方程 单元检测试卷【有答案】
九年级数学上册_第二章_一元二次方程单元检测试卷_总分: 120 分时间: 120 分钟一、选择题(共 10 小题,每小题 3 分,共 30 分)1.关于x的一元二次方程(m+1)x m2+1+4x+2=0中m的值是()A.m=−12B.m=−1 C.m=1 D.m=122.一元二次方程x2−2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.方程2x(x−1)=4(x−1)的一次项是()A.2xB.4xC.−6D.−6x4.已知关于x的一元二次方程(k−1)x2+3x+k2−1=0有一根为0,则k=( )A.±1B.1C.−1D.05.若一元二次方程ax2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是()A.0B.1C.−1D.±16.已知关于x的方程x2+mx+n=0有一个根是−n(n≠0),则下列代数式的值恒为常数的是()A.n+mB.nm C.n−m D.nm7.关于x的一元二次方程a(x+3)2+3=0的解的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定8.在△ABC中,∠A、∠B为锐角,且sinA,cosB是方程4x2−4x+1=0的实数根,则这个三角形是()A.等腰三角形B.直角三角形C.钝角三角形D.锐角三角形9.用配方法解方程x2−8x+3=0,下列变形正确的是()A.(x+4)2=13B.(x−4)2=19C.(x−4)2=13D.(x+4)2=1910.如图,△ABC中,AB=AC,∠A=36∘,CD是角平分线,则△DBC的面积与△ABC面积的比值是()A.√5−22B.√5−23C.3−√52D.3−√53二、填空题(共 10 小题,每小题 3 分,共 30 分)11.一元二次方程12x2+x=3中,a=________,b=________,c=________,则方程的根是________.12.已知y=x2−4x+3,当x=________时,y=0;x=________时,y=2.13.对于实数a,b,我们定义一种运算“”为:ab=a2−ab,例如13=12−1×3.若x4=0,则x=________.14.若一元二次方程x2−6x=−m有实数根,则m的取值范围是________.15.已知(x2+y2+1)(x2+y2−3)=5,则x2+y2的值等于________.16.设x1,x2是方程x2−x−2013=0的两实数根,则x13+2014x2−2013=________.17.若关于x的方程x2+mx+16=0有两个不相等的整数根,则m的值为________(只要写出一个符合要求的m的值).18.已知3−√2是方程x2+mx+7=0的一个根,则m=________,另一根为________.19.某校初三年级组织一次班级篮球赛,赛制为单循环(每两班之间都赛一场),需安排45场比赛,则共有________个班级参加比赛.20.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:设每盆花苗增加x株,可列一元二次方程为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.解方程:(1)(x+1)2−9=0.(2)x2+2x−5=0.(3)x(x−1)=2(x−1). (4)(x−1)(x+3)=12.22.已知关于x的方程x2−2(m+1)x+m−3=0.(1)求证:无论m取何值,此方程都有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.23.已知关于x的方程4x2−8nx−3n=2和x2−(n+3)x−2n2+2=0.问是否存在这样的n的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n值;若不存在,请说明理由.24.如图,用一块正方形纸板,在四个角上截去四个相同的边长为2cm的小正方形,然后把四边折起来,做成一个没有盖的长方体盒子,使它的容积为32cm3.所用的正方形纸板的边长应是多少厘米?如果设正方形纸板的边长是xcm,请列出方程,并把它化成一般形式.25.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品应降价多少元?26.如图,在Rt△ABC中,∠B=90∘,AC=10cm,BC=6cm,现有两点P、Q的分别从点A和点C同时出发,沿边AB,CB向终点B移动.已知点P,Q的速度分别为2cm/s,1cm/s,且当其中一点到达终点时,另一点也随之停止移动,设P,Q两点移动时间为xs.问是否存在这样的x,使得四边形APQC的面积等于16cm2?若存在,请求出此时x的值;若不存在,请说明理由.答案1.C2.D3.D4.C5.C6.A7.D8.B9.C10.C11.121−3x1=−1+√7,x2=−1−√712.3或12+√3或2−√313.0或414.m≤915.416.201417.1018.−63+√219.1020.(x+3)(3−0.5x)=1021.解:(1)移项得,(x+1)2=9,开方得,x+1=±3,解得x1=2,x2=−4.(2)由原方程,得x2+2x=5,配方,得x2+2x+1=5+1,即(x+1)2=6,则x+1=±√6,解得:x=−1±√6.(3)由原方程,得(x−2)(x−1)=0.则x−2=0或x−1=0,解得x1=2,x2=1.(4)(x−1)(x+3)=12,整理得:x2+2x−15=0,分解因式得:(x+5)(x−3)=0,即x+5=0,x−3=0,解方程得:x1=−5,x2=3,∴方程的解是x1=−5,x2=3.22.(1)证明:△=4(m+1)2−4(m−3)=4m2+4m+16=4(m+12)2+15,∵4(m+12)2≥0,∴4(m+12)2+15>0,即△>0,∴无论m取何值,此方程都有两个不相等的实数根;(2)解:根据题意得2(m+1)= 0,解得m=−1,则方程化为x2−4=0,解得x1=2,x2=−2,即m为−1时,方程的两根互为相反数,此时方程的解为x1=2,x2=−2,23.解:由△1=(−8n)2−4×4×(−3n−2)=(8n+3)2+23>0,知n为任意实数时,方程(1)都有实数根.设第一个方程的两根为α、β.则α+β=2n,αβ=−3n−24.于是,(α−β)2=(α+β)2−4αβ,=4n2+3n+2;由第二个方程得[x−(2n+2)][x+(n−1)]=0,解得两根为x1=2n+2,x2=−n+1;若x1为整数,则4n2+3n+2=2n+2.于是n1=0,n2=−14.当n=0时,x1=2是整数;n=−14时,x=32不是整数,舍去.若x2为整数,则4n2+3n+2=1−n.有n3=n4=−12.此时x2=32不是整数,舍去.综合上述知,当n=0时,第一个方程的两个实数根的差的平方等于第二个方程的一个整数根.24.解:正方形纸板的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x−2×2)厘米,高为2厘米,根据题意列方程得,(x−2×2)(x−2×2)×2=32,化为一般形式为:x2−8x=0.25.商场经营该商品原来一天可获利润2000元;(2)依题意得:(100−80−x)(100+10x)=2160,即x2−10x+16=0,解得:x1=2,x2=8,因为让顾客得到实惠,所以应该降价8元.答:商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品应降价8元.26.解:∵∠B=90∘,AC=10,BC=6,∴AB=8.∴BQ=x,PB=8−2x;假设存在x的值,使得四边形APQC的面积等于16cm2,则12×6×8−12x(8−2x)=16,整理得:x2−4x+8=0,∵△=16−32=−16<0,∴假设不成立,四边形APQC面积的面积不能等于16cm2.。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)
北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.一元二次方程2x2−4x−5=0的一次项系数是()A.2 B.−4C.5 D.42.关于x的方程x2−mx−6=0的一个根为x=−3,则实数m的值为()A.−1B.1 C.−5D.53.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.y=14x2B.(x−3)2=−4C.(x+3)2=4D.(x−3)2=44.方程中x(x−1)=0的根是()A.x1=0,x2=−1B.x1=0C.x1=x2=0D.x1=x2=15.如果关于x的一元二次方程x2−4x−k=0有两个不相等的实数根,则k的取值范围是()A.k<−4B.k>−4C.k<4且k≠0D.k>−4且k≠06.下列一元二次方程的两个实数根之和为−3的是()A.x2+2x−3=0B.x2−3x+3=0C.x2+3x−5=0D.x2+3x+5=07.毕业前夕,班主任王老师让每一位同学为班级的其他同学发送祝福短信,全班一共发送870条,这个班级的学生总人数是()A.40B.30C.29D.398.已知方程x2−7x+12=0的两根是x1,x2,则1x1+1x2的值是()A.−112B.112C.−712D.712二、填空题(每题2分,共10分)9.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.10.已知方程x2−6x+q=0可以配方成(x−p)2=7的形式,那么p−q=.11.关于x的一元二次方程(k−1)x2−2x−1=0有两个实数根,则k的取值范围是.12.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.13.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.三、计算题(共10分)14.解方程:(1)(x+2)2=x+2(2)3x2+2x−3=0四、解答题(共56分)15.已知关于x的一元二次方程x2−(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.16.关于x的一元二次方程x2+(2m−1)x+m2=0有实数根.(1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.17.淄博烧烤风靡全国.某烧烤店今年5月份的盈利额为15万元,7月份的盈利额达到21.6万元,如果每月增长的百分率相同.(1)求该烧烤店这两个月的月均增长率.(2)若该烧烤店盈利的月增长率继续保持不变,预计8月份盈利多少万元?18.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每件降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则每件童服装应降价多少元?(2)该店铺每周可能盈利10000元吗?请说明理由.参考答案1.B2.A3.C4.B5.B6.C7.B8.D9.110.111.k≥0且k≠112.1213.514.(1)解:x2+4x+4−x−2=0.x2+3x+2=0(x+1)(x+2)=0.∴x1=−1x2=−2(2)解:a=3b=2c=−3 b2−4ac=4+36=40>0.∴x=−2±√406=−2±2√106∴x1=−1+√103x2=−1−√10315.(1)证明:Δ=(m+3)2−4(m+2)=m2+6m+9−4m−8=m2+2m+1=(m+1)2≥0∴无论m为何值,方程总有两个实数根.(2)解:x=m+3±(m+1)2,则x1=m+2,x2=1,又方程两根均为正整数,则m+2>0m>−2,所以负整数m=−1.16.(1)解:∵关于x的一元二次方程x2+(2m−1)x+m2=0有实数根∴Δ=(2m−1)2−4×1×m2=−4m+1≥0解得:m≤14.(2)解:∵x1,x2是一元二次方程x2+(2m−1)x+m2=0的两个实数根∴x1+x2=1−2m,x1x2=m2∴x12+x22=(x1+x2)2−2x1x2=7,即(1−2m)2−2m2=7整理得:m2−2m−3=0解得:m1=−1,m2=3.又∵m≤14∴m=−1.17.(1)解:设该烧烤店这两个月盈利额的月均增长率为x根据题意得:15(1+x)2=21.6解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该烧烤店这两个月盈利额的月均增长率为20%;(2)解:根据题意得:21.6×(1+20%)=25.92(万元).答:预计8月份盈利25.92万元.18.(1)解:设每件童服装应降价x元根据题意,得(80﹣50﹣x)(200+20x)=7500整理,得x2﹣20x+75=0解得x1=5,x2=15∵尽可能让利于顾客∴x=15答:每件童服装应降价15元;(2)解:该店铺每周不可能盈利10000元,理由为:设该店铺每周可能盈利10000元,则(80﹣50﹣x)(200+20x)=10000 整理,得x2﹣20x+200=0∵Δ=(﹣20)2﹣4×200=﹣400<0∴所列方程没有实数根故该店铺每周不能盈利10000元.。
北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案
北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。
湘教版九年级数学上册第2章《一元二次方程》检测题及答案
第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。
北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案
北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程3x2−5=4x中,关于a、b、c的说法正确的是()A.a=3,b=4,c=−5B.a=3,b=−5,c=4C.a=−3,b=−4,c=−5D.a=3,b=−4,c=−52.已知关于x的方程x2+bx−a=0有且只有一个根x=a(a≠0),则b的值为()A.2B.−2C.±2D.以上都不是3.用配方法解方程x2+4x+3=0,变形后的结果正确的是()A.(x+2)2=−1B.(x+2)2=1C.(x+2)2=3D.(x+2)2=74.若α,β是一元二次方程3x2+x−1=0的两个实数根,则3α2+4α+3β+1的值是()A.−1B.1C.2D.−25.方程(m−2)x2−√3−mx+14=0有两个实数根,则m的取值范围()A.m≤52B.m≤52且m≠2C.m≥3D.m≤3且m≠26.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1(a,m,b均为常数a≠0),则方程a(x+3+m)2+ b=0的解是()A.−1或−4B.−2或1C.1或3D.−5或−27.已知关于x的一元二次方程x2−kx+2k−1=0的两个实数根分别为x1、x2,且x12+x22=7,那么(x1−x2)2的值为()A.13或−11B.13C.−11D.118.如果△ABC有两边的长是方程x2−7x+12=0的根,第三边的长是方程x2−12x+35=0的根,那么△ABC的周长为()A.14B.12C.12或14D.以上都不对二、填空题9.已知关于x的一元二次方程2x2−4x+3=0的两个实数根分别是α,β;则(α+1)(β+1)=.10.某等腰三角形的一边长为3,另外两边长是关于x的方程x2−12x+k=0的两根,则k=;11.若a是一元二次方程x2−2023x+1=0的一个根,则代数式a2−2022a+2023a2+1的值为。
九年级数学上册 第二章一元二次方程测试题 试题
一元二次方程一、选择题〔一共30分〕.1、以下方程中,是关于x 的一元二次方程的是〔 〕 A.()()12132+=+x x B.02112=-+x xC.02=++c bx axD. 1222-=+x x x 2、一元二次方程x 2-1=0的根为〔 〕A 、x =1B 、x =-1C 、x 1=1,x 2=-1D 、x 1=0,x 2=1 3、用配方法解方程2420x x -+=,以下配方正确的选项是〔 〕 A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=4、关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是〔 〕A. x 2+3x +4=0 B. x 2-4x +3=0 C. x 2+4x -3=0 D. x 2+3x -4=0 5、一元二次方程x 2+x +2=0的根的情况是〔 〕A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根6、某商品原价200元,连续两次降价a %后售价为148元,以下所列方程正确的选项是〔 〕 A 、200(1+a%)2=148 B 、200(1-a%)2=148 C 、200(1-2a%)=148 D 、200(1-a 2%)=1487、从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,那么原来的正方形铁皮的面积是〔 〕A 、9cm 2B 、68cm 2C 、8cm 2D 、64cm 28、在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如下图.假如要使整个挂图的面积是22816cm ,设金色纸边的宽为cm x ,那么x 满足的方程是〔 〕A 、2816)240(260=++x x )(B 、2816)40(60=++x x )(C 、2816)40(260=++x x )(D 、2816)240(60=++x x )(9、一个小球以15m/s 的初速度坚直向上弹出,它在空中的高度的h 〔m 〕与时间是t 〔s 〕满足关系:2515t t h -=,小球何时能到达10m 高?〔 〕A 、2sB 、1sC 、1s 或者2sD 、无法确定10、假设t 是一元二次方程)0(02≠=++a c bx ax 的根,那么根的判别式ac b 42-和完全平方式2)2(b at +的关系是〔 〕A 、22)2(4b at ac b +=-B 、22)2(4b at ac b +>- C 、22)2(4b at ac b +<- D 、大小关系不能确定 二、填空题〔每一小题3分,一共15分〕11、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: , 12、一元二次方程x x 22=的根为 ; 13、方程()412=-x 的解为14、我某企业为节约用水,自建污水净化站。
九年级数学上册-一元二次方程
第二章一元二次方程单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.关于x的方程(m+2)x|m|+mx−1=0是一元二次方程,则m=( )A. 2或−2B. 2C. −2D. 02.对于一元二次方程2x2−3x+4=0,它的根的情况为( )A. 没有实数根B. 两根之和是3C. 两根之积是−2D. 有两个不相等的实数根3.用配方法解方程x2−2x−1=0时,配方后可化为( )A. (x−1)2=2B. (x−1)2=0C. (x+1)2=2D. (x+1)2=04.若关于x的一元二次方程mx2−2x+1=0有两个实数根,则实数m的取值范围是( )A. m≤1B. m≤−1C. m≤1且m≠0D. m≥1且m≠05.解方程(5x−1)2=(2x+3)2的最适当方法应是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法6.已知一元二次方程x2−kx+4=0有两个相等的实数根,则k的值为( )A. k=4B. k=−4C. k=±4D. k=±27.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是( )A. x1=0,x2=3B. x1=−4,x2=−1C. x1=−4,x2=2D. x1=4,x2=18.若a,b,c满足{a+b+c=0a−b+c=0,则关于x的方程ax2+bx+c=0(a≠0)的解是( )A. 1,0B. −1,0C. 1,−1D. 无实数根9.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,则剪去的正方形的边长为( )A. 12cm B. 1cm C. 32cm D. 2cm10.2022年2月6日,中国女足以3:2逆转韩国女足,夺得亚洲杯冠军,某公司为支持足球运动的发展,在2020年某品牌足球的单价为200元,到2022年公司将该品牌足球的单价定为162元,则2020年到2022年该品牌足球单价平均每年降低的百分率是( )A. 10%B. 19%C. 20%D. 30%二、填空题(本大题共8小题,共24分)11.若关于x的一元二次方程x2−4x−m=0有两个不相等的实数根,则实数m的取值范围是______.12.若关于x的一元二次方程x2+(2a−1)x+5−a=ax+1的一次项系数为4,则常数项为.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a+b的值是______ .14.已知关于x的一元二次方程2x2−5x+c=0有两个相等的实数根,则c=______.15.如图,在Rt△ABC中,∠B=90∘,AB=6cm,BC=3cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.如果点P,Q分别从A,B两点同时出发,那么经过s后,P,Q两点间的距离为4√2cm.16.某药品原来每盒售价96元,由于两次降价,现在每盒54元,则平均每次降价的百分数为_______.17.设x1,x2是方程2x2+3x−4=0的两个实数根,则1x1+1x2的值为.18.中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人(不重复)转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给人发了短信.三、计算题(本大题共2小题,共12分)19.解方程:(1)x2+12x+27=0(用配方法);(2)2x2−9x+8=020.解下列方程:(1)x2+2x−3=0;(2)x(x−4)=12−3x.四、解答题(本大题共6小题,共54分。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(含答案解析)
一、选择题1.若关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,则k 的取值范围为( )A .k ≥0B .k ≥0且k ≠1C .k ≥34D .k ≥34且k ≠1 2.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12 B .6或12 C .8 D .63.用配方法解一元二次方程2830x x +-=,下列变形中正确的是( ) A .()2419x -= B .()2419x +=C .()2861x +=D .()2867x -= 4.关于x 的一元二次方程()21210k x x +-+=有实数根,则k 满足( )A .0k ≥B .0k ≤且1k ≠-C .0k <且1k ≠-D .0k ≤ 5.为切实解决群众看病贵的问题,药监部门对药品价格进行了两次下调.某种药品原价为250元/瓶,经两次下调后价格变为160元/瓶,该药品平均每次降价的百分率为( ) A .10% B .15% C .20% D .25% 6.为美化家园环境,提升城市形象,我市近几年大力开展“五城联创”活动,2020年被评为国家文明城 市,推动了当地旅游产业的发展,2020年我市某景区旅游收入达到10亿元,预计到2022年该景区旅游收入将达到14.4亿元,则我市2021、2022年旅游收入的平均增长率为( )A .4.4%B .12%C .20%D .24%7.某市2018年投入教育经费2000万元,2020年投入教育经费比2019年增加480万元,若2018年至2020年该市投入教育经费的年平均增长奉为x 则可列方程为( ) A .22000(1)2000(1)480x x +=++B .22000(1)2000(1)x x +=+ C .22000(1)2000480x +=+ D .2000(1)2000480x +=+ 8.已知关于x 的一元二次方程2420ax x +-=有实数根,则a 的取值范围是( ) A .2a >-且0a ≠B .2a ≥-且0a ≠C .2a ≥-D .0a ≠ 9.用配方法解方程2420x x -+=,下列配方正确的是( ) A .()222x -= B .()222x += C .()222x -=-D .()226x -=10.已知a 是方程2210x x --=的一个根,则代数式224a a -+的值应在( ) A .4和5之间 B .3和4之间 C .2和3之间 D .1和2之间 11.若关于x 的方程2210ax ax -+=的一个根是1-,则a 的值是( )A .1B .1-C .13- D .3-12.关于x 的方程2690kx x -+=有实数根,k 的取值范围是( )A .1k <且0k ≠B .1k <C .1k 且0k ≠D .1k二、填空题13.若a ,b 是一元二次方程2202020210x x --=的两根,则22021a a b --=__________.14.关于x 的方程2210mx x --=有两个不相等的实数根,那么m 的取值范围是________.15.如果关于x 的方程22(1)210x a x a -+++=有一个小于1的正数根,那么实数a 的取值范围是_______________.16.等腰ABC 中,4AB AC ==,30BAC ∠=︒,以AC 为边作等边ACD △,则点B 到CD 的距离为________.17.已知2x =是方程220x bx +-=的一个根,则方程的另一个根为____.18.在实数范围内分解因式:231x x -+=_______________________.19.如图,在一个长为40 m ,宽为26m 的矩形花园中修建小道(图中阴影部分),其中m AB CD EF GH x ====,每段小道的两边缘平行,剩余的地方种植花草,要使种植花草的面积为2864m ,那么x =______m .20.如图,把矩形纸片ABCD (BC CD >)沿折痕DE 折叠,点C 落在对角线BD 上的点P 处;展开后再沿折痕BF 折叠,点C 落在BD 上的点Q 处;沿折痕DG 折叠,点A 落在BD 上的点R 处.若4PQ =,7PR =,则BD =___________.三、解答题21.按要求解下列方程:用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)21204x x -=. 22.用适当的方法解下列方程:(1)3x 2+x =0;(2)x 2﹣x ﹣2=0.23.已知关于x 方程x 2+ax +a ﹣5=0.(1)若该方程的一个根为3,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.25.解一元二次方程(1)22(1)3(1)x x +=+; (2)22980x x -+=.26.如图,抛物线与x 轴交于点1,0A ,()3,0B ,与y 轴交于点()0,3C .(1)求二次函数的表达式及顶点坐标;(2)若点P 为抛物线上的一点,且1ABP S ∆=,求点P 的坐标;;(3)连接BC ,在抛物线的对称轴上是否存在一点E ,使BCE ∆是直角三角形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次项系数不为0和△≥0列不等式组即可.【详解】解:根据关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,列不等式组得,210(2)4(1)(3)0k k k k -≠⎧⎨----≥⎩, 解得,k ≥34且k ≠1,故选:D .【点睛】本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为0.2.D解析:D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=,(x-6)(x-2)=0,∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2,∴菱形面积为162=62⨯⨯, 故选:D .【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 3.B解析:B【分析】方程移项后,利用完全平方公式变形即可得到结果.【详解】解:方程x 2+8x-3=0,移项得:x 2+8x=3,配方得:x 2+8x+16=16+3,即(x+4)2=19.故选:B .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 4.B解析:B【分析】根据根的判别式计算即可.【详解】解:∵关于x 的一元二次方程()21210k x x +-+=有实数根,∴()244410b ac k ∆=-=-+≥,10k +≠,∴4440k --≥,1k ≠-,解得:0k ≤,1k ≠-;故答案选B .【点睛】本题主要考查了一元二次方程根的判别式,准确计算是解题的关键.5.C解析:C【分析】设该药品平均每次降价的百分率为x ,根据题意列方程求解即可.【详解】解:设该药品平均每次降价的百分率为x ,根据题意得,250(1-x )2=160,解得,x 1=0.2,x 2=1.8(舍去),答:该药品平均每次降价的百分率为20%;故选:C .【点睛】本题考查了一元二次方程的应用—增长率(或下降率)问题,解题关键是熟知增长率(或下降率)问题的数量关系,结合题意列方程.6.C解析:C【分析】利用一元二次方程的平均增长率列方程求解即可.【详解】解:设平均增长率为x ,根据题意,得102(1)x +=14.4,解得x=0.2或x=-2.2(舍去),所以x=0.2即平均增长率为20%,故选C.【点睛】本题考查了一元二次方程的平均增长率问题,熟练掌握解题模型是解题的关键.7.A解析:A【分析】2018年投入教育经费⨯(1+增长率)2=2020年投入教育经费,据此列方程即可.【详解】解:2018年至2020年该市投入教育经费的年平均增长率为x ,2018年投入教育经费2000万元,∴2019年投入教育经费为2000(1)x +,2020年投入教育经费为2000(1)480x ++, 由题意得,22000(1)2000(1)480x x +=++,故选A .【点睛】本题考查了一元二次方程的应用,解题的关键时读懂题意,设出未知数,找出合适的等量关系列出方程. 8.B解析:B【分析】根据方程有实数根得到.【详解】由题意得:0∆≥,即244(2)0a -⨯⨯-≥,且0a ≠,解得2a ≥-且0a ≠,故选:B .【点睛】此题考查根据一元二次方程根的情况求参数,掌握一元二次方程根的判别式与根的个数的三种情况是解题的关键. 9.A解析:A【分析】先把方程变形为x 2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可.【详解】解:x 2-4x=-2,x 2-4x+4=2,(x-2)2=2.故选:A .【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.10.A解析:A【分析】先依据一元二次方程的定义得到a 式的取值范围.【详解】解:∵a 是方程2210x x --=的一个根,∴2210a a --=,即221a a -=,∴原式=22(2)2a a -=+∵459, ∴23<<, ∴425<+<,即224a a -+的值在4和5之间,故选:A .【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.11.C解析:C【分析】根据方程根的定义,回代原方程中,解关于a 的方程求解即可.【详解】∵x 的方程2210ax ax -+=的一个根是1-,∴2(-1)2(-1)10a a ⨯-⨯⨯+=,解得 a=13-,故选C.【点睛】本题考查了一元二次方程的根,熟记根的定义是解题关键. 12.D解析:D【分析】分两种情况:k =0时,是一元一次方程,有实数根;k 不等于0时,是一元二次方程,若有实数根,则根的判别式△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.【详解】解:0k =时,是一元一次方程,有实数根;k 不等于0时,是一元二次方程,根据题意,△0,∴△224(6)490b ac k =-=--⨯,解得1k ,故选:D .【点睛】本题考查了一元二次方程的定义及根与判别式的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题13.【分析】根据a 与b 为方程的两根把x =a 代入方程并利用根与系数的关系求出所求即可【详解】解:∵ab 为一元二次方程的两根∴即a+b =2020则原式=(a2-2020a )﹣(a+b )=2021﹣2020=解析:1【分析】根据a 与b 为方程的两根,把x =a 代入方程,并利用根与系数的关系求出所求即可.【详解】解:∵a ,b 为一元二次方程2202020210x x --=的两根,∴2202020210a a --=,即220202021a a -=,a +b =2020,则原式=(a 2-2020a )﹣(a +b )=2021﹣2020=1.故答案为:1.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.14.且【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4+4m >0且m≠0求出m 的取值范围即可【详解】解:∵方程mx2−2x -1=0有两个不相等的实数根∴△>0且m≠0∴4+4m >0且m≠0∴解析:1m >-且0m ≠【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4+4m >0且m≠0,求出m 的取值范围即可.【详解】解:∵方程mx 2−2x-1=0有两个不相等的实数根,∴△>0且m≠0,∴4+4m >0且m≠0,∴m>-1,且m≠0,故答案为:m>-1且m≠0.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式△=b 2−4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.<a<0【分析】先利用方程的求根公式表示出方程的两个根再利用有一个小于1的正数根这一条件确定a 的取值范围【详解】解:根据方程的求根公式可得:x==解得x1=1x2=2a+1∵x1=1∴小于1的正数根 解析:12-< a<0 【分析】先利用方程的求根公式表示出方程的两个根,再利用“有一个小于1的正数根”这一条件确定a 的取值范围.【详解】解:根据方程的求根公式可得: x=2214(1)4(21)a a a +±+-+()=()2+22+12a a a a ±=±, 解得x 1=1,x 2=2a+1∵x 1=1,∴小于1的正数根只能为2a+1,即0<2a+1<1,解得12-< a<0. 故答案为:12-< a<0. 【点睛】本题考查一元二次方程的根的分布与系数的关系,求解问题的关键是正确理解有且仅有一个小于1的正数根,将能将其转化为函数在(0,1)内仅有一个0点.16.或【分析】分两种情况讨论利用等边三角形的性质和勾股定理可求解【详解】解:当点D 在AC 的左侧时设AB 与CD 交于点E ∵△ACD 是等边三角形∴AC=AD=CD=4∠DAC=60°又∵∠BAC=30°∴∠D解析:232-或423-【分析】分两种情况讨论,利用等边三角形的性质和勾股定理可求解.【详解】解:当点D 在AC 的左侧时,设AB 与CD 交于点E ,∵△ACD 是等边三角形,∴AC=AD=CD=4,∠DAC=60°,又∵∠BAC=30°,∴∠DAE=∠BAC=30°,∴AB ⊥CD ,∵∠BAC=30°,∴CE=12AC=2,AE=22224223AC EC -=-=, ∴BE=AB-AE=423-;当点D 在AC 的右侧时,过点B 作BE ⊥CD ,交DC 的延长线于点E ,连接BD ,∵△ACD 是等边三角形,∴AC=AD=CD=AB=4,∠DAC=60°,∴∠BAD=90°,∴22161642AB AD =+=+∵AB=AC ,∠BAC=30°,∴∠ACB=75°, ∴∠BCE=180°-∠ACD-∠ACB=45°, ∵BE ⊥CE ,∴∠BCE=∠CBE=45°,∴BE=CE ,∵BD 2=BE 2+DE 2,∴32=BE 2+(CE+4)2,∴BE=232-,综上所述:点B 到CD 的距离为32或423-.故答案为:32-或423-【点睛】本题考查了勾股定理,等边三角形的性质,利用分类讨论思想解决问题是本题的关键. 17.【分析】利用一元二次方程的根与系数的关系定理中的两根之积计算即可【详解】设方程的另一个根为x ∵是方程的一个根∴根据根与系数关系定理得2x=-2解得x=-1故答案为:x=-1【点睛】本题考查了已知一元解析:1x =-.【分析】利用一元二次方程的根与系数的关系定理中的两根之积,计算即可.【详解】设方程220x bx +-=的另一个根为x ,∵2x =是方程220x bx +-=的一个根,∴根据根与系数关系定理,得 2x=-2,解得x=-1,故答案为:x=-1.【点睛】本题考查了已知一元二次方程的一个根求另一个根,熟练运用一元二次方程根与系数的关系定理,选择合适的计算方式是解题的关键.18.【分析】先解方程0然后把已知的多项式写成的形式即可【详解】解:解方程0得∴故答案为:【点睛】本题考查了利用解一元二次方程分解因式掌握解答的方法是解题的关键解析:3322x x ⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【分析】先解方程231x x -+=0,然后把已知的多项式写成()()12a x x x x --的形式即可.【详解】解:解方程231x x -+=0,得123322x x ==,∴2333122x x x x ⎛-+=-- ⎝⎭⎝⎭.故答案为:3322x x ⎛⎫⎛-- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.19.2【分析】设小道进出口的宽度为x 米然后利用其种植花草的面积为864m2列出方程求解即可【详解】解:设小道进出口的宽度为x 米依题意得(402x )(26x )=864整理得x246x+88=0解得x1=2解析:2【分析】设小道进出口的宽度为x 米,然后利用其种植花草的面积为864m 2列出方程求解即可.【详解】解:设小道进出口的宽度为x 米,依题意得(40-2x )(26-x )=864,整理,得x 2-46x+88=0.解得,x 1=2,x 2=44.∵44>40(不合题意,舍去),∴x=2.答:小道进出口的宽度应为2米.故答案为:2.【点睛】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为864m2找到正确的等量关系并列出方程.20.13【分析】由折叠的性质可得CD=PDAD=DRBC=BQ由勾股定理可得(CD+7+CD4)2=(CD+7)2+CD2可求CD=5由勾股定理可求解【详解】解:∵四边形ABCD是矩形∴AD=BC∠C=解析:13【分析】由折叠的性质可得CD=PD,AD=DR,BC=BQ,由勾股定理可得(CD+7+CD-4)2=(CD+7)2+CD2,可求CD=5,由勾股定理可求解.【详解】解:∵四边形ABCD是矩形,∴AD=BC,∠C=90°,由折叠的性质可得:CD=PD,AD=DR,BC=BQ,∵PQ=4,PR=7,∴PQ=BQ-(BD-PD)=BC-BD+CD=4,PR=AD-PD=BC-CD=7,∴BD=BC+CD-4,BC=CD+7,∵BD2=BC2+CD2,∴(CD+7+CD-4)2=(CD+7)2+CD2,∴CD1=5,CD2=-4(舍去),∴BC=12,∴13=,故答案为:13.【点睛】本题考查了翻折变换,矩形的性质,利用勾股定理列出方程是本题的关键.三、解答题21.(1) x1=x2=2;(2) x1,x2.【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410-+=,x x∵x2﹣4x=﹣1,∴x2﹣4x+4=﹣1+4,即(x﹣2)2=3,则x﹣2=∴x1=x2=2(2)210 4x--=,∵a=1,b,c=﹣14,∴△2﹣4×1×(﹣14)=3>0,则x=2,即x1=2,x2.【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程.22.(1)x1=0,x2=﹣13;(2)x1=2,x2=﹣1【分析】(1)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)3x2+x=0,x(3x+1)=0,x=0或3x+1=0,x1=0,x2=﹣13;(2)x2﹣x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,x1=2,x2=﹣1.【点睛】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键;23.(1)1a=-,另一根是2-;(2)见详解.【分析】(1)将方程的根代入可求得a的值,再根据根与系数的关系可求得另一个根;(2)用a表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论.【详解】解:将x=3代入方程x2+ax+a-5=0可得:9+3a+a -5=0,解得:a=-1;∴方程为260x x --=,设另一根为x ,则3×x=-6,解得x=-2,即方程的另一根为-2;(2)证明:∵△=22241(5)420(2)160a a a a a -⨯⨯-=-+=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.【点睛】本题主要考查一元二次方程根的判别式,掌握一元二次方程根的判别式与根的个数的关系是解题的关键,即①△<0⇔一元二次方程无实数根,②△=0⇔一元二次方程有两个相等的实数根,③△>0⇔一元二次方程有两个相等的实数根.24.0m =,121x x ==.【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可;【详解】解:∵方程有实数根,∴()()224210m =-+-≥△. 解得:0m ≥.又∵ m 为非正整数,∴ 0m =.当0m =时,方程为2210x x -+=.此时方程的解为121x x ==.【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;25.(1)11x =-,212x =;(2)194x =,294x -=. 【分析】(1)根据解一元二次方程的方法计算即可;(2)根据解一元二次方程的方法计算即可.【详解】解:(1)22(1)3(1)x x +=+ 22(1)3(1)0x x =-++(x+1)[2(x+1)-3]=0(x+1) [2x+2-3]=0(x+1) (2x-1)=0∴x+1=0或2x-1=0解得:11x =-,212x =; (2)22980x x -+=a=2,b=-9,c=8Δ=24b ac -=81-4×2×8=17>0==∴1x =294x -= 【点睛】本题主要考察了解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,选择适当的方法求解.26.(1)243y x x =-+;()2,1-;(2)P ()2、()2、()2,1-;(3)存在,E ()2,5,()2,1-,3172,2、3172,2.【分析】 (1)根据题意,设二次函数的一般式解析式,再代入1,0A 、()3,0B 、()0,3C ,转化为解三元一次方程组即可解得一般式解析式,再利用配方法将一般式解析式化为顶点式解析式即可;(2)先解得2AB =,再结合三角形面积公式及绝对值的几何意义解题即可(3)当BCE ∆是直角三角形时,分三种情况讨论:BC BE ⊥或BC CE ⊥或BE CE ⊥,分别结合勾股定理解题即可.【详解】解:(1)设二次函数的表达式为2y ax bx c =++将1,0A 、()3,0B 、()0,3C 分别代入得09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得:143a b c =⎧⎪=-⎨⎪=⎩∴二次函数表达式为243y x x =-+()224321y x x x ∴=-+=--∴顶点坐标为()2,1-;(2)312AB =-=12p ABP AB y S ∆⋅==1p y ∴= 1p y ∴=±当1p y =时,2431x x -+=解得12x =,22x =当1p y =-时,2431x x -+=-解得122x x ==,∴点p 的坐标为()2-、()2+、()2,1-;(3)存在,符合条件的点E 共有4个,坐标分别为()2,5,()2,1-,3172,2、3172,2,理由如下:抛物线的对称轴为2x =,设(2,)E t 得,2223+3=18BC =2222=(23)=1+BE t t -+22222(3)613CE t t t =+-=-+ 当BC BE ⊥时,222+BC BE CE =22181613t t t ∴++=-+1t ∴=-(2,1)E ∴-; 当BC CE ⊥时,222+BC CE BE =22186131t t t ∴+-+=+5t ∴= (2,5)E ∴; 当BE CE ⊥时,222+BE CE BC =22161318t t t ∴++-+=2320t t ∴--=1,3,2a b c ==-=-224(3)41(2)17b ac ∴∆=-=--⨯⨯-=1222b b t t a a -+--∴==== 此时3172,2E 或3172,2,综上所述,符合条件的点E 共有4个,坐标分别为()2,5,()2,1-,3172,2、3172,2.【点睛】本题考查待定系数法解二次函数的解析式、化二次函数的一般式解析式为顶点式解析式、直角三角形的判定与性质、勾股定理、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
人教版九年级数学上册第《一元二次方程》《二次函数》测试题(含答案)
人教版九年级数学上册《一元二次方程》《二次函数》测试题(含答案)满分120分 考试时间120分钟一、选择题(每题3分,共30分)1.一元二次方程(2)(1)0x x +-=的根为( )A .2x =-B .1x =C .12x =-,21x =D .12x =,21x =-2.若方程有两个不相等的实数根,则m 的取值范围( )A .m≥49B .m≤49C .m <49D .m >49 3.把方程08482=--x x 化成()n m x =+2的形式得( )A .100)4x (2=-B .100)16x (2=-C .84)4x (2=- D .84)16x (2=-4.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A .都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 C .都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点5.若2=x 是关于x 的一元二次方程082=+-mx x 的一个解.则m 的值是( )A .6B .5C .2D .﹣66.如图,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644 m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为( ) A .100×80-100x -80x =7644 B .(100-x )(80-x )+x 2=7644 C .(100-x )(80-x )=7644 D .100x +80x =3567.对于抛物线()1322++=x y ,下列说法错误的是 ( )A .开口向上B .对称轴是x=-3C .当x >-3时,y 随x 的增大而减小D .当x=-3时,函数值有最小值是18.若点()11A y ,,()222B y ,,()34C y ,在抛物线26y x x c =-+上,则123y y y ,,的大小关系是( ) A .213y y y << B .123y y y << C .312y y y << D .231y y y <<9.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )10.如下图,在▱ABCD 中,AE ⊥BC 于E ,AE=EB=EC=a ,且a 是一元二次方程0322=-+x x 的根,则▱ABCD 的周长为( )x yOA xy OBxy OCxy ODA .224+B .2612+C .222+D .222+或2612+二、填空(每题3分,共24分)11.已知,则________.12.若y =(m +1)265mm x --是二次函数,则m = ,13.对称轴平行于y 轴的抛物线与,与x 轴交于(1,0),(3,0)两点,則它的对称轴为 。
九年级数学上册第二章一元二次方程一元二次方程测试试题
一元二次方程制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题1.以下方程中,关于x 的一元二次方程是〔 〕A .3〔x+1〕2=2〔x+1〕B .C . ax 2+bx+c=0D . x 2+2x=x 2﹣1 2.以下一元二次方程中无实数解的方程是A .x 2+2x+1=0B .x 2+1=0C .x 2=2x ﹣1D .x 2﹣4x ﹣5=03.关于x 的一元二次方程()2k 1x 2x 10--+=有两个不相等的实数根,那么k 的取值范围是A .k <﹣2B .k <2C .k >2D .k <2且k ≠14.关于x 的一元二次方程a 2x -〔2a+3〕x+a+1=0有实数根,那么实数a 的取值范围是〔 〕. A. a>89- B .a ≥-98 C .a ≥-98且a ≠0 D .a>89-且a ≠0 5.根据下表的对应值 xax 2+bx+c判断方程ax 2+bx+c=0〔a ≠0〕的一个解x 的范围是〔 〕A. 3<x <3.23B. 3.6.假如a 是一元二次方程032=+-m x x 的一个根,-a 是方程032=-+m x x 的一个根,那么a 的值是〔 〕A. 0B. 3C. 0或者3D. 无法确定7.以下命题:①假设a+b+c=0,那么b 2-4ac <0;②假设b=2a+3c ,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根;③假设b 2-4ac >0,那么二次函数y=ax 2+bc+c 的图象与坐标轴的公一共点的个数是2或者3; ④假设b >a+c ,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.其中正确的选项是A .②④B .①③C .②③D .③④8.假设,a b 是方程0201322=-+x x 的两根,那么23a a b ++=〔〕A .2021B .2021C .2021D .20219.假设实数a ,b 满足21202a ab b -++=,那么a 的取值范围是 〔 〕. 〔A 〕a ≤2- 〔B 〕a ≥4 〔C 〕a ≤2-或者 a ≥4 〔D 〕2-≤a ≤410.目前我国已建立了比拟完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案
北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案一、单项选择题1.若x=-1是方程x2+x+m=0的一个根,则此方程的另一个根是( ) A.-1 B.0 C.1 D.22.一元二次方程(x+1)(x-1)=2x+3的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.已知一元二次方程x2-10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为( )A.6 B.10 C.12 D.244.若x=-2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是( )A.0,-2 B.0,0 C.-2,-2 D.-2,05.若m,n是一元二次方程x2+3x-9=0的两个根,则m2+4m+n的值是( ) A.4 B.5 C.6 D.126.若关于x的一元二次方程x2+2(m-1)x+m2-m=0的两个实数根α,β满足α2+β2=12,则m的值为( )A. 0 B.1 C.-1 D.-27.根据下列表格中列出来的数值,可判断方程x2-bx-c=0有一个根大约是( )x 0 0.5 1 1.5 2x2-bx-c -15 -8.75 -2 5.25 13A .0.25B .0.75C .1.25D .1.758.若关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,则a 的取值范围是( )A .a ≠0B .a >-1且a ≠0C .a ≥-1且a ≠0D .a >-1 9.一个大正方形的边长是小正方形边长的3倍多1,若两个正方形的面积和为53,则大正方形的边长为( ) A .7 B .8 C .9 D .1010.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .3(x -1)x =6210B .3(x -1)=6210C .(3x -1)x =6210D .3x =3210二、填空题11.若x =1是方程x 2-2x +a =0的根,则a =______.12.已知m 是一元二次方程x 2+x -6=0的一个根,则代数式m 2+m 的值等于______.13.若一元二次方程x 2-(m 2-7)x +m =0两根之和为2,则m =__________. 14.若α,β是关于x 的一元二次方程(m -1)x 2-x +1=0的两个实根,且满足(α+1)(β+1)=m +1,则m 的值为__________.15.设x 1与x 2为一元二次方程12x 2+3x +2=0的两根,则(x 1-x 2)2的值为 ______.16.关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且x12+x22=316,则m=______.17.一元二次方程x(x+1)=0的两根分别为__________________.18.若关于x的一元二次方程(m+1)x2+4x+m2+m=0有一个根为x=0,则m=____.19.用配方法解方程2x2-px+3=0时,方程可变形为2(x-32)2=q,则p=________,q=________.20.一个三角形的两边长分别为3和5,第三边长是方程x2-6x+8=0的根,则这个三角形的周长为________.21.一个两位数等于它十位上的数与个位上的数的积的3倍,已知十位上的数比个位上的数小2,则这个两位数是________.三、解答题22.用适当的方法解下列方程:(1)x2-4x+1=0;(2)3x(x-2)=6(2-x);(3)x2-6x+9=(5-2x)2;(4)12 x 2+3 x =x 2+5.23.关于x 的一元二次方程x 2-3x +k =0有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.24.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m ,宽(AB)9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112m 2,则小路的宽应为多少?25.夏季高温期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x. (1)求x 的值;(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么? 参考答案一、1-10 BACBC CCBAA 二、11.1 12.6 13.-3 14.-1 15.20 16.-8117.x 1=0,x 2=-1 18.0 19.6 3220.12 21.24三、22.解:(1) x 1=2+ 3 ,x 2=2- 3 (2) x 1=2,x 2=-2(3) x 1=2,x 2=83(4) 无解23.解:(1)根据题意得Δ=(-3)2-4k ≥0,解得k ≤94(2)k 的最大整数为2,方程x 2-3x +k =0可变形为x 2-3x +2=0,解得x 1=1,x 2=2,∵一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,∴当相同的根为x =1时,m -1+1+m -3=0,解得m =32;当相同的根为x =2时,4(m -1)+2+m -3=0,解得m =1,由题意可知m -1≠0, 即m ≠1,∴m 的值为3224.解:设小路的宽应为xm ,根据题意,得(16-2x)(9-x)=112, 解得x 1=1,x 2=16.∵16>9,∴x =16不符合题意,应舍去,∴x =1. 答:小路的宽应为1m25.解:(1)依题意,得50(1+x)2=72,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:x 的值为20%(2)72×(1+20%)=86.4(万人),86.4>85,∴五月份注册用户能达到85万人。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷带答案
北师大版九年级数学上册《第二章一元二次方程》单元测试卷带答案一、单选题1.聚会结束时,统计出一共握手55次,如果参加聚会的每个人都和其他的人握手1次,那么有( )人参加了聚会.A .10B .11C .12D .132.若关于x 的方程mx 2﹣mx+2=0有两个相等的实数根,则m 的值为( ) A .0 B .8 C .4或8 D .0或83.方程2850y y -+=的左边配成完全平方式后所得的方程为( )A .2 (4)11y -=B .2 (4)21y -=C .2 (6)11y -=D .以上都不对4.小李解方程2320x x -+=的步骤如图所示,则下列说法正确的是( ) 解方程:2320x x -+=.解:2220x x x --+=,①222x x x -=-,①()22x x x -=-,①1x =.A .小李解方程的过程正确B .2x =也是该方程的一个解C .小李解方程的方法是配方法D .解方程的过程是从第①步到第①步时出现错误5.如果一元二次方程2320x -=的两个根是1x 和2x ,那么12x x ⋅等于( )A .2B .0C .23D .23- 6.若x ,y 都是负数,且222300x xy y x y ++++-=,则x y +的值是( )A .3-B .4-C .5D .6-7.下列关于x 的方程说法正确的是( )A .2x x =-没有实数根;B .210x +=有实数根;C .24210x x -+=有两个相等的实数根;D .220x mx --=(其中m 是实数)一定有实数根.8.关于x 的一元二次方程()22395m x m x x -+=+化为一般形式后不含一次项,则m 的值为( )A .0B .±3C .3D .-39.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .500(1+x )2=740B .500(1+2x )=740C .500(1+x )=740D .500(1﹣x )2=74010.关于x 的一元二次方程()24410a x x --+=有两个实数根,且关于x 的分式方程4433x a x x++=--有正整数解,则满足条件的所有整数a 的和为( ) A .18 B .1 C .13 D .17二、填空题11.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 .12.方程(x+1)22(x+1)=0,那么方程的根x 1= ;x 2= .13.已知关于x 的方程()2220x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 .14.已知一元二次方程ax 2+x ﹣b=0的一根为1,则a ﹣b 的值是 .15.已知一元二次方程2210x x --=的两个根分别是12x x 、,则2112x x x -+= .16.若3-是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .17.已知一元二次方程()200++=≠ax bx c a ,用配方法解该方程,则配方后的方程是(x+ )2= .18.方程22310x x -+=的根的判别式的值是 .三、解答题19.已知关于x的一元二次方程2230x mx x m--+-=(m为常数).(1)若方程的一个根为1,求m的值及方程的另一个根;(2)求证:不论m为何值时,方程总有两个不相等的实数根.20.今天数学作业是解一元二次方程,下面是张山同学的解答过程配方法解方程28120x x++=解:2812x x+=-28161216x x++=-+2(4)4x+=42x+=±42x+=或42x+=-13x∴=-26x=-你认为张山同学的方法好就用她的方法解下列方程,不好就用自己方法解方程:2670x x--=21.如图,要使用长为27米的篱笆一面利用墙(墙的最大可用长度为12米,靠墙的一面不用篱笆),围成中间隔有一道篱笆的长方形花在圃(中间的篱笆将长方形ABCD分成两个小长方形).如果要围成面积为54平方米的长方形花圃ABCD,那么AD的长为多少米?22.学校课外生物小组的试验田是一块长14米,宽12米的矩形,为了便于管理,先要在中间修建同样宽的两条互相垂直的道路(如图),要使种植面积为143平方米,道路的宽应为多少米?23.解下列方程:(1)23180-++=x x ;(2)20.1 1.20.4-=x x .24.如图,点E ,F 分别在平行四边形ABCD 的边BC ,AD 上,且BE DF =,AD=10,CD=8,动点P 从点A 出发沿着线段AE 向终点E 运动,同时点Q 从点C 出发沿着折线段C F A --向终点A 运动,且它们同时到达终点,设Q 点运动的路程为x ,PE 的长度为y ,且8y kx =+(k 为常数,0k ≠).(1)求证:四边形AECF 是平行四边形.(2)求AE 的长.(3)当45k =-时 ①求AF 的值;①连结PQ ,QE ,当PQE 为直角三角形时,求所有满足条件的x 的值.参考答案:1.B2.B3.A4.B5.D6.D7.D8.D9.A10.D11.20%12. -1 213.138- 14.-115.316.717. 2b a 2244b ac a - 18.419.(1)3m =,另一个根为3(2)略20.17x = 21x =-; 21.AD 的长应为6米 22.1米23.(1)16x = 23x =- (2)16x = 22x =- 24.(1)11;(2)8;(3)①2;①212113533+-,。
九年级数学上学期第二章《一元二次方程》综合测试题(含答案)
九年级数学上学期第二章《一元二次方程》综合测试题(含答案)一、选择题(本大题共8小题,每小题3分,共24分)1.下列属于一元二次方程的是()-1=x2 D.x2-4=(x+2)2A.3x+2=5x-3B.x2=4C.x-2x+12.解方程3(2x-1)2=4(2x-1)最适当的方法是()A.直接开平方法B.配方法C.因式分解法D.公式法3.下列一元二次方程有两个相等实数根的是()A.x2-2x+1=0B.2x2-x+1=0C.4x2-2x-3=0D.x2-6x=04.若关于x的一元二次方程x2-x-m=0的一个根是x=1,则m的值是()A.1B.0C.-1D.25.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=8C.x-6=4D.x+6=-46.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图1所示).设这个苗圃垂直于墙的一边的长为x米.若苗圃的面积为72平方米,则x为()图1A.12B.10C.15D.87.已知等腰三角形的两边长分别是一元二次方程x2-6x+8=0的两根,则该等腰三角形的底边长为()A.2B.4C.8D.2或48.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2,则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1D.有两个相等的实数根二、填空题(本大题共8小题,每小题3分,共24分)9.一元二次方程(3x+1)(x-3)=2化为一般形式是.10.已知关于x的方程x2-mx+n=0的两个根是x1=0,x2=-3,则m= ,n= .11.当x= 时,代数式x2+4x与代数式2x+3的值相等.12.把一元二次方程x2-4x+3=0配方成(x+a)2=b(a,b为常数)的形式,则a+b= .13.关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,则m的取值范围是.14.若x2+x=1,则3x4+3x3+3x+1的值为.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x应满足的方程为 .16.规定:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15.若2⊗x=3,则x= .三、解答题(本大题共6小题,共52分)17.(12分)用适当的方法解下列方程:(1)3(x-1)2=27; (2)6x2-x-12=0;(3)(4-x)(20+3x)=100.18.(5分)已知关于x的一元二次方程x2+x+m2-2m=0有一个实数根为x=-1,求m的值及方程的另一个实数根.19.(7分)已知:关于x的一元二次方程x2+√m x-2=0有两个实数根.(1)求m的取值范围;(2)设方程的两实数根为x1,x2,且满足(x1-x2)2-17=0,求m的值.20.(8分)随着人民节能、环保意识的不断提高,我国电动汽车的年销售量逐年提高,某品牌电动汽车2018年的年销售量为30万辆,2020年的年销售量达到50.7万辆.如果每年比上一年销售量增长的百分率相同.(1)试求出该品牌电动汽车年销售量增长的百分率;(2)请你预测该品牌电动汽车2021年的年销售量能否突破100万辆大关.21.(10分)某地计划对矩形广场进行扩建改造.如图2,原矩形广场长50m,宽40m,要求扩建后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用为642000元,扩建后广场的长和宽应分别是多少米?图222.(10分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售价定为每个200元时,每天可售出300个;若销售价每个每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,则这种电子产品降价后的销售价为每个多少元时,公司每天可获利32000元?参考答案1.B2.C [解析] 先移项得到3(2x-1)2-4(2x-1)=0,然后利用因式分解法解方程.3.A [解析] 选项A 中,∵Δ=b 2-4ac=4-4=0,∴方程x 2-2x+1=0有两个相等的实数根;选项B 中,∵Δ=b 2-4ac=1-4×2=-7<0,∴方程2x 2-x+1=0无实数根;选项C 中,∵Δ=b 2-4ac=4+4×4×3=52>0,∴方程4x 2-2x-3=0有两个不相等的实数根;选项D 中,∵Δ=b 2-4ac=36>0,∴方程x 2-6x=0有两个不相等的实数根.故选A .4.B [解析] 把x=1代入x 2-x-m=0中,得1-1-m=0,解得m=0.故选B .5.D [解析] 开方得x+6=±4,∴另一个一元一次方程是x+6=-4.故选D .6.A [解析] 根据题意,得x (30-2x )=72,解得x 1=12,x 2=3.当x=12时,30-2x=6<18;当x=3时,30-2x=24>18(不合题意,舍去).故选A .7.A [解析]x 2-6x+8=0,(x-4)(x-2)=0,解得x 1=4,x 2=2.当等腰三角形的三边长为2,2,4时,不符合三角形三边关系定理,不能组成三角形;当等腰三角形的三边长为2,4,4时,符合三角形三边关系定理,能组成三角形,此时三角形的底边长为2.故选A .8.A [解析]∵小刚在解关于x 的方程ax 2+bx+c=0(a ≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得c=3,故原方程中c=5,则b 2-4ac=16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选A .9.3x 2-8x-5=010.-3 0 [解析] 根据题意,得{n =0,9+3m +n =0,解得{m =−3,n =0.11.-3或1 [解析] 由题意,得x 2+4x=2x+3,解得x 1=-3,x 2=1.12.-1 [解析]x 2-4x=-3,x 2-4x+4=1,(x-2)2=1,所以a=-2,b=1,所以a+b=-2+1=-1.13.m>0且m ≠1 [解析] 根据题意得m-1≠0且Δ=22-4(m-1)×(-1)>0,解得m>0且m ≠1. 14.4 [解析]∵x 2+x=1, ∴3x 4+3x 3+3x+1=3x 2(x 2+x )+3x+1=3x 2+3x+1=3(x 2+x )+1=3+1=4.故答案为4.15.x(x -1)2=1016.1或-3 [解析] 依题意得(2+x )x=3,整理,得x 2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是1或-3.17.(1)x 1=4,x 2=-2(2)x 1=32,x 2=-43 (3)方程无实数根18.解:把x=-1代入x 2+x+m 2-2m=0,得(-1)2+(-1)+m 2-2m=0,即m (m-2)=0,解得m 1=0,m 2=2.经检验,m 的两个值均符合题意.设方程的另一个实数根为x 2,则 -1+x 2=-1,解得x 2=0.综上所述,m 的值是0或2,方程的另一个实数根是x=0.19.解:(1)∵关于x 的一元二次方程x 2+√m x-2=0有两个实数根, ∴Δ=(√m )2-4×1×(-2)=m+8≥0,且m ≥0,∴m ≥0.(2)∵关于x 的一元二次方程x 2+√m x-2=0有两个实数根x 1,x 2, ∴x 1+x 2=-√m ,x 1·x 2=-2,∴(x 1-x 2)2-17=(x 1+x 2)2-4x 1·x 2-17=0,即m+8-17=0,解得m=9.20.解:(1)设该品牌汽车年销售量增长的百分率为x.根据题意,得30(1+x )2=50.7.解得x 1=-2.3(不合题意,舍去),x 2=0.3=30%.答:该品牌电动汽车年销售量增长的百分率为30%.(2)由(1)得该品牌汽车年销售量增长的百分率为30%,所以该品牌电动汽车2021年的年销售量为50.7×(1+30%)=65.91(万辆)<100万辆.所以该品牌电动汽车2021年的年销售量不能突破100万辆大关.21.解:设扩建后广场的长为3x m,宽为2x m.依题意得3x·2x·100+30(3x·2x-50×40)=642000,解得x1=30,x2=-30(舍去).所以3x=90,2x=60.答:扩建后广场的长为90m,宽为60m.22.解:设这种电子产品降价后的销售价为每个x元,则降价后每天可售出[300+5(200-x)]个.依题意,得(x-100)[300+5(200-x)]=32000,整理,得x2-360x+32400=0,解得x1=x2=180.因为180<200,所以符合题意.答:这种电子产品降价后的销售价为每个180元时,公司每天可获利32000元.。
第2章《一元二次方程 》北师大版九年级数学上册单元测试卷(含答案)
第二章《一元二次方程》单元测试卷一、单选题(每题3分)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2++5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0,是一元二次方程个数是()A.1B.2C.3D.42.已知一元二次方程,若方程有解,则必须()A.n=0B.n=0或mn同号C.n是m的整数倍D.mn异号3.方程的解是()A.B.C.D.4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.解方程:①;②;③;④.较简便的解法是()A.依次用直接开平方法、配方法、公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C.依次用因式分解法、公式法、配方法和因式分解法D.①用直接开平方法,②③用公式法,④用因式分解法6.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染的人数为()A.人B.人C.人D.人7.现要在一个长为,宽为的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为,那么小道的宽度应是()A.1B.2C.2.5D.38.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )A.x2﹣3x+6=0B.x2﹣3x﹣6=0C.x2+3x﹣6=0D.x2+3x+6=09.若关于x的一元二次方程的一个根大于1,另一个根小于1,则a的值可能为()A.B.C.2D.410.将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则的值为()A.3B.4C.5D.6二、填空题(每题3分)11.方程(m﹣1)x|m|+1﹣4x+3=0是一元二次方程,则m满足的条件是:_____,此方程的二次项系数为:_____,一次项系数为:_____,常数项为:_____.12.若一元二次方程的一个根为0,则___________.13.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是____________.14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.15.已知方程的两个实数根分别为、,则__.16.已知实数,满足,则的值为________.17.已知关于x的方程a(x+m)2+b=0(a,b,m均为常数,且a≠0)的两个解是x1=3,x2=7,则方程的解是________.18.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.三、解答题19.解方程(8分)(1);(2);(3)(配方法);(4).20.用适当的方法解一元二次方程(8分)(1);(2);(3);(4).21.已知关于的方程.(6分)(1)当为何值时,方程只有一个实数根?(2)当为何值时,方程有两个相等的实数根?(3)当为何值时,方程有两个不相等的实数根?22.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(6分)(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.23.如图,在足够大的空地上有一段长为的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中.已知矩形菜园的一边靠墙,修筑另三边一共用了木栏.若所围成的矩形菜园的面积为,求的长.(6分)24.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?(6分)25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:(6分)(1)当时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?26.已知关于x的一元二次方程.(6分)(1)求证:这个方程的一根大于2,一根小于2;(2)若对于时,相应得到的一元二次方程的两根分别为和和和,…,和和,试求的值.27.阅读理解:(7分)材料1:对于一个关于x的二次三项式(),除了可以利用配方法求该多项式的取值范围外,还可以用其他的方法:比如先令(),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求的取值范围:解:令,,即;材料2:在学习完一元二次方程的解法后,爱思考的小明同学又想到类比一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程()有两个不相等的实数根、(),则关于x的一元二次不等式()的解集为:或,则关于x的一元二次不等式()的解集为:;请根据上述材料,解答下列问题:(1)若关于x的二次三项式(a为常数)的最小值为-6,则_____.(2)求出代数式的取值范围.类比应用:(3)猜想:若中,,斜边(a为常数,),则_____时,最大,请证明你的猜想.28.(7分)阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:,这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:1.知识运用:试用“分组分解法”分解因式:;2.解决问题:(1)已知a,b,c为△ABC的三边,且,试判断△ABC的形状.(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且,同时成立.①当k=1时,求a+c的值②当k≠0时,用含有a的代数式分别表示b,c,d(直接写出答案即可)答案一、单选题A.B.B.C.D.B.B.B.B.D.二、填空题11.m=﹣1;﹣2,﹣4,3.12.113.且.14.300(1+x)2=363.15.-5.16.2.17.或.18.x=2或x=﹣1+或x=﹣1﹣.三、解答题19.(1)解:或,;(2)解:或,;(3)解:,;(4)解:①当时,,解得:;②当时,,若,即,;若,即,方程无解.20.(1)原方程可化为,∴,用直接开平方法,得方程的根为,.(2)原方程可化为x2+2ax+a2=4x2+2ax+,∴x2=.用直接开平方法,得原方程的根为,.(3)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0,∴,.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0,,.21.(1)∵方程只有一个实数根,,解得(2)∵方程有两个相等的实数根,,,解得(3)∵方程有两个不相等的实数根,且,且,解得且.22.(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴x12+x22=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=323.解:设的长为,则的长为.依题意,得,解得,.当时,(不符合题意,舍去).当时,.∴的长为.24.设销售单价降低x元,则销售单价为元,每天的销售量是件,由题意得:,整理得:,解得或,因为要求销售单价不得低于成本,所以,解得,因此和均符合题意,则或70,答:销售单价为90元或70元时,每天的销售利润可达4000元.25.(1)由题意可知当时,每台学习机的售价为.(2)设题图中直线的解析式为.把和代入得解得故直线解析式为.当时,进价为(元),售价为(元),则每台学习机可以获利(元).(3)当时,每台学习机的利润是,则.解得(舍去).当时,每台学习机的利润是,则,解得(舍去).答:该商店可能购进并销售学习机80台或30台.26.解:(1)证明:设方程的两根是,,则,,,,,即这个方程的一根大于2,一根小于2;(2),对于,2,3,,2019,2020时,相应得到的一元二次方程的两根分别为和,和,和,,和,和,.27.解:(1)设,∴,∴,即,根据题意可知,∴,解得:或;(2)设,可化为,即,∴,即,令,解得,,∴或;(3)猜想:当时,最大.理由:设,,则,在中,斜边(a为常数,),∴,∴,∴,即,∴,即,∵,,∴,当时,有,∴,即当时,最大.28.解:(1)将写成,等式左边因式分解,得,证明,是等腰三角形;(2)①由得到和,推出,就可以算出a和c的值,再算;②同①可得,根据,利用因式分解得到,同理由,得,从而可以用a表示出b、c、d.解:知识运用原式;解决问题(1),∵,∴,即,∴是等腰三角形;(2)①当时,,即,,即,若则,把它代入,得,解得,当时,,则,当时,,则,综上:的值为6或;②当,∵,∴,∵,∴,同理由,得,由,,若,则,,,则此时k就等于0了,矛盾,不合题意,若,则,,,综上:,,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第二章一元二次方程测试题(湘教版)
(制卷人:周俊文) 班级_____________ 姓名______________
一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):
1.下列方程中不一定是一元二次方程的是( )
A.(a-3)x 2=8 (a ≠3)
B.ax 2+bx+c=0
C.(x+3)(x-2)=x+5
D.2332057
x x +-=
2.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝
⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 3.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )
A 、1
B 、1-
C 、1或1-
D 、12
4.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )
A.11
B.17
C.17或19
D.19
5.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )
A 、3
B 、3
C 、6
D 、9
6.使分式2561
x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-6
7.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74
且k ≠0 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000
B.200+200×2x=1000
C.200+200×3x=1000
D.200[1+(1+x)+(1+x)2]=1000
二、填空题:(每小题3分,共24分)
9、方程X 2-3X=0的根为________
10.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.
11.关于x 的一元二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .
12、将方程3x 2=5x+2化为一元二次方程的一般形式为____________.
13、方程x 2+2x-3=0的解是______.
14、方程()412
=-x 的解为 15、已知方程230x x k -+=有两个相等的实根,则k =
16、关于x 的方程5)3(72=---x x m m ,当 m = 时,是一元二次方程;当m= 时,此方程是一元一次方程。
三、用适当方法解方程:(每小题5分,共10分)
17. 22(3)5x x -+= 18. 2x 2-3x+1=0
19. ()()2232-=-x x x 20. 0152
=+-x x (用配方法)
四、列方程解应用题:(每小题7分,共21分)
21、光华机械厂生产某种产品,1999年的产量为2000件,经过技术改造,2001
年的产量达到2420件,平均每年增长的百分率是多少?
22、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?
23、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?
五.解答题(本题9分)
24、已知关于x的方程4x2-(k+2)x+k-1=0有两个相等的实根,
(1)求k的值;(2)求此时方程的根;
25、已知关于x的方程22
+-++=两根的平方和比两根的积大21,
x m x m
2(2)40
求m的值。