2017年惠州市中考数学试题与答案

合集下载

2017年惠州市中考数学试题与答案

2017年惠州市中考数学试题与答案

2017年惠州市中考数学试题与答案2017年惠州市中考数学试题与答案本次考试共6页,满分为120分,考试时间为100分钟。

在答题卡上填写准考证号、姓名、考场号、座位号,使用黑色字迹的签字笔或钢笔。

选择题用2B铅笔涂黑对应题目选项的答案信息点,非选择题用黑色字迹钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动先划掉原来的答案再写上新的答案。

不准使用铅笔和涂改液。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)1.5的相反数是(。

)A。

-5.B.5.C.-11.D.112.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃。

据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过xxxxxxxx00美元。

将xxxxxxxx00用科学记数法表示为(。

)A.0.4×109B.0.4×1010C.4×109D.4×10103.已知A70,则A的补角为(。

)A.110B.70C.30D.204.如果2是方程x23x k的一个根,则常数k的值为(。

)A.1.B.2.C.-1.D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是(。

)A.95.B.90.C.85.D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是(。

)A.等边三角形B.平行四边形C.正五边形D.圆7.如下图,在同一平面直角坐标系中,直线y=kx(k1≠0)与双曲线y=k/2,则点B的坐标为(。

)(k2,k2)缺少图形,无法判断)本次考试共6页,满分为120分,考试时间为100分钟。

在答题卡上填写准考证号、姓名、考场号、座位号,使用黑色字迹的签字笔或钢笔。

选择题用2B铅笔涂黑对应题目选项的答案信息点,非选择题用黑色字迹钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动先划掉原来的答案再写上新的答案。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-2 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A.95 B.90 C.85 D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,题7图4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

(完整版)2017年广东省中考数学试题与参考答案

(完整版)2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。

2017年广东省中考数学试卷含答案-答案在前

2017年广东省中考数学试卷含答案-答案在前

广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D 。

【考点】相反数的概念 2.【答案】C【解析】94000000000410=⨯,故选:C 。

【考点】科学计数法 3.【答案】A【解析】∵70A ∠=︒,∴A ∠的补角为110︒,故选A 。

【考点】补角的概念 4.【答案】B【解析】∵2是一元二次方程230x x k -+=的一个根,∴22320k -⨯+=,解得,2k =,故选:B 。

【考点】一元二次方程的根 5.【答案】B【解析】数据90出现了两次,次数最多,所以这组数据的众数是90,故选B 。

【考点】众数的概念 6.【答案】D【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形,故选D 。

【考点】轴对称图形和中心对称图形的判定 7.【答案】A【解析】∵点A 与B 关于原点对称,∴B 点的坐标为(1,2)--,故选:A 。

【考点】一次函数和反比例函数的图像和性质 8.【答案】B【解析】A .23a a a +=,此选项错误;B .325a a a =,此选项正确;C .428()a a =,此选项错误; D .4a 与2a 不是同类项,不能合并,此选项错误;故选:B 。

【考点】整式的运算 9.【答案】C【解析】∵50CBE ∠=︒,∴180********ABC CBE ∠=︒-∠=︒-︒=︒。

∵四边形ABCD 为O 的内接四边形, ∴180********D ABC ∠=︒-∠=︒-︒=︒。

∵DA DC =,∴180652DDAC ︒-∠∠==︒,故选C 。

【考点】圆内接四边形的性质,等腰三角形的性质 10.【答案】C【解析】∵四边形ABCD 是正方形,∴AD CB ∥,AD BC AB ==,FAD FAB ∠=∠。

在AFD △和AFB △中,AF AF FAD FAB AD AB =⎧⎪∠=∠⎨⎪=⎩,∴AFD AFB △≌△,∴ABF ADF S S =△△,故①正确。

2017年广东省中考数学试卷-答案

2017年广东省中考数学试卷-答案

广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D 。

【考点】相反数的概念2.【答案】C【解析】94000000000410=⨯,故选:C 。

【考点】科学计数法3.【答案】A【解析】∵70A ∠=︒,∴A ∠的补角为110︒,故选A 。

【考点】补角的概念4.【答案】B【解析】∵2是一元二次方程230x x k -+=的一个根,∴22320k -⨯+=,解得,2k =,故选:B 。

【考点】一元二次方程的根5.【答案】B【解析】数据90出现了两次,次数最多,所以这组数据的众数是90,故选B 。

【考点】众数的概念6.【答案】D【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形,故选D 。

【考点】轴对称图形和中心对称图形的判定7.【答案】A【解析】∵点A 与B 关于原点对称,∴B 点的坐标为(1,2)--,故选:A 。

【考点】一次函数和反比例函数的图像和性质8.【答案】B【解析】A .23a a a +=,此选项错误;B .325a a a =,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选:B 。

【考点】整式的运算9.【答案】C【解析】∵50CBE ∠=︒,∴180********ABC CBE ∠=︒-∠=︒-︒=︒。

∵四边形ABCD 为O 的内接四边形,∴180********D ABC ∠=︒-∠=︒-︒=︒。

∵DA DC =,∴180652D DAC ︒-∠∠==︒,故选C 。

【考点】圆内接四边形的性质,等腰三角形的性质10.【答案】C【解析】∵四边形ABCD 是正方形,∴AD CB ∥,AD BC AB ==,FAD FAB ∠=∠。

在AFD △和AFB △中,AF AF FAD FAB AD AB =⎧⎪∠=∠⎨⎪=⎩,∴AFD AFB △≌△,∴ABF ADF S S =△△,故①正确。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )题7图A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中错误!未找到引用源。

2017年广东省中考数学试题(卷)(解析版)

2017年广东省中考数学试题(卷)(解析版)

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a= .12.一个n边形的内角和是720°,则n= .13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF =S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a= a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n= 6 .【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.(填“>”,13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b <0.“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A 在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m= 52 (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,==,∴点P横坐标xP∵点P在抛物线y=﹣x2+4x﹣3上,=﹣3=,∴yP∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EB C=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠AC B=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.。

2017年广东省中考数学试卷(含答案)

2017年广东省中考数学试卷(含答案)

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.(3分)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S 连接BF,下列结论:①S△ABF,其中正确的是()△CDFA.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD 为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•广东)5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2017•广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•广东)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A【点评】此题考查了余角与补角,熟练掌握补角的性质是解本题的关键.4.(3分)(2017•广东)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.(3分)(2017•广东)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.(3分)(2017•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.【点评】本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.7.(3分)(2017•广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B 的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.8.(3分)(2017•广东)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.9.(3分)(2017•广东)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)(2017•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF ;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④=S△ADF,故①正确,由BE=EC=BC=AD,【分析】由△AFD≌△AFB,即可推出S△ABFAD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•广东)分解因式:a2+a=a(a+1).【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.12.(4分)(2017•广东)一个n边形的内角和是720°,则n=6.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.(4分)(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.【点评】本题考查了实数与数轴,有理数的加法法则,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键.14.(4分)(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(4分)(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)(2017•广东)计算:|﹣7|﹣(1﹣π)0+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂的性质、绝对值等考点的运算.18.(6分)(2017•广东)先化简,再求值:(+)•(x2﹣4),其中x=.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.(6分)(2017•广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)(2017•广东)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.21.(7分)(2017•广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定,平行线的性质等知识,证明出AD是线段BF的垂直平分线是解题的关键.22.(7分)(2017•广东)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)(2017•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x 轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键.24.(9分)(2017•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.(9分)(2017•广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBE=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBE=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBE=∠DCO=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题.。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,总分值为120 分,考试历时为100分钟。

2.答卷前,考生务必用黑色笔迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必需用黑色笔迹钢笔或签字笔作答,答案必需写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原先的答案,然后再这写上新的答案;不准利用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必维持答题卡的整洁。

考试终止时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每题3分,共30分)在每题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”建议提出三年以来,广东企业到“一带一路”国家投资愈来愈活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.若是2是方程230x x k -+=的一个根,那么常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光青年,励志青春”的演讲竞赛中,五位评委给选手小明的评分别离为:90,85,90,80,95,那么这组的数据的众数是( ) A.95 B.90 C.85 D.806.以下所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 那么点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.以下运算正确的选项是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,以下结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的选项是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每题4分,共24分)请将以下各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们别离标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,那么整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .题7图三、解答题(一)(本大题共3题,每题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

2017年广东省中考数学试卷(含答案,word高清版)

2017年广东省中考数学试卷(含答案,word高清版)

2017年广东省中考数学试卷一、选择题(共10小题;共50分)1. 的相反数是B.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃。

据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用科学记数法表示为A. B. C. D.3. 已知,则的补角为A. B. C. D.4. 如果是方程的一个根,则常数的值为A. B.5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组的数据的众数是A. B. C. D.6. 下列所述图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 正五边形D. 圆7. 如图,在同一平面直角坐标系中,直线与双曲线相交于,两点,已知点的坐标为,则点的坐标为8. 下列运算正确的是A. B. C. D.9. 如图,四边形内接于,,,则的大小为A. B. C. D.10. 如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:①;②;③;④,其中正确的是A. ①③B. ②③C. ①④D. ②④二、填空题(共6小题;共30分)11. 分解因式:.12. 一个边形的内角和是,那么.13. 已知实数,在数轴上的对应点的位置如图所示,则(填“”,“”或“”).14. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,,,,.随机摸出一个小球,摸出的小球标号为偶数的概率是.15. 已知,则的值为.16. 如图,矩形纸片中,,,先按图操作,将矩形纸片沿过点的直线折叠,使点落在边上的点处,折痕为;再按图操作:沿过点的直线折叠,使点落在上的点处,折痕为,则,两点间的距离为.三、解答题(共9小题;共117分)17. .18. 先化简,再求值:,其中.19. 学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理本,女生每人整理本,共能整理本;若男生每人整理本,女生每人整理本,共能整理本,求男生、女生志愿者各有多少人?20. 如图,在中,.(1)作边的垂直平分线,与,分别相交于点,(用尺规作图,保留作图痕迹,不要求写作法);(2)在()的条件下,连接,若,求的度数.21. 如图所示,已知四边形,都是菱形,,为锐角.(1)求证:;(2)若,求的度数.22. 某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表(1)填空:①(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有名学生,请估算九年级体重低于千克的学生大约有多少人?23. 如图,在平面直角坐标系中,抛物线交轴于,两点,点是抛物线上在第一象限内的一点,直线与轴相交于点.(1)求抛物线的解析式;(2)当点是线段的中点时,求点的坐标;(3)在()的条件下,求的值.24. 如图,是的直径,,点为线段上一点(不与,重合),作,交于点,垂足为点,作直径,过点的切线交的延长线于点,作于点,连接.(1)求证:是的平分线;(2)求证:;(3)当时,求的长度(结果保留).25. 如图,,在平面直角坐标系中,为原点,四边形是矩形,点,的坐标分别是和,点是对角线上一动点(不与,重合),连接,作交轴于点,以线段,为邻边作矩形.(1)填空:点的坐标为;(2)是否存在这样的点,使得是等腰三角形?若存在,请求出的长度;若不存在,请说明理由;(3)①求证:;②设,矩形的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值.答案第一部分1. D2. C3. A4. B5. B6. D7. A8. B9. C10. C第二部分11.12.13.16.第三部分17.18.当时,.19. 设男生人,女生人,则有解得答:男生有人,女生有人.20. (1)如图,(2)如图,是的垂直平分线,,,是的外角,.21. (1)如图,四边形,是菱形,.,由等腰三角形的三线合一性质可得.(2),,是等边三角形,.,,四边形是菱形,,.22. (1);(2)(人),答:估计九年级体重低于千克的学生大约有人.23. (1)把,代入得解得所以(2)过作轴于点,则轴.为的中点,轴,为的中点,的横坐标为把代入得,点的坐标为.(3),,,,,,.24. (1)连接,如图,为直径,,,,,,为的切线,,,为的直径,,,,,,,即:是的平分线.(2),,,由()得,,在和中,,.(3)延长交于点,如图,,设:,,由()得,是的角平分线,,,.,,,,,,,,,即,,在中,,,,,,,,的长度为:.25. (1)(2)存在理由:①如图,若,,,.,.,是等边三角形,.,.②如图,若,依题意知:,.,,.四边形是矩形,.,.是等腰三角形,.③若,则或(舍去),则,不合题意,故舍去.综上所述:的值为或者时,为等腰三角形.(3)①如图,过点作于点,于点.,.在和中,,.,,.②如图,作于点.,,,,当时,取得最小值.。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

6
一、选择题
2017 年广东省中考数学试卷参考答案
1
2
3
4
5
6
7
8
9
10
D
C
A
B
B
D
A
B
C
C
二、填空题 11、a(a+1) 12、6 13、>
2
14、
5
15、-1
16、 10
三、解答题(一)
17、计算: - 7 - 1- 0 1 -1
3
解:原式=7-1+3 =9
18、先化简,再求值: 1 1 x2 4 ,其中x 5 x2 x2
4 000 000 000 用科学记数法表示为( )
A.0.4× 109
B.0.4× 1010
C.4× 109
D.4× 1010
3.已知 A 70 ,则 A 的补角为(
)
A. 110
B. 70
C. 30
D. 20
4.如果 2 是方程 x2 3x k 0 的一个根,则常数 k 的值为( )
A.1
3
21.如图 21 图所示,已知四边形 ABCD、ADEF 都是菱形, BAD FAD、BAD 为锐角. (1)求证: AD BF ; (2)若 BF=BC,求 ADC 的度数。
22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学 生的体重情况绘制如下不完整的统计图表,如题 22 图表所示,请根据图表信息回答 下列问题:
四、解答题(二)(本大题共 3 题,每小题 7 分,共 21 分) 20.如是 20 图,在 ABC 中, A B .
(1)作边 AB 的垂直平分线 DE,与 AB、BC 分别相交于点 D、E(用尺规作图,保留作图痕迹, 不要求写作法):

2017年广东省中考数学试卷及答案解析

2017年广东省中考数学试卷及答案解析

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×10103.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆7.(3分)如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)8.(3分)下列运算正确的是( )A .a +2a =3a 2B .a 3•a 2=a 5C .(a 4)2=a 6D .a 4+a 2=a 49.(3分)如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S,其中正确的是()△CDFA.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC ̂的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连接BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣5【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D .2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【解答】解:4000000000=4×109.故选:C .3.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【解答】解:∵∠A =70°,∴∠A 的补角为110°,故选:A .4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【解答】解:∵2是一元二次方程x 2﹣3x +k =0的一个根,∴22﹣3×2+k =0,解得,k =2.故选:B .5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B .6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A .130°B .100°C .65°D .50°【解答】解:∵∠CBE =50°,∴∠ABC =180°﹣∠CBE =180°﹣50°=130°,∵四边形ABCD 为⊙O 的内接四边形,∴∠D =180°﹣∠ABC =180°﹣130°=50°,∵DA =DC ,∴∠DAC =180°−∠D 2=65°, 故选:C .10.(3分)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD =BC =AB ,∠F AD =∠F AB ,在△AFD 和△AFB 中,{AF =AF ∠FAD =∠FAB AD =AB,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE =EC =12BC =12AD ,AD ∥EC ,∴ECAD =CFAF=EFDF=12,∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.(4分)一个n边形的内角和是720°,则n=6.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是25.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25, 故答案为:25 15.(4分)已知4a +3b =1,则整式8a +6b ﹣3的值为 ﹣1 .【解答】解:∵4a +3b =1,∴8a +6b ﹣3=2(4a +3b )﹣3=2×1﹣3=﹣1;故答案为:﹣1.16.(4分)如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 √10 .【解答】解:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH =√AE 2+EH 2=√32+12=√10,故答案为√10.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 【解答】解:原式=7﹣1+3=9.18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5.【解答】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)]•(x +2)(x ﹣2) =2x (x+2)(x−2)•(x +2)(x ﹣2) =2x ,当x =√5时,原式=2√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:{30x +20y =68050x +40y =1240, 解得:{x =12y =16. 答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.【解答】解:(1)如图所示;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =50°,∴∠AEC =∠EAB +∠B =100°.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.【解答】(1)证明:如图,连接DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .在△BAD 与△F AD 中,{AB =AF ∠BAD =∠FAD AD =AD,∴△BAD ≌△F AD ,∴DB =DF ,∴D 在线段BF 的垂直平分线上,∵AB =AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;解法二:∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA,AD=DE=EF=F A.∴AB=AF,∵∠BAD=∠F AD,∴AD⊥BF(等腰三角形三线合一);(2)方法1:如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.方法2:∵BF=BC,BC=AB=AD=AF,∴BF=AB=AF,即△ABF是等边三角形.∵AD⊥BF,∴∠BAD=30°,∴∠ADC=180°﹣∠BAD=150°.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克) 人数 A45≤x <50 12 B50≤x <55 m C55≤x <60 80 D60≤x <65 40 E 65≤x <70 16(1)填空:①m = 52 (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有12+52+80200×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y =﹣x 2+ax +b 交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线y =﹣x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【解答】解:(1)将点A 、B 代入抛物线y =﹣x 2+ax +b 可得,{0=−12+a +b 0=−32+3a +b, 解得,a =4,b =﹣3,∴抛物线的解析式为:y =﹣x 2+4x ﹣3;(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =﹣x 2+4x ﹣3上,∴y P =−(32)2+4×32−3=34,∴点P 的坐标为(32,34);(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32), ∴BC =√(32)2+32=3√52, ∴sin ∠OCB =OB BC =3√52=2√55. 24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC ̂的长度(结果保留π)【解答】(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .解法二:证明:连接AC .∵OA =OC∴∠BAC =∠ACO ,∵CD 平行AF ,∴∠F AC =∠ACD ,∴∠F AC =∠CAO ,∵CF ⊥AF ,CE ⊥AB ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a , ∵∠MCB +∠P =90°,∠P +∠PBM =90°,∴∠MCB =∠PBM ,∵CD 是直径,BM ⊥PC ,∴∠CMB =∠BMP =90°,∴△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM •PM =3a 2,∴BM =√3a ,∴tan ∠BCM =BM CM =√33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC ̂的长=60⋅π⋅2√3180=2√33π.25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连接BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 (2√3,2) ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2√3,∠BCO=∠BAO=90°,∴B(2√3,2).故答案为(2√3,2).(2)存在.理由如下:∵OA=2,OC=2√3,∵tan∠ACO=AOOC=√33,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠BDC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC =∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2√3,综上所述,满足条件的AD的值为2或2√3.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2√3,0),∴直线AC的解析式为y=−√33x+2,设D(a,−√33a+2),∴DN=−√33a+2,BM=2√3−a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴DEBD =DNBM=−√33a+22√3−a=√33.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=12AD=12x,AH=√AD2−DH2=√32x,∴BH=2√3−√32x,在Rt△BDH中,BD=√BH2+DH2=(12x)2+(2√3−√32x)2,∴DE=√33BD=√33•(12x)2+(2√3−√32x)2,∴矩形BDEF的面积为y=√33[(12x)2+(2√3−√32x)2]2=√33(x2﹣6x+12),即y =√33x 2﹣2√3x +4√3, ∴y =√33(x ﹣3)2+√3, ∵√33>0, ∴x =3时,y 有最小值√3.。

广东省2017年中考数学真题试题(含解析)

广东省2017年中考数学真题试题(含解析)

广东省2017年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是( )A .15B .5C .﹣15D .﹣5 【答案】D .【解析】试题分析:根据相反数的定义有:5的相反数是﹣5.故选D .考点:相反数.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【答案】C .【解析】试题分析:4000000000=4×109.故选C .考点:科学记数法—表示较大的数.3.已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【答案】A .考点:余角和补角.4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【答案】B .【解析】试题分析:∵2是一元二次方程230x x k -+=的一个根,∴22﹣3×2+k =0,解得,k =2.故选B .考点:一元二次方程的解.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【答案】B .【解析】试题分析:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B .考点:众数.6.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆【答案】D .考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线1y k x =(1k ≠0)与双曲线2k y x=(2k ≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)【答案】A .【解析】试题分析:∵点A 与B 关于原点对称,∴B 点的坐标为(﹣1,﹣2).故选A .考点:反比例函数与一次函数的交点问题.8.下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.【解析】试题分析:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC=(180°-∠D)÷2=65°,故选C.考点:圆内接四边形的性质.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【答案】C.考点:正方形的性质.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a a +2= .【答案】a (a +1).【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.12.一个n 边形的内角和是720°,则n = .【答案】6.【解析】试题分析:设所求正n 边形边数为n ,则(n ﹣2)•180°=720°,解得n =6.考点:多边形内角与外角.13.已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b 0.(填“>”,“<”或“=”)【答案】>.【解析】试题分析:∵a 在原点左边,b 在原点右边,∴a <0<b ,∵a 离开原点的距离比b 离开原点的距离小,∴|a |<|b |,∴a +b >0.故答案为:>.考点:实数大小比较;实数与数轴.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 . 【答案】25. 【解析】试题分析:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25,故答案为:25. 考点:概率公式.15.已知4a +3b =1,则整式8a +6b ﹣3的值为 .【答案】﹣1.考点:代数式求值;整体思想.16.如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 .【解析】试题分析:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH考点:翻折变换(折叠问题);矩形的性质;综合题.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:()101713π-⎛⎫---+ ⎪⎝⎭. 【答案】9.考点:实数的运算;零指数幂;负整数指数幂.18.先化简,再求值:()211422x x x ⎛⎫+⋅-⎪-+⎝⎭,其中x【答案】2x ,【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x =考点:分式的化简求值.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【答案】男生志愿者有12人,女生志愿者有16人.【解析】试题分析:设男生志愿者有x 人,女生志愿者有y 人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:302068050401240x y x y +=⎧⎨+=⎩,解得:1216x y =⎧⎨=⎩. 答:男生志愿者有12人,女生志愿者有16人.考点:二元一次方程组的应用.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【答案】(1)作图见见解析;(2)100°.试题解析:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.考点:作图—基本作图;线段垂直平分线的性质.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【答案】(1)证明见解析;(2)150°.试题解析:(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,∵AB=AF,∠BAD=∠FAD,AD=AD,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.考点:菱形的性质.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m = (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【答案】(1)①52;②144;(2)720.试题解析:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有125280200++×1000=720(人). 考点:扇形统计图;用样本估计总体;频数(率)分布表.五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线b ax x y ++-=2交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线b ax x y ++-=2的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【答案】(1)243y x x =-+-;(2)P 的坐标为(32,34);(3)552.(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =032+=23, ∵点P 在抛物线243y x x =-+-上,∴y P =233()4322-+⨯-=34,∴点P 的坐标为(32,34);(3)∵PM ∥OC ,∴∠OCB =∠MPB ,PM =34,MB =32,∴PB =,∴sin ∠MPB =55254323==PB BM ,∴sin ∠OCB =552. 考点:抛物线与x 轴的交点;待定系数法求二次函数解析式;解直角三角形.24.如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.考点:相似三角形的判定与性质;垂径定理;切线的性质;弧长的计算.25.如图,在平面直角坐标系中,O为原点,四边形AB CO是矩形,点A,C的坐标分别是A(0,2)和C(0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =3; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【答案】(1)(2);(2)AD 的值为2或(3)①证明见解析;②23y x =-+x =3时,y(3)①由(2)可知,B 、D 、E 、C 四点共圆,推出∠DBC =∠DCE =30°,由此即可解决问题;②作DH ⊥AB 于H .想办法用x 表示BD 、DE 的长,构建二次函数即可解决问题;试题解析:(1)∵四边形AOCB 是矩形,∴BC =OA =2,OC =AB =BCO =∠BAO =90°,∴B (2).故答案为:(2).(2)存在.理由如下:连接BE ,取BE 的中点K ,连接DK 、KC .∵∠BDE =∠BCE =90°,∴KD =KB =KE =KC ,∴B 、D 、E 、C 四点共圆,∴∠DBC =∠DCE ,∠EDC =∠EBC ,∵tan ∠ACO =AO OC ACO =30°,∠ACB =60° ①如图1中,△DEC 是等腰三角形,观察图象可知,只有ED =EC ,∴∠DBC =∠DCE =∠EDC =∠EBC =30°,∴∠DBC =∠BCD =60°,∴△DBC 是等边三角形,∴DC =BC =2,在Rt △AOC 中,∵∠ACO =30°,OA =2,∴AC =2AO =4,∴AD =AC ﹣CD =4﹣2=2,∴当AD =2时,△DEC 是等腰三角形.②如图2中,∵△DCE 是等腰三角形,易知CD =CE ,∠DBC =∠DEC =∠CDE =15°,∴∠ABD =∠ADB =75°,∴AB =AD =综上所述,满足条件的AD 的值为2或(3)①由(2)可知,B 、D 、E 、C 四点共圆,∴∠DBC =∠DCE =30°,∴tan ∠DBE =DE DB ,∴DE DB ②如图2中,作DH ⊥AB 于H .考点:相似形综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题.。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )题7图A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中错误!未找到引用源。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

页脚内容- 1 -2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )页脚内容- 2 -A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( ) A.1 B.2 C.-1 D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A.95 B.90 C.85 D.806.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )题7图页脚内容- 3 -A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x4)22x x⎛⎫+÷-⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年惠州市中考数学试题与答案 考试说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A.15 B.5 C.-15D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×10103. 已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4. 如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.806. 下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7. 如下图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)8. 下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9. 如下图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°,则∠DAC 的大小为( )A.130°B.100°C.65°D.50° 10. 如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( )A.①③B.②③C.①④D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示,则a b ÷ 0(填“>”,“<”或“=”).14. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15. 已知431a b ÷=,则整式863a b ÷-的值为 .16. 如图(1),矩形纸片ABCD 中,AB=5,BC=3,先按图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭. 18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

若干男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生 、女生志愿者各有多少人?(二)(本大题共3题,每小题7分,共21分)20. 如图,在ABC ∆中,A B ∠>∠.(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,连接AE ,若50B ∠=︒,求AEC ∠的度数。

21.如图所示,已知四边形ABCD 、ADEF 都是菱形,BAD FAD BAD ∠=∠∠、为锐角.(1)求证:AD BF ⊥;(2)若BF=BC,求ADC ∠的度数。

22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题:(1) 填空:①m= (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2) 如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?(三)(本大题共3题,每小题9分,共27分)23.如图23图,在平面直角坐标系中,抛物线2y x ax b =-++交x 轴于A(1,0),B(3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C.(1)求抛物线2y x ax b =-++的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件,求sin OCB ∠的值.24.如图,AB 是⊙O 的直径,AB=43,点E 为线段OB 上一点(不与O 、B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连结CB.(1)求证:CB 是的平分线;(2)求证:CF=CE;(3)当43 CPCF 时,求劣弧的长度(结果保留π).25.如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A 、C 的坐标分别是A(0,1)和C (23,0),点D 是对角线AC 上一动点(不与A 、C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE 、DB 为邻边作矩形BDEF.(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:; ②设,矩形BDEF 的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值参考答案一、选择题1.D2.C3.A4.B5.B6.D7.A8.B9.C 10.C二、填空题11. a (a+1) 12. 6 13. > 14. 52 15. -1 16. 10三、解答题(一)17. 原式=7-1+3 =918.解:()()()()222222-++--++=x x x x x x 原式x 2=当5=x 时,上式=5219.解:设男生x 人,女生y 人,则有⎩⎨⎧==⎩⎨⎧=+=+1612124040506802030y x y x y x 解得答:男生有12人,女生16人。

(二)20.(1)作图略(2)∵ED 是AB 的垂直平分线∴EA=EB∴∠EAC=∠B =50°∵∠AEC 是△ABE 的外角∴∠AEC=∠EBA+∠B =100°21、(1)如图,∵ABCD 、ADEF 是菱形∴AB=AD=A F又∵∠BAD=∠FAD由等腰三角形的三线合一性质可得AD ⊥BF(2)∵BF=BC∴BF=AB=AF∵△ABF 是等比三角形∴∠BAF =60°又∵∠BAD=∠FAD∴∠BAD =30°∴∠ADC =180°-30°=150°22、(1)①、52(2)144(3)(人)720%1002008052121000=⨯++⨯ 答:略五、解答题(三)23、解(1)把A (1,0)B (3,0)代入b ax x y ++-=2得 ⎩⎨⎧-==⎩⎨⎧=++-=++3403901-b a b a b a 解得 ∴342-+-=x x y(2)过P 做PM ⊥x 轴与M∵P 为BC 的中点,PM ∥y 轴∴M 为OB 的中点∴P 的横坐标为23 把x=23代入342-+-=x x y 得43=y ∴⎪⎭⎫ ⎝⎛43,23P (3)∵PM ∥OC∴∠OCB =∠MPB ,2343==MB PM , ∴54349169=+=PB∴sin ∠MPB=55254323==PB BM∴sin ∠OCB=55224、证明:连接AC ,∵AB 为直径,∴∠ACB =90°∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3又∵CP 为切线∴∠OCP =90°∵DC 为直径∴∠DBC =90°∴∠4+∠DCB =90°,∠DCB+∠D =90°∴∠4=∠D又∵弧BC=弧BC∴∠3=∠D∴∠1=∠4即:CB 是∠ECP 的平分线(2)∵∠ACB =90°∴∠5+∠4=90°,∠ACE+∠1=90°由(1)得∠1=∠4∴∠5=∠ACE在Rt △AFC 和Rt △AEC 中AEC AFC ACAC ECA FCA AEC F ≌△△∴⎪⎩⎪⎨⎧=∠=∠︒=∠=∠90∴CF=CE(3)延长C E 交DB 于Qxx x EQ xCQ CP PQCB QCB CB xCE CF xCP x CF CP CF =-=∴==∴⊥∠=====344324343的角平分线是∵)得由(,设:ππ332321806032346060-60-18060333tan 33290219019022=⨯∴=∴=︒=︒︒︒=∠∴︒=∠∴===∠=∴=⋅⋅=∴=∴∴∠=∠∴︒=∠+∠︒=∠+∠︒=∠⊥的长度为:弧∵中,在△即∽△△,,,BC OB AB CBE CBE x x EB CE CBE CEB xEB EB x x EQ CE EB EQEB EB CE BEQCEB CQBCQB CBQ EB CE25、(1)()232,(2)存在理由:①如图1 若ED=EC由题知:∠ECD=∠EDC =30°∵DE ⊥DB∴∠BDC =60°∵∠BCD =90°-∠ECD =60°∴△BDC 是等边三角形,CD=BD=BC=2∴AC=422=+OC OA ∴AD=AC-C D=4-2=2②如图2 若CD=CE依题意知:∠ACO =30°,∠CDE=∠CED =15°∵DE ⊥DB ,∠DBE=90°∴∠ADB =180°-∠ADB-∠CDE =75° ∵∠BAC=∠OCA =30° ∴∠ABD =180°-∠ADB-∠BAC =75°∴△ABD 是等腰三角形,AD=AB=32 ③:若DC=DE 则∠DEC=∠DCE=30°或∠DEC=∠DCE=150°∴∠DEC >90°,不符合题意,舍去综上所述:AD 的值为2或者32,△CDE 为等腰三角形(3)①如图(1),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H 。

相关文档
最新文档