NGC 6404 and NGC 6583 two neglected intermediate-age open clusters located in the Galactic

合集下载

编号 NGC 赤经 赤纬 视径 光度 距离 星座 注释

编号 NGC 赤经 赤纬 视径 光度 距离 星座 注释

编号NGC 赤经赤纬视径光度距离星座注释(名称)2000 2000 (星等)M1 NGC1952 5h 34.5m +22 01' 36x34' 8.4 金牛座蟹状星云M2 NGC7089 21h 33.5m - 0 49' 13 6.5 宝瓶座球状星团M3 NGC5272 13h 42.5m +28 23' 16 6.4 猎犬座球状星团M4 NGC6121 16h 23.6m -26 32' 26 5.9 天蝎座球状星团M5 NGC5904 15h 18.6m + 2 05' 17 5.8 巨蛇座球状星团M6 NGC6405 17h 40.1m -32 13' 15 4.2 天蝎座疏散星团M7 NGC6475 17h 53.9m -34 49' 80 3.3 天蝎座疏散星团M8 NGC6523 18h 03.8m -24 23' 90x40 5.8 人马座弥漫星云M9 NGC6333 17h 19.2m -18 31' 9 7.9 蛇夫座球状星团M10 NGC6254 16h 57.1m -4 06' 15 6.6 蛇夫座球状星团M11 NGC6705 18h 51.1m -6 16' 14 5.8 盾牌座疏散星团M12 NGC6218 16h 47.2m -1 57' 15 6.6 蛇夫座球状星团M13 NGC6205 16h 41.7m +36 28' 17 5.9 武仙座球状星团M14 NGC6402 17h 37.6m -3 15' 12 7.6 蛇夫座球状星团M15 NGC7078 21h 30.0m +12 10' 12 5.4 飞马座球状星团M16 NGC6611 18h 18.8m -13 47' 35 6.0 巨蛇座弥漫星云M17 NGC6618 18h 20.8m -16 11' 46x37 7.0 人马座弥漫星云M18 NGC6613 18h 19.9m -17 08' 9 6.9 人马座疏散星团M19 NGC6273 17h 02.6m -26 16' 14 7.2 蛇夫座球状星团M20 NGC6514 18h 02.3m -23 02' 29x27 6.3 人马座三叶星云M21 NGC6531 18h 04.6m -22 30' 13 5.9 人马座疏散星团M22 NGC6656 18h 36.4m -23 54' 24 5.1 人马座球状星团M23 NGC6494 17h 56.8m -19 01' 27 5.5 人马座疏散星团M24 NGC6603 18h 18.4m -18 25' 90 4.5 人马座疏散星团银河补丁M25 IC4725 18h 31.6m -19 15' 32 4.6 人马座疏散星团M26 NGC6694 18h 45.2m -9 24' 15 8.0 盾牌座疏散星团M27 NGC6853 19h 59.6m +22 43' 8x4 8.1 狐狸座行星状星云哑铃星云M28 NGC6626 18h 24.5m -24 52' 11 6.9 人马座球状星团M29 NGC6913 20h 23.9m +38 32' 7 6.6 天鹅座疏散星团M30 NGC7099 21h 40.4m -23 11' 11 7.5 魔羯座球状星团M31 NGC224 0h 42.7m +41 16' 178x63' 3.4 仙女座旋涡星系仙女星系M32 NGC221 0h 42.7m +40 52' 8x6 8.2 仙女座星系M33 NGC598 1h 33.9m +30 39' 62x39 5.7 三角座旋涡星系三角座星系M34 NGC1039 2h 42.0m +42 47' 35 5.2 英仙座疏散星团M35 NGC2168 6h 08.9m +24 20' 28 5.1 双子座疏散星团M36 NGC1960 5h 36.1m +34 08` 12 6.0 御夫座疏散星团M37 NGC2099 5h 52.4m -32 33' 24 5.6 御夫座疏散星团M38 NGC1912 5h 28.7m +35 50' 21 6.4 御夫座疏散星团M39 NGC7092 21h 32.2m +48 26' 32 4.6 天鹅座疏散星团M40 Winnecke4 12h 22.4m +58 05' —8.0 大熊座双星两颗恒星相距50''M41 NGC2287 6h 47.0m -20 44' 38 4.5 大犬座疏散星团M42 NGC1976 5h 35.4m -5 27` 66X60 4 猎户座最亮的星云(猎户座大星云)M43 NGC1982 5h 35.6m -5 16' 20X15 9 猎户座弥漫星云猎户座大星云东北部M44 NGC2632 8h 40.1m +19 59' 95 3.1 巨蟹座疏散星团蜂巢星团(鬼星团)M45 Mel22 3h 47.0m +24 07' 110 1.2 金牛座昴星团M46 NGC2437 7h 41.8m -14 49' 27 6.1 船尾座疏散星团M47 NGC2422 7h 36.6m -14 30' 30 4.4 船尾座疏散星团M48 NGC2548 8h 13.8m -5 48' 54 5.8 长蛇座疏散星团M49 NGC4472 12h 29.8m +8 00' 9x7 8.4 室女座星系M50 NGC2323 7h 03.2m +8 20' 16 5.9 麒麟座疏散星团M51 5194-5 13h 29.9M +47 12' 11X8 8.1 猎犬座漩涡星系(猎犬座星系)M52 NGC7654 23h 24.2m +61 35` 13 6.9 仙后座疏散星团M53 NGC5024 13h 12.9m +18 10' 13 7.7 后发座球状星团M54 NGC6715 18h 55.1M -30 29' 9 7.7 人马座球状星团M55 NGC6809 19h 40.0m -30 58' 19 7.0 人马座球状星团M56 NGC6779 19h 16.6m +30 11' 7 8.2 天琴座球状星团M57 NGC6720 18h 53.6m +33 02' 1.4x1.0 9.0 天琴座行星状星云M58 NGC4579 12h 37.7m +11 49' 5x4 9.8 室女座星系M59 NGC4621 12h 42.0m +11 39' 5x3 9.8 室女座椭圆星系M60 NGC4649 12h 43.7m +11 33' 7x6 8.8 室女座椭圆星系M61 NGC4303 12h 21.9m +4 28' 6x6 6.6 室女座旋涡星系M62 NGC6266 17h 01.2m +30 07' 14 8.8 蛇夫座球状星团M63 NGC5055 13h 15.8m +42 02' 12x8 8.6 猎犬座旋涡星系太阳花星系M64 NGC4826 12h 56.7m +21 41' 9x5 8.5 后发座旋涡星系黑眼星系M65 NGC3623 11h 18.9m +13 05' 10x3 9.3 狮子座旋涡星系M66 NGC3627 11h 20.2m +12 59' 9x4 9.0 狮子座旋涡星系M67 NGC2682 8h 50.4m +11 49' 30 6.9 巨蟹座疏散星团M68 NGC4590 12h 39.5m +26 45' 12 8.2 长蛇座球状星团M69 NGC6637 18h 31.4m -32 21' 4 7.7 人马座球状星团M70 NGC6681 18h 43.2m -32 18' 8 8.1 人马座球状星团M71 NGC6838 19h 53.9m +18 47' 7 8.3 天箭座球状星团M72 NGC6981 20h 53.5m -12 32' 6 9.4 宝瓶座球状星团M73 NGC6994 20h 59.0m -12 38' 3 8.9 宝瓶座疏散星团M74 NGC628 1h 36.7m +15 47' 10x10 9.2 双鱼座星系M75 NGC6864 20h 06.1m -21 55' 6 8.6 人马座球状星团M76 NGC651 1h 42.4m +51 34' 1 12.2 英仙座行星状星云M77 NGC1068 2h 42.7m -00 01' 7x6 8.8 鲸鱼座星系M78 NGC2068 5h 46.7m +00 03' 8x6 - 猎户座弥散星团M79 NGC1904 5h 24.5m +24 33' 9 8.0 天兔座球状星团M80 NGC6093 16h 17.1m +22 59' 9 7.2 天蟹座球状星团M81 NGC3031 9h 55.6m +69 04' 26x14 6.9 大熊座星系M82 NGC3034 9h 55.8m +69 41' 11x5 8.4 大熊座星系M83 NGC5236 13h 37.0m -18 52' 11x10 8.0 长蛇座星系M84 NGC4374 12h 25.1m +12 53' 5x4 9.3 室女座星系M85 NGC4382 12h 25.4m +18 11' 7x5 9.2 后发座星系M86 NGC4406 12h 26.2m +12 57' 7x6 9.2 室女座星系M87 NGC4486 12h 30.8m +12 24' 7x7 8.6 室女座星系M88 NGC4501 12h 32.0m +14 25' 7x4 9.5 后发座星系M89 NGC4552 12h 35.7m +12 33' 4x4 9.8 室女座星系M90 NGC4569 12h 36.8m +13 10' 10x5 9.5 室女座星系M91 NGC4548 12h 35.4m +14 30' 5x4 10.2 后发座星系M92 NGC6341 17h 17.1m +43 08' 11 6.5 武仙座球状星团M93 NGC2447 7h 44.6m +23 52' 22 6.2 船尾座疏散星团M94 NGC4736 12h 50.9m +41 07' 11x9 8.2 猎犬座星系M95 NGC3351 10h 44.0m +11 42' 7x5 9.7 狮子座星系M96 NGC3368 10h 46.8m +11 49' 7x5 9.2 狮子座星系M97 NGC3587 11h 14.8m +55 01' 3 12.0 大熊座行星状星云猫头鹰星云M98 NGC4192 12h 13.8m +14 54' 10x3 10.1 后发座星系M99 NGC4254 12h 18.8m +14 25' 5x5 9.8 后发座星系M100 NGC4321 12h 22.9m +15 49' 7x6 9.4 后发座星系M101 NGC5457 14h 03.2m +54 21' 27x26 7.7 大熊座星系M102 NGC5866 15h 06.5m +55 46' 5x2 10.0 天龙座星系车轮星系M103 NGC581 1h 33.2m +60 42' 6 7.4 仙后座疏散星团M104 NGC4594 12h 40.0m -11 37' 8x4 8.3 室女座星系草帽星系M105 NGC3379 10h 47.8m +12 35' 5x4 9.3 狮子座星系M106 NGC4258 12h 19.0m +47 18' 18x8 8.3 猎犬座星系M107 NGC6171 16h 32.5m -13 03' 10 8.1 蛇夫座球状星团M108 NGC3556 11h 11.5m +55 40' 8x3 10.1 大熊座星系M109 NGC3992 11h 57.6m +53 23' 8x5 9.8 大熊座星系M110 NGC205 0h 40.4m +41 41' 17x10 8.0 仙女座星系。

最新2019-Extragalactic X-ray Binary Stars Beacons for Stellar- and :河外星系的X射线双星的恒星和信标

最新2019-Extragalactic X-ray Binary Stars Beacons for Stellar- and :河外星系的X射线双星的恒星和信标

Stellar Source for Soft Compoห้องสมุดไป่ตู้ent?
M31 (diffuse) LX (0.5-2 keV): 1.7 x 1038 ergs s-1 LX (2-7 keV): 5.3 x 1037 ergs s-1 LX(0.5-2 keV)/ LX(2-7 keV) = 3.2 M32 (Revnivtsev et al. 2019) LX,stellar(0.5-2 keV)/LK : 4.1 x 1027 ergs s-1 L-1 LX,stellar(2-7 keV)/LK : 2.7 x 1027 ergs s-1 L-1 LX,stellar(0.5-2 keV)/ LX,stellar(2-7 keV) = 1.5
2 arcmin region
38 ksec Chandra
2 = 1.06/238 d.o.f
Bulge of M31
kT = 0.31 ± 0.02 keV O = 0.08 ± 0.06 solar Ne = 0.12 ± 0.06 solar Mg = 0.14 ± 0.07 solar Fe = 0.21 ± 0.09 solar
Abundance ratios indicate a Type Ia vs.Type II supernovae ratio of ~70% / ~30% (see also Humphrey & Buote 2019)
Metallicity of Gas in Low LX/LOPT Galaxies
LX vs. Lopt Relation
O’Sullivan, Forbes, & Ponman 2019
X-ray bright galaxies - gas dominated

Parsec-Scale Images of Flat-Spectrum Radio Sources in Seyfert Galaxies

Parsec-Scale Images of Flat-Spectrum Radio Sources in Seyfert Galaxies

a rXiv:as tr o-ph/998255v123Aug1999Accepted –To appear in The Astrophysical Journal.Parsec-Scale Images of Flat-Spectrum Radio Sources in Seyfert Galaxies C.G.Mundell Department of Astronomy,University of Maryland,College Park,MD,20742,USA;A.S.Wilson 1Department of Astronomy,University of Maryland,College Park,MD,20742,USA;J.S.Ulvestad National Radio Astronomy Observatory,P.O.Box O,Socorro,NM,87801,USA;A.L.Roy 2National Radio Astronomy Observatory,P.O.Box O,Socorro,NM,87801,USA ABSTRACT We present high angular resolution (∼2mas)radio continuum observations of five Seyfert galaxies with flat-spectrum radio nuclei,using the VLBA at 8.4GHz.The goal of the project is to test whether these flat-spectrum cores represent thermal emission from the accretion disk,as inferred previously by Gallimore et al.for NGC 1068,or non-thermal,synchrotron self-absorbed emission,which is believed to be responsible for more powerful,flat-spectrum nuclear sources in radio galaxies and quasars.In four sources (T0109−383,NGC 2110,NGC 5252,Mrk 926),the nuclear source is detected but unresolved by the VLBA,indicating brightness temperatures in excess of 108K and sizes,on average,less than 1pc.We argue that the radio emission is non-thermal and synchrotron self-absorbed in these galaxies,but Doppler boosting by relativistic outflows is not required.Synchrotron self-absorption brightness temperatures suggest intrinsic source sizes smaller than ∼0.05−0.2pc,for these four galaxies,the smallest of which corresponds to a light-crossing time of ∼60light days or 104gravitational radii for a 108M ⊙black hole.In one of these galaxies (NGC 2110),there is alsoextended(∼0.2pc)radio emission along the same direction as the400-pc scalejet seen with the VLA,suggesting that the extended emission comes from thebase of the jet.In another galaxy(NGC4388),theflat-spectrum nuclear sourceis undetected by the VLBA.We also present MERLIN and VLA observations ofthis galaxy and argue that the observed,flat-spectrum,nuclear radio emissionrepresents optically thin,free-free radiation from dense thermal gas on scales≃0.4to a few pc.It is notable that the two Seyfert galaxies with detectedthermal nuclear radio emission(NGC1068and NGC4388)both have largeX-ray absorbing columns,suggesting that columns in excess of≃1024cm−2areneeded for such disks to be detectable.Subject headings:accretion disks—galaxies:active—galaxies:jets—galaxies:nuclei—galaxies:Seyfert1.IntroductionIt has become generally accepted that supermassive black holes(SBH)lie at the center of most,if not all,galaxies(e.g.,Richstone et al.,1998;van der Marel,1999),with some lying dormant and others being triggered into an active phase to produce active galactic nuclei(AGN)(e.g.,Haehnelt&Rees,1993;Silk&Rees,1998).The power source for this activity is thought to be accretion of material onto the SBH,with the infalling material forming an accretion disk which,depending on detailed conditions,then regulates the fueling rate(e.g.Narayan&Yi,1994;Kato,Fukue&Mineshige,1998;Blandford& Begelman,1998).The radius to which these accretion disks extend(and hence become more easily observable)is not well established,but current AGN unification schemes advocate a geometrically thick and clumpy torus(e.g.Krolik&Begelman,1988;Krolik and Lepp, 1989;Pier&Krolik,1992)or warped thin disk(Miyoshi et al.,1995;Greenhill et al.,1995; Herrnstein,Greenhill&Moran,1996;Pringle,1996;Maloney,Begelman&Pringle,1996) which hides the nucleus when viewed edge-on.Our viewing angle with respect to the torus or disk is then responsible for the observed differences between narrow-line AGNs(e.g Seyfert2’s),in which our view of the nuclear broad-line region is obscured(edge-on view), and unobscured(pole-on view)broad-line AGNs(e.g.Seyfert1’s).Indirect evidence in support of such tori includes the discovery of broad lines in the polarized(hence scattered) light of Seyfert2s(Antonucci&Miller,1985;Tran,1995),sharp-edged bi-cones of ionized gas(e.g.,Wilson&Tsvetanov,1994)photo-ionized by anisotropic nuclear UV radiation (perhaps originating from the accretion disk and further collimated by the torus),large gas column densities(1023−25cm−2)to the nuclei of Seyfert2’s,inferred from photoelectricabsorption of soft X-rays(Turner et al.,1997)and strong mid-infrared emission in both Seyfert types(e.g.,Antonucci,1993;Alonso-Herrero,Ward&Kotilainen,1996).Recent,high-resolution studies at optical and radio wavelengths have begun to provide more direct evidence for‘nuclear’disks on size-scales ranging from the∼100-1000-pc diameter dusty disks imaged by HST(Jaffe et al.,1993;Ford et al.,1994;Carollo et al., 1997)and millimeter interferometry(Baker&Scoville,1998;Downes&Solomon,1998)to pc-scale disks inferred from HI and free-free absorption studies(Mundell et al.,1995;Carilli et al.,1998;Peck&Taylor,1998;Wilson et al.,1998;Taylor et al.,1999;Ulvestad,Wrobel &Carilli,1999),down to the0.25-pc warped,edge-on,Keplerian maser disk in NGC4258, imaged by the VLBA(Miyoshi et al.,1995,Greenhill et al.,1995;Herrnstein,et al.,1996).Theoretical work indicates that UV/X-ray radiation from the central engine can heat, ionize and evaporate the gas on the inner edge of the torus(Pier&Voit,1995;Balsara& Krolik,1993;Krolik&Lepp,1989).Indeed,simple Str¨o mgren sphere arguments suggest a radius for the ionized region of R(pc)=1.5(N⋆/1054s−1)1/3(n e/105cm−3)−2/3,where N⋆is the number of nuclear ionizing photons per second and n e is the electron density. Recalling the typical density n e∼105−6cm−3of the ionized disk in NGC1068(see below), we expect R∼0.3−1.5pc which is comparable to the tenths of pc to∼pc-scale resolutions achievable with the VLBA for nearby Seyferts.Recent high angular resolution VLBA radio observations of the archetypal Seyfert2galaxy,NGC1068,by Gallimore et al.(1997),have shown that emission from one of the radio components(‘S1’)may be associated with the inner,ionized edge of the torus.This radio component has aflat or rising(towards higher frequencies)spectrum,suggesting it contains the AGN,and a brightness temperature of up to4×106K;it is elongated perpendicular to the inner radio ejecta and extends over∼40 mas(3pc).The radiation mechanism may be free-free thermal emission(Gallimore et al., 1997),direct synchrotron emission(Roy et al.,1998)or Thomson scattering of a nuclear flat-spectrum synchrotron self-absorbed radio core(itself not detected)by the electrons at the inner edges of the torus(Gallimore et al.,1997;Roy et al.,1998).This discovery highlights the possibility of using the VLBA to image the pc-scale disks or tori in other Seyfert galaxies.However,flat-spectrum radio sources in AGNs often represent non-thermal synchrotron self-absorbed radio emission with a much higher brightness temperature(>108K)than is characteristic of component S1in NGC1068. High resolution radio observations are thus required to distinguish between the two emission processes.In the present paper,we report parsec-scale VLBA imaging offive Seyfert galaxies withflat-spectrum radio cores and hundred-pc scale,steep-spectrum,radio jets and lobes.Two of these galaxies also exhibit ionization cones with sharp,straight edges and axes aligned with the radio ejecta.Our goal is to determine whether theflat spectrumnuclear radio emission represents thermal emission from the accretion disk/obscuring torus or synchrotron self-absorbed emission from a compact radio core source.The paper is organized as follows;Sections2and3describe the sample selection, observations and reduction techniques whilst in Section4,the results of the study are presented.Section5discusses possible scenarios for the observed radio emission including direct non-thermal radiation from the AGN,emission from supernovae or supernova remnants produced in a starburst,or thermal emission from the accretion disk.The observed brightness temperatures are discussed in the context of the NGC1068result and comparison is made with other types of active nuclei such as radio galaxies,radio-loud and radio-quiet quasars.Section6summarizes the conclusions.Throughout,we assume H0=75km s−1Mpc−1and q0=0.5.2.Sample SelectionThe radio emission of Seyfert galaxies imaged at resolutions0.′′1–1′′almost always has the steep spectrum characteristic of optically thin synchrotron radiation.Flat spectrum cores are rare.In order to identify galaxies that may contain radio components similarto‘S1’in NGC1068,we have reviewed both published(e.g.,Ulvestad&Wilson,1989, and earlier papers in this series atλ6cm andλ20cm;Kukula et al.,1995at3.6cm)and unpublished(Wilson,Braatz&Dressel at3.6cm)VLA‘A’configuration surveys and other interferometric studies(e.g.,Roy et al.,1994).In selecting candidate galaxies for VLBA observations,we used the following criteria:•The radio component that is coincident with the optical nucleus(the position of which is known to≈0.′′2accuracy–e.g.,Clements,1981,1983),has aflat spectrum(α≤0.4, S∝ν−α)between20cm and6cm or3.6cm with the VLA in‘A’configuration.This component must also be unresolved in the VLA‘A’configuration at2cm and/or3.6cm.•Theflux density of this component exceeds5mJy at3.6cm(for comparison,the total flux density of component‘S1’in NGC1068at this wavelength is14mJy).•There is,in addition,extended,‘linear’(double,triple or jet-like),steep spectrum radio emission on the hundreds of parsecs–kiloparsec scales,or well-defined,optical ionization cones.The reason for this last criterion is to define the axis of ejection of the radio components and thus the expected axis of the accretion disk.We found only six(excluding NGC1068)Seyfert galaxies that satisfy these three criteria in the entire sample of about130imaged in the‘A’configuration.We omit one ofthem because of its unfavorable declination(–44◦),leavingfive for imaging with the VLBA. These galaxies are T0109−383,NGC2110,NGC4388,NGC5252and Mrk926.3.Observations and Reduction3.1.VLBA ObservationsThe observations were obtained with the10-element VLBA(Napier et al,1994)at8.4 GHz during observing runs in1997and1998,details of which are given in Table1.Dual circular polarizations(Right&Left)were recorded for all sources,and only the parallel hands(i.e.RR and LL)were correlated.T0109−383,NGC2110and Mrk926were recorded with a32-MHz bandwidth and two-bit sampling(8MHz per IF,4IFs,2polarizations)and NGC4388and NGC5252were recorded with a16-MHz bandwidth and two-bit sampling.The target sources are too weak to obtain estimates of the phase errors using standard VLBI self-calibration/imaging techniques(e.g.Walker,1995);instead the targets were observed in phase referencing mode,in which frequent observations of a nearby bright calibrator are interleaved with target scans and used for fringefitting,which corrects the large phase errors,delays(phase variations as a function of frequency)and delay rates (phase variations as a function of time)present in the data(Beasley&Conway,1995). As described below,extending the coherence time in this way improves the signal-to-noise ratio and enables an image of the target source to be made,which can then be usedas a starting model for subsequent cycles of self-calibration.Target source plus phase calibrator cycle times are shown in Table1.This method is similar to that used on smaller, connected-element arrays,such as the VLA(known as‘phase calibration’),but is more problematic for VLBI due to larger and more rapidly varying phase errors.Rapid changes in the troposphere at8.4GHz therefore require short switching times to satisfy the condition that the change in atmospheric phase be less than a radian over the switching interval,thus enabling reliable phase connection,without2π-radian ambiguities,for successful imaging of the target source(Beasley&Conway,1995).In addition,less frequent observations were made of a bright calibrator(‘phase check’)source.Data editing and calibration followed standard methods(Greisen&Murphy,1998) and used the NRAO Astronomical Image Processing System(aips)(van Moorsel,Kemball &Greisen,1996).Amplitude scales were determined from standard VLBA antenna gain tables,maintained by NRAO staff,and measurements of T sys made throughout the run. In addition,all data for source elevations below∼5◦were removed,and the antennas at Hancock(HN),and North Liberty(NL)were deleted from the NGC5252dataset as nofringes were detected to HN,and NL showed poor phase stability due to bad weather.The final phase corrections,interpolated over time,were used as a guide for additional data editing.Despite short switching times between galaxy and phase calibrator,poor tropospheric conditions and uncertainty in the target source position prevented immediate imaging of the phase-referenced target sources using all the data.Observations of the‘phase check’source were therefore used to verify the quality of the phase referencing,before applying the phase corrections to the target sources,and to provide ancillary calibration such as manual pulse calibration and amplitude calibration checks.After imaging the phase calibrator to verify that the corrections derived from fringe fitting were valid,phase,delay and rate corrections were applied to the‘check source’,from phase calibrator scans that were adjacent in time to the check source.Many baselines displayed poor phase coherence at some point in the observing run,preventing a coherent image of the source from being produced initially from the whole dataset.Instead,small time ranges(e.g.around1hour),within which the majority of antennas had less rapidly varying phases,were selected to be used in the initial stages of the imaging process.The ‘check’source,with calibration applied from the phase calibrator,was imaged for the selected small time range.The resultant image was then used as an input/starting model for subsequent cycles of self-calibration.This self-calibration process then enabled the remaining data to be fully calibrated and used to make afinal image of the‘check’source. Thefinal structure,flux and position of each‘check’source compared well with previously published images(e.g.Browne et al.,1998;Fey&Charlot,1997)and images produced from our data using self-calibration alone.This method provides an independent consistency check on the phase referencing,increasing our confidence in the images of the target sources. Only one‘check’source(J0044-3530)was not successfully imaged due to insufficient data (i.e.only3minutes at very low elevation).The target sources were then imaged using the same method,with natural and uniform data weighting.The uniformly weighted images (with robust parameter0-Briggs,1995)are shown in Figure1.The naturally weighted images,with more sensitivity to extended emission,were used to derive the brightness temperature limits to possible thermal emission from the program galaxies;these limits are ∼30%lower than those derived from the uniformly weighted images shown in this paper.The uncertainty in theflux scale is taken to be∼5%and is included in the total uncertainties influx densities quoted in Table2.These errors were derived by adding,in quadrature,the5%amplitude scale error,the r.m.s.noise in thefinal image and the error in the Gaussianfitting.The accuracy of the target source positions is dominated by the uncertainty in theposition of the phase calibrators(∼0.4–14mas;see Table1).Additional positional errors, due to the transfer of phase corrections from the phase calibrator to the target source,are negligible due to the promixity of each calibrator to its target source.3.2.MERLIN observationsNGC4388was not detected by the present VLBA observations.We therefore obtained and analyzed MERLINλ6-cm(4.993-GHz)archival data for NGC4388,which was observed on7th December,1992with six antennas.Phase referencing was performed with regular observations of1215+113,interleaved throughout the observing run and3C286was used for flux and bandpass calibration.Aflux of7.087Jy for3C286was adopted,assuming a total flux density of7.382Jy(Baars et al.,1977)and correcting for MERLIN resolution effects. After initial gain-elevation corrections and amplitude calibration using MERLIN software, the data were transferred to aips for all subsequent phase and amplitude calibration,data editing and imaging.Dual polarizations were recorded for a15-MHz bandwidth,centered at4.993GHz,but the right circular polarization data were removed due to instrumental problems,resulting in afinal image of the left circular polarization only(Figure2).4.ResultsFiveflat-spectrum-core Seyferts,were observed with the VLBA at8.4GHz.Four of thefive sources were detected(T0109−383,NGC2110,NGC5252,Mrk926)and show compact,unresolved cores with brightness temperatures T B>108K,total luminosities at 8.4GHz of∼1021W Hz−1and sizes,on average,less than1pc.In addition to the core emission,NGC2110shows extended emission which may represent the inner parts of the radio jets,and NGC5252may be marginally extended(Figure1).NGC4388is not detected with the VLBA,but is detected at5GHz with MERLIN(Figure2).Wefind no evidence for emission(to a3-σlimit of T B∼106K)extended perpendicular to the hundred-pc scale radio emission in T0109−383,NGC2110,NGC5252or Mrk926,as would be expected for emission from an accretion disk,but we discuss the possibility of thermal emission from NGC4388(Section5.4).The measured and derived properties of each source are listed in Table2,while more detailed properties of NGC2110and NGC4388are given in Tables3 and4respectively.The properties of each source are discussed more fully below.Distances are calculated assuming H0=75km s−1Mpc−1and q0=0.5,except for NGC4388which is assumed to be at the distance of the Virgo cluster,taken to be16Mpc.4.1.T0109−383T0109−383(NGC424)is a highly inclined(∼75◦)early-type((R)SB(r)0/a–de Vaucouleurs et al.1991)Seyfert galaxy at a distance of46.6Mpc.The nucleus ofT0109−383,originally classified as a Seyfert type2(Smith,1975),exhibits strong line emission from highly ionized species such as[Fe vii]λ5720,6086and[Fe x]λ6374(Fosbury &Sansom,1983;Penston et al.,1984).Analysis of the continuum emission from thefar IR to the far UV and decomposition of the Hα–[N ii]blend led Boisson&Durret (1986)to suggest a re-classification of T0109−383to a Seyfert1.The recent discoveryof broad components to the Hαand Hβlines,along with emission from Fe ii,confirms the type1classification(Murayama et al.,1998).VLA images of the radio emissionat6and20cm,show the nuclear radio source to consist of an unresolved core with aflat spectrum(α206=0.17±0.07)betweenλ6andλ20cm,and a weaker,secondary,steep spectrum component≃1.′′4east of the core(Ulvestad&Wilson,1989).Similar radio structure is seen in the8.4-GHz VLA image(Braatz,Wilson&Dressel,unpublished), shown in Figure1,with the core spectrum remaining relativelyflat(α63.5=0.21)between6 and3.5cm(Morganti et al.,1999).The results of Gaussianfitting to the8.4-GHz VLBA image(Figure1),given in Table2,show the sub-pc scale nuclear emission to be unresolved, with a peak brightness of T B>8.1×108K,adopting a source size smaller than half of the beamsize.The peak and integrated8.4-GHz VLAfluxes for the core,10.4mJy beam−1 and11.2mJy respectively,are in excellent agreement with those measured from the VLBA image(Table2),indicating that little nuclear emission was missed by the VLBA.A similar peak brightness of10.4mJy beam−1is found in the3.5-cm ATCA image of Morganti et al. (1999),while their slightly higher integratedflux includes some of the emission≃1′′E and W of the nucleus(Ulvestad&Wilson,1989;Figure1).The excellent agreement between the nuclearλ3.6-cmfluxes in observations spanning∼six years indicates no significant variability.In the VLBA image,we detected no extended emission in the N-S direction(as might be expected from a parsec-scale,thermal disk if the arcsec-scale,steep spectrum,E-W emission in the VLA image is interpreted as emission from nuclear ejecta)brighter than ∼1.3×106K(3σin the naturally weighted image)and more extended than0.27pc(half of the beamsize in the naturally weighted image).4.2.NGC2110NGC2110was initially classified as a Narrow Line X-ray Galaxy,NLXG,(Bradt et al., 1978),and lies in an S0/E host galaxy(Wilson,Baldwin&Ulvestad,1985)at a distanceof30.4Mpc.Such NLXG’s have a sufficient column of dust to the nucleus to obscure the broad line region,thus leading to a Seyfert2classification of the optical spectrum,but an insufficient gas column to attenuate the2–10keV emission,so the hard X-ray luminosity is comparable to those of Seyfert1’s(Weaver et al.,1995a;Malaguti et al.,1999).Early radio observations found NGC2110to be a strong radio source(Bradt et al.,1978)and subsequent VLA imaging(Ulvestad&Wilson,1983;1984b)showed symmetrical,jet-like radio emission,extending∼4′′in the N-S direction and straddling a central compact core.A more recent VLA A-configuration image atλ3.6cm,obtained by Nagar et al.(1999)and shown in Figure1,contains a wealth of complex structure.Ulvestad&Wilson(1983)found the spectrum of the core to be relativelyflat(spectral indexα206∼0.36±0.05)betweenλ20 cm andλ6cm,but becoming steeper(α62∼0.96±0.09)betweenλ6cm andλ2cm(assuming no time variability).Using theλ3.6-cm coreflux measurement of Nagar et al.(1999)and ignoring variability or resolution effects gives spectral indices ofα63.6=0.61andα3.62=1.31, also suggesting a steepening of the spectrum at higher frequencies.The radio continuum emission of NGC2110,imaged with the VLBA atλ3.6cm and shown in Figure1,consists of a compact core,presumably the nucleus,and slightly extended emission which is most pronounced to the north.The results offitting a single-component Gaussian are given in Table2;the fact that the integratedflux is significantly higher than the peakflux also suggests the source is resolved.Resolved structure is also evident in the time-averaged(u,v)data(not shown),consistent with an unresolved point source(with a flux density of∼8mJy)superimposed on an extended“halo”with approximate dimensions of2.5(N-S)×0.5(E-W)mas.Preliminary two-component Gaussianfits to the image are also consistent with an unresolved point source and an extended component.We therefore subtracted an8-mJy point source(in the(u,v)plane using the aips task uvsub)positioned at the peak of the3.6cm VLBA image,and studied the residual emission.This emission is extended both north and south of the core by∼0.7mas,consistent with emission from the inner regions of the northern and southern jets.Using the brightness of8mJy beam−1for the unresolved component and assuming an upper limit to the source size of0.94×0.36mas(half of the beamsize),wefind T B> 6.0×108K.In addition to the core and extended emission,the Gaussianfits suggest the presence of a third component,centered∼1.95mas north of the core;its size and direction of elongation are not well constrained.This component may be a knot in the northern jet.A summary of thefitted properties of each component is given in Table3.The total VLBA-detectedflux density of the source(zero baselineflux measured in the uv plane)is30mJy.Thisflux density is lower than the previously measured VLA core flux of77.6mJy at this frequency(Nagar et al.,1999),presumably due to the high spatialresolution of the present observations and missing short spacings of the VLBA compared to the VLA,thereby reducing our sensitivity to extended structure.This may also explain why we detect no VLBA counterpart to the small eastern extension present in theλ3.6-cm VLA image,which contains about3.6mJy offlux and extends approximately0.′′5east of the core(Nagar et al.,1999).Alternatively,the extension in the VLA image may be a result of instrumental effects caused by the source position being close to the celestial equator and the short duration of the snapshot observation,an effect termed‘equator disease’(Antonucci&Ulvestad,1985).In the VLBA image,we detect no extended emission in the E-W direction(such as might be expected from a parsec-scale thermal disk)brighter than 3.1×106K(3σin the naturally weighted image),and more extended than0.07pc(one half of the E-W beamsize in the naturally weighted image).4.3.NGC4388NGC4388is a nearby,edge-on spiral galaxy(SB(s)b pec-Phillips&Malin,1982) which is thought to lie close to the centre of the Virgo cluster(Phillips&Malin,1982)and may be tidally disturbed by nearby cluster core galaxies M84or IC3303(Corbin,Baldwin &Wilson,1988).Ionization cones extend approximately perpendicular to the disk(Pogge, 1988;Corbin et al.,1988;Falcke,Wilson&Simpson,1998)and the kinematics of the ionized gas in the narrow line region(NLR)shows a complex combination of rotation and outflow(Corbin et al.1988;Veilleux,1991;Veilleux et al.,1999).The nucleus is variously classified as Seyfert type1or2,with the high galactic inclination and obscuring dust lanes making unambiguous classification difficult(Falcke et al.,1998).Shields&Filippenko (1988)report broad,off-nuclear Hαemission,but subsequent IR searches for broad lines such as Paβ(Blanco,Ward&Wright,1990;Ruiz,Rieke&Schmidt,1994)and Brαand Brγ(Veilleux,Goodrich&Hill,1997)have failed to detect a broad nuclear component.Previous radio continuum images of NGC4388(Stone et al.,1988;Carral,Turner& Ho,1990;Hummel&Saikia,1991;Falcke et al.,1998)show complex,extended structure, both along the galactic plane and perpendicular to it.A recent3.5cm VLA image of the extended radio emission(Falcke et al.,1998)shows,in more detail,the‘hour-glass’-shaped radio outflow to the north of the galactic plane,and the compact(∼1.′′9separation)central double,which were suggested by earlier images.In Section4.3.1we concentrate on the radio emission from the northern component of the compact radio double,which shows a flat spectrum up to2cm(Carral,Turner&Ho,1990)and is thought to be the nucleus,and in Section4.3.2,we discuss the extended emission to the SW.4.3.1.The nucleusAs stated earlier,NGC4388is not detected in the8.4-GHz VLBA observations, with a3-σbrightness temperature limit of T B∼<2.2×106K(σ=63.2µJy/beam with a beam size of2.52×1.46mas in the naturally weighted map,with a factor1.7applied to correct for decorrelation due to residual imperfections in the phase referencing corrections, estimated using the check source).We do,however,detect emission from NGC4388at λ6cm with MERLIN.The uniformly weighted MERLIN image(Figure2)shows emission from two components,labelled M1and M2,the stronger of which we identify with the nucleus and discuss in more detail here,while M2is discussed in Section4.3.2.The nuclear component M1,has a peak brightness of1.2mJy beam−1which corresponds to a brightness temperature T B>2.4×104K at5GHz(beamsize91×39.5mas,see Table4).The nucleus is unresolved in the MERLIN data,indicating that the source size is intermediate between the MERLIN and VLBA beam sizes.However,a combination of the MERLIN and VLBA results with published spectral index information can further constrain the source size.Earlier radio observations of NGC4388have found the nuclear spectrum to beflat from1.49GHz to15GHz.The spectral index was measured to beα=0.26between1.49 GHz and4.86GHz with a relatively large beamsize of1.′′2(Hummel&Saikia,1991)and Carral et al.(1990)report aflat spectrum up to15GHz with an upper limit to the nuclear size of70mas.Including the VLA8.4GHz coreflux of Kukula et al(1995)suggests that the spectrum of the nucleus may be very slightly inverted between8.4GHz and15GHz (α=–0.05)but within the errors it can be taken asflat.We therefore used the measured MERLIN5-GHz peakflux to derive predicted VLBA8.4GHzfluxes of the nucleus,for spectral indices of bothα=0.0and0.26,and converted these predictedfluxes to brightness temperatures,assuming the source is unresolved by the representative VLBA beamsize of 2.52×1.46mas.These predicted temperatures are listed in Table4and are above the detection threshold of the VLBA observations for a source size equal to or smaller than the VLBA beam.The larger predicted brightness temperature,for a source size equal to the VLBA beam,of T B≃8.3×106K is,however,only3.8times greater than our3-σ,VLBA detection limit and so the solid angle of the source need only be3.8times larger than the VLBA beamsize to be undetected.We therefore constrain the size of the nucleus to be∼> 3.7mas(α=0.0)or∼>0.3pc.Sensitive,high angular resolution VLBA observations at lower frequencies such as2.3GHz and1.4GHz are required to determine the actual size and structure of the nucleus in NGC4388.。

梅西耶天体表(2015年)

梅西耶天体表(2015年)

赤经 05h 34.5m 21h 33.5m 13h 42.2m 16h 23.6m 15h 18.6m 17h 40.3m 17h 53.9m 18h 04.1m 17h 19.2m 16h 57.1m 18h 51.1m 16h 47.2m 16h 41.7m 17h 37.6m 21h 30.0m 18h 18.7m 18h 20.8m 18h 20.0m 17h 02.6m 18h 02.4m 18h 04.2m 18h 36.4m 17h 56.9m 18h 17.0m 18h 28.8m 18h 45.2m 19h 59.6m 18h 24.0m
NGC编号 NGC 1952 NGC 7089 NGC 5272 NGC 6121 NGC 5904 NGC 6405 NGC 6475 NGC 6523 NGC 6333 NGC 6254 NGC 6705 NGC 6218 NGC 6205 NGC 6402 NGC 7078 NGC 6611 NGC 6618 NGC 6613 NGC 6273 NGC 6514 NGC 6531 NGC 6656 NGC 6494 NGC 6603 IC 4725 NGC 6694 NGC 6853 NGC 6626
距离(ly) 19000 33000 2300 41000000 41000000 59000000 41000000 20600 24000000 15000000 27000000 27000000 2710 31400 24000 65000 13300 59000 2000 37000000 78000 8000 47000000 1600 43000 37000 14000000 14000000 16000000
勺柄下,熊 尾
第 2 页,共 4 页

罕见的双星系统文献英语翻译

罕见的双星系统文献英语翻译

罕见"闪光灯"恒星实际可能是双星系统This Hubble image shows a a mysteriousprotostar, LRLL 54361, that behaves like a flashing light. The image wasreleased Feb. 7, 2013.CREDIT: NASA, ESA, J. Muzerolle (STScI)这幅哈勃望远镜图像显示了一个神秘原恒星LRLL 54361,其行为像一个闪光灯。

该图像发布于2013年2月7日。

来源:美国宇航局、欧空局、J·沐泽洛尔(太空望远镜科学研究所)An odd flashing star may actually be a pairof cosmic twins: two newly formed ba by stars that circle each other closely andflash like a strobe light, scientist s say.一颗古怪闪烁恒星实际上可能是一对宇宙双胞胎:两颗新形成幼年恒星彼此紧密环绕并且像一个闪光灯一样闪烁,科学家说。

Astronomers discovered the nascent starsystem, called LRLL 54361, with the infr ared Spitzer observatory and the HubbleSpace Telescope, and say the rare cosmic find could offer a chance to studystar formation and early evolution. It is on ly the third such "strobelight" object ever seen, researchers said.天文学家通过斯皮策红外观测站和哈勃太空望远镜发现了这个新生称为LRLL 54361恒星系统,并且表示这个罕见宇宙发现可能提供一种研究恒星形成和早期演化机会。

NGC天体列表

NGC天体列表

1─99‎NGC ‎1 ─ 这‎是一个漩涡‎星系,在飞‎马座N‎G C 2 ‎─这是一‎个漩涡星系‎,在飞马座‎NGC‎3 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 4 ─‎这是一个‎非常黯淡的‎星系,在双‎鱼座N‎G C 5 ‎─这是一‎个椭圆星系‎,在仙女座‎NGC‎6 ─ ‎这是一个星‎系,在仙女‎座,同时亦‎是NGC ‎20N‎G C 7 ‎─这是一‎个漩涡星系‎,在玉夫座‎NGC‎8 ─ ‎这是一个双‎星,在飞马‎座NG‎C 9 ─‎这是一个‎罕有的漩涡‎星系,在飞‎马座N‎G C 10‎─ 这是‎一个漩涡星‎系,在玉夫‎座NG‎C 11 ‎─这是一‎个漩涡星系‎,在仙女座‎NGC‎12 ─‎这是一个‎漩涡星系,‎在双鱼座‎NGC ‎13 ─ ‎这是一个星‎系,在仙女‎座NG‎C 14 ‎─这是一‎个星系,在‎飞马座‎N GC 1‎5 ─ 这‎是一个漩涡‎星系,在飞‎马座N‎G C 16‎─ 这是‎一个漩涡星‎系,在飞马‎座NG‎C 17 ‎─这是一‎个星系,在‎鲸鱼座,同‎时亦是NG‎C 34‎NGC ‎18 ─ ‎这是一个双‎星,在飞马‎座NG‎C 19 ‎─这是一‎个漩涡星系‎,在仙女座‎NGC‎20 ─‎参见NG‎C 6‎N GC 2‎1 ─ 这‎是一个漩涡‎星系,在仙‎女座,同时‎亦是NGC‎29 ‎N GC 2‎2 ─ 这‎是一个漩涡‎星系,在飞‎马座N‎G C 23‎─ 这是‎一个漩涡星‎系,在飞马‎座NG‎C 24 ‎─这是一‎个漩涡星系‎,在玉夫座‎NGC‎25 ─‎这是一个‎星系,在凤‎凰座N‎G C 26‎─ 这是‎一个漩涡星‎系,在飞马‎座NG‎C 27 ‎─这是一‎个漩涡星系‎,在仙女座‎NGC‎28 ─‎这是一个‎椭圆星系,‎在凤凰座‎NGC ‎29 ─ ‎参见NGC‎21‎N GC 3‎0 ─ 这‎是一个双星‎,在飞马座‎NGC‎31 ─‎这是一个‎漩涡星系,‎在凤凰座‎NGC ‎32 ─ ‎这是一个恒‎星,在飞马‎座NG‎C 33 ‎─这是一‎个双星,在‎双鱼座‎N GC 3‎4 ─ 参‎见NGC ‎17N‎G C 35‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎36 ─ ‎这是一个漩‎涡星系,在‎双鱼座‎N GC 3‎7 ─ 这‎是一个星系‎,在凤凰座‎NGC‎38 ─‎这是一个‎星系,在双‎鱼座N‎G C 39‎─ 这是‎一个漩涡星‎系,在仙女‎座NG‎C 40 ‎─这是一‎个行星状星‎云‎N GC 4‎2 ─ 这‎是一个星系‎,在飞马座‎NGC‎43 ─‎这是一个‎星系,在仙‎女座N‎G C 44‎─ 这是‎一个双星,‎在仙女座‎NGC ‎45 ─ ‎这是一个漩‎涡星系,在‎鲸鱼座‎N GC 4‎6─ 这‎是一个恒星‎,在双鱼座‎NGC‎47 ─‎这是一个‎漩涡星系,‎在鲸鱼座,‎同时亦是N‎G C 58‎ NGC‎48 ─‎这是一个‎漩涡星系,‎在仙女座‎NGC ‎49 ─ ‎这是一个星‎系,在仙女‎座NG‎C 50 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 5‎1 ─ 这‎是一个星系‎,在仙女座‎NGC‎52 ─‎这是一个‎漩涡星系,‎在飞马座‎NGC ‎53 ─ ‎这是一个星‎系,在杜鹃‎座NG‎C 54 ‎─这是一‎个漩涡星系‎,在鲸鱼座‎NGC‎55 ─‎这是一个‎漩涡星系,‎在玉夫座‎NGC ‎56 ─ ‎不存在(错‎误标识)‎NGC ‎57 ─ ‎这是一个椭‎圆星系,在‎双鱼座‎N GC 5‎8 ─ 参‎见NGC ‎47N‎G C 59‎─ 这是‎一个漩涡星‎系,在鲸鱼‎座NG‎C 60 ‎─这是一‎个漩涡星系‎,在双鱼座‎NGC‎61 ─‎这是一个‎星系,在双‎鱼座N‎G C 62‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎63 ─ ‎这是一个漩‎涡星系,在‎双鱼座‎N GC 6‎4 ─ 这‎是一个漩涡‎星系,在鲸‎鱼座N‎G C 65‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎66 ─ ‎这是一个漩‎涡星系,在‎鲸鱼座‎N GC 6‎7 ─ 这‎是一个椭圆‎星系,在仙‎女座N‎G C 68‎─ 这是‎一个星系,‎在仙女座‎NGC ‎69 ─ ‎这是一个星‎系,在仙女‎座NG‎C 70 ‎─这是一‎个漩涡星系‎,在仙女座‎NGC‎71 ─‎这是一个‎星系,在仙‎女座N‎G C 72‎─ 这是‎一个漩涡星‎系,在仙女‎座NG‎C 73 ‎─这是一‎个漩涡星系‎,在鲸鱼座‎NGC‎74 ─‎这是一个‎星系,在仙‎女座N‎G C 75‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎76 ─ ‎这是一个星‎系,在仙女‎座NG‎C 77 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 7‎8 ─ 这‎是一个漩涡‎星系,在双‎鱼座N‎G C 79‎─ 这是‎一个星系,‎在仙女座‎NGC ‎80 ─ ‎这是一个星‎系,在仙女‎座NG‎C 81 ‎─这是一‎个星系,在‎仙女座NGC‎83 ─‎这是一个‎椭圆星系,‎在仙女座‎NGC ‎84 ─ ‎这是一个恒‎星,在仙女‎座NG‎C 85 ‎─这是一‎个星系,在‎仙女座‎N GC 8‎6 ─ 这‎是一个星系‎,在仙女座‎NGC‎87 ─‎这是一个‎星系,在凤‎凰座,是罗‎伯特四重奏‎的一部分‎NGC ‎88 ─ ‎这是一个星‎系,在凤凰‎座,是罗伯‎特四重奏的‎一部分‎N GC 8‎9 ─ 这‎是一个星系‎,在凤凰座‎,是罗伯特‎四重奏的一‎部分 N‎G C 90‎─ 这是‎一个漩涡星‎系,在仙女‎座NG‎C 91 ‎─这是一‎颗恒星,在‎仙女座‎N GC 9‎2 ─ 这‎是一个星系‎,在凤凰座‎,是罗伯特‎四重奏的一‎部分 N‎G C 93‎─ 这是‎一个星系,‎在仙女座‎NGC ‎94 ─ ‎这是一个星‎系,在仙女‎座NG‎C 95 ‎─这是一‎个星系,在‎双鱼座‎N GC 9‎6 ─ 这‎是一个星系‎,在仙女座‎NGC‎97 ─‎这是一个‎星系,在仙‎女座N‎G C 98‎─ 这是‎一个星系,‎在凤凰座‎NGC ‎99 ─ ‎这是一个星‎系,在双鱼‎座1‎00─19‎9NG‎C 100‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎101 ─‎这是一个‎星系,在玉‎夫座N‎G C 10‎2 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎103 ‎─这是一‎个疏散星团‎,在仙后座‎NGC‎104 ‎─这是一‎个球状星团‎,在杜鹃座‎NGC‎105 ‎─这是一‎个星系,在‎双鱼座‎N GC 1‎06 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 107‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎108 ─‎这是一个‎星系,在仙‎女座N‎G C 10‎9 ─ 这‎是一个星系‎,在仙女座‎NGC‎110 ‎─一个疏‎散星团,在‎仙后座‎N GC 1‎11 ─ ‎不存在?‎NGC ‎112 ─‎这是一个‎星系,在仙‎女座N‎G C 11‎3 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎114 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 1‎15 ─ ‎这是一个星‎系,在玉夫‎座NG‎C 116‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎117 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 11‎8 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎119 ‎─这是一‎个星系,在‎凤凰座NG‎C 121‎─ 这是‎一个球状星‎团,在杜鹃‎座,亦是S‎M C的一部‎分NG‎C 122‎─ 这可‎能是一颗恒‎星,在鲸鱼‎座NG‎C 123‎─ 这可‎能是一颗恒‎星,在鲸鱼‎座NG‎C 124‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎125 ─‎这是一个‎星系,在双‎鱼座N‎G C 12‎6 ─ 这‎是一个星系‎,在双鱼座‎NGC‎127 ‎─这是一‎个星系,在‎双鱼座‎N GC 1‎28 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 129‎─ 一个‎疏散星团,‎在仙后座‎NGC ‎130 ─‎这是一个‎星系,在双‎鱼座N‎G C 13‎1 ─ 这‎是一个星系‎,在玉夫座‎NGC‎132 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 1‎33 ─ ‎一个疏散星‎团,在仙后‎座NG‎C 134‎─ 这是‎一个星系,‎在玉夫座‎NGC ‎135 ─‎这是一个‎星系,在鲸‎鱼座,与I‎C 26一‎样NG‎C 136‎─ 一个‎疏散星团,‎在仙后座‎NGC ‎137 ─‎这是一个‎星系,在双‎鱼座N‎G C 13‎8 ─ 这‎是一个星系‎,在双鱼座‎NGC‎139 ‎─这是一‎个星系,在‎双鱼座‎N GC 1‎40 ─ ‎这是一个星‎系,在仙女‎座NG‎C 141‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎142 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 14‎3 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎144 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 1‎45 ─‎这是一个星‎系,在鲸鱼‎座NG‎C 146‎─ 一个‎疏散星团,‎在仙后座‎NGC ‎147 ─‎这是一个‎矮椭圆星系‎,在仙后座‎,同时这是‎本星系群的‎一成员‎N GC 1‎48 ─ ‎这是一个星‎系,在玉夫‎座NG‎C 149‎─ 这是‎一个星系,‎在仙女座‎NGC ‎150 ─‎这是一个‎星系,在玉‎夫座N‎G C 15‎1 ─ 这‎是一个星系‎,在鲸鱼座‎,与NGC‎153一‎样NG‎C 152‎─ 一个‎疏散星团,‎在杜鹃座,‎是SMC的‎一部分‎N GC 1‎53 ─ ‎参见NGC‎151‎NGC ‎154 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 15‎5 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎156 ‎─这是一‎个双星,在‎鲸鱼座‎N GC 1‎57 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 158‎─ 这是‎一个双星,‎在鲸鱼座‎NGC ‎159 ─‎这是一个‎星系,在凤‎凰座N‎G C 16‎0 ─ 这‎是一个星系‎,在仙女座‎‎N GC 1‎62 ─ ‎这是一颗恒‎星,在仙女‎座NG‎C 163‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎164 ─‎这是一个‎星系,在双‎鱼座N‎G C 16‎5 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎166 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 1‎67 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 168‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎169 ─‎这是一个‎星系,在仙‎女座N‎G C 17‎0 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎171 ‎─可能与‎N GC 1‎75相同‎NGC ‎172 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 17‎3 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎174 ‎─这是一‎个barr‎e d漩涡星‎系,在玉夫‎座NG‎C 175‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎176 ─‎一个疏散‎星团,在杜‎鹃座,是S‎M C的一部‎分NG‎C 177‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎178 ─‎这是一个‎星系,在鲸‎鱼座,可能‎与IC 3‎9一样‎N GC 1‎79 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 180‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎181 ─‎这是一个‎星系,在仙‎女座N‎G C 18‎2 ─ 这‎是一个星系‎,在双鱼座‎NGC‎183 ‎─这是一‎个星系,在‎仙女座‎N GC 1‎84 ─ ‎这是一个星‎系,在仙女‎座NG‎C 185‎─ 这是‎一个矮椭圆‎星系或是球‎状星系,在‎仙后座,同‎时亦是一个‎本星系群的‎一成员‎N GC 1‎86 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 187‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎188 ─‎这是一个‎疏散星团,‎在仙王座‎NGC ‎189 ─‎一个疏散‎星团,在仙‎后座N‎G C 19‎0 ─ 这‎是一个星系‎,在双鱼座‎NGC‎191 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 1‎92 ─ ‎这是一个b‎a rred‎漩涡星系,‎在鲸鱼座‎NGC ‎193 ─‎这是一个‎星系,在双‎鱼座N‎G C 19‎4 ─ 这‎是一个星系‎,在双鱼座‎NGC‎195 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 1‎96 ─ ‎这是一个小‎星系,在鲸‎鱼座N‎G C 19‎7 ─ 这‎是一个小星‎系,在鲸鱼‎座NG‎C 198‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎199 ─‎这是一个‎星系,在双‎鱼座20‎0─299‎‎N GC 2‎01 ─ ‎这是一个漩‎涡星系,在‎鲸鱼座‎N GC 2‎02 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 203‎─ 这是‎一个星系,‎在双鱼座,‎可能与NG‎C 211‎相同N‎G C 20‎4 ─ 这‎是一个星系‎,在双鱼座‎NGC‎205 ‎─在仙女‎座,同时这‎是一个本星‎系群成员之‎星系M11‎0NG‎C 206‎─ 这是‎一个恒星云‎,在仙女星‎系NG‎C 207‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎208 ─‎这是一个‎星系,在双‎鱼座N‎G C 20‎9 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎210 ‎─这是一‎个漩涡星系‎,在鲸鱼座‎NGC‎211 ‎─参见N‎G C 20‎3NG‎C 212‎─ 这是‎一个星系,‎在凤凰座‎NGC ‎213 ─‎这是一个‎星系,在双‎鱼座N‎G C 21‎4 ─ 这‎是一个星系‎,在仙女座‎NGC‎215 ‎─这是一‎个星系,在‎凤凰座‎N GC 2‎16 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 217‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎218 ─‎这是一个‎星系,在仙‎女座N‎G C 21‎9 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎220 ‎─这是一‎个疏散星团‎,在杜鹃座‎;是SMC‎的一部分‎NGC ‎221 ─‎M32,‎在仙女座的‎一个椭圆星‎系,亦是本‎星系群的一‎成员 N‎G C 22‎2 ─ 这‎是一个疏散‎星团,在杜‎鹃座;是‎S MC的一‎部分N‎G C 22‎3 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎224 ‎─ M31‎,仙女座大‎星系,是本‎星系群成员‎中最大的一‎个NG‎C 225‎─ Sa‎i lboa‎t Clu‎s ter,‎一个疏散星‎团,在仙后‎座NG‎C 226‎─ 这是‎一个星系,‎在仙女座‎NGC ‎227 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 22‎8 ─ 这‎是一个星系‎,在仙女座‎NGC‎229 ‎─这是一‎个星系,在‎仙女座‎N GC 2‎30 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 231‎─ 这是‎一个疏散星‎团,在杜鹃‎座;SMC‎的一部分‎NGC ‎232 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 23‎3 ─ 这‎是一个星系‎,在仙女座‎NGC‎234 ‎─这是一‎个星系,在‎双鱼座‎N GC 2‎35 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 236‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎237 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 23‎8 ─ 这‎是一个星系‎,在凤凰座‎NGC‎239 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎40 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 241‎─ 这是‎一个星团,‎在杜鹃座;‎S MC的一‎部分N‎G C 24‎2 ─ 一‎个疏散星团‎,在杜鹃座‎;SMC的‎一部分‎N GC 2‎43 ─ ‎这是一个星‎系,在仙女‎座NG‎C 244‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎245 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 24‎6 ─ 这‎是一个行星‎状星云,在‎鲸鱼座‎N GC 2‎47 ─ ‎这是一个漩‎涡星系,在‎鲸鱼座,同‎时这是雕具‎座星系团(‎S culp‎t orG‎r oup)‎的一成员‎NGC ‎248 ─‎这是一个‎喷射星云,‎在杜鹃座;‎S MC的一‎部分N‎G C 24‎9 ─ 这‎是一个喷射‎星云,在杜‎鹃座;SM‎C的一部分‎NGC‎250 ‎─这是一‎个星系,在‎双鱼座‎N GC 2‎51 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 252‎─ 这是‎一个星系,‎在仙女座‎NGC ‎253 ─‎这是一个‎漩涡星系,‎在玉夫座,‎雕具座星系‎团(Scu‎l ptor‎Grou‎p)成员中‎最大的一个‎;有时被‎称为银币星‎系NG‎C 254‎─ 这是‎一个星系,‎在玉夫座‎NGC ‎255 ─‎这是一个‎小漩涡星系‎,在鲸鱼座‎NGC‎256 ‎─这是一‎个带有星云‎状物质的星‎团,在杜鹃‎座;SMC‎的一部分‎NGC ‎257 ─‎这是一个‎星系,在双‎鱼座N‎G C 25‎8 ─ 这‎是一个星系‎,在仙女座‎NGC‎259 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎60 ─ ‎这是一个星‎系,在仙女‎座NG‎C 261‎─ 这是‎一个弥散星‎云,在杜鹃‎座;SMC‎的一部分‎NGC ‎262 ─‎这是一个‎塞弗特星系‎,在仙女座‎,同时亦是‎M rk 3‎48N‎G C 26‎3 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎264 ‎─这是一‎个星系,在‎玉夫座‎N GC 2‎65 ─ ‎一个疏散星‎团,在杜鹃‎座;SMC‎的一部分‎NGC ‎266 ─‎这是一个‎大而遥远的‎漩涡星系,‎在双鱼座‎NGC ‎267 ─‎这是一个‎带有星云状‎物质的星团‎,在杜鹃座‎;SMC的‎一部分‎N GC 2‎68 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 269‎─ 一个‎疏散星团,‎在杜鹃座;‎S MC的一‎部分N‎G C 27‎0 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎271 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎72 ─ ‎一个疏散星‎团,在仙女‎座NG‎C 273‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎274 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 27‎5 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎276 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎77 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 278‎─ 这是‎一个星系,‎在仙后座‎NGC ‎279 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 28‎0 ─ 这‎是一个星系‎,在仙女座‎NGC‎281 ‎─在仙后‎座带有星云‎状物质的星‎团(HII‎区域),同‎时亦是Pa‎c─Man‎吃豆豆星云‎,香港天文‎界译“食鬼‎星云”‎N GC 2‎82 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 283‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎284 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 28‎5 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎286 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎87 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 288‎─ 这是‎一个球状星‎团,在玉夫‎座NG‎C 289‎─ 这是‎一个星系,‎在玉夫座‎NGC ‎290 ─‎一个疏散‎星团,在杜‎鹃座;SM‎C的一部分‎NGC‎291 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎92 ─ ‎小麦哲伦星‎云,这是一‎个不规则星‎系,在杜鹃‎座,同时这‎是本星系群‎的一成员‎NGC ‎293 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 29‎4 ─ 这‎是一个星团‎,在杜鹃座‎;SMC的‎一部分‎N GC 2‎95 ─ ‎失落的天体‎,与NGC‎296一‎样,或者这‎是一个单独‎的星系,在‎双鱼座?‎NGC ‎296 ─‎这是一个‎星系,在双‎鱼座N‎G C 29‎7 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎298 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 2‎99 ─ ‎这是一个带‎有星云状物‎质的星团,‎在杜鹃座;‎S MC的一‎部分‎[编辑] ‎300─3‎99N‎G C 30‎0 ─ 这‎是一个漩涡‎星系,在玉‎夫座,同时‎这是Scu‎l ptor‎Grou‎p一成员‎NGC ‎301 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 30‎2 ─ 这‎是一个恒星‎,在鲸鱼座‎NGC‎303 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 3‎04 ─ ‎这是一个星‎系,在仙女‎座NG‎C 305‎─ 这是‎六颗星组成‎的星群,在‎双鱼座‎N GC 3‎06 ─ ‎这是一个带‎有星云状物‎质的星团,‎在杜鹃座;‎是SMC的‎一部分‎N GC 3‎07 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 308‎─ 这是‎一颗恒星,‎在鲸鱼座‎NGC ‎309 ─‎这是一个‎漩涡星系,‎在鲸鱼座‎NGC ‎310 ─‎这是一颗‎恒星,在鲸‎鱼座N‎G C 31‎1 ─ 这‎是一个透镜‎状星系,在‎双鱼座‎N GC 3‎12 ─ ‎这是一个星‎系,在凤凰‎座NG‎C 313‎─ 这是‎一个三合星‎,在双鱼座‎NGC‎314 ‎─这是一‎个barr‎e d 漩涡‎星系,在玉‎夫座N‎G C 31‎5 ─ 这‎是一个星系‎,在双鱼座‎‎N GC 3‎17 ─(‎同时亦是N‎G C 31‎7B)这是‎一个bar‎r ed 漩‎涡星系,在‎仙女座,与‎N GC 3‎17A相结‎合NG‎C 317‎A ─ 这‎是一个透镜‎状星系,在‎仙女座‎N GC 3‎18 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 319‎─ 这是‎一个星系,‎在凤凰座‎NGC ‎320 ─‎这是一个‎漩涡星系,‎在鲸鱼座‎NGC ‎321 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 32‎2 ─ 这‎是一个星系‎,在凤凰座‎NGC‎323 ‎─这是一‎个星系,在‎凤凰座‎N GC 3‎24 ─ ‎这是一个星‎系,在凤凰‎座NG‎C 325‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎326 ─‎这是一对‎相连接的星‎系,在双鱼‎座NG‎C 327‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎328 ─‎这是一个‎b arre‎d漩涡星‎系,在凤凰‎座NG‎C 329‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎330 ─‎这是一个‎球状星团,‎在杜鹃座;‎S MC的一‎部分N‎G C 33‎1 ─ 不‎详,可能是‎M CG-0‎1-03-‎012(在‎鲸鱼座的一‎个星系)‎NGC ‎332 ─‎这是一个‎星系,在双‎鱼座N‎G C 33‎3 ─ 这‎是一个对星‎系,在鲸鱼‎座NG‎C 334‎─ 这是‎一个漩涡星‎系,在玉夫‎座NG‎C 335‎─ 这是‎一个漩涡星‎系,在鲸鱼‎座NG‎C 336‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎337 ─‎这是一个‎漩涡星系,‎在鲸鱼座‎NGC ‎338 ─‎这是一个‎漩涡星系,‎在双鱼座‎NGC ‎339 ─‎这是一个‎球状星团,‎在杜鹃座;‎S MC的一‎部分N‎G C 34‎0 ─ 这‎是一个漩涡‎星系,在鲸‎鱼座N‎G C 34‎1 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎342 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 3‎43 ─ ‎这可能是一‎个星系,在‎鲸鱼座‎N GC 3‎44 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 345‎─ 这是‎一个漩涡星‎系,在鲸鱼‎座NG‎C 346‎─ 这是‎一个带有星‎云状物质的‎星团,在杜‎鹃座;SM‎C的一部分‎ NGC‎347 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 3‎48 ─ ‎这是一个漩‎涡星系,在‎凤凰座‎N GC 3‎49 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 350‎─ 这是‎一个星系,‎在鲸鱼座‎NGC ‎351 ─‎这是一个‎星系,在鲸‎鱼座N‎G C 35‎2 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎353 ‎─这是一‎个barr‎e d 漩涡‎星系,在鲸‎鱼座N‎G C 35‎4 ─ 这‎是一个ba‎r red ‎漩涡星系,‎在双鱼座N‎G C 35‎6 ─ 这‎是一个漩涡‎星系,在鲸‎鱼座N‎G C 35‎7 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎358 ‎─这是四‎颗星组成的‎星群,在仙‎后座N‎G C 35‎9 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎360 ‎─这是一‎个漩涡星系‎,在杜鹃座‎NGC‎361 ‎─这是一‎个星团,在‎杜鹃座;是‎S MC的一‎部分?‎N GC 3‎62 ─ ‎这是一个球‎状星团,在‎杜鹃座‎N GC 3‎63 ─ ‎这是一个星‎系,在鲸鱼‎座NG‎C 364‎─ 这是‎一个透镜状‎星系,在鲸‎鱼座N‎G C 36‎5 ─ 这‎是一个漩涡‎星系,在玉‎夫座N‎G C 36‎6 ─ 这‎是一个疏散‎星团,在仙‎后座N‎G C 36‎7 ─ 这‎是一个星系‎,在鲸鱼座‎NGC‎368 ‎─这是一‎个漩涡星系‎,在凤凰座‎NGC‎369 ‎─这是一‎个漩涡星系‎,在鲸鱼座‎NGC‎370 ‎─ NGC‎372中‎的两颗星?‎NGC‎371 ‎─这是一‎个带有星云‎状物质的星‎团,在杜鹃‎座;SMC‎的一部分‎NGC ‎372 ─‎这是一个‎三合星,在‎双鱼座‎N GC 3‎73 ─ ‎这是一个椭‎圆星系,在‎双鱼座‎N GC 3‎74 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 375‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎376 ─‎一个疏散‎星团,在杜‎鹃座;SM‎C的一部分‎NGC‎377 ‎─这是一‎个星系,在‎鲸鱼座‎N GC 3‎78 ─ ‎这是一个漩‎涡星系,在‎玉夫座‎N GC 3‎79 ─ ‎这是一个透‎镜状星系,‎在双鱼座‎NGC ‎380 ─‎这是一个‎椭圆星系,‎在双鱼座‎NGC ‎381 ─‎一个疏散‎星团,在仙‎后座N‎G C 38‎2 ─ 这‎是一个椭圆‎星系,在双‎鱼座N‎G C 38‎3 ─ 这‎是一个透镜‎状星系,在‎双鱼座‎N GC 3‎84 ─ ‎这是一个椭‎圆星系,在‎双鱼座‎N GC 3‎85 ─ ‎这是一个椭‎圆星系,在‎双鱼座‎N GC 3‎86 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 387‎─ 这是‎一个椭圆星‎系,在双鱼‎座NG‎C 388‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎389 ─‎这是一个‎透镜状星系‎,在仙女座‎NGC‎390 ‎─这是一‎个星系,在‎双鱼座‎N GC 3‎91 ─ ‎这是一个椭‎圆星系,在‎鲸鱼座‎N GC 3‎92 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 393‎─ 这是‎一个星系,‎在仙女座‎NGC ‎394 ─‎这是一个‎漩涡星系,‎在双鱼座‎NGC ‎395 ─‎这是一个‎带有星云状‎物质的星团‎,在杜鹃座‎;SMC的‎一部分‎N GC 3‎96 ─ ‎这是一个星‎系,在双鱼‎座NG‎C 397‎─ 这是‎一个星系,‎在双鱼座‎NGC ‎398 ─‎这是一个‎漩涡星系,‎在双鱼座‎NGC ‎399 ─‎这是一个‎星系,在双‎鱼座‎[编辑] ‎400─4‎99N‎G C 40‎0 ─ 这‎是双鱼座的‎一个星系。

The interstellar medium in the edge-on galaxy NGC 5907

The interstellar medium in the edge-on galaxy NGC 5907

Astron.Astrophys.325,124–134(1997)ASTRONOMYANDASTROPHYSICSThe interstellar medium in the edge-on galaxy NGC5907Cold dust and molecular line emissionM.Dumke1,J.Braine2,3,M.Krause1,R.Zylka1,R.Wielebinski1,and M.Gu´e lin31Max-Planck-Institut f¨u r Radioastronomie,Auf dem H¨u gel69,D-53121Bonn,Germany2Observatoire de Bordeaux,URA352,CNRS/INSU,B.P.89,F-33270Floirac,France3Institut de Radioastronomie Millim´e trique,300rue de la Piscine,F-38406St.Martin d’H`e res,FranceReceived17February1997/Accepted18March1997Abstract.In this paper we present new observations of the interstellar medium in the non-interacting edge-on galaxyNGC5907.We have observed the J=2−1and J=1−0lines of the12CO molecule and radio continuum emission atλ1.2mm.The distribution of the molecular gas(as traced by CO)shows a maximum in the central region and a ring or spiral arm atr∼7kpc.Further analysis of the major axis distribution reveals evidence for an inner ring-like structure at r∼3.5kpc.Thekinematics can be described by rigid rotation in the inner part,a turnover at∼3kpc,and differential rotation with a velocityof230km/s in the outer disk.The observed continuum emission is mainly due to thermalradiation of cold dust with an average temperature of T d=18K,with a small gradient from20K to16K from the centre to theouter disk.This cold dust component is necessary to explain ourresults.The dust emission closely follows the molecular gas in thecentral region,but is also detected at large radii where no COcan be seen.In these regions the dust absorption cross sectionper H atom atλ1.2mm is estimated to beσHIλ∼4.510−27cm2, a value similar to that in the outer parts of other galaxies.From theλ1.2mm emission we estimated a molecularmass of NGC5907of0.9109M ,about50%smaller thanfrom the CO emission.By combining the CO and contin-uum data we found that the CO-H2-conversion ratio increaseswith galactocentric radius,from∼0.71020at the centre to ∼1.61020cm−2/K km s−1at r=7.5kpc.A comparison of NGC5907and other edge-on galaxies con-cerning gas distribution,central kinematics and dust propertiesis presented.Key words:galaxies:individual:NGC5907–galaxies:ISM–galaxies:kinematics and dynamics–infrared:galaxies–radio continuum:galaxies–radio lines:galaxiesSend offprint requests to:M.D.(mdumke@mpifr-bonn.mpg.de)1.IntroductionThe evolution of spiral galaxies and their properties are deter-mined by many processes.One of the most important pointsis the occurrence and time-scale of star formation,which de-pends mainly on the amount,composition,and distribution ofthe available raw material.This raw material consists of neutralgas in either atomic or molecular form.The amount of atomic hydrogen can easily be derived frommeasurements of the21cm line of HI.The mass of molecu-lar hydrogen,on the other hand,is usually determined indi-rectly by observing the lowest rotational transition of the COmolecule.The measured line intensities are converted into H2column densities using a conversion factor X=N H2/I CO(1−0). The estimated molecular mass,however,is quite uncertain be-cause X is still a matter of debate(e.g.Maloney&Black1988;Combes1991;Arimoto et al.1996).Observations of thermal dust emission at mm-wavelengthsprovide an alternative way to estimate the total mass of the in-terstellar matter of a spiral galaxy.Although this emission isdifficult to observe due to its weakness,it has several advan-tages.Firstly,at millimeter wavelengths the dust is opticallythin.Secondly,the emission scales roughly with thefirst powerof the temperature.Thirdly,at this wavelength the dust absorp-tion cross sections do not depend very much on physical dustproperties like grain size,shape,composition,and surface prop-erties(Hildebrand1983;Draine&Lee1984).And,finally,in-terstellar dust is about2orders of magnitude more abundantthan the most abundant CO molecule in normal spiral galaxies.In the last few years,the advent of multi-channel bolometerarrays has made it possible to obtain high quality maps(i.e.highangular resolution and high sensitivity)of the cold dust emissionof nearby spiral galaxies.In order to study the relation of thedust to the atomic and molecular hydrogen in a normal late-type spiral,we decided to observe the non-interacting edge-ongalaxy NGC5907.This galaxy shows a relatively low level of star formationfrom the weak infrared emission measured by IRAS(Young etM.Dumke et al.:The interstellar medium in the edge-on galaxy NGC5907125al.1989).Therefore it is–together with NGC4565observedby Neininger et al.(1996)–some kind of counterpart to themore active galaxies already observed in the radio continuumat mm-wavelengths:NGC891(Gu´e lin et al.1993),NGC3079(Braine et al.1997),NGC3627(Sievers et al.1994),NGC4631(Braine et al.1995),and M51(Gu´e lin et al.1995).NGC5907was observed in the HI-line twenty years ago andwas thefirst non-interacting galaxy where a galactic warp couldbe detected(Gu´e lin et al.1974;Sancisi1976).Former CO mea-surements(Sofue1994;Garc´ıa-Burillo&Gu´e lin1995)haveshown that this galaxy is relatively weak in CO.Although itsnearly edge-on orientation of i∼86◦.5does not allow us to ob-serve the emission of individual star forming regions or spiralarms in the disk,this inclination increases the column densityalong the line of sight to a significant and easier measurablevalue.Therefore NGC5907is a good candidate to study the ra-dial distribution of the dust and its correlation with the molecularand atomic hydrogen distributions.This will be done especiallyin comparison with the other non-interacting edge-on galaxiesmentioned above,namely NGC891and NGC4565.The latterone shows an even lower star formation activity than NGC5907and is also CO-weak,whereas NGC891contains a considerableamount of molecular gas and shows a relatively high level ofstar formation.These two galaxies are classified as Sb and Sbc,respectively,in contrast to the Sc-galaxy NGC5907.Furthermore edge-on galaxies are suitable to investigate thethickness of the gas and dust layer.Since NGC5907is lackingstrong star formation,one does not expect to detect a thick diskor halo in this galaxy because star formation and the existenceand structure of a gaseous halo seem to be directly connected(e.g.Dahlem et al.1995).In this paper we present our molecular line and bolometerobservations of NGC5907.The following section describes theobservations and the data reduction.Sect.3presents the resultswe obtained from the CO observations.In Sect.4we discussthe thermal dust emission.We estimate dust temperatures andabsorption cross sections,and compare the distribution of thecold dust with that of the atomic and molecular gas.From this weget some hints on how the CO-H2-conversion factor may vary ingalactic disks.In Sect.5the results for NGC5907are comparedwith those obtained for other edge-on galaxies,and thefinalsection gives a summary of our results and some concludingremarks.Table1lists some basic parameters of NGC5907which willbe used throughout this paper.2.Observations and data reductionThe observations presented here were all made with the30mtelescope of the Institut de Radio Astronomie Millim´e trique(IRAM),located on Pico Veleta(Spain).2.1.Molecular line observationsThe observations of the12CO(1−0)and the12CO(2−1)lineswere done in May1995and July1996.We used one3mm(two Table1.Some basic parameters of NGC5907Type Sc(de Vaucouleurs et al.1991)λ1.2mm centre:(this work)R.A.[1950]15h14m35s.7Dec.[1950]56◦30 37 .0Dynamical centre:(Garc´ıa-Burillo et al.1997)R.A.[1950]15h14m35s.5Dec.[1950]56◦30 43 .3v hel677km/s(Garc´ıa-Burillo et al.1997) Distance11Mpc(Sasaki1987)(1 corresponds to53pc)Pos.Angle155◦(Barnaby&Thronson1992)Incl.86.5◦(Garc´ıa-Burillo et al.1997)during the second observing period)and two1mm SIS receivers available at the30m telescope simultaneously.The receivers were tuned for image sideband rejections≥10dB(≥30dB at115GHz).The system temperatures were300-400K at 115GHz and500-700K at230GHz(in the T∗A scale).In the following we use main-beam line brightness temperatures T mb. These are converted from the antenna temperatures,corrected for atmospheric attenuation and rear spillover,T∗A,through T mb=T∗A/ηmb.The beam efficienciesηmb=B eff/F eff are0.73 and0.45for115and230GHz,respectively.The beamwidth was measured on Mars to be21 for the12CO(1−0)line and 11 for the12CO(2−1)line.The backends used consisted of two512×1MHz channelfilter banks,connected to one3mm and one1mm receiver,and an autocorrelator unit,connected to the other1mm receiver(and the other3mm receiver in July 1996).The observations were centered on the major axis of the galaxy.Adopting the central position from the bolometer ob-servations(given in Table1),we observed several points out toa projected radius of240 with12 spacings near the centre and24 spacings further out.Additionally we observed a few points above and below the major axis at distances of12 and24 from the plane.The observations were made by wobbling the subre-flector at a rate of0.5Hz between the source and a reference position located between±2 and±4 in azimuth(depending on the observing position and the orientation of the source).Some scans at larger radii were observed in the position-switching mode with on-and off-position located symmetrically around the center.Cold load calibrations were made every4-8minutes.During the CO observations we checked the pointing ac-curacy in two different ways.Firstly,we made pointing scans towards1641+399and1418+546every1-2hours.Sec-ondly,we measured(every∼2hours)small cuts perpendic-ular to the major axis at the center,consisting of three points at z=0 ,+12 ,and−12 ,and checked their symmetry,since the central point is expected to be strongest and the intensity of both off-axis points to be roughly equal.From these cuts and the pointing corrections made after each pointing scan we conclude that the mean pointing uncertainty is∼1 .5.The data reduction was done in a standard manner using the GILDAS software package.126M.Dumke et al.:The interstellar medium in the edge-on galaxy NGC59072.2.Bolometer observationsTheλ1.2mm observations were carried out in March1995withthe19-channel bolometer array developed at the Max-Planck-Institut f¨u r Radioastronomie,Bonn.The19channels are lo-cated in the centre and on the sides of two concentric regu-lar hexagons,with a spacing between two adjacent channels(beams)of20 .The central frequency and bandwidth of thebolometer are estimated to be245GHz and70GHz respec-tively(Gu´e lin et al.1995).For calibration purposes we haveobserved maps of Mars and Uranus during the bolometer obser-vations.These maps yielded a conversion factor from observedcounts to mJy/beam area of0.32mJy(beam area)−1count−1.The beamwidth at this frequency is∼10 .7.The continuum maps of NGC5907were observed in the Az-El coordinate system,with a scanning speed of4 /s in Azimuthwith data-acquisition every2 ,and a subscan separation of4in elevation.During the observations,the subreflector was wob-bled at2Hz in azimuth,with a beam throw of1 .The startingpoint of each subscan was shifted a few arcseconds in azimuthwith respect to the preceding one,which leads to a skewed shapeof each single coverage in the Az-El space,with two edges ofthe maps parallel to the major axis of the galaxy.This as wellas the use of different map sizes(between330 ×100 and 250 ×180 )was done in order to ensure that each subscan covers the galaxy and at least90 of blank sky on either side.We observed a total offifteen single maps of NGC5907,fivecentered on the optical centre(Barnaby&Thronson1992),theothers shifted164 along the major axis to the northwest andsoutheast,respectively.Since the optical centre and the centre oftheλ1.2mm emission(as found by our observations)differ bya few arcseconds,all offsets throughout this paper are relativeto the latter position which is given in Table1.During the bolometer observing session the pointing accu-racy was checked every1-2hours on1418+546.The pointingcorrections were always smaller than3 .The atmosphere wasrelatively stable and the sky opacity was∼0.2most of the time(always smaller than0.3).NGC5907was observed at relativelyhigh elevations(55◦-70◦)what reduces possible calibration er-rors,which are typically of the order15%.The data reduction was done with the MOPS software.Asecond order baseline wasfitted to each individual scan in az-imuth direction.Thefinal restoration was done applying the“mask-and-shift”restoring method,as outlined in the“PocketCookbook”(Zylka1996).3.Molecular gas in NGC59073.1.Observational results and kinematicsThe spectra along the major axis of the galaxy obtained duringthe molecular line observations are shown in Fig.1.The max-imum peak temperatures of∼0.33K and∼0.36K for theCO(1−0)and the(2−1)line respectively are reached near thecenter.CO is detected up to radii of more than200 (∼11kpc).A striking feature of many of the spectra(r≤80 )is thatthe observed lines contain at least two components,and thatthe Fig.1.Maps of the observed12CO(1−0)(left)and12CO(2−1)(right) major axis spectra of NGC5907,smoothed to a velocity resolution of 10.4km/s.The scale of the spectra is indicated by the small box at the bottom.Offsets are along the major axis,north is negativecentral spectrum shows a clear asymmetry.A natural explana-tion for the latter is that the location of the dynamical centre of the galaxy is not at x=0 (the centre of theλ1.2mm emission), but shifted by a few arcseconds to the northwest.This idea is also supported by the small asymmetry visible in the position-velocity diagrams(Fig.2).Garc´ıa-Burillo et al.(1997),who observed the central region of NGC5907using the Plateau de Bure interferometer,found the dynamical centre of the galaxy atα1950=15h14m35.s5,δ1950=56◦30 43. 3.This corresponds to(x,z)=(−6. 4,+1. 2)in our coordinates.They also found a small offset between the dynamical centre of the galaxy and theM.Dumke et al.:The interstellar medium in the edge-on galaxy NGC 5907127Fig. 2.Position-velocity diagram of the 12CO(1−0)(left)and the 12CO(2−1)(right)observations parallel to the major axis at z =0.Contour levels are -0.04(dashed),0.04,0.08,0.12,...,0.4K for both tran-sitions.The velocity resolution is 20km/s.The rms noise is variable along the major axis with a typical value of about 30mK for both transitions.The thick lines indicate the rotation curve as described in the text-200-100100200radius [arcsec]0204060d e p r o j e c t e d C O i n t e n s i t y [a .u .]-200-100100200x offset [arcsec]10203040I C O [K k m /s]Fig.3.a Observed (dashed line and filled black circles)and modelled (solid line)12CO(1−0)intensity distribution along the major axis of NGC 5907.The modelled distribution is obtained by a least-squares-fit and results from the line-of-sight-integrated radial distribution shown in b .b Adopted radial CO profile which leads to the major axis distribution as shown in aposition of the maximum CO intensity,which is in agreement with our results.The kinematics of NGC 5907can basically be described by rigid rotation up to a radius of ∼55 (which corresponds to ∼3kpc),followed by differential rotation with a rotational ve-locity of 230km /s.These values are relative to the systemic ve-locity of 677km /s and the dynamical centre given in Tab.1.The rotation curve follows from this work and the HI data (Caser-tano 1983)and is plotted as a thick line on the position-velocity diagrams (Fig.2).There are,however,a few deviations from this simple behaviour.A second line component is visible in the spectra near the central region (at |x |<30 ).Here the rigid (“normal”)rotation of the inner disk is accompanied by a high-velocity wing,with a much larger velocity gradient.This component is visible in the individual spectra as well as in the p -v -diagrams,and leads to a total line width of about 350km/s atthe assumed central position.It most probably results from non-circular motions due to a bar,as already suggested by Garc´ıa-Burillo &Gu´e lin (1995)and Garc´ıa-Burillo et al.(1997).3.2.Radial gas distributionThe observed major axis distribution of the CO intensity is the sum of the radial distribution and a projection effect (by which the emission at several radii is projected onto a certain position on the major axis).In order to deproject this distribution,we as-sumed a radial model function,consisting of a central Gaussian peak and two Gaussian rings,and fitted the resulting major axis distribution to the data.The existence of two ring-like struc-tures is suggested by two intensity maxima (at x ∼±60 and x ∼±120 )on either side of the centre in the p -v -diagrams.128M.Dumke et al.:The interstellar medium in the edge-on galaxy NGC5907Fig.4.Contour map of the continuum emission of NGC 5907at 245GHz,overlaid onto an optical image extracted from the Digitized Sky Survey.The beam size of 15 is indicated by the filled white circle in the lower right corner.The rms noise depends on the location in the map;on the galaxy it is about 1.5mJy/beam area,contour levels are 4,8,...,24mJy/beam area.The thin black lines indicate the λ1.2mm centre and the major axis of the galaxy as given in Table 1Additionally this distribution with two rings fits the data better than a distribution with just one ring (at r ∼120 ).The result can be seen in Fig.3.The best fit was obtained for ring radii of r 1=3.7kpc and r 2=7.0kpc and widths (FWHM)of Θpeak =4.4kpc,Θring1=1.4kpc,and Θring2=2.3kpc for the central peak and the inner and outer ring respectively.However,the outer “ring”may in fact be spiral arms seen more or less tangentially.4.Cold dust in NGC 59074.1.Observational resultsA contour map of the λ1.2mm continuum emission,overlaid onto an optical image extracted from the Digitized Sky Survey,is shown in Fig.4.This λ1.2mm-map is already smoothed to a beamsize of 15 to improve the signal-to-noise ratio.The emission is concentrated along a narrow ridge which follows closely the dusty optical disk,but is less extended,per-haps because of the sensitivity limit of our data.Although the emission is enhanced near the centre,there is no evidence for a nuclear point source.Several local maxima are visible along the major axis,but with some difference between the northern and the southern half.Whereas in the north there are three separatepeaks at projected radii of about 1 ,2 ,and 3.5,they seem to be somehow smeared out in the southern half,except the one atx ∼3 .5.In Fig.5we show the λ1.2mm continuum map,smoothed to a resolution of 21 HPBW,together with an HI total intensity map as received from Sancisi (m.),and the positions observed in the CO lines.NGC 5907is a really exemplary galaxy for the existence of galactic warps in neutral hydrogen (Sancisi 1976).It is,moreover,the first “normal”galaxy where a warp in the outer disk was observed.But in contrast to NGC 4565,another normal edge-on galaxy recently observed at λ1.2mm (Neininger et al.1996),no indication for a warp of the ther-mal dust emission can be seen (although the northernmost peak seems to be slightly shifted westwards with respect to the major axis).This may of course be due to the decreasing sensitivity at the outer edges of our dust map,which we reach at radii of ∼300 ,where the HI-warp is only marginally detected.4.2.ISM distributions along the major axisFig.6shows the distribution of the λ1.2mm continuum emis-sion along the major axis,together with the line intensities of the 12CO(1−0)and the HI emission.The spatial resolution of all three data sets is 21 ,as given by the 12CO(1−0)data.The continuum emission shows (more clearly in this plot than in the maps)the existence of two bright maxima at the end of the emission ridge (x ∼±200 )and of two less pronounced ones at x ∼±120 ,even if the southeastern one seems to be smeared out.Besides these similarities between the northern and the southern half the distribution is slightly asymmetric on smaller scales.The emission is detected up to radii of ∼250 in the south and even further,up to ∼280 ,in the northern half (with a significance of 2σ).Since there is λ1.2mm continuum emission beyond the edge of the CO disk,dust associated with the atomic component makes a significant contribution to the 1.2mm flux.The distribution of the CO line-intensities (and therefore the column densities of the molecular gas)shows also a maximum in the central region and decreases with increasing distance from the centre.Two further maxima are apparent at x ∼±120 .These features may be due to molecular rings and/or spiral arms in the inner part of the disk.The HI distribution shows a different behaviour.It has a minimum near the centre,increases at x ≤80 ,stays then roughly constant with several local peaks up to x ∼±200 ,and drops again further outwards.Hence this component is much more extended than the molecular gas in this galaxy.If we compare the dust emission with both gas phases,we find that it correlates with the molecular gas in the inner part ofM.Dumke et al.:The interstellar medium in the edge-on galaxy NGC5907129Fig.5.Contour maps of theλ1.2mm con-tinuum emission(left)and the HI line emis-sion(middle),as well as positions observed in the CO lines(right),all at the same scale and aligned in declination.The spatial reso-lution of the two maps is21 .Contour lev-els are3,7,12,18,25,33mJy/beam area for theλ1.2mm map and8,15,25,40,55, 701020atoms cm−2for the HI mapthe disk.At large radii,on the other hand,where CO is no longer detected,it seems to follow the HI emission.This result con-firms qualitatively that for NGC4565of Neininger et al.(1996). At smaller scales,wefind the two outer peaks in the dust emis-sion at x∼±200 corresponding to local maxima in the HI distribution,although there is a small displacement,especially on the southeastern side.From both CO peaks at x∼±120 only the northwestern one has a clear counterpart in the dust distribution,whereas in the southeastern half the dust emission shows just a small enhancement at this radius.4.3.Disk thicknessGarc´ıa-Burillo et al.(1997)estimated from their Plateau de Bure observations of the central region of NGC5907an inclina-tion of86.5◦and a thickness of the molecular disk of≤3 .In or-der to check if this is in agreement with our observations,wefit-ted the observed z-distribution(the averaged spectra are shown in Fig.7)with a Gaussian profiing the beamwidths given in Sect.2.1we determined a deconvolved thickness(FWHM) of the CO emission ridge of(13±5) ,somewhat thicker than in NGC4565(Neininger et al.1996).Additional off-axis ob-servations at x=60 have shown that this apparent thickness is nearly constant along the major axis.In order to estimate the extent of the atomic gas and the thermal dust emission perpen-dicular to the plane,we performed cuts along the minor axis of both maps.These lead to a mean beam deconvolved FWHM of the emission of(47±4) for the HI and(16±4) for the λ1.2mm emission.Since the galaxy is not perfectly seen edge-on,but under an inclination of i=86.5◦,a particular fraction of the off-axis emission is just projected from large radii to large z.We modelled this emission,using the radial CO profile obtained in Sect.3.2and a similar model,consisting of three rings,for the HI emission.The best agreement between model and data is found for a disk with a thickness(FWHM)of8 (which corresponds to∼400pc)for the CO and of28 (∼1.5kpc)for the HI.Both values seem to be unexpectedly large for a non-interacting spiral with only moderate star forming activity.We should note,however,that it is difficult to account for a warp in this simple modelling,and the results are very sen-sitive to the exact values of the inclination and the telescope beamwidth.Therefore,due to the large uncertainties,a thin molecular disk cannot be ruled out.4.4.Dust properties4.4.1.Non-dust contributions to the observedfluxUsing a ring integration method,we have determined the total flux density atλ1.2mm and found S1.2mm=605±55mJy.This value,however,cannot be attributed to thermal dust radiation alone.The broad band emission measured with the bolome-ter at245GHz rather consists of several components:thermal dust emission,free-free radiation,synchrotron radiation,and the CO(2−1)and some weaker lines.Since we are mainly in-terested in thefirst,we have to determine the contributions due to the other processes and to subtract them.The contribution of the12CO(2−1)line to the surface brightness measured with the bolometer can be calculated throughF line=2kν3c−3∆νbolΩbeam I CO(2−1)≈0.058I CO(2−1)(1) (with I CO(2−1)=lineT mb(12CO(2−1))dv in Kkms−1)for a bolometer bandwidth of70GHz and a beamwidth of11 for the continuum observations.With an assumed contribution of other isotopes and lines from other molecules of about10%of 12CO we estimate a totalflux density due to line contributions of S line=52±4mJy.The contribution of the continuum emission due to thermal and relativistic electrons is more difficult to determine since the130M.Dumke et al.:The interstellar medium in the edge-on galaxy NGC 5907300200100-100-200-300x offset [arcsec]010203040I C O [K k m /s ]SENW403020100I 1.2mm [mJy/b.a.]HI1.2 mmCO(1-0)Fig.6.The distribution of the 12CO(1−0)(thick dashed line,left scale)and the λ1.2mm continuum (thick solid line,right scale)along the major axis of NGC 5907.The HI distribution (thin solid line,arbi-trary units)is also shown.The spatial resolution in all three curves is 21radio continuum flux density at ν=1−10GHz originates partly in a double background source in the southern half of the galaxy (Hummel et al.1984;Dumke et al.1995).Furthermore the spectral behaviour of this background source is unknown,and the fraction of the galaxies’thermal emission is difficult to estimate.We used a total flux density of 47±5mJy at a frequency of 10.55GHz as derived by Dumke et al.(1995),a thermal fraction of 30%at this frequency and a nonthermal spectral index of −0.85which are typical for spiral galaxies (Niklas et al.1997)to calculate a value of S sync+ff =13±4mJy at 245GHz,which is about 2%of the total flux density.Besides these integrated values,we had to estimate the non-dust contributions along the major axis.The fraction of the CO lines,i.e.the line-to-continuum ratio,was calculated for each position from the CO(2−1)line following Eq.1and subtracted.Again we assumed that a fraction of 10%of the 12CO(2−1)-line stems from other lines in the bolometer band.For the free-free and synchrotron emission,we subtracted a fraction of 2%at each position,in accordance with the value estimated above.4.4.2.Dust temperaturesAfter subtracting the contributions of molecular lines and of synchrotron and free-free radiation,we determined a total flux density at 245GHz due to thermal dust emission ofS dust =540±60mJy .Including published IRAS flux densities (Young et al.1989)our observations allow to estimate color temperatures for the dust.We fitted a two-component modified Planck function to the data,using the points from 25µm to 1.2mm and under the assumption of a dust spectral index of 2(e.g.Chini et al.1986).The observed spectrum and the fitted curves (as well as their sum)are shown in Fig.8.The estimated temperatures for the two components to which we refer as cold and warm dust are 18K and 54K respectively.This result shows thatcoldFig.7.Averaged 12CO(1−0)and (2−1)spectra of the cuts through the centre.The portion of the spectra shown in each box ranges from v hel =300km /s to v hel =1000km /s and from T mb =−0.1K to T mb =0.4Kdust is necessary to explain the thermal continuum emission at λ1.2mm.The warmer dust alone which can be detected in the far-infrared by IRAS is not sufficient to account for the strong mm-emission and to explain our data.Although NGC 5907is a relatively inactive galaxy which does not show any signs of remarkable star forming activity (e.g.Dumke et al.1995),the dust emission is slightly enhanced at smaller galactocentric radii,and the dust may be somewhat warmer in this region.The FIR emission of NGC 5907was mapped by Wainscoat et al.(1987),using the IRAS CPC in-strument,at λλ50and 100µm with a resolution of 75 and 89 respectively.These maps were used to obtain spectra at different positions along the major axis of NGC 5907.We found that the temperature of the cold dust is somewhat higher in the central region (∼20K)than the value we got from the integrated flux densities,and drops to ∼16K at the outer disk.A similar de-crease is also found for other normal disk galaxies like NGC 891(Gu´e lin et al.1993),NGC 4565(Neininger et al.1996),or our Milky Way (Cox &Mezger 1989).。

地球未来狂想曲

地球未来狂想曲

切。 利尔让助手把那些羚羊 肉扔进笼子 , 然
后 自己和 助 手 在 草 丛 里 躲 藏起 来 。 母 豹 观 察 了很 久 ,发 现 没 有 了 两个 总 盯住 自己 的人 , 抖 地 站起 来 , 头 去 闻那 颤 低
在 拯救 大猩 猩 的努力 宣告 失败之 后 ,生物 学家 留下 了最后 一只 大 猩猩 的细胞 , 为未 来克 隆大猩 猩的种 子细胞 。 作
维普资讯
上。再有 10多公里, 0 就到 了交货 的港 口。
铁笼里 的母豹又被饿 了整整 4 0多个小时。
幼 豹 的 尸 体 ,科 尔 和助 手 没 有清 理 出 世界 上仅存 的 一只 大猩猩 “ 天”死 在 了乌干达 、卢 旺达 和 刚果 昨 ( 交界地 带 的维 龙加 火 山群 , 身高 17 米 , 重 20公斤 , 金) 它 .0 体 5 当一个 美国 灵长 类动 物学 家小组 跟踪 它 的足 迹 1 天 , 2 终于 在 一片浓 密 的草丛
中找到 它 时, 已经 处于垂 死状 态 。初步 尸检 结果 显示 , 它 死亡 原 因是 近
去, 就那 么挂在铁笼底部的栏杆上 , 血液 已
经 凝 固 。 那 失 去 生命 而无 神 的眼 睛 , 乎 它 似
还带着委屈看着 自己的母亲 。母豹的周 围 扔着各种 各样的鲜 肉: 肉, 肉 , 牛 猪 可是母
化之 外, 还彻 底 改变 了地理 状况 。亚洲和 西方之 间开通 了一条 注定 要 改 变北极 地 区的新航 海路 线。
它抬 出了铁笼。他和助手把铁笼里的羚羊
肉和 死 去 的 幼豹 放 在 母 豹 的身 边 ,然 后 远 远 地 隐 蔽起 来 。
历代 冒险家和地理学家梦寐以求的这条极地捷径成为各船运公 司的主要 目标。 如连接世界两大消费城市的伦敦——东京航线就从 例 23 . 万公里缩短到了 16万公里。大阪和鹿特丹之闻的航程也缩短 了 . 2 周左右 但并非所有的都是好处。极地地 区对于地球的气候体系具

望远镜座

望远镜座

观测重点
观测重点
观察者讯据英国《卫报》当地时间2020年5月6日报道,天文学家于当天宣布,他们观测到了迄今为止距离 地球最近的一个黑洞,其距离我们仅有1000光年之遥。望远镜座的HD星体系统先前被天文学家们认为是一个双星 系统,但是天文学家通过欧洲南方天文台(ESO)的智利拉锡亚天文台的MPG/ESO2.2米望远镜仔细观察发现,原 来它是一个三合星系统,不过只有两颗星体能被我们看到,而其中不能被我们看到的那个星体就是黑洞。根据天 文学家的说法,这两颗恒星中其中之一正以40天的公转周期围绕着一个看不见的天体运行,而另一颗则在更加遥 远的地方独自运行着。他们推断,这个黑洞是由恒星“死亡”时坍缩而成的,质量大约为太阳的4倍。
望远镜座
南天星座之一
01 星座简介
03 观测重点 05 星座神话
目录
02 星座主要星体 04 深空天体 06 邻接星座
基本信息
望远镜座是法国天文学家修道士拉卡伊于1751年-1752年在好望角观测南天星空时划分的一个小星座,中心 赤经19时0分,中心赤纬-52度,是南天一个不起眼的黯淡星座。每年7月10日子夜,望远镜座中心上中天。其中 亮于5.5等的恒星有17颗,亮于6等(即理论目视可见)的恒星有29颗。最亮星为望远镜座α,中文名鳖一(3.54 等),是一颗4等以上的亮星。望远镜座δ是一对双星,两子星的星等分别为4.91等和5.06等,间距为8″,使用 小口径望远镜即可分辨。原来被认为是双星系统的HD系统被推测还有黑洞存在,并组成三合星系统,而这可能是 离地球最近的黑洞
望远镜座望远镜座象征天文学家卡西尼在巴黎天文台所用的有绞车支撑的大型折射望远镜。
星座主要星体
星座主要星体
约翰·波得1805年所图星图将望远镜座起名“Astronomische Fernrohr”并保持原本划定的尺寸,但后来 的天文学家弗朗西斯·贝利与本杰明·阿普索普·古尔德都将望远镜座缩小。许多很亮的恒星划入其他星座,拉 卡伊把人马座的人马座η(箕宿四)划入望远镜座成为望远镜座β,但被后世的天文学家撤消。古尔德把望远镜 座γ划入天蝎座并更名天蝎座G(傅说),望远镜座θ是拉卡伊划入望远镜座的蛇夫座d(糠),后世天文学家将 它送回蛇夫座;望远镜座σ划入南冕座,起初没有列入星表,后来得名HR 6875。拉卡伊起名望远镜座η的天体 是疏散星团托勒密星团,如今位于天蝎座,古尔德认为视星等达到5的恒星就可以用拜耳命名法分配希腊字母,所 以曾为其中一颗恒星命名。

ngc编号规则

ngc编号规则

ngc编号规则
NGC(New General Catalogue)编号是用于标识天体目录中星系、星云、星团等天体的唯一标识符。

这编号体系最初由约翰·路易斯·埃米尔·德雷耳(John Louis Emil Dreyer)于1888年编制,后续不断修订和扩展。

以下是NGC编号的一般规则:
1.数字顺序:NGC编号是按照天体在天球上的发现顺序分配的。

较早发现的天体获得较小的编号,而较晚发现的天体获得较大
的编号。

2.前缀标识:NGC编号前通常带有一个前缀,这个前缀是字母
或字母加数字的组合,用以表示天体所在的星座。

例如,M31
表示位于仙女座的天体,M42表示位于猎户座的天体。

3.深空天体分类:NGC编号通常用于标识深空天体,如星系、星
云和星团。

行星、恒星等其他天体一般采用不同的编号系统。

4.重复编号:如果一个天体在多次观测中被发现,它可能会获得
多个NGC编号。

这种情况下,后续的编号通常带有小写字母,例如NGC 6992和NGC 6992A。

5.IC编号:一些天体,特别是在Dreyer的《IC目录》(Index
Catalogue)中的天体,也有IC编号。

IC编号与NGC编号一起
使用,以标识更多的天体。

总体而言,NGC编号是天文学中一个广泛使用的标识系统,有助于天文学家对天体进行研究和定位。

在现代天文学中,使用更多的先进技术和设备进行天体观测和编目,但NGC编号仍然是一个有历史
和重要意义的标识系统。

NGC天体列表

NGC天体列表

NGC 2 - 这是一个漩涡星系,在飞马座NGC 3 - 这是一个星系,在双鱼座NGC 4 - 这是一个非常黯淡的星系,在双鱼座NGC 5 - 这是一个椭圆星系,在仙女座NGC 6 - 这是一个星系,在仙女座, 同时亦是NGC 20 NGC 7 - 这是一个漩涡星系,在玉夫座NGC 8 - 这是一个双星,在飞马座NGC 9 - 这是一个罕有的漩涡星系,在飞马座NGC 10 - 这是一个漩涡星系,在玉夫座NGC 11 - 这是一个漩涡星系,在仙女座NGC 12 - 这是一个漩涡星系,在双鱼座NGC 13 - 这是一个星系,在仙女座NGC 14 - 这是一个星系,在飞马座NGC 15 - 这是一个漩涡星系,在飞马座NGC 16 - 这是一个漩涡星系,在飞马座NGC 17 - 这是一个星系,在鲸鱼座, 同时亦是NGC 34 NGC 18 - 这是一个双星,在飞马座NGC 19 - 这是一个漩涡星系,在仙女座NGC 20 - 参见NGC 6NGC 21 - 这是一个漩涡星系,在仙女座, 同时亦是NGC 29 NGC 22 - 这是一个漩涡星系,在飞马座NGC 23 - 这是一个漩涡星系,在飞马座NGC 24 - 这是一个漩涡星系,在玉夫座NGC 25 - 这是一个星系,在凤凰座NGC 26 - 这是一个漩涡星系,在飞马座NGC 27 - 这是一个漩涡星系,在仙女座NGC 28 - 这是一个椭圆星系,在凤凰座NGC 29 - 参见NGC 21NGC 30 - 这是一个双星,在飞马座NGC 31 - 这是一个漩涡星系,在凤凰座NGC 32 - 这是一个恒星,在飞马座NGC 33 - 这是一个双星,在双鱼座NGC 34 - 参见NGC 17NGC 35 - 这是一个星系,在鲸鱼座NGC 36 - 这是一个漩涡星系,在双鱼座NGC 37 - 这是一个星系,在凤凰座NGC 38 - 这是一个星系,在双鱼座NGC 39 - 这是一个漩涡星系,在仙女座NGC 40 - 这是一个行星状星云NGC 41 - 这是一个星系,在飞马座NGC 42 - 这是一个星系,在飞马座NGC 43 - 这是一个星系,在仙女座NGC 44 - 这是一个双星,在仙女座NGC 46 - 这是一个恒星,在双鱼座NGC 47 - 这是一个漩涡星系,在鲸鱼座, 同时亦是NGC 58 NGC 48 - 这是一个漩涡星系,在仙女座NGC 49 - 这是一个星系,在仙女座NGC 50 - 这是一个星系,在鲸鱼座NGC 51 - 这是一个星系,在仙女座NGC 52 - 这是一个漩涡星系,在飞马座NGC 53 - 这是一个星系,在杜鹃座NGC 54 - 这是一个漩涡星系,在鲸鱼座NGC 55 - 这是一个漩涡星系,在玉夫座NGC 56 - 并不存在(错误标识)NGC 57 - 这是一个椭圆星系,在双鱼座NGC 58 - 参见NGC 47NGC 59 - 这是一个漩涡星系,在鲸鱼座NGC 60 - 这是一个漩涡星系,在双鱼座NGC 61 - 这是一个星系,在双鱼座NGC 62 - 这是一个星系,在鲸鱼座NGC 63 - 这是一个漩涡星系,在双鱼座NGC 64 - 这是一个漩涡星系,在鲸鱼座NGC 65 - 这是一个星系,在鲸鱼座NGC 66 - 这是一个漩涡星系,在鲸鱼座NGC 67 - 这是一个椭圆星系,在仙女座NGC 68 - 这是一个星系,在仙女座NGC 69 - 这是一个星系,在仙女座NGC 70 - 这是一个漩涡星系,在仙女座NGC 71 - 这是一个星系,在仙女座NGC 72 - 这是一个漩涡星系,在仙女座NGC 73 - 这是一个漩涡星系,在鲸鱼座NGC 74 - 这是一个星系,在仙女座NGC 75 - 这是一个星系,在双鱼座NGC 76 - 这是一个星系,在仙女座NGC 77 - 这是一个星系,在鲸鱼座NGC 78 - 这是一个漩涡星系,在双鱼座NGC 79 - 这是一个星系,在仙女座NGC 80 - 这是一个星系,在仙女座NGC 81 - 这是一个星系,在仙女座NGC 82 - 这是一个恒星,在仙女座NGC 83 - 这是一个椭圆星系,在仙女座NGC 84 - 这是一个恒星,在仙女座NGC 85 - 这是一个星系,在仙女座NGC 86 - 这是一个星系,在仙女座NGC 87 - 这是一个星系,在凤凰座,是Robert's Quartet的一部分NGC 88 - 这是一个星系,在凤凰座,是Robert's Quartet的一部分NGC 89 - 这是一个星系,在凤凰座,是Robert's Quartet的一部分NGC 90 - 这是一个漩涡星系,在仙女座NGC 91 - 这是一颗恒星,在仙女座NGC 92 - 这是一个星系,在凤凰座,是Robert's Quartet的一部分NGC 93 - 这是一个星系,在仙女座NGC 94 - 这是一个星系,在仙女座NGC 95 - 这是一个星系,在双鱼座NGC 96 - 这是一个星系,在仙女座NGC 97 - 这是一个星系,在仙女座NGC 98 - 这是一个星系,在凤凰座NGC 99 - 这是一个星系,在双鱼座NGC 100 - 这是一个星系,在双鱼座NGC 101 - 这是一个星系,在玉夫座NGC 102 - 这是一个星系,在鲸鱼座NGC 103 - 这是一个疏散星团,在仙后座NGC 104 - 这是一个球状星团,在杜鹃座NGC 105 - 这是一个星系,在双鱼座NGC 106 - 这是一个星系,在双鱼座NGC 107 - 这是一个星系,在鲸鱼座NGC 108 - 这是一个星系,在仙女座NGC 109 - 这是一个星系,在仙女座NGC 110 - 一个疏散星团,在仙后座NGC 111 - 不存在?NGC 112 - 这是一个星系,在仙女座NGC 113 - 这是一个星系,在鲸鱼座NGC 114 - 这是一个星系,在鲸鱼座NGC 115 - 这是一个星系,在玉夫座NGC 116 - 这是一个星系,在鲸鱼座NGC 117 - 这是一个星系,在鲸鱼座NGC 118 - 这是一个星系,在鲸鱼座NGC 119 - 这是一个星系,在凤凰座NGC 120 - 这是一个星系,在鲸鱼座NGC 121 - 这是一个球状星团,在杜鹃座, 亦是SMC的一部分NGC 122 - 这可能是一颗恒星,在鲸鱼座NGC 123 - 这可能是一颗恒星,在鲸鱼座NGC 124 - 这是一个星系,在鲸鱼座NGC 125 - 这是一个星系,在双鱼座NGC 126 - 这是一个星系,在双鱼座NGC 127 - 这是一个星系,在双鱼座NGC 128 - 这是一个星系,在双鱼座NGC 129 - 一个疏散星团,在仙后座NGC 130 - 这是一个星系,在双鱼座NGC 131 - 这是一个星系,在玉夫座NGC 132 - 这是一个星系,在鲸鱼座NGC 133 - 一个疏散星团,在仙后座NGC 134 - 这是一个星系,在玉夫座NGC 135 - 这是一个星系,在鲸鱼座,与IC 26一样NGC 136 - 一个疏散星团,在仙后座NGC 137 - 这是一个星系,在双鱼座NGC 138 - 这是一个星系,在双鱼座NGC 139 - 这是一个星系,在双鱼座NGC 140 - 这是一个星系,在仙女座NGC 141 - 这是一个星系,在双鱼座NGC 142 - 这是一个星系,在鲸鱼座NGC 143 - 这是一个星系,在鲸鱼座NGC 144 - 这是一个星系,在鲸鱼座NGC 145 - 这是一个星系,在鲸鱼座NGC 146 - 一个疏散星团,在仙后座NGC 147 - 这是一个矮椭圆星系,在仙后座,同时这是本星系群的一成员NGC 148 - 这是一个星系,在玉夫座NGC 149 - 这是一个星系,在仙女座NGC 150 - 这是一个星系,在玉夫座NGC 151 - 这是一个星系,在鲸鱼座,与NGC 153一样NGC 152 - 一个疏散星团,在杜鹃座,是SMC的一部分NGC 153 - 参见NGC 151NGC 154 - 这是一个星系,在鲸鱼座NGC 155 - 这是一个星系,在鲸鱼座NGC 156 - 这是一个双星,在鲸鱼座NGC 157 - 这是一个星系,在鲸鱼座NGC 158 - 这是一个双星,在鲸鱼座NGC 159 - 这是一个星系,在凤凰座NGC 160 - 这是一个星系,在仙女座NGC 161 - 这是一个星系,在鲸鱼座NGC 162 - 这是一颗恒星,在仙女座NGC 163 - 这是一个星系,在鲸鱼座NGC 164 - 这是一个星系,在双鱼座NGC 165 - 这是一个星系,在鲸鱼座NGC 166 - 这是一个星系,在鲸鱼座NGC 167 - 这是一个星系,在鲸鱼座NGC 168 - 这是一个星系,在鲸鱼座NGC 169 - 这是一个星系,在仙女座NGC 170 - 这是一个星系,在鲸鱼座NGC 171 - 可能与NGC 175相同NGC 172 - 这是一个星系,在鲸鱼座NGC 173 - 这是一个星系,在鲸鱼座NGC 174 - 这是一个barred 漩涡星系,在玉夫座NGC 175 - 这是一个星系,在鲸鱼座NGC 176 - 一个疏散星团,在杜鹃座,是SMC的一部分NGC 177 - 这是一个星系,在鲸鱼座NGC 178 - 这是一个星系,在鲸鱼座,可能与IC 39一样NGC 179 - 这是一个星系,在鲸鱼座NGC 180 - 这是一个星系,在双鱼座NGC 181 - 这是一个星系,在仙女座NGC 182 - 这是一个星系,在双鱼座NGC 183 - 这是一个星系,在仙女座NGC 184 - 这是一个星系,在仙女座NGC 185 - 这是一个矮椭圆星系或是球状星系,在仙后座,同时亦是一个本星系群的一成员NGC 186 - 这是一个星系,在双鱼座NGC 187 - 这是一个星系,在鲸鱼座NGC 188 - 这是一个疏散星团,在仙王座NGC 189 - 一个疏散星团,在仙后座NGC 190 - 这是一个星系,在双鱼座NGC 191 - 这是一个星系,在鲸鱼座NGC 192 - 这是一个barred 漩涡星系,在鲸鱼座NGC 193 - 这是一个星系,在双鱼座NGC 194 - 这是一个星系,在双鱼座NGC 195 - 这是一个星系,在鲸鱼座NGC 196 - 这是一个小星系,在鲸鱼座NGC 197 - 这是一个小星系,在鲸鱼座NGC 198 - 这是一个星系,在双鱼座NGC 199 - 这是一个星系,在双鱼座NGC 200 - 这是一个星系,在双鱼座NGC 201 - 这是一个漩涡星系,在鲸鱼座NGC 202 - 这是一个星系,在双鱼座NGC 203 - 这是一个星系,在双鱼座, 可能与NGC 211相同NGC 204 - 这是一个星系,在双鱼座NGC 205 - M110, 这是一个星系,在仙女座, 同时这是一个本星系群一成员NGC 206 - 这是一个恒星云,在仙女星系NGC 207 - 这是一个星系,在鲸鱼座NGC 208 - 这是一个星系,在双鱼座NGC 209 - 这是一个星系,在鲸鱼座NGC 210 - 这是一个漩涡星系,在鲸鱼座NGC 211 - 参见NGC 203NGC 212 - 这是一个星系,在凤凰座NGC 213 - 这是一个星系,在双鱼座NGC 214 - 这是一个星系,在仙女座NGC 215 - 这是一个星系,在凤凰座NGC 216 - 这是一个星系,在鲸鱼座NGC 217 - 这是一个星系,在鲸鱼座NGC 218 - 这是一个星系,在仙女座NGC 219 - 这是一个星系,在鲸鱼座NGC 220 - 这是一个疏散星团,在杜鹃座;是SMC的一部分NGC 221 - M32, 这是一个椭圆星系,在仙女座,这亦是本星系群的一成员NGC 222 - 这是一个疏散星团,在杜鹃座; 是SMC的一部分NGC 223 - 这是一个星系,在鲸鱼座NGC 224 - M31, 仙女星系,是本星系群成员中最大的一个NGC 225 - Sailboat Cluster, 一个疏散星团,在仙后座NGC 226 - 这是一个星系,在仙女座NGC 227 - 这是一个星系,在鲸鱼座NGC 228 - 这是一个星系,在仙女座NGC 229 - 这是一个星系,在仙女座NGC 230 - 这是一个星系,在鲸鱼座NGC 231 - 这是一个疏散星团,在杜鹃座;SMC的一部分NGC 232 - 这是一个星系,在鲸鱼座NGC 233 - 这是一个星系,在仙女座NGC 234 - 这是一个星系,在双鱼座NGC 235 - 这是一个星系,在鲸鱼座NGC 236 - 这是一个星系,在双鱼座NGC 237 - 这是一个星系,在鲸鱼座NGC 238 - 这是一个星系,在凤凰座NGC 239 - 这是一个星系,在鲸鱼座NGC 240 - 这是一个星系,在双鱼座NGC 241 - 这是一个星团,在杜鹃座;SMC的一部分NGC 242 - 一个疏散星团,在杜鹃座;SMC的一部分NGC 243 - 这是一个星系,在仙女座NGC 244 - 这是一个星系,在鲸鱼座NGC 245 - 这是一个星系,在鲸鱼座NGC 246 - 这是一个行星状星云,在鲸鱼座NGC 247 - 这是一个漩涡星系,在鲸鱼座, 同时这是Sculptor Group的一成员NGC 248 - 这是一个喷射星云,在杜鹃座;SMC的一部分NGC 249 - 这是一个喷射星云,在杜鹃座;SMC的一部分NGC 250 - 这是一个星系,在双鱼座NGC 251 - 这是一个星系,在双鱼座NGC 252 - 这是一个星系,在仙女座NGC 253 - 这是一个漩涡星系,在玉夫座,Sculptor Group成员中最大的一个; 有时被称为银币星系NGC 254 - 这是一个星系,在玉夫座NGC 255 - 这是一个小漩涡星系,在鲸鱼座NGC 256 - 这是一个带有星云状物质的星团,,在杜鹃座;SMC的一部分NGC 257 - 这是一个星系,在双鱼座NGC 258 - 这是一个星系,在仙女座NGC 259 - 这是一个星系,在鲸鱼座NGC 260 - 这是一个星系,在仙女座NGC 261 - 这是一个弥散星云,在杜鹃座;SMC的一部分NGC 262 - 这是一个塞弗特星系,在仙女座, 同时亦是Mrk 348NGC 263 - 这是一个星系,在鲸鱼座NGC 265 - 一个疏散星团,在杜鹃座;SMC的一部分NGC 266 - 这是一个大而遥远的漩涡星系,在双鱼座NGC 267 - 这是一个带有星云状物质的星团,在杜鹃座;SMC的一部分NGC 268 - 这是一个星系,在鲸鱼座NGC 269 - 一个疏散星团,在杜鹃座;SMC的一部分NGC 270 - 这是一个星系,在鲸鱼座NGC 271 - 这是一个星系,在鲸鱼座NGC 272 - 一个疏散星团,在仙女座NGC 273 - 这是一个星系,在鲸鱼座NGC 274 - 这是一个星系,在鲸鱼座NGC 275 - 这是一个星系,在鲸鱼座NGC 276 - 这是一个星系,在鲸鱼座NGC 277 - 这是一个星系,在鲸鱼座NGC 278 - 这是一个星系,在仙后座NGC 279 - 这是一个星系,在鲸鱼座NGC 280 - 这是一个星系,在仙女座NGC 281 - 这是一个带有星云状物质的星团(HII区域),在仙后座;同时亦是Pac-Man吃豆豆星云,香港天文界譯「食鬼星雲」NGC 282 - 这是一个星系,在双鱼座NGC 283 - 这是一个星系,在鲸鱼座NGC 284 - 这是一个星系,在鲸鱼座NGC 285 - 这是一个星系,在鲸鱼座NGC 286 - 这是一个星系,在鲸鱼座NGC 287 - 这是一个星系,在双鱼座NGC 288 - 这是一个球状星团,在玉夫座NGC 289 - 这是一个星系,在玉夫座NGC 290 - 一个疏散星团,在杜鹃座;SMC的一部分NGC 291 - 这是一个星系,在鲸鱼座NGC 292 - 小麦哲伦星云, 这是一个不规则星系,在杜鹃座, 同时这是本星系群的一成员NGC 293 - 这是一个星系,在鲸鱼座NGC 294 - 这是一个星团,在杜鹃座;SMC的一部分NGC 295 - 失落的天体,与NGC 296一样,或者这是一个单独的星系,在双鱼座?NGC 296 - 这是一个星系,在双鱼座NGC 297 - 这是一个星系,在鲸鱼座NGC 298 - 这是一个星系,在鲸鱼座NGC 299 - 这是一个带有星云状物质的星团,在杜鹃座;SMC的一部分NGC 300 - 这是一个漩涡星系,在玉夫座, 同时这是Sculptor Group一成员NGC 301 - 这是一个星系,在鲸鱼座NGC 302 - 这是一个恒星,在鲸鱼座NGC 303 - 这是一个星系,在鲸鱼座NGC 304 - 这是一个星系,在仙女座NGC 305 - 这是六颗星组成的星群,在双鱼座NGC 306 - 这是一个带有星云状物质的星团,在杜鹃座;是SMC的一部分NGC 308 - 这是一颗恒星,在鲸鱼座NGC 309 - 这是一个漩涡星系,在鲸鱼座NGC 310 - 这是一颗恒星,在鲸鱼座NGC 311 - 这是一个透镜状星系,在双鱼座NGC 312 - 这是一个星系,在凤凰座NGC 313 - 这是一个三合星,在双鱼座NGC 314 - 这是一个barred 漩涡星系,在玉夫座NGC 315 - 这是一个星系,在双鱼座NGC 316 - 这是一颗恒星,在双鱼座NGC 317 - (同时亦是NGC 317B) 这是一个barred 漩涡星系,在仙女座, 与NGC 317A相结合NGC 317A - 这是一个透镜状星系,在仙女座NGC 318 - 这是一个星系,在双鱼座NGC 319 - 这是一个星系,在凤凰座NGC 320 - 这是一个漩涡星系,在鲸鱼座NGC 321 - 这是一个星系,在鲸鱼座NGC 322 - 这是一个星系,在凤凰座NGC 323 - 这是一个星系,在凤凰座NGC 324 - 这是一个星系,在凤凰座NGC 325 - 这是一个星系,在鲸鱼座NGC 326 - 这是一对相连接的星系,在双鱼座NGC 327 - 这是一个星系,在鲸鱼座NGC 328 - 这是一个barred 漩涡星系,在凤凰座NGC 329 - 这是一个星系,在鲸鱼座NGC 330 - 这是一个球状星团,在杜鹃座;SMC的一部分NGC 331 - 不详,可能是MCG-01-03-012 (一个星系,在鲸鱼座)NGC 332 - 这是一个星系,在双鱼座NGC 333 - 这是一个对星系,在鲸鱼座NGC 334 - 这是一个漩涡星系,在玉夫座NGC 335 - 这是一个漩涡星系,在鲸鱼座NGC 336 - 这是一个星系,在鲸鱼座NGC 337 - 这是一个漩涡星系,在鲸鱼座NGC 338 - 这是一个漩涡星系,在双鱼座NGC 339 - 这是一个球状星团,在杜鹃座;SMC的一部分NGC 340 - 这是一个漩涡星系,在鲸鱼座NGC 341 - 这是一个星系,在鲸鱼座NGC 342 - 这是一个星系,在鲸鱼座NGC 343 - 这可能是一个星系,在鲸鱼座NGC 344 - 这是一个星系,在鲸鱼座NGC 345 - 这是一个漩涡星系,在鲸鱼座NGC 346 - 这是一个带有星云状物质的星团,在杜鹃座;SMC的一部分NGC 347 - 这是一个星系,在鲸鱼座NGC 348 - 这是一个漩涡星系,在凤凰座NGC 349 - 这是一个星系,在鲸鱼座NGC 351 - 这是一个星系,在鲸鱼座NGC 352 - 这是一个星系,在鲸鱼座NGC 353 - 这是一个barred 漩涡星系,在鲸鱼座NGC 354 - 这是一个barred 漩涡星系,在双鱼座NGC 355 - 这是一个星系,在鲸鱼座NGC 356 - 这是一个漩涡星系,在鲸鱼座NGC 357 - 这是一个星系,在鲸鱼座NGC 358 - 这是四颗星组成的星群,在仙后座NGC 359 - 这是一个星系,在鲸鱼座NGC 360 - 这是一个漩涡星系,在杜鹃座NGC 361 - 这是一个星团,在杜鹃座;是SMC的一部分?NGC 362 - 这是一个球状星团,在杜鹃座NGC 363 - 这是一个星系,在鲸鱼座NGC 364 - 这是一个透镜状星系,在鲸鱼座NGC 365 - 这是一个漩涡星系,在玉夫座NGC 366 - 这是一个疏散星团,在仙后座NGC 367 - 这是一个星系,在鲸鱼座NGC 368 - 这是一个漩涡星系,在凤凰座NGC 369 - 这是一个漩涡星系,在鲸鱼座NGC 370 - NGC 372中的两颗星?NGC 371 - 这是一个带有星云状物质的星团,在杜鹃座;SMC的一部分NGC 372 - 这是一个三合星,在双鱼座NGC 373 - 这是一个椭圆星系,在双鱼座NGC 374 - 这是一个星系,在双鱼座NGC 375 - 这是一个星系,在双鱼座NGC 376 - 一个疏散星团,在杜鹃座;SMC的一部分NGC 377 - 这是一个星系,在鲸鱼座NGC 378 - 这是一个漩涡星系,在玉夫座NGC 379 - 这是一个透镜状星系,在双鱼座NGC 380 - 这是一个椭圆星系,在双鱼座NGC 381 - 一个疏散星团,在仙后座NGC 382 - 这是一个椭圆星系,在双鱼座NGC 383 - 这是一个透镜状星系,在双鱼座NGC 384 - 这是一个椭圆星系,在双鱼座NGC 385 - 这是一个椭圆星系,在双鱼座NGC 386 - 这是一个星系,在双鱼座NGC 387 - 这是一个椭圆星系,在双鱼座NGC 388 - 这是一个星系,在双鱼座NGC 389 - 这是一个透镜状星系,在仙女座NGC 390 - 这是一个星系,在双鱼座NGC 391 - 这是一个椭圆星系,在鲸鱼座NGC 392 - 这是一个星系,在双鱼座NGC 393 - 这是一个星系,在仙女座NGC 394 - 这是一个漩涡星系,在双鱼座NGC 395 - 这是一个带有星云状物质的星团,在杜鹃座;SMC的一部分NGC 396 - 这是一个星系,在双鱼座NGC 397 - 这是一个星系,在双鱼座NGC 398 - 这是一个漩涡星系,在双鱼座NGC 399 - 这是一个星系,在双鱼座NGC 404 - 这是一个椭圆星系,在仙女座NGC 428 - 这是一个被扭曲的, 不规则形状的星系NGC 457 - 这是一个疏散星团,在仙后座.NGC 470 - 这是一个漩涡星系NGC 488 - 这是一个紧紧卷绕在一起的漩涡星系NGC 514 - 这是一个遥远的漩涡星系NGC 520 - 这是因两星系冲撞在一起而被扭曲的,不规则形状的物质NGC 529 - 这是一个透镜状星系, 是被称为Hickson-10的组的一部分NGC 531 - 这是一个小漩涡星系, 是被称为Hickson-10的组的一部分NGC 536 - 这是一个漩涡星系, 是被称为Hickson-10的组的一部分NGC 542 - 这是一个小漩涡星系, 是被称为Hickson-10的组的一部分NGC 581 - M103, 一个疏散星团,在仙后座NGC 588 - 在三角座星系中一天体NGC 592 - 在三角座星系中一天体NGC 595 - 这是一个弥散星云,在三角座星系NGC 598 - M33, 三角座星系NGC 603 - 这是一个三合星,在三角座星系NGC 604 - 这是一个大的H II区域,三角座星系NGC 628 - M74, 这是一个星系,在双鱼座NGC 650 - M76, 小哑铃星云NGC 659 - 一个疏散星团,在仙后座NGC 660 - 这是一个稀有罕见的"polar ring" 星系NGC 672 - 这是一个漩涡星系NGC 678 - 这是一个漩涡星系NGC 680 - 这是一个椭圆星系NGC 681 - 这是一个漩涡星系, 与NGC 4594类似,墨西哥帽星系NGC 697 - 这是一个模糊的星系,在白羊座NGC 752 - 一个疏散星团,在仙女座NGC 772 - 这是一个模糊的漩涡星系,在白羊座NGC 864 - 这是一个漩涡星系,在鲸鱼座NGC 869 - 一个疏散星团,在英仙座NGC 877 - 这是一个漩涡星系NGC 884 - 一个疏散星团,在英仙座NGC 891 - 这是一个漩涡星系,在仙女座NGC 895 - 这是一个漩涡星系NGC 908 - 这是一个星暴涡星系,在鲸鱼座NGC 925 - 这是一个漩涡星系NGC 945 - 这是一个漩涡星系,在鲸鱼座NGC 972 - 这是一个模糊的星系,在白羊座NGC 973 - 这是一个漩涡星系NGC 985 - 这是一个环状星系,在鲸鱼座NGC 1032 - 这是一个漩涡星系,在鲸鱼座NGC 1039 - M34, 一个疏散星团,在英仙座NGC 1042 - 这是一个漩涡星系,在鲸鱼座NGC 1049 - 这是一个球状星团NGC 1055 - 这是一个漩涡星系,在鲸鱼座NGC 1068 - M77, 这是一个塞弗特星系,在鲸鱼座NGC 1073 - 这是一个非常模糊的漩涡星系,在鲸鱼座NGC 1087 - 这是一个小漩涡星系,在鲸鱼座NGC 1090 - 这是一个漩涡星系,在鲸鱼座NGC 1097 - 这是一个塞弗特星系NGC 1144 - 这是一个漩涡星系, 但实际形状不规则,因为它与一椭圆星系碰撞NGC 1156 - 这是一个模糊的星系,在白羊座NGC 1187 - 这是一个漩涡星系NGC 1190 - 这是一个椭圆星系NGC 1215 - 这是一个漩涡星系NGC 1232 - 这是一个漩涡星系,在波江座NGC 1245 - 一个疏散星团,在英仙座NGC 1253 - 这是一个漩涡星系,在波江座NGC 1261 - 这是一个球状星团,在时钟座NGC 1275 - 英仙座A, 这是一个少见的星系,在英仙座NGC 1300 - 这是一个漩涡星系,在波江座NGC 1313 - 这是一个星暴星系NGC 1316 - 这是一个椭圆星系,在天炉座NGC 1317 - 这是一个被扭曲的漩涡星系,在天炉座(注:NGC 1316和NGC 1317有时被通称为天炉座辐射星系,因为这些星系是宇宙中的强辐射源.)NGC 1337 - 这是一个漩涡星系NGC 1357 - 这是一个漩涡星系NGC 1358 - 这是一个塞弗特星系NGC 1360 - 这是一个弥散行星状星云NGC 1365 - 这是一个漩涡星系,在天炉座NGC 1381 - 这是一个漩涡星系NGC 1404 - 这是一个椭圆星系,在天炉座NGC 1432 - 这是一个天体,在昴星团NGC 1435 - 这是一个反射星云,在昴星团NGC 1491 - 这是一个喷射星云,在英仙座NGC 1499 - 加利福利亚星云NGC 1501 - 一个天体NGC 1512 - 这是一个漩涡星系,在时钟座NGC 1514 - 这是一个行星状星云,在金牛座NGC 1530 - 这是一个漩涡星系,在鹿豹座NGC 1532 - 这是一个星系NGC 1535 - 这是一个星云,在波江座NGC 1560 - 这是一个漩涡星系NGC 1566 - 这是一个塞弗特星系,在剑鱼座NGC 1569 - 一个不规则星系,在鹿豹座NGC 1579 - 这是一个弥散星云,在英仙座NGC 1637 - 这是一个漩涡星系NGC 1714, NGC 1715 - 这是一个黯淡的星云,在大麦哲伦星云NGC 1723 - 这是一个漩涡星系NGC 1725 - 这是一个星系NGC 1784 - 这是一个漩涡星系NGC 1788 - 这是一个反射星云,在猎户座NGC 1808 - 这是一个塞弗特星系NGC 1850 - 这是一个双星星团,在大麦哲伦星云NGC 1851 - 这是一个球状星团,在天鸽座NGC 1857 - 一个疏散星团,在御夫座NGC 1904 - M79, 这是一个球状星团,在天兔座NGC 1912 - M38, 一个疏散星团,在御夫座NGC 1931 - 这是一个星云,在御夫座NGC 1952 - M1, 蟹状星云NGC 1960 - M36, 一个疏散星团,在御夫座NGC 1961 - 这是一个被扰乱的漩涡星系,在鹿豹座NGC 1973, NGC 1975, NGC 1977 - 这是一个反射星云,在猎户座NGC 1976 - M42, 猎户座大星云,在猎户座NGC 1982 - M43,de Mairan星云,在猎户座NGC 1999 - 这是一个反射星云,在猎户座NGC 2014 - 这是一个星云在大麦哲伦星云, 同时亦是Heinze 55 NGC 2022 - 这是一个星云NGC 2023 - 这是一个蓝色的反射星云一个,在马头星云附近NGC 2024 - 燃烧火焰星云, 在马头星云附近NGC 2068 - M78,这是一个弥散星云,在猎户座NGC 2070 - 舞蛛星云NGC 2080 - 鬼头星云,在大麦哲伦星云内NGC 2099 - M37, 一个疏散星团,在御夫座NGC 2146 - .一个不规则星系NGC 2158 - 一个疏散星团,在双子座NGC 2168 - M35, 一个疏散星团,在双子座NGC 2169 - 一个疏散星团,在猎户座NGC 2174 - 一个喷射星云,在猎户座NGC 2175 - 一个疏散星团在猎户座.NGC 2194 - 一个疏散星团NGC 2204 - 一个疏散星团,在大犬座NGC 2207 - 这是一个大漩涡星系NGC 2237 - 玫瑰星云,在麒麟座NGC 2238 - 这是Rosette星云的一部分NGC 2239 - 这是Rosette星云的一部分NGC 2244 - 一个疏散星团embedded在Rosette星云NGC 2246 - 这是Rosette星云的一部分NGC 2261 - 这是一个变光星云NGC 2264 - Cone星云,在麒麟座NGC 2266 - 一个疏散星团,在双子座NGC 2276 - 一个不规则漩涡星系NGC 2287 - M41, 一个疏散星团,在大犬座NGC 2298 - 这是一个球状星团,在船尾座NGC 2300 - 这是一个椭圆星系, 是NGC 2276姊妹的一个NGC 2323 - M50, 一个疏散星团,在麒麟座NGC 2336 - 这是一个大漩涡星系在北极星方向NGC 2346 - 这是一个行星状星云,在麒麟座NGC 2349 - 一个疏散星团,在麒麟座NGC 2359 - 托尔的头盔, 这是一个星云NGC 2360 - 一个疏散星团,在大犬座NGC 2362 - 一个疏散星团,在大犬座, 有时被称为墨西哥跳星NGC 2392 - 爱斯基摩星云NGC 2403 - 这是一个漩涡星系,在鹿豹座NGC 2409 - 这是一个漩涡星系NGC 2419 - 星际流浪汉,也被称为星际漫游者, 这是一个球状星团,在天猫座NGC 2422 - M47, 一个疏散星团,在船尾座NGC 2437 - M46, 一个疏散星团,在船尾座NGC 2438 - 这是一个行星状星云,在船尾座NGC 2440 - 这是一个星云NGC 2442 - 这是一个漩涡星系,在飞鱼座NGC 2447 - M93, 一个疏散星团,在船尾座NGC 2451 - 一个疏散星团,在船尾座NGC 2460 - 这是一个漩涡星系NGC 2477 - 一个疏散星团在船尾座.NGC 2500 - 这是一个星系NGC 2537 - 这是一个星系NGC 2541 - 这是一个漩涡星系NGC 2552 - 这是一个星系NGC 2548 - M48, 一个疏散星团,在长蛇座NGC 2632 - M44, 蜂巢星团, 亦称鬼星团,在巨蟹座NGC 2683 - 这是一个漩涡星系NGC 2682 - M67,一个疏散星团,在巨蟹座NGC 2715 - 这是一个漩涡星系NGC 2736 - 铅笔星云,这是一个超新星爆发残骸,在船帆座NGC 2775 - 这是一个紧紧卷绕在一起的漩涡星系NGC 2775 - 天貓座的碰撞星系。

NGC天体列表

NGC天体列表
NGC 116 ─ 这是一个星系,在鲸鱼座
NGC 117 ─ 这是一个星系,在鲸鱼座
NGC 118 ─ 这是一个星系,在鲸鱼
NGC 119 ─ 这是一个星系,在凤凰座
NGC 120 ─ 这是一个星系,在鲸鱼座
NGC 121 ─ 这是一个球状星团,在杜鹃座,亦是SMC的一部分
NGC 182 ─ 这是一个星系,在双鱼座
NGC 183 ─ 这是一个星系,在仙女座
NGC 184 ─ 这是一个星系,在仙女座
NGC 185 ─ 这是一个矮椭圆星系或是球状星系,在仙后座,同时亦是一个本星系群的一成员
NGC 186 ─ 这是一个星系,在双鱼座
NGC 187 ─ 这是一个星系,在鲸鱼座
NGC 76 ─ 这是一个星系,在仙女座
NGC 77 ─ 这是一个星系,在鲸鱼座
NGC 78 ─ 这是一个漩涡星系,在双鱼座
NGC 79 ─ 这是一个星系,在仙女座
NGC 80 ─ 这是一个星系,在仙女座
NGC 81 ─ 这是一个星系,在仙女座
NGC 82 ─ 这是一个恒星,在仙女座
NGC 7 ─ 这是一个漩涡星系,在玉夫座
NGC 8 ─ 这是一个双星,在飞马座
NGC 9 ─ 这是一个罕有的漩涡星系,在飞马座
NGC 10 ─ 这是一个漩涡星系,在玉夫座
NGC 11 ─ 这是一个漩涡星系,在仙女座
NGC 12 ─ 这是一个漩涡星系,在双鱼座
NGC 13 ─ 这是一个星系,在仙女座
NGC 89 ─ 这是一个星系,在凤凰座,是罗伯特四重奏的一部分
NGC 90 ─ 这是一个漩涡星系,在仙女座
NGC 91 ─ 这是一颗恒星,在仙女座

小奇迹--大熊座

小奇迹--大熊座

小奇迹:大熊座著者:Tom Trusock 译者:Steed Joy大熊座广角星图名称类型大小星等赤经赤纬目标列表NGC 2841星系8.1'x3.5'9.309h 22m 30.0s+50° 57' 09"NGC 2976星系 5.9'x2.7'10.109h 47m 49.0s+67° 53' 30"M 81星系24.9'x11.5'709h 56m 08.2s+69° 02' 26"M 82星系11.2'x4.3'8.609h 56m 29.1s+69° 39' 23"NGC 3077星系 5.2'x4.7'1010h 03m 54.2s+68° 42' 27"IC 2574星系13.2'x5.4'10.210h 28m 54.2s+68° 23' 13"M 108星系8.6'x2.4'9.911h 11m 54.1s+55° 38' 21"M 97行星状星云 2.8'9.911h 15m 12.1s+54° 59' 08"NGC 3718星系8.1'x4.0'10.611h 32m 57.9s+53° 01' 56"NGC 3729星系 2.9'x1.9'1111h 34m 12.4s+53° 05' 29"NGC 3953星系 6.9'x3.6'9.811h 54m 10.6s+52° 17' 21"M 109星系7.5'x4.4'9.811h 57m 57.5s+53° 20' 16"Cr 285疏散星团1400.0'0.412h 03m 22.2s+57° 57' 51"M 101星系28.8'x26.9'7.514h 03m 28.1s+54° 18' 54"NGC 5474星系 4.7'x4.7'10.614h 05m 17.1s+53° 37' 42"进阶天体HCG56星系团14.511h 33m 11.2s+52° 51' 54"HCG41星系团13.909h 58m 07.4s+45° 10' 19"本期小奇迹介绍的星座,对于北半球的任何居民来说,都是非常熟悉的。

宇宙中最激烈的星系碰撞

宇宙中最激烈的星系碰撞

宇宙中最激烈的星系碰撞1.引言宇宙是一个广阔而神秘的地方,充满了各种令人惊叹的现象。

其中,星系碰撞是宇宙中最激烈和壮观的事件之一。

当两个星系发生碰撞时,巨大的引力相互作用会导致恒星和行星之间的相互碰撞,并产生大量的能量释放。

本文将为您介绍一些宇宙中最激烈的星系碰撞事件。

2.NGC 6745NGC 6745是一个位于室女座的星系群,由五个星系组成。

这个星系群中最引人注目的是NGC 6745A和NGC 6745B之间的碰撞。

这次碰撞发生在大约1亿年前,两个星系的相互作用产生了巨大的引力力量。

这次碰撞使得星系内部的恒星和行星被抛射到太空中,形成一片混乱的星际云气。

这个碰撞产生的能量释放在宇宙中形成了一幅壮观的景象。

3.冥王星与伏羲座星系的碰撞在我们的太阳系之外,还有一些令人难以置信的星系碰撞。

其中一个例子是冥王星与伏羲座星系的碰撞。

冥王星是太阳系九大行星之一,而伏羲座星系则是一个巨大的星系群。

大约10亿年前,这两个星系之间发生了一次巨大的碰撞。

这次碰撞产生的能量释放对冥王星造成了巨大的变化,使其从一颗普通的行星变成一颗小行星。

这个碰撞也改变了伏羲座星系的结构,并导致了一系列恒星的形成。

4.佛洛斯特星系和卡修斯星系的碰撞佛洛斯特星系和卡修斯星系是两个相邻的星系,位于室女座附近。

这两个星系之间的碰撞发生在大约5亿年前,是宇宙中最激烈的碰撞之一。

当时,这两个星系之间的引力相互作用导致了巨大的动能释放。

这个碰撞对两个星系的恒星和行星产生了巨大的影响,形成了一片混乱的星际云气。

这个碰撞的结果是形成了新的恒星和行星,并对整个宇宙产生了巨大的影响。

5.银河系与仙女座星系团的碰撞银河系是我们所在的星系,而仙女座星系团是一个包含数百个星系的巨大星系群。

根据科学家的研究,大约20亿年后,银河系将与仙女座星系团发生碰撞。

这次碰撞将会是宇宙中最激烈的星系碰撞之一,预计将产生巨大的引力力量,并导致恒星和行星之间的相互碰撞。

这个碰撞将会改变整个银河系的结构,并对我们的太阳系产生巨大的影响。

穿梭宇宙岛

穿梭宇宙岛

《穿梭宇宙岛》中错误修正第27页倒数第3行“回望这个我们生在其中的……”应改为“回望这个我们生活在其中的……”;第56页第7行“▼猫眼星云NGC 654(Romano Corrad:)”应改为“▼猫眼星云NGC 6543(Romano Corrad:)”;第60页倒数第1行“40B B就是一颗白矮星”应改为“40B 就是一颗白矮星”(去掉一个B 字);第61页上图右第4行“白矮星飞马座IKA……”应改为“白矮星伴星飞马座IKA……”;第78页第2行“北美的鹈鹕(NGC 7000……”应改为“北美星云旁的鹈鹕星云(NGC 7000……”;第95页第1行“平均密度只有10-23克每立方厘米”应改为“平均密度只有10-23克每立方厘米”;第165页图右第2行“塞佛特是星系……”应改为“塞佛特星系是……”;第167页第3行“位于乌鸦嘴,”应改为“位于乌鸦座,”;第183页第6行“你我皆星辰。

”应改为“你我皆星尘。

”;第183页倒数第8行“可是在地球已经成形,”应改为“可是在地球已经形成,”;第184页倒数第3行“……如痴如醉其中……”应改为“……如痴如醉……”(去掉“其中”两个字);第199页第16行“珍惜地球与…”应改为“珍稀地球与…”;第199页倒数第12行“Gliese 581 d的……”应改为“Gliese 581 g的……”。

《黑洞战争》(第一推动丛书)中错误修正第29页第16行、第89页倒数第5行等“似非而是”应改为“似是而非”?第175页第10行“麦克斯韦的光速是3000km/s”应改为“麦克斯韦的光速是300000km/s”;第216页倒数第7行“僭据……”应改为““依据……”;第221页第5行“普雷斯基尔·普雷斯基尔”应改为“约翰·普雷斯基尔”;第232页倒数第1行“……这它个术语”应改为“……这两个术语”;第308页第6行“在那片光量子论文中”应改为“在那篇光量子论文中”;第319页第8行“包括所有级结构”应改为“包括所有等级结构”。

NGC全民英检野性俄罗斯-乌拉山地区

NGC全民英检野性俄罗斯-乌拉山地区

Wild Russia: Primeval ValleysNGC全民英檢:野性俄羅斯-烏拉山地區播出時間:12月25日星期六@11:00-12:00Russia- a vast secretonce inaccessible to outsiders,now dazzling the worldwith its untamed treasures.In the west, on a landscapepocked by swamps and bisected by mountains, nature’s drama plays outin endless variation…where Woods shelter half tonne leviathans…And tiny adventurers…while backwaters conceal the bizarre.All within Russia’s Primeval Valleys-the Urals.Russia’s seventeen million square kilometres form a country so complexit almost defies description.In this immensity, one feature stands out…2 and a half thousand kilometresof mountains and forestsjutting out of the wilderness…The Urals.Deep forests form the heart and soulof the Urals.Broadleaf and pine trees,Asian and European speciespatiently watch the seasons roll by.Some trees are two-hundred years old.Miraculously sheltered from the intrusionof loggers, parts of the foresthave regenerated themselvesfor thousands of years.Even in the dead of winter,life trudges forward.Eurasian elks, the largestof the deer family, make seasonal journeysto find more favourable conditions.Unlike other deer, these elkare normally solitary, and the stressof meeting can lead to fighting.They can travel up to three-hundred kilometres on their search for food.The cold weather fuels their appetite. They’ll eat around twenty kilosof woody material a day.The quest for food keeps them on the move…sometimes into harm’s way…A hungrybrown bear, woken from hibernation.A bear could easily catch and kill an elk.But not in deep snow…and not today.Its fumbling footsteps alert the group.It’s a stiff start after monthsof hibernation.Until the snow goes, it’s hard timesfor the bear.Pristine pines, spruce and broadleaf trees create this quiet and mysterious forestfour times the size of Denmark.While many residents hide in the shadows, others come out to play.As spring approaches, love is in the air…Half metre tall black grousestart loo king for mates…Males woo the ladies with a bubbling sound called rookooing.This early bird has the display arena,and a female, to himself…Almost…His love song attracts the unwanted attention of a wolverine.It breaks the amorous mood.They’ll con tinue their courtship elsewhere.The wolverine, the largestof the weasel family looks likeit’s throwing a tantrum…But this larking about,actually scent marks its territory.They remain active throughout Winter.This is a warning for others to stay away.In April, as the spring melt begins, streams cut fresh paths through the forests.The waters feed the Urals’hundreds of rivers.The weather may be improving,but the thaw creates an obstaclefor the travelling elk.Their journey takes them across swollen, fast-flowing rivers.Over the course of ten days,around two hundred will take the plunge.Despite weighing as much as a small car, they are strong swimmers.But swift, rising waterdrags many to their death each year.By the time a straggler reaches the river, the treacherous currentthreatens to sweep it far off course.Safety at last…Despite the icy water, the elk keeps warm, thanks to a fine wool undercoatcovered by twenty-five centimetre long hair.With spring lasting only two months,the Urals’ residents make the most of it.As the sun heats the rocks,it ignites the passion of spotted red bugs.The orgiastic pairs join end to endfor up to twenty-four hours,even foregoing food.Eventually females signal the endwith a rocking motion.The gnarled ancient forestis swampy to begin with,and the big melt only makes things messier.As the snow retreats, scavengers advance…to feed on winter’s victims.This wolf might have travelledseveral kilometres, following its nosein search o f a meal…but a bigger brown bear gets there first.The bear claims ownership of a moose carcass it cached several days ago.Brown bears will often stash large remains under earth for safe-keepinguntil the next meal.If he wants any share of the meat,the wolf must be patient.But an adult bear can consumeup to forty kilos a dayand won’t be leaving in a hurry.The wolf, realizing a meal isn’t coming, retreats in search of better options…guided by a sharp nose and empty belly. Down in the Ural valleysdampness floats like a phantomover the saturated ground.It chokes out the sunlight,concealing the largest swamps on earth.As trees die here, their partially decomposed corpses add to peat bogsup to seven meters deep.And despite the poor soil,low temperature and grim conditions,these forests strangely manage to thrive.Deeper in the wetlands,things grow stranger still…Making its film debut,the unique Russian Desmanis ready for its close-up.Semi-aquatic and social-up to eight desmans may sharea riverside burrow with an underwater entrance.Scent glands at the base of the tailgives it a musky, unappetizing smellthat discourages predators.Just like their terrestrial mole relatives, desmans are almost blind…They compensate with their flexible snoutand long whiskers, hunting for foodalong the muddy riverbed.Oversized incisors crush snail shellswith ease.Underwater, webbed feetand a flattened muscular tailpropel them like little torpedoesin search of fish and crustaceans.They can hold their breathfor about five minutes.But these hunters were themselveshunted for fur and musk,leaving fewer than fifteen hundred surviving along the Ural river.In contrast, brown bears do well here. Russia has the world’s largest populati on- around 100,000.Normally solitary, when bears meetthey use careful body posturesto signal their level of discomfortor aggression.This male has been following the female, hoping to mate.He must approach with caution.If she’s not in the mood,she might use her eight centimetre long claws to let him know.But she’s receptive-he may follow her for days or weeks, fending off advances from others.The females have an amazing adaptation- they can delay pregnancy for five months until the winter returns.This ensures she will give birthin the safety of the hibernation den.But it’s a rough affairand she decides enough is enough.The mating game has a more frenzied setof rules in the wet forest interior.>From March, usually dull colouredMale Moor frogs turn an enticing shadeof blue to impress females…although they’re not that choosy. Mosquitoes love them regardless of colour.In their passion, males jump anythingwith a heartbeat…even mis-matched toads.Thankfully enough get it rightand spawn fills the water.Around these pools of life,the Urals extend like a long finger,in places 145 kilometres wide.In the North west, Europe’s largestprimeval forest expands tothe distant mountains.One hill is known as Manpupuner-the Little Mountain of the Gods.Weather-beaten limestone columnslining the ridge rise over forty metres high. Local legend calls them the seven strong men.The story tells of a beautiful girlcoveted by an evil manwho pursues her and her seven brothers into the mountains.In desperation she prays for a miracle,and they are all turned to stone.Not everyone’s idea of a happy ending.As night falls over the seven brothers,a Ural owl comes out to hunt down below…and this enchanted forestbrings a curse upon a hapless frog.Ural Owls prefer voles,but with two chicks to feed,they can’t afford to be finicky.The young family trusts the male owlto bring home whatever he can find.The morning sun doesn’t catchthe owls napping.At around four weeks, the owlets grow eager to explore the world…All in spite of the factthey can’t fly yet.They master the slow plummet...and the graceful hop…But the wing-assisted tree climbstill needs some work.While the smaller sibling stays safein the nest hole, the adventurersearches for a new feeding post.As long as the chicks stay out of trouble,the parent pays little attentionto their antics.And in twelve more weeksthey’ll be on their own.Nearby, another parenttakes a more paws-on approachto raising youngsters.A young mother, who had her litterin the winter, keeps her two cubsvery close.They’ll suckle for up to two and a half years and stay under her wing for three.Playtime ends when the mothercatches the scent of another bear.Taking no chances she and the cubs move on.With six-hundred kilo malesprowling the forest for mates,she’s right to be wary…they will sometimes kill young bearsto bring mothers back into oestrus.An older, more experienced femalealso spends the day here;her three cubs tr ailing behind…Three is a typical litter size,with four usually the maximum.The cubs show concern as another bear comes close, but the motherbarely flinches-it’s a male, but she has the size advantage…The cubs can get on with their antics.But threats are never far off,and when mother smells another male nearby, she and the cubs practice theirtree-climbing drill.While the male busily rubs his scenton branches he passes, she and the cubsslip undetected into the woods.The animals tell only ha lf the Urals’ story…they live in a place like no other.The North holds some of the most intactconifer forests in Western Eurasiaand the south has a wealth of biodiversity.These primeval forests, their treesleft to rise and fall at nature’s own pace,have attained great age.While the untouched woodlands thrive,some Northern Urals residents struggle.On hidden riverbanks, endangered European mink make their last stand.Once widespread across Europe,their range has shrunk more than eighty percent since the mid nineteenth century.This is one of their last refuges.This female mated about eight weeks ago,well-timed for giving birthduring days of plenty.Now, she pads her burrowpreparing for her litter.Outside, the Urals’ fickle weathertakes a turn for the worse.It defies prediction. Squall winds can blow through at ninety kilometres per hour.Snow can follow a heat wave.Two meters of rain can flash flooddown the mountainsides.The Ural owl chicks are about to facetheir first weather test…Though the chicks are mainly on their own now, their parents stay nearbyand still provide food.A long rabbit’s foot doesn’t seemlike a lucky meal choice for a small chick…But the little bird manages just fine.The owl’s digestive systemwill dissolve the meat,and the bone will come back up later.When rain rolls in, it doesn’t dampenthe bears’ activity.An outer coat of coarse hair repels water.Safe inside her den, the mink motherlicks a blind and naked newborn clean…and bites through the umbilical cord.She’s already delivered one,now tucked safely in her fur.But no time to rest…rapid breathing suggests more babies to come.Outside, the storm ends as quickly as it began.The soaked owl chicks preen their soggy down to speed drying.During the course of the storm,the exhausted mink motherhas had five babies.For one of Europe’s most endangeredsmall mammals, it’s a job well done.But she doesn’t get a break.The sound of a squirrel outside alarms her.As she goes to investigate,she reveals her thumb-sized brood.She can’t leave them alone for long…Their lives depend on her warmth.She will suckle them for the next ten weeks.Mink were hunted extensivelyin the Soviet Union for their precious fur.Habitat loss and competitionwith the more adaptable and aggressive American mink has hastened their decline.Outside the safety of her den,damselflies glint in the sun.The damp forest conditionsand rich plant diversityattract hundreds of different insect species.The Urals have no shortageof wildlife friendly habitat.Rivers and streams crisscross the great forests as they flow into Europe and Asia.The Ural river itself stretchesnearly two and a half thousand kilometres and drains an area twice the size of Cuba.Here, even burrowing animalstake to the water…The desman’s better known relative, the mole, is actually an adept swimmer.With the Urals’ precious animals,and diverse forested valleys,the World Wildlife Fund declared itone of the most important regionsfor conservation.In the North, brown bearsroam through the cotton grass.They share the territorywith wild forest reindeer-given half a chance the bearswould have them on their menu.The reindeer don’t make long migrationslike their relatives; instead they stayin the forests throughout the year.They prefer breezy areasto keep the biting bugs away.With up to twenty deer in a herd,they have plenty of eyes to spot trouble.In the quiet of the forest interiorall is peaceful, just two bearsexhibiting some unusual behaviour…The size difference suggestsa male and female… males can betwo and a half metres longand around ten percent larger than females.Usually, the mating seasonis a rough and ready affairfilled with biting and chasing,but these bears are sharing tender momentsof intimacy.If the male is able to fend offother admirers, these twomay stay together for weeks.While some Urals residents focus on mating, others fixate on meals.Like bears, Wolverines stash their food, sometimes hiding it for several months.This one seems shocked to find its deer carcass exposed and devoured.Even Siberian Jays have been helping themselves. The carcass may be old, but all is not lost. Wolverines have immensely strong jaws,and their cast iron stomachscan extract nutrients from almost anything.They can eat antlers, fur and even bones.The jay will enjoy the leftovers,if there are any.On the river bank, the mink motheris after something a little fresher.These adept underwater hunterschase frogs, snails, fish and insects.A female’s home range may spanfive kilometers.But she won’t go that far-her young, now old enoughfor more than just milk,wait back at the den…two haven’t made it, only three survive. She must work harder for her remaining kits.A good bite subdues a common roach,so it’s set aside while she hunts for more.With a heart rate of three-hundred beats per minute, minks can scrambleat a frantic pace.She can’t see well underwater,so she relies on a sensitive noseand whiskers to detect prey.But coming up empty, she returnsto the roach and heads home.With a water resistant coatshe is dry in no time.A quick deposit and it’s off for more…This time she’s after something for herself.Late summer casts a warm glowover the rolling mountains to the southof the vast Ural forests…a sea of conifers, oaks, maple, birchand linden trees.Here the Belaya river crossesthe Shulgan-Tash reserve.Brothers Achtyam and Anishave been rangers here since the reserve was founded in 1986.They rely heavily on their horsesfor covering this remote and rugged terrain.225 square kilometres of waterwaysand hills make for tough going.And they need to steer clear of some of the locals… who can be unpredictable.This bear’s more itchy than angry,but since it weighs up to six-hundred kilos and can charge at fifty kilometres per hour, it’s wise to keep a distance.As the brothers head up into the hills,they reveal the reasonfor their important mission:rare Burzyan bees.The rangers monitor and cultivatearound forty hives in the area…Which makes them very popularamong the honey-loving bears.Drips at the base of the treemake the treat all the more tantalizing.But adult bears are too heavy to climb trees.This on e leaves hungry and frustrated…not the sort of bearyou’d want to run into.The brothers hide the hivesin isolated spots, kilometres apart.The rangers come from a long lineof bee-keeping families, going backnearly one thousand years.The Burzyan honeybees, found onlyin this region, can survive extreme cold, have a naturally high resistance to disease, and skilfully gather nectar from linden trees, which blossom here for just three weeksin July.Maintaining the huge man-made hivesis both a worthy and a lucrative job.But competition is fierce...This time a mother with young.Brown bear cubs are lightand can easily scramble up a tree.The mother would do well to move,with a two hundred kilo hivedangling overhead.What the little one lacks in experience,he makes up for in enthusiasm.But he probably shouldn’t sit on a logfull of hot-tempered bees.Eventually, the cub gets what he came for.The men take a more methodical approachto bee-keeping.Smoke masks the bees’ alarm pheromon esso they’re less prone to stinging.The bears enjoy no such luxury.They opt for the smash-and-grab:break in, eat quickly and get away.Their thick fur helps prevent stings,but poking their exposed faces into the hiveis asking for trouble.Honey is a great source of caloriesfor the bears which need to pile on weight before the winter… it’s worth a few stings.Each hive should yield up to thirty kilosof honey.With the price in Moscow of 210 Euros per kilo, it’s sweet source of income.The brothers leave enough honeyfor the bees to survive winter.At the destroyed hive, a large maletakes up the second sitting.Dagger-long claws and a jawstrong enough to crush a bowling ballmake light work of the wood.But there isn’t much hereexcept angry bees.It leaves one upset bear…and an empty hive.At the beginning of September,Autumn arrives.The changing light alerts the animalsthat even colder days are aheadand food will become scarce.Now’s the time to stock up.As the weather cools, magpies and jaysfight over seeds dropped from the bushes.They have just two months to gatherwhat they need before the brutal winter returns.As maple leaves turn, it’s time for reindeerto hunt out berries as a last sugarfixbefore the snows arrive.The males now sport impressive antlersfor the Autumn rut… when they’ll fighteach other for the females.They compete with bears for ripe fruit-but never face to face.Smelling one on the wind, the reindeer retreat further up the valley.In spite of their name, some brown bearscan be almost white…or in this case jet black.Before hibernating they must gainaround seventy kilos of fat.Berries provide an energy boost.When food is plentiful,these usually solitary bearswill tolerate each other.Despite their voracious appetites,bears do their part for forest conservation…spreading undigested berry seedsand fertilizer through the forest.Not exactly elegant- but effective. Elsewhere in the Urals, as far from the bears as possible, this group of male elkmakes a final attempt to attract matesas Autumn ends.Bulls’ antlers re-grow every year.In just five months they can span two metres and weigh up to thirty-five kilos-the fastest growing bone on the planet.Though they’re in competition,they keep a respectful distancerather than waste energy locking antlers.When winter arrives in the Urals,it comes with a vengeance.The settling snow outlinesa frozen landscape haunted by an eerie sound.A sudden drop in temperaturecauses tree bark to burst and split,filling the forest with a strange percussion.The elk pass like silent shadowsthrough the darkened woodson their return migration.They’ll brave the cold…and the predators.With the big chill, the needfor food increases.Wolves can sniff out prey from a distanceof two kilometres and they can eatabout four kilos of meat daily.But the elk are on to them,putting their own keen noses to use.Standing over two meters tall,they move gracefully across the deep snow.Although wolves have the staminaand determination to track preyover great distances, they simplycan’t keep up.Fortunately, they can go several days without eating.During the course of winterthe incredible Ural forests and valleys become buried in driftsup to three metres deep.The trees will endure this freezefrom November until April.They have stood for millennia, bearing the cycles of the seasons,and sheltering the hidden residents.This ancient wilderness is one of Russia’s most bewitching secrets.Russia’s Primeval Valleys…the Urals.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /0410300v 1 12 O c t 2004Mon.Not.R.Astron.Soc.000,000–000(2005)Printed 2February 2008(MN L A T E X style file v1.4)NGC 6404and NGC 6583:two neglected intermediate-ageopen clusters located in the Galactic Center directionGiovanni Carraro 1,2,3,Ren´e A.M´e ndez 1,and Edgardo Costa 1⋆1Departamentode Astronom ´ia,Universidad de Chile,Casilla 36-D,Santiago,Chile2Astronomy Department,Yale University,P.O.Box 208101,New Haven,CT 06520-8101,USA 3Dipartimento di Astronomia,Universit`a di Padova,Vicolo Osservatorio 2,I-35122,Padova,ItalySubmitted:August 2004ABSTRACTWe report on V I CCD photometry of two fields centered in the region of the openclusters NGC 6404and NGC 6583down to V =22.0.These clusters have never been studied insofar,and we provide for the first time estimates of their fundamental pa-rameters,namely,radial extent,age,distance and reddening.We find that NGC 6404radius is 2.0arcmin,as previously proposed,while NGC 6583radius is 1.0arcmin,significantly lower than previous estimates.Both clusters turn out to be of intermediate age (0.5-1.0Gyr old),and located inside the solar ring,at a Galactocentric distance of about 6.5kpc.These results make these objects very interesting targets for spectroscopic follow-up to measure their metallic-ity.In fact they might allow us to enlarge by more than 1kpc the baseline of the radial abundance gradient in the Galactic disk toward the Galactic Center direction.This baseline is currently rather narrow especially for clusters of this age.Key words:Open clusters and associations:general –open clusters and associa-tions:individual:NGC 6404-open clusters and associations:individual:NGC 6583-Hertzsprung-Russell (HR)diagram1INTRODUCTIONIntermediate age and old open clusters (older than half a Gyr)are widely used to probe the chemical evolution of the Galactic disk (Friel &Janes 1993,Carraro &Chiosi 1994,Carraro et al.1998,Friel et al.2002,Carraro et al.2004),since they cover the entire life of the disk and are evenly distributed across the disk itself.With these objects it is possible to derive the age-metallicity relationship and the present and past radial abundance gra-dients in the Galactic disk:these relations are routinely used to constrain Galactic chemical evolution models (Tosi 1996).One of the major limitation of the samples commonly in use is the range in Galactocentric distances:a few clusters are known to be located beyond 12kpc from the Galactic cen-ter,and none is currently known to lie closer than 7.5kpc from the Galactic center (see Friel et al.2002,Fig.3).This is basically due to selection effects;star clusters inside the solar ring do not survive for enough time due to encoun-ters with molecular clouds and in general the higher density environment (Wielen 1971).On the other hand,in the antic-⋆email:gcarraro (GC),rmendez (RAM),costa (EC)@das.uchile clenter direction we expect quite a few clusters due to the lowefficiency of clusters formation in the Galaxy periphery.In an effort to enlarge the distance baseline of intermediate age and old open clusters,we searched for candidates to-wards the Galactic Bulge,by using criteria similar to those adopted by Phelps et al.(1994),i.e.the presence of a num-ber of similar brightness red stars.This in fact would imply the existence of a red clump,typical of intermediate age-old open clusters.This search is complementary to our survey of the open clus-ter remnants (Villanova et al.2004)designed to seek for old open clusters in an advanced stage of dynamical evolution,close to their final dissolution and merging with the general Galactic disk field.In this paper we report on NGC 6404and NGC 6583,two clusters located low in the Galactic plane,not very far from the Galactic Center direction (see Table 1)and which fulfill our searching criteria.The layout of the paper is as follows.Sect.2illustrates the observation and reduction strategies.An analysis of the ge-ometrical structure and star counts in the field of the two clusters are presented in Sect.3,whereas a discussion of the Color-Magnitude Diagrams (CMD)is performed in Sect.4.Sect.5deals with the determination of clusters reddening,c2005RAS2Carraro atal.Figure1.Afinding chart with the observed area in the region of the open cluster NGC6404.The sizes of the dot are proportional to the magnitudes of the stars.North is up,east on the left,and thefield is centered at the cluster nominal center(see Table1)Figure2.Afinding chart with the observed area in the region of the open cluster NGC6583.The sizes of the dot are proportional to the magnitudes of the stars.North is up,east on the left,and thefield is centered at the cluster nominal center(see Table1)Table1.Basic parameters of the observed objects.Coordinates are for J2000.0equinoxName RA DEC L BNGC640417:39:37-33:14:48355.66-1.18NGC685318:15:49-22:08:129.28-2.53 distance and age and,finally,Sect.6summarizes ourfind-ings.2OBSER V ATIONS AND DATA REDUCTION CCD V I observations were carried out with the eight CCDs mosaic camera on-board the1.3m Warsaw telescope at Las Campanas Observatory(Chile),in the nights of July 2to4,2004.The two clusters were centered in chip#3. With a pixel size of0′′.26,and a CCD size of4096×2048 pixels,this samples a17′.7×8′.9field in the sky. However,we trimmed the CCD and at the end used in this study an actual area of13.8′.7×8′.9The details of the observations are listed in Table2where the observedfields are reported together with the exposure times,the average seeing values and the range of air-masses during the observations.Fig.1shows thefinding chart in the area of NGC6404,and Fig.2in the area of NGC6583. In bothfigures North is up,and East on the left.Both thefield were centered in the clusters nominal centers (Dias et al.2002†).However,the coordinates of NGC6583 turned out to be slightly off-set(about-20′)in declina-tion,and the new coordinates are:α=18h15m49s,δ=−22◦08′30′′.We shall use these new coordinates throughout this paper.The data have been reduced with the IRAF‡packages CC-DRED,DAOPHOT,ALLSTAR and PHOTCAL using the point spread function(PSF)method(Stetson1987).The three nights turned out to be photometric and very stable, and therefore we derived calibration equations for all the141 standard stars observed during the three nights in the Lan-dolt(1992)fields SA104-334,PG1323-085,PG1657+078, PG2213+006,PG1633+099,SA110-362and SA92-355 (see Table2for details).The calibration equations turned out of be of the form:v=V+v1+v2∗X+v3(V−I)i=I+i1+i2∗X+i3(V−I),where V I are standard magnitudes,vi are the instrumental ones and X is the airmass;all the coefficient values are re-ported in Table3.The standard stars in thesefields provide a very good color coverage.Thefinal r.m.s.of the calibration are0.034and0.033for the V and Ifilter,respectively.†p.br/wilton/clusters.txt‡IRAF is distributed by NOAO,which are operated by AURA under cooperative agreement with the NSF.c 2005RAS,MNRAS000,000–000The open clusters NGC6404and NGC65833Table2.Journal of observations of NGC6404,NGC6583and standard starfields(July2-4,2004).NGC6404V10,300,1200 1.3 1.06-1.15I10,300,900 1.3 1.06-1.15SA104-334V3×200 1.4 1.24-1.26I3×70 1.4 1.24-1.26PG1657+078V3×300 1.5 1.24-2.04I3×100 1.5 1.24-2.04PG1633+099V3×120 1.2 1.33-1.50I3×45 1.2 1.33-1.50 SA92-355V3×120 1.6 1.15-1.18I3×50 1.6 1.15-1.18Table3.Coefficients of the calibration equations Photometric errors have been estimated following Patat& Carraro(2001).It turns out that stars brighter than V≈20mag have internal(ALLSTAR output)photometric errors lower than 0.10mag in magnitude and lower than0.18mag in colour, as one can readily see by inspecting Fig.3.There the trend of errors in colour and magnitude are reported against the V mag.,while in the insert we show the mean errors as a function of the magnitude.Thefinal photometric data(coordinates,V and I magni-tudes and errors)consist of24,295stars in NGC6404and 26,086stars in NGC6583,and are made available in elec-tronic form at the WEBDA§site maintained by J.-C.Mer-milliod.3STAR COUNTS AND CLUSTERS SIZEDias et al.(2002)report preliminary estimates of NGC6404 and NGC6583diameters amounting to5arcmin.By in-specting Fig1and2we can recognize that Dias et al.es-timate is surely a reasonable one for NGC6404,which is a loose open cluster,but it seems to be too large for NGC6583,§http://obswww.unige.ch/webda/navigation.html Figure3.Trend of photometric errors in V and(V-I)as a func-tion of Vmagnitude.Figure4.Star counts in the area of NGC6404as a function of radius and magnitude.The dashed lines represent the level of the controlfield counts estimated in the surroundings of the cluster in that magnitude range.which on the contrary appears more concentrated.Since our photometry covers entirely the clusters area and part of the surroundings,we performed star counts to obtain an improved estimate of the clusters size.We derived the surface stellar density by performing star counts in concentric rings around the clusters nominal cen-ters(see Table1)and then dividing by their respective sur-faces.Poisson errors have also been derived and normalizedc 2005RAS,MNRAS000,000–0004Carraro atal.Figure 5.Star counts in the area of NGC 6583as a function of radius and magnitude.The dashed lines represent the level of the control field counts estimated in the surroundings of the cluster in that magnitude range .to the corresponding surface.Poisson errors in the field star counts turned out to be very small,and therefore we are not going to show them.3.1NGC 6404The final radial density profile for NGC 6404is shown in Fig.4as a function of V magnitude.The contribution of Galactic disk field has been estimated by considering all the stars in the corresponding magnitude bin,located out-side 4.0arcmin from the cluster center,and by normalizing counts over the adopted area.The cluster seems to be populated by stars of magnitude in the range 12≤V ≤18,where it clearly emerges from the background,and then it starts to be well mixed with the field.In this magnitude range the radius is not larger than 2arcmin,and the cluster exhibits a significant under-density of stars (at the level of the field)at about half an arcmin from the nominal center.This is compatible with the loose nature of NGC 6404(see also Fig.1).In conclusion,we are going to adopt the value of 2arcmin as NGC 6404radius throughout this paper.This estimate is in good agreement with the value reported by Dias et al.(2002).3.2NGC 6583The final radial density profile for NGC 6583is shown inFig.5as a function of V magnitude.Also in this case the contribution of Galactic disk field has been estimated by considering all the stars outside 4.0arcmin from the cluster center in the same way as for NGC 6404.Unlike NGC 6404,NGC 6503is a compact cluster,which clearly emerges above the background down to V ≈20.The cluster radius turnsout of be around 1arcmin.Within this radius,the clus-ter exhibits a significant over-density of stars.Outside,the counts level offto the field star counts value.We thus adopt the value of 1arcmin as NGC 6503ra-dius throughout this paper.This estimate is a factor of two smaller than that reported by Dias et al.(2002).4THE COLOUR-MAGNITUDE DIAGRAMSIn Figs.6and 7we present CMDs of NGC 6404and NGC 6583,respectively.They are plotted as a function of radius,in order to facilitate their interpretation.In fact the clusters are located quite low onto the Galactic plane toward the Galactic Center direction,and hence we expect quite a significant contamination from the Galactic disk field stars located in the foreground along the line of sight of the clus-ters.The cuts according to radius are done on the basis of the results on Sect.3.4.1NGC 6404The CMDs of NGC 6404are shown in Fig.6.In the left panel we plot all the detected stars.Here the Main Sequence (MS)extends from V =14.5to V =21.0,and the Galactic disk Red Giant Branch (RGB)sequence departs from V =20.The MS is very wide,and this could have different causes,like vari-able reddening across the observed area (actually we expect this is the major cause),photometric errors which increase as a function of magnitude (see Fig.3),and the presence of a number of binary stars.It is very difficult to distinguish from this CMD the presence of a cluster.However,and in-terestingly,there are a few stars in the red part of the CMD at V =13.5-14.5,(V −I )=2.0-2.5,which resemble a RGB clump.Much better information can be obtained by looking at the middle and right panels in the same figure.The middle panel contains only the stars located inside the estimated clus-ter radius (2arcmin,see Sect.3),whereas the right panel contains the stars located outside 4arcmin from the clus-ter center,where we estimated the contribution of the field population to be dominant.The following remarks can be done closely inspecting these two panels:•The MS and the Turn OffPoint (TO)region in the middle panel are much better defined,although the MS is still somewhat wide,mostly due to field star contamination;•Almost all the probable RGB stars are inside the inner region,which implies by the way that the cluster underwent some dynamical relaxation;•Most of the stars above the TO are probably field stars,since they lie almost all out of the cluster radius (see right panel);nevertheless some of them still remain,and they might be blue straggler stars,quite common in clusters like this.The shape of the TO and a presence of some clump stars are a clear indication of an age in the range 0.5-1.5Gyr,de-pending on the precise metal content of the cluster (Carraro &Chiosi 1994,Carraro et al.1999).c2005RAS,MNRAS 000,000–000The open clusters NGC6404and NGC65835 Figure6.V vs(V−I)CMDs of NGC6404as a function of radius from the clustercenter.Figure7.V vs(V−I)CMD of NGC6583as a function of radius from the cluster center.4.2NGC6583The CMDs of NGC6583are shown in Fig.7,which is similar to Fig.6.In the left panel we plot all the detected stars.Here the Main Sequence(MS)extends from V=14.5to V=21.0, and the Galactic disk RGB sequence departs from V=190. Like NGC6404,it is very difficult to distinguish from this CMD the presence of a cluster,and we do not notice any candidate RGB clump star.Much better information can be obtained by looking at the middle and right panels in Fig.7.The middle panel contains only the stars located inside the estimated cluster radius(1 arcmin,see Sect.3),whereas the right panel contains the stars located outside4arcmin from the cluster center,where we estimate the contribution of thefield population to be dominant.The following considerations can be done:•The MS and the TO region in the middle panel are much better defined;in particular the MS is quite narrow and thefield star contamination is almost negligible down to V≈19.0;•There is a nice almost vertical clump of stars at V=14.5, (V−I)=1.5,similar to the clump observed in open clusters like NGC2477(Kassis et al.1997)or Pismis2(Phelps et al.1994).•Most of the stars above the TO are probablyfield stars, since they lie all out of the cluster radius(see right panel).In particular thefine shape of the TO deserves some at-tention.In fact the shape of the TO is that one typical of intermediate-age open clusters,with a blue and red hook clearly visible,notwithstanding somefield star contamina-tion.Again,the shape of the TO and the presence of a clump indicate an age in the range0.5-1.5Gyr,depending on the metallicity.5CLUSTER FUNDAMENTAL PARAMETERS In this section we provide some estimates of the clusters ba-sic parameters.To achieve this,we make use of the compar-ison between the stars distribution in the CMD and a set of theoretical isochrones from the Padova group(Girardi et al.2000).We already have an indication of the cluster age,but we do not know anything about the reddening,the distance,and the metallicity.In the following analysis we adopt R⊙=8.5kpc for the Galactocentric distance of the Sun,R V=3.1and the ratio E(V−I)6Carraro atal.Figure 8.NGC 6404data in the V vs.V −I diagram,as compared to Girardi et al.(2000)isochrone of age 0.5Gyr (solid line),for a metallicity Z ⊙=0.019.A distance modu-lus of (m −M )0=11.20±0.20mag,and a colour excess of E (V −I )=1.15±0.05mag,are derived.Errors in colour and magnitude at different magnitude levels are also shown.metallicity.The fit is quite good both in the TO and the evolved stars region.The fit is poor in the bottom of the MS,where,by the way,it is not easy to distinguish the clus-ter MS from the field.We are keen to believe that the bulk of stars above the TO are most probably field stars.We achieved this results by shifting the isochrone with E (V −I )=1.15±0.05(E (B −V )=0.92),and (m −M )=14.75±0.20(errors by eye).We also tried to over-impose a lower metal abundance but the fit turned out to be quite poor.The same occured with higher metallicity isochrones.Therefore,we suggest that the cluster possesses a solar metal abundance.If this is the case,NGC 6404turns out to be located 1.7kpc from the Sun toward the Galactic center direction.This implies a distance from the Galactic center of 6.8kpc and a height above the Galactic plane of about -40pc.According to Friel et al.(2002,Fig.3),NGC 6404turns out to be an intermediate-age open cluster located 1kpc away from the lower distance edge of the radial abundance gradient.Therefore NGC 6404might play an important role in defin-ing the precise shape of the radial abundance gradient in the inner region of the Galactic disk.5.2NGC 6583In Fig.9we present the CMD for NGC 6583stars locatedwithin 1.0arcmin from the cluster center (see Sect.3),and super-imposed an isochrone of 1.0billion years for a solar (Z=0.019)metallicity.The fit is quite good both along the MS,in the TO region and in the evolved stars one.We achieved this results by shifting the isochronewithFigure 9.NGC 6583data in the V vs.V −I diagram,as compared to Girardi et al.(2000)isochrone of age 1.0Gyr (solid line),for a metallicity Z ⊙=0.019.A distance modu-lus of (m −M )0=11.55±0.20mag,and a colour excess of E (V −I )=0.63±0.05mag,are derived.Errors in colour and magnitude at different magnitude levels are also shown.E (V −I )=0.63±0.05(E (B −V )=0.51),and (m −M )=13.50±0.20(errors by eye).Like NGC 6404,we also tried to over-impose a lower metal abundance,but the fit turned out to be quite poor.The same occured with higher metallicity isochrones.Therefore,we suggest that this cluster also possesses a solar metal abundance.As a consequence,NGC 6503turns out to be located 2.1kpc from the Sun toward the center direction.This implies a distance from the Galactic center of 6.4kpc and a height above the Galactic plane of about -90pc.As NGC 6404,NGC 6583turns out to be an intermediate-age open cluster located more than 1kpc away from the lower distance edge of the radial abundance gradient.Therefore,also NGC 6583might play an important role in defining the precise shape of the radial abundance gradient in the inner regions of the Galactic disk.6CONCLUSIONSWe have presented the first CCD V I photometric study of the open clusters NGC 6404and NGC 6583.The CMDs we derive allow us to infer estimates of the cluster basic parameters,which are summarized in Table 4.In detail,we find that:•Both clusters are of intermediate age;NGC 6404is 0.5Gyr old,NGC 65831.0Gyrs old;•The reddening E B −V turns out to be 0.92±0.05for NGC 6404and 0.51±0.05for NGC 6583;for both clusters solar metallicity isochrones provide a reasonable fit across the whole CMDs;by the way this metal abundance is notc2005RAS,MNRAS 000,000–000The open clusters NGC6404and NGC65837 Table4.Fundamental parameters of the observed objects.NGC6404 2.0 1.150.9211.30 6.80-0.14-0.040.5NGC6583 1.00.630.5111.55 6.400.35-0.09 1.0。

相关文档
最新文档