2020高考理科数学仿真试题四精品解析(62张)

合集下载

2020年高考数学(理)全真模拟卷(四)(全国版含答案解析)

2020年高考数学(理)全真模拟卷(四)(全国版含答案解析)

故选 B.
【点睛】
本题考查读懂条件程序框图的功能,比较指对数的大小,属于简单题.
1
7.直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的 ,则该椭圆的离
4
心率为 ( )
1
A.
3
1
B.
2
4
2
C.
3
3
D.
4
【答案】B 【解析】
试题分析:不妨设直线 l : x y 1 ,即 bx cy bc 0 椭圆中心到 l 的距离 cb
| bc | 2b b2 c2 4
e c 1 ,故选 B. a2
考点:1、直线与椭圆;2、椭圆的几何性质.
【方法点晴】本题考查直线与椭圆、椭圆的几何性质,涉及方程思想、数形结合思想和转化化归思
想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 不妨设直线
需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置
上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作
答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
读懂程序框图,可知输出 a , b , c 中最大的数,然后对 a, b, c 三个数进行判断,得到答案.
【详解】
由程序框图知,输出 a , b , c 中最大的数,
a

1
0.5 2

b

0.9
1 4

c

log5
0.3

2020高考理科数学仿真试题含答案

2020高考理科数学仿真试题含答案

2020年高考虽然延期一个月,但是练习一定要跟上,加油!数学理工农医类(四)本试卷分第Ⅰ卷(选择题共60分)和第Ⅱ卷(非选择题共90分),考试时间为120分钟,满分为150分.第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中恰好发生k次的概率P n(k)=k n C p k(1-p)n-k球的表面积公式S=4πR2,其中R表示球的半径4πR3,其中R表示球的半径球的体积公式V=3一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={圆:x2+y2=1},B={直线:y=x},则A∩B为A.{(22,22)}B.{(-22,-22)}C.{(22,22),(-22,22)}D.∅解析: 注意集合中的元素,A 为圆,B 为直线,故A ∩B =∅. 答案: D2.用6种不同的颜色把下图中A 、B 、C 、D 四块区域分开,允许同一色涂不同的区域,但相邻的区域不能涂同一色,则不同的涂法共有AB CDA.400种B.460种C.480种D.496种解析: 由A →B →C →D 的顺序填涂可得,共有16C 、15C 、14C 、14C =480种填涂方法.答案: C3.使得点A (cos2α,sin2α)到点B (cos α,sin α)的距离为1的α的一个值是A.12πB.6πC.-3πD.-4π解析: |AB |=22)2sin 2(sin )cos 2cos (αααα-+-=2|sin 2α|=1.答案: C4.已知4a -2b =(-2,23),c =(1,3),a ·c =3,|b |=4,则b 与c 的夹角是A.2πB.3πC.4πD.6π解析: 由题设得4a ·c -2b ·c =4·3-2b ·c =(-2,23)·(1,3),故得b ·c =4. 所以cos θ=||||c b cb ⋅=244⋅= 21⇒θ=3π,故选B本题主要考查向量数量积的坐标运算及向量数量积公式的灵活应用.答案:B 5.已知数列a n =1+an bn,其中a >0,b <0(a 、b 为常数),那么a n 与a n +1的大小关系是A.a n >a n +1B.a n <a n +1C.a n =a n +1D.与n 的值相关解析: 构造函数:a n =ab (1-a 1·an 11+),由a >0,b <0知a n 是关于n 的减函数, ∴a n >a n +1. 答案: A6.函数y =xx ||lg 的大致图象是A BC D解析: y =xx ||lg 是奇函数,且当x =±1时,y =0,所以选D.答案: D7.如下图,正方体的棱长为3 cm,在每一个面的正中有一个正方形孔通到对面,孔的边长为1 cm,孔的各棱平行于正方体的各棱,则该几何体的总表面积为A.54 cm 2B.72 cm 2C.76 cm 2D.84 cm 2解析: 把棱长为3 cm 的正方体分割成棱长为1 cm 的正方体共有33=27个,如题意抽去三个方向上的正方体,余下的可分为两类.第一类:处于正方体8个顶点上的8个小正方体,它们算入表面积的面各3个,共3×8=24(cm 2);第二类:处于正方体各棱中间的正方体,每个正方体算入表面积的面各4个,共4×12=48(cm 2),则总表面积为24+48=72(cm 2).注:此题另一种思路是:外表面积8×6=48(cm 2),内表面积2×12=24(cm 2),总表面积 72 cm 2.答案: B 8.如果5-x ≠kx对一切x ≥15均成立,则有 A.k ≤0B.k ≤0或k >2020 C.k ≤0或k >1510D.0≤k <2020解析: 令y =5-x ,y =kx ,显然k ≤0时成立,由⎩⎨⎧=-=kxy x y 52⇒k 2x 2-x +5=0(k >0), 由Δ=0,得k =2020;由⎪⎩⎪⎨⎧=-=x y x y 2020,52得x =10,而x ≥15,∴当x =15时,k =1510.∴k ≤0或k >1510.答案: C9.满足不等式0≤y ≤2-|x |的整数解(x ,y )的个数是 A.6B.7C.8D.9解析: 由已知|x |≤2,则-2≤x ≤2. 当x =-2,2时,y =0.有2个; 当x =-1,1时,y =0,1.有4个; 当x =0时,y =0,1,2.有3个. 综上,共有9个,故选D. 答案: D10.一名射击运动员命中的概率为0.7,那么他射击21次后最可能的命中次数是A.13或14B.14或15C.16或17D.17或18解析: 满足几何分布,∴E ξ=np =14.7. ∴B 满足.答案: B 11.若∞→n lim (a ·122-+n n -nb )=1,则ab 的值是A.82B.42C.8D.16解析:∞→n lim(a ·122-+n n -nb )=∞→n limnbn n a a n a n b a +-+-+-12)2(222222存在, 则2a 2-b 2=0.①∴原式=∞→n limbnn a n a a +-+⋅-222112=1.∴ba a +22=1. ②由①②可知,a =22,b =4.∴ab =82.答案: A 12.已知f (x )=⎪⎩⎪⎨⎧<+≥,01,0,,2x xx x 则f ′(1)、f ′(-1)等于A.-2B.-3C.-1D.1解析: f ′(x )=⎪⎩⎪⎨⎧<≥⋅.0,2,0,121x x x x ∴f ′(1)·f ′(-1)=-1. 答案: C第Ⅱ卷 (非选择题 共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.将答案填在题中横线上)13.在(2+x33)2004的展开式中,系数为有理数的项共有_______项.解析: 易知T r +1=r 2004C 21002-2r ·33rx -r .其系数为有理数的充要条件是r 为2与3的倍数,即r 被6整除,所以r =6k (k ∈Z).∵0≤6k ≤2004, ∴0≤k ≤334(k ∈Z). ∴k =0,1,2, (334)系数为有理数的项共有335项.或利用等差数列通项公式,由2004=6(n -1),解得n =335. 答案: 33514.如下图的电路中有a 、b 、c 三个开关,每个开关断开或闭合的概率都是21,且是相互独立的,则在某时刻灯泡甲、乙亮的概率分别是_______.解析: 甲亮须a 、c 闭合,b 开启, ∴P 甲=21×21×21=81.乙亮a 必须闭合,b 、c 只需一个闭合即可, ∴P 乙=21×(21×21+21×21+21×21)=83. 答案:81,83 15.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有_______种.解析:从10个点中任取4个的组合数为410C =210种.其中4点共面的分三类.(1)4点在同一侧面或底面的共4组,即46C ×4=60种.(2)每条棱的中点与它的对棱上三点共面,这样的共6种. (3)在6个中点中,4点共面数有3种.故4点不共面的取法有210-(60+6+3)=141种. 答案: 14116.关于正四棱锥P —ABCD ,给出下列命题: ①异面直线PA 与BD 所成的角为直角; ②侧面为锐角三角形;③侧面与底面所成的二面角大于侧棱与底面所成的角; ④相邻两侧面所成的二面角为钝角. 其中正确命题的序号是___________.解析:①对,如图,顶点P 在底面上的射影为底面中心O . ∵AC ⊥BD ,∴PA ⊥BD ,即PA 与BD 所成的角为直角. ②对,设正四棱锥底面边长为a ,侧棱长为b , 则AC =2a ,OA =OB =22a .∵b >22a ,在△PAB 中,PA 2+PB 2-AB 2=2b 2-a 2>2(22a )2-a 2=0,∴∠APB 为锐角,故△APB 为锐角三角形,即侧面为锐角三角形. ③对,取BC 中点E ,连PE 、OE ,易知∠PEO 为侧面与底面所成的角,∠PBO 为侧棱与底面所成的角,sin ∠PEO =PEPO ,sin ∠PBO =PBPO .∵PB >PE ,∴sin ∠PEO >sin ∠PBO . ∴∠PEO >∠PBO .④对,作AF ⊥PB 于F ,连FC ,易证FC ⊥PB , ∴∠AFC 为相邻两侧面所成的二面角.∵AF <AB ,CF <BC ,在△AFC 中,AF 2+CF 2-AC 2<AB 2+BC 2-AC 2=0,从而∠AFC >90°.故相邻两侧面所成的二面角为钝角.答案: ①②③④三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f (x )=cos 4x -2sin x cos x -sin 4x . (1)求f (x )的最小正周期;(2)若x ∈[0,2π],求f (x )的最大值、最小值.解:(1)因为f (x )=cos 4x -2sin x cos x -sin 4x =(cos 2x +sin 2x )·(cos 2x -sin 2x )-sin2x =cos2x -sin2x =2cos(2x +4π),所以f (x )的最小正周期T =2π2=π.6分(2)因为0≤x ≤2π,所以4π≤2x +4π≤4π5.当2x +4π=4π时,cos(2x +4π)取得最大值22;当2x +4π=π时,cos(2x +4π)取得最小值-1.所以f (x )在[0,2π]上的最大值为1,最小值为-2.12分18.(本小题满分12分)已知正四棱柱ABCD —A ′B ′C ′D ′的底面边长为3,高为4. (1)平面ABCD 内是否存在与AB 不平行的直线与BC ′垂直?证明你的结论.(2)求二面角A ′—BC ′—B ′的大小.(3)求点D ′到平面A ′BC ′的距离. 解法一:(几何法)(1)不存在.证明:假设平面ABCD 内存在与AB 不平行的直线l 与BC ′垂直. ∵ABCD —A ′B ′C ′D ′是正四棱柱, ∴AB ⊥BC ′. 又AB 与l 相交, ∴BC ′⊥平面ABCD .又BB ′⊥平面ABCD ,这与“过一点只能作一条直线与一个平面垂直”相矛盾.故平面ABCD 内不存在与AB 不平行的直线l 与BC ′垂直. 4分B'(2)作BH ⊥BC ′于H . 连结A ′H .∵A ′B ′⊥平面BB ′C ′, ∴A ′H ⊥BC ′.∴∠A ′HB ′为二面角A ′—BC ′—B ′的平面角. 易求得B ′H =512,A ′H =5413. 又A ′B ′=3, ∴△A ′B ′H 中,cos ∠A ′HB ′=HB H A B A H B HA '⋅'''-'+'2222=512541323)512()5413(222⋅⋅-+=41414. ∴∠A ′HB ′=arccos 41414为所求.8分(3)设d 为所求距离. ∵V D ′—A ′BC ′=V B —A ′C ′D ′,∴31S △A ′BC ′·d =31S △A ′C ′D ′·BB ′⇒31·2413·d =31·(21·32)·4⇒d =414112为所求. 12分解法二:(向量法)(1)不存在.证明:建立如图空间直角坐标系.不妨假设平面ABCD 内存在直线BE (E 在AD 上且与A 不重合)与BC ′垂直(如图).设E (0,t ,4)(t ≠0),则BE =(0,t ,4)-(3,0,4)=(-3,t ,0).又BC =D A '=A A '+D A '=(0,0,-4)+(0,3,0)=(0,3,-4), ∴BC ·BE =(0,3,-4)·(-3,t ,0)=3t =0⇒t =0,这与t ≠0矛盾. ∴平面ABCD 内不存在与AB 不平行的直线l 与BC ′垂直. (2)如图,作A ′H ⊥BC ′于H ,连结B ′H . ∵A ′B ′⊥平面BB ′C ′,∴B ′H 是A ′H 在平面BB ′C ′内的射影. ∴B ′H ⊥BC ′.∴∠A ′HB ′就是二面角A ′—BC ′—B ′的平面角. 设H (3,y ,z ),∵B ′(3,0,0), ∴B H '=(0,-y ,-z ).又C B '=(3,3,0)-(3,0,4)=(0,3,-4), ∴B H '·C B ' =-3y +4z . ∵B H '⊥C B ',∴-3y +4z =0.①又由BH =λC B ',可得4y +3z -12=0.②解①②联立的方程组,得y =2548,z =2536. 故B H '=(3,0,0)-(0,2548,2536)=(3,-2548,-2536),A H '=(-3,-2548,-2536). 又易得|B H '|=512,|A H '|=5413. ∴cos ∠A ′HB ′||||B H A H ''''=5125413)2536,2548,0()2536,2548,3(⋅--⋅--- =41414. ∴∠A ′HB ′=arccos 41414为所求.8分(3)由(2)可知BC ′⊥平面A ′HB ′. ∵BC ′⊂平面A ′BC ′, ∴平面A ′HB ′⊥平面A ′BC ′.作B ′G ⊥A ′H 于G ,则B ′G ⊥平面A ′BC ′,B ′G 就是点B ′到平面A ′BC ′的距离.∴B ′G =B ′H ·sin ∠A ′HB ′=512·2)41414(1-=414112. ∵ABCD —A ′B ′C ′D ′是正四棱柱,∴易证点D ′与点B ′到平面A ′BC ′的距离相等. ∴414112为所求.12分19.(本小题满分12分)二人掷一颗骰子,两人各掷一次,点数大者为胜,但这个骰子可能不太规则,以致k 点出现的概率是P k (k =1,2,3,4,5,6).在这种情况下,(1)求二人平局的概率P .(2)证明P ≥61;并证明如果P =61,则P k =61(k =1,2,3,4,5,6).(1)解:P =P 12+P 22+…+P 62.4分(2)证明:∵P 1+P 2+…+P 6=1,(P 1-61)2+(P 2-61)2+…+(P 6-61)2=P 12+P 22+…+P 62-31 (P 1+P 2+…+P 6)+61=P -61≥0,∴P ≥61,当P =61时,P 1=P 2=…=P 6=61.12分20.(本小题满分12分)已知函数f (x )=12++x bax 在x =2处有一个极大值. (1)求a 、b 的关系式,并判断a 的符号; (2)求f (x )的单调区间.解:(1)f ′(x )=222)1()(2)1(++-+x b ax x x a =222)1(2++--x a bx ax .①∵f (x )在x =2处有一个极大值, ∴f ′(2)=0,从而3a +4b =0.②将b =-43a 代入①得f ′(x )=22)1()2)(21(+-+-x x x a . ∵f (x )在x =2处有极大值, ∴当-21<x <2时,f ′(x )>0;x >2时,f ′(x )<0,∴a >0.6分(2)令f ′(x )>0解得-21<x <2,从而f (x )在(-21,2)内是增函数; 令f ′(x )<0,解得x <-21或x >2,从而f (x )在(-∞,-21)或(2,+∞)内是减函数.12分21.(本小题满分12分)已知正数项数列{a n }和{b n }满足b n =21+41a n ,b n +1=b n (1-41a n +12)(n ∈N *),a 1=1. (1)求数列{a n }和{b n }的前4项; (2)求数列{a n }和{b n }的通项公式. 解:(1)∵⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=>>++③②①)411(,4121,0,0211n n n n n n n a b b a b b a对一切n ∈N *都成立, 又a 1=1,∴b 1=21+41a 1=43.由①②③式得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=>>),411(,4121,0,022122222a b b a b b a 解得a 2=32,b 2=32,同理解得a 3=21,b 3=85和a 4=52,b 4=53,∴数列{a n }的前4项为a 1=1,a 2=32,a 3=21,a 4=52,数列{b n }的前4项为b 1=43,b 2=32,b 3=85,b 4=53.6分(2)由a 1=1=22,a 2=32,a 3=21=42,a 4=52猜想数列{a n }的通项公式为a n =12+n (n ∈N *).④ 数学归纳法证明如下:当n =1、2、3、4时,由前计算知公式④成立.设n =k (k ≥4)时,公式④成立,即a k =12+k . 当n =k +1时,由①②③式得⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-=+=++++++.0,0),411(,41211121111k k k k k k k b a a b b a b 消去b k +1得⎪⎩⎪⎨⎧>-=++++.0),411(41211211k k k k a a b a ⑤又b k =21+41a k =21+41×12+k =)1(22++k k ,把它代入⑤式解得 a k +1=1)1(2++k ,即n =k +1时,公式④也成立. ∴对一切n ∈N *,a n =12+n 成立,此时b n =21+41a n =21+41×12+n =)1(22++n n . ∴数列{a n },{b n }的通项公式分别为a n =12+n ,b n =)1(22++n n .12分说明:可先猜想数列{b n }的通项公式,再用数学归纳法证明,最后由②式解得{a n }的通项公式.22.(本小题满分14分)已知A (4,0)、N (1,0),曲线C 上的任意一点P 满足AN 、AP =6|PN |, (1)求点P 的轨迹方程; (2)求|PN |的取值范围;(3)若M (-1,0),求∠MP N 的取值范围.解:(1)设P (x ,y ),则AN =(-3,0),AP =(x -4,y ),PN =(1-x ,y ). ∵AN ·AP =6|PN |, ∴-3(x -4)+0·y =622)1(y x +-, 化简得3422y x +=1.4分(2)由(1)得|PN |=6AP AN ⋅=-21(x -4).又-2≤x ≤2,∴|PN |的取值范围为[1,3].8分(3)设|PM |=m ,|PN |=n ,∵M 、N 正好是椭圆的两个焦点,∴cos ∠MPN =mnc n m 2)2(222-+=mn c mn n m 2)2(2)(22--+=mnmn c a 22)2()2(22--=mn b 242-1=mn 6-1≥2)2(6n m +-1=26a -1=21.又∠MPN ∈(0,π),∴∠MPN 的取值范围是[0,3π].14分。

2020届高三第二次模拟考试卷 理科数学(四) 解析版

2020届高三第二次模拟考试卷 理科数学(四) 解析版

2020届高三第二次模拟考试卷理 科 数 学(四)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,(2){21}x x A x -=<,{ln(1)}B x y x ==-,则()U A B =I ð( )A .{1}x x ≥B .{1}x x ≤C .{01}x x <≤D .{12}x x ≤<【答案】D【解析】由题意可知{02}A x x =<<,{1}B x x =<, 所以(){02}{1}{12}U A B x x x x x x =<<≥=≤<I I ð,故选D . 2.已知函数()()xf x a a =∈R ,则“104a <≤”是“对任意12x x ≠,都有1212()()0f x f x x x -<- 成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】“对任意12x x ≠,都有1212()()0f x f x x x -<-成立”等价于“函数()()x f x a a =∈R 在R 上为减函数”,即01a <<,显然“104a <≤”是“任意12x x ≠,都有1212()()0f x f x x x -<-成立”的充分不必要条件,故选A . 3.已知 1.12a =,0.45b =,5ln2c =,则( ) A .b c a >> B .a c b >> C .b a c >> D .a b c >>【答案】D【解析】 1.10221a =>=,0.40551b =>=, ∵101122048a ==,1045625b ==,∴1a b >>, 又5lnln 12e <=,∴a b c >>,故选D . 4.已知复数z 满足i i ()z m m =+∈R ,若z 的虚部为1,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【解析】∵i i z m =+,∴i 1i imz m +==-, 由于z 的虚部为1,故1m -=,∴1i z =+,复数z 在复平面内对应的点为(1,1),故复数z 在复平面内对应的点在第一象限,故选A . 5.已知1cos sin 5αα-=,则πcos(2)2α-=( ) A .2425-B .45-C .2425D .45【答案】C【解析】由1cos sin 5αα-=,得11sin 225α-=, 所以24sin 225α=,所以π24cos(2)sin 2225αα-==,故选C . 6.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3π4A =,3tan 4C =,2b =,则ABC△的面积S =( ) A .6 B .4C.D.【答案】A【解析】在ABC △中,因为3tan 4C =,所以3sin 5C =,4cos 5C =, 又3π4A =,所以3πsin sin()sin()sin )4B A C C C C =+=+=-=,由正弦定理sin sin b c B C =,得232510c=,解得62c =, 故ABC △的面积1sin 62S bc A ==,故选A .7.在ABC △中,已知92AB AC ⋅=u u u r u u u r ,3AC =u u ur ,3AB =u u u r ,M ,N 分别是BC 边上的三等分点,则AM AN ⋅u u u u r u u u r的值是( )A .112B .132C .6D .7【答案】B【解析】不妨设2133AM AB AC =+u u u u r u u u r u u u r ,1233AN AB AC =+u u u r u u u r u u u r,所以222112252()()3333999AM AN AB AC AB AC AB AB AC AC⋅=+⋅+=+⋅+u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r 22222525913()(33)999922AB AC AB AC =++⋅=⨯++⨯=u u u r u u u r u u u r u u u r , 故选B .8.设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,若12a =,且11242n n n S S a ++=++,则使得120n T n >-成立的n 的最小值是( ) A .5 B .6 C .8 D .9【答案】A【解析】由11242n n n S S a ++=++,化简可得132n n S S +=+, 则当2n ≥时,132n n S S -=+,两式相减得13n n a a +=, 当1n =时,12132a a a +=+,又12a =,所以2163a a ==,故{}n a 是以3为公比,2为首项的等比数列, 所以数列{}n a 的通项公式123n n a -=⨯.根据等比数列的前n 项和公式可得2(13)3113nn n S -==--,从而数列{}n S 的前n 项和11233(13)331322n n n n T S S S S n n +-=++++=-=---L .所以120n T n >-,即13312022n n n +-->-,化简可得1324322n +>,即1532433n +>=,解得4n >. 故使得120n T n >-成立的n 的最小值是5,故选A .9.如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A .3π4B .2πC .3π2D .9π4【答案】C【解析】正方体的表面被该球面所截得的弧长是相等的三部分,如图, 上底面被球面截得的弧长是以1A 为圆心,1为半径的圆周长的14, 所以所有弧长之和为2π3π342⨯=,故选C .10.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,且122F F c =,点A 在椭圆上,1120AF F F ⋅=u u u r u u u u r ,212AF AF c ⋅=u u u r u u u u r,则椭圆的离心率e 为( )A .33B .312C .512D .22【答案】C【解析】假设点A 位于x 轴的上方,由1120AF F F ⋅=u u u r u u u u r 可得2(,)bA c a-, 所以21(0,)b AF a =-u u u r ,22(2,)b AF c a=-u u u u r ,所以42122b AF AF c a⋅==u u u r u u u u r ,所以2b ac =,即22a c ac -=,所以21e e -=,解得152e -±=, 因为01e <<,则512e -=,故选C . 11.已知函数3()()3(0)f x x a x a a =--+>在[1,]b -上的值域为[22,0]a --,则b 的取值范围 是( ) A .[0,3] B .[0,2]C .[2,3]D .(1,3]-【答案】A【解析】由题意,得2()3()33(1)(1)f x x a x a x a '=--=-+--. 由()0f x '=,得1x a =+或1x a =-,所以当11a x a -<<+时,()0f x '<;当1x a <-或1x a >+时,()0f x '>, 所以函数()f x 在(1,1)a a -+上单调递减,在(,1)a -∞-,(1,)a ++∞上单调递增. 又(1)22f a a +=--,(1)22f a a -=-+.若(1)22f a -=--,即3(1)322a a a --++=--,则1a =,此时3()(1)31f x x x =--+,且()4f x =-时,1x =-或2x =; 由()0f x =,解得0x =或3x =.因为函数()f x 在[1,]b -上的值域为[4,0]-,要使函数()f x 在[1,]b -上的值域为[22,0]a --, 需1a b +≤,此时1[1,]a b -∈-,所以(1)22(1)0f a f a ->--⎧⎨-≤⎩,即3(1)322220a a a a ⎧--++>--⎨-+≤⎩,无解.综上所述,b 的取值范围是[0,3],故选A .12.已知定义在R 上的奇函数()f x 满足0x ≥时,12log (1),[0,1)()13,[1,)x x f x x x +∈⎧⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( ) A .21a -B .21a --C .12a --D .12a -【答案】D【解析】因为()f x 为R 上的奇函数,所以当0x <时,12log (1),(1,0)()()13,(,1]x x f x f x x x --+∈-⎧⎪=--=⎨⎪-+--∈-∞-⎩, 画出函数()y f x =的图象和直线(01)y a a =<<,如图.由图可知,函数()y f x =与直线(01)y a a =<<共有5个交点, 设其横坐标从左到右分别为1x ,2x ,3x ,4x ,5x ,则1232x x +=-,4532x x +=, 而132log (1)x a --+=,即23log (1)x a -=,可得312ax =-,所以1234512ax x x x x ++++=-,故选D .二、填空题:本大题共4小题,每小题5分,共20分.13.等差数列{}n a 的前n 项和记为n S ,满足2n n S n =+,则数列{}n a 的公差d = . 【答案】8【解析】由2n n S n =+,知24n S n n =-,则依据21()22n d dS n a n =+-,知8d =. 14.若点(,)P x y 是不等式组0333x y x ⎧≤≤⎪≤⎨⎪≤⎩表示的平面区域Ω内的一动点,且不等式20x y a -+≥恒成立,则实数a 的取值范围是 . 【答案】[3,)+∞【解析】将不等式20x y a -+≥化为2a y x ≥-,只需求出2y x -的最大值即可.令2z y x =-,作出不等式组0333x y x y⎧≤≤⎪≤⎨⎪≤⎩表示的平面区域如图中阴影部分所示,平移直线2y x =,可知在(0,3)处2z y x =-取得最大值3, 则实数a 的取值范围是[3,)+∞. 15.51(2)x x++展开式中2x 的系数为 . 【答案】120【解析】5101(2)()x x x x++=+,则1010222211010C C r r r r r r T x x x ---+=⋅=, 令10222r -=,则3r =,故2x 的系数为310C 120=,故答案为120. 16.图甲是应用分形几何学作出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图.我们采用“坐标”来表示图乙各行中的白圈、黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数).比如第一行记为(0,1),第二行记为(1,2),第三行记为(4,5),照此下去,第()n n ∈*N 行中白圈与黑圈的“坐标”为 .【答案】113131(,)22n n ---+【解析】由图甲所示的分形规律知,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,记某行白圈x 个,黑圈y 个“坐标”为(,)x y ,则第一行记为(0,1),第二行记为(1,2),第三行记为(4,5),第四行记为(13,14),第五行记为(40,41),……,各行黑圈乘以2,分别是2,4,10,28,82,L ,即11+,31+,91+,271+,811+,L ,所以第n 行的黑圈数为1312n -+,而第n 行共有13n -个圈,故第n 行的白圈数为1113131322n n n ---+--=, 故第()n n ∈*N 行中白圈与黑圈的“坐标”为113131(,)22n n ---+.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,A ,B ,C 的对边分别是a ,b ,c ,且2sin 3tan c B a A =.(1)求222b c a+的值; (2)若2a =,求ABC △面积的最大值. 【答案】(1)4;(27.【解析】(1)由2sin 3tan c B a A =,得3sin cos 3sin c B A a A =, 结合正弦定理得22cos 3bc A a =,故2222232b c a bc a bc +-⨯=,2224b c a +=,得2224b c a +=.(2)由(1)及2a =,知2216b c +=,故2226cos 2b c a A bc bc+-==.又222b c bc +≥,故8bc ≥,当且仅当b c =时取等号,∴63cos 84A ≥=, 由6cos A bc =,得6cos bc A =,且π(0,)2A ∈,∴1sin 3tan 2ABC S bc A A ==△, ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==, ∴21167tan 11cos 93A A =-≤-=, ∴3tan 7ABC S A =≤△ABC △7.18.(12分)如图,已知四棱锥P ABCD -中,底面ABCD 为菱形,60ABC ∠=︒,PA ⊥平面ABCD ,E ,M 分别是BC ,PD 的中点,直线EM 与平面PAD 所成角的正弦值为155,点F 在PC 上移动.(1)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ; (2)求点F 恰为PC 的中点时,二面角C AF E --的余弦值. 【答案】(1)证明见解析;(2)155. 【解析】(1)∵底面ABCD 为菱形,60ABC ∠=︒,∴ABC △是正三角形, ∵E 是BC 的中点,∴AE BC ⊥, 又AD BC ∥,∴AE AD ⊥,∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA AE ⊥, 又PA AD A =I ,∴AE ⊥平面PAD ,即无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD .(2)由(1)得,AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.连接AM ,∵AE ⊥平面PAD ,∴AME ∠就是直线EM 与平面PAD 所成的角, 在AME Rt △中,15sin 5AME ∠=,则62AE AM =,设2AB a =,则3AE a =,得2AM a =.又2AD AB a ==,设2PA b =,∴(0,,)M a b ,∴222AM a b a =+=, 从而b a =,∴2PA AD a ==,则(0,0,0)A ,(3,,0)B a a -,(3,,0)C a a ,(0,2,0)D a ,(0,0,2)P a ,(3,0,0)E a ,3(,,)2a aF a , ∴(3,0,0)AE a =u u u r ,3(,,)22a a AF a =u u u r ,设(,,)x y z =n 是平面AEF 的法向量,则3003002ax AE ax ayAF az ⎧=⎧⋅=⎪⎪⎨⎨⋅=++=⎪⎪⎩u u u r u u u r n n , 取z a =,得(0,2,)a a =-n 为平面AEF 的一个法向量.连接BD ,易知BD ⊥平面ACF ,∴(3,3,0)BD a a =-u u u r是平面ACF 的一个法向量,∴215cos ,523BD BD a a BD⋅===-⋅⋅u u u ru u u r u u u r n n n , 由图知二面角C AF E --为锐角,∴二面角C AF E --的余弦值为15. 19.(12分)某市需对某环城快速车道进行限速,为了调查该道路的车速情况,于某个时段随机对100辆车的速度进行取样,根据测量的车速制成如图所示的条形图:经计算,样本的平均值85μ=,标准差 2.2σ≈,以频率作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于3μσ-或车速大于2μσ+需矫正速度. (1)从该快速车道上的所有车辆中任取1辆,求该车辆需矫正速度的概率;(2)从样本中任取2辆车,求这2辆车均需矫正速度的概率;(3)从该快速车道上的所有车辆中任取2辆,记其中需矫正速度的车辆数为ξ,求ξ的分布列和数学期望. 【答案】(1)120;(2)1495;(3)分布列见解析,1()10E ξ=. 【解析】(1)记事件A 为“从该快速车道上的所有车辆中任取1辆,该车辆需矫正速度”,X 为所取车辆的车速.已知378.4μσ-≈,289.4μσ+≈,由条形图可知,所求的概率为()(3)(2)P A P X P X μσμσ=<-+>+141(78.4)(89.4)10010020P X P X =<+>=+=. (2)记事件B 为“从样本中任取2辆车,这2辆车均需矫正速度”. 由题设可知样本容量为100,又需矫正速度的车辆数为5,故所求概率为252100C 1()C 495P B ==.(3)需矫正速度的车辆数ξ服从二项分布,即1(2,)20B ξ:. 则0022119361(0)C ()()2020400P ξ===;111211919(1)C ()()2020200P ξ===;22021191(2)C ()()2020400P ξ===, 因此ξ的分布列为故数学期望11()22010E ξ=⨯=. 20.(12分)已知抛物线21:2(0)C y px p =>的焦点为F ,圆2222:3C x y p +=,1C 与2C 的交点为A ,B ,且74FA FB ⋅=-u u u r u u u r .(1)求1C ,2C 的方程;(2)过焦点F 作倾斜角为锐角的直线,分别交1C 于M ,N 两点,交2C 于P ,Q 两点,求PQ MN的取值范围. 【答案】(1)22y x =,223x y +=;(2)11(0,2. 【解析】(1)由222232x y p y px ⎧+=⎪⎨=⎪⎩,得22230x px p +-=,解得x p =或3x p =-(舍去),所以2y =,不妨设(2)A p ,(,2)B p ,又(,0)2p F ,所以7(2)(,2)224p p FA FB ⋅=⋅-=-u u u r u u u r ,解得21p =,所以1p =.故抛物线1C 的方程为22y x =,圆2C 的方程为223x y +=.(2)由(1)知,抛物线1C 的焦点1(,0)2F ,设直线方程为12x my =+,即102x my --=,则圆2C 的圆心到直线的距离2121d m =+214231PQ m =-+.将12x my =+代入22y x =,得2210y my --=,2440Δm =+>, 设11(,)M x y ,22(,)N x y ,所以121221y y my y +=⎧⎨=-⎩, 所以221212(1)MN m y y m =+-=+.22221111423122(1)12(1)1PQ MN m m m m=⋅-=-++++ 令211t m=+,01t <<, 则231121222PQ t t t t MN =-=-23()12f t t t =-,01t <<, 则()3(8)0f t t t '=->,所以函数()f t 在(0,1)上单调递增,所以0()11f t <<,所以PQ MN 的取值范围是11. 21.(12分)已知函数1()ln (1)f x x a x=+-,a ∈R . (1)若()0f x ≥,求实数a 的取值集合;(2)证明:212ln (2)xe x x e x x+≥-++-. 【答案】(1){1};(2)证明见解析. 【解析】(1)由已知,有221()a x af x x x x-'=-=, 当0a ≤时,1()ln 202f a =-+<,与条件()0f x ≥矛盾. 当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减;若(,)x a ∈+∞,则()0f x '>,()f x 单调递增.∴()f x 在(0,)+∞上有最大值1()ln (1)ln 1f a a a a a a=+-=+-,由()0f x ≥,知ln 10a a +-≥, 令()ln 1(0)g x x x x =-+>,则11()1x g x x x-'=-=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减. ∴()g x 在(0,)+∞上有最大值(1)0g =,∴()ln 10g x x x =-+≤,∴ln 10a a -+≤, ∴ln 10a a -+=,∴1a =.综上,当()0f x ≥时,实数a 的取值集合为{1}. (2)由(1)可知,当1a =时,()0f x ≥,即1ln 1x x≥-在(0,)+∞上恒成立, ∴要证212ln (2)xe x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥. 令2()(2)1(0)x h x e x e x x =----≥,则()2(2)xh x e x e '=---.令()2(2)xu x e x e =---,则()2xu x e '=-, 令()0u x '=,得ln 2x =.当(0,ln 2)x ∈时,()0u x '<,()u x 单调递减;当(ln 2,)x ∈+∞时,()0u x '>,()u x 单调递增, 即()h x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增. 而(0)1(2)30h e e '=--=->,(ln 2)(1)0h h ''<=, ∴存在0(0,ln 2)x ∈,使得0()0h x '=.当0(0,)x x ∈时,()0h x '>,()h x 单调递增;当0(,1)x x ∈时,()0h x '<,()h x 单调递减;当(1,)x ∈+∞时,()0h x '>,()h x 单调递增.又(0)110h =-=,(1)1(2)10h e e =----=,∴对任意0x >,()0h x ≥恒成立,2(2)10x e x e x ----≥. 综上所述,212ln (2)xe x x e x x+≥-++-成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线C 的参数方程是3cos 3sin 2x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为πsin()04ρθ-=,直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的极坐标方程;(2)求线段AB 中点的极坐标(0ρ≥,02πθ≤<).【答案】(1)24sin 50ρρθ--=;(2)π)4.【解析】(1)将曲线C 的参数方程消去参数ϕ,得22(2)9x y +-=,所以曲线C 的普通方程为22(2)9x y +-=.将cos x ρθ=,sin y ρθ=代入22(2)9x y +-=,得24sin 50ρρθ--=,所以曲线C 的极坐标方程为24sin 50ρρθ--=.(2)因为πsin()04ρθ-=,所以ππsin coscos sin 044ρθρθ-=, 因为cos x ρθ=,sin y ρθ=,所以直线l 的直角坐标方程为0x y -=,联立方程,得22(2)9x y x y ⎧+-=⎨-=⎩,消去y ,得22450x x --=,设11(,)A x y ,22(,)B x y ,则122x x +=,所以12122y y x x +=+=,所以1212x x +=,1212y y +=, 所以线段AB 中点的直角坐标为(1,1),则其极坐标为π)4. 23.(10分)【选修4-5:不等式选讲】已知函数()331f x x a x =-++,()412g x x x =--+. (1)求不等式()6g x <的解集;(2)若存在1x ,2x ∈R ,使得1()f x 和2()g x 互为相反数,求a 的取值范围.【答案】(1)7{3}5x x -<<;(2)135[,]1212-. 【解析】(1)由题意可得33,21()51,24133,4x x g x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩,当2x ≤-时,由336x -+<,得1x >-,无解;当124x -<<时,由516x --<,得75x >-,即7154x -<<; 当14x ≥时,由336x -<,得3x <,即134x ≤<.综上,()6g x <的解集为7{3}5x x -<<. (2)因为存在1x ,2x ∈R ,使得12()()f x g x =-成立, 所以{(),}{(),}y y f x x y y g x x =∈=-∈≠∅R R I . 由(1)可知,9()[,)4g x ∈-+∞,则9()(,]4g x -∈-∞, 又()331(33)(31)31f x x a x x a x a =-++≥--+=+,所以9314a +≤,解得1351212a -≤≤, 故a 的取值范围为135[,]1212-.。

2020高考理科数学仿真模拟卷(解析版)

2020高考理科数学仿真模拟卷(解析版)

2020年4月开学摸底考(新课标卷)高三数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .23.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >bC .c >b >aD .b >c >a4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u vu u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n- C .113n - D .1121n -+7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2-D .{2}(1,1]--U8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .69.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17B .27C .37D .4710.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .49512.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .2B C D 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln1f x x =+,()4f a =,则()f a -=________.14.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.16.四面体A BCD -中,AB ⊥底面BCD,AB BD ==,1CB CD ==,则四面体A BCD -的外接球的表面积为______三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =. (Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ; (2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124py y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由.21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3x ty =⎧⎪⎨=⎪⎩(t 为参数),曲线1C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθθ=-.(1)分别求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)设直线l 交曲线1C 于O ,A 两点,交曲线2C 于O ,B 两点,求||AB 的长.23.(本小题满分10分)选修4-5:不等式选讲已知0a >,0b >,0c >设函数()f x x b x c a =-+++,x ∈R (I )若1a b c ===,求不等式()5f x <的解集; (II )若函数()f x 的最小值为1,证明:14918a b b c c a++≥+++(a b c ++)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--【答案】D【解析】因为{}2,1,0,1,2A =-- ,{}0B x x =≤,所以{}2,1,0A B =--I .故选D.2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .2【答案】A【解析】()()()()221222255a i i a i a az i i i i +-++-===+++-Q 是纯虚数 2105205a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得:12a =-本题正确选项:A3.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >b C .c >b >a D .b >c >a【答案】D 【解析】a6π=ln22,b 6π=ln33,c 6π=lnππ,∵6π>0,∴a ,b ,c 的大小比较可以转化为ln22,ln33,lnππ的大小比较.设f (x )=lnx x,则f ′(x )=1−lnx x 2,当x =e 时,f ′(x )=0,当x >e 时,f ′(x )>0,当0<x <e 时,f ′(x )<0 ∴f (x )在(e ,+∞)上,f (x )单调递减,∵e <3<π<4∴ln33>lnππ>ln44=ln22,∴b >c >a ,故选:D .4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .【答案】A【解析】由于12201112ln 1ln 2222f ⎛⎫==> ⎪⎝⎭---,排除B 选项. 由于()()2222,23f e f e e e ==--,()()2f e f e >,函数单调递减,排除C 选项. 由于()10010020101f ee =>-,排除D 选项.故选A. 5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u v u u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-【答案】B【解析】()1111133333CE CB CA AC CB CA CD CA λμμμ+⎛⎫⎛⎫=-+=+--=+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r ,因为E 是AD 的中点, 所以1132λ+=,1132μ--=,解得15,26λμ==- ,13λμ+=-.故选B. 6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n - C .113n - D .1121n -+【答案】B【解析】111123n n n n n n a a a a a a -+-++= ,11123n n n a a a +-+= ,1111112()n nn n a a a a +--=-, 则1111211n n n n a a a a +--=-,数列111n n a a +⎧⎫-⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1111222n n n na a -+-=⨯= ,利用叠加法,211213211111111()()......()122.......2n n n a a a a a a a --+-+-++-=++++ , 1212121n n n a -==-- ,则121n n a =-.选B. 7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2- D .{2}(1,1]--U【答案】D【解析】由题意得21362k T ππ⎛⎫-=+ ⎪⎝⎭,k N ∈,得21T k π=+,故242k Tπω==+,因为06ω<<,k N ∈,所以2ω=.由2sin 263f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,得232k ππϕπ+=+,因为2πϕ<,故6πϕ=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,从而当,02x π⎡⎤∈-⎢⎥⎣⎦时,52666x πππ-≤+≤,令26t x π=+,则由题意得2sin 0t m -=在5,66t ππ⎡⎤∈-⎢⎥⎣⎦上有唯一解,故由正弦函数图象可得12m =-或11222m -<≤,解得{}(]21,1m ∈-⋃-.故选D8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .6【答案】B【解析】抛物线28y x =的焦点()2,0F ,准线l :2x =-,圆22(2)1x y -+=的圆心为()2,0F ,半径1r =,过点P 作PB 垂直准线l ,垂足为B ,由抛物线的定义可知|PB PF =,则1PA PQ PA PF r PA PB +≥+-=+-,∴当,,A P B 三点共线时PA PB +取最小值325+=,1514PA PQ PA PB ∴+≥+-≥-=.即有PA PQ +取得最小值4,故选B .9.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17 B .27C .37D .47【答案】D【解析】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同, 根据题意,如图,设5个区域依次为A,B,C,D,E ,分4步进行分析: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E ,与A,B 区域相邻,有3种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有3种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有2种颜色可选,则区域D,C 有3+2×2=7种选择,则不同的涂色方案有5×4×3×7=420种, 其中,A,C 区域涂色不相同的情况有: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E 与A,B,C 区域相邻,有2种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有2种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有1种颜色可选, 则区域D,C 有2+2×1=4种选择, 不同的涂色方案有5×4×2×4=240种,∴A,C 区域涂色不相同的概率为p =240420=47 ,故选D .10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数【答案】A【解析】根据题意可知:(12341234+++++x x x x y y y y +)()>0,又(12341234+++++x x x x y y y y +)()去掉括号即得:(12341234+++++x x x x y y y y +)() =1234T T T T +++>0,所以可知1234,,,T T T T 中至少有一个为正数,故选A11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .495【答案】D 【解析】试题分析:A ,如果输出的值为792,则a =792, I (a )=279,D (a )=972,b =D (a )−I (a )=972−279=693,不满足题意. B ,如果输出的值为693,则a =693,,I (a )=369,D (a )=963,b =D (a )−I (a )=963−369=594,不满足题意. C ,如果输出的值为594,则a =594,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,,不满足题意.D ,如果输出的值为495,则a =495,,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,满足题意.故选D .12.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).ABCD【答案】B【解析】连接EF ,因为EF //面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH //BC 交CD 于点G,交AB 于H 点,则GH //EF ,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH -FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N∠=α,因为sinα=1MN A M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H,故选B二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln 1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-214.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________. 【答案】1【解析】由正态分布的性质可得正态分布的图像对称轴为2X =,结合题意有:()()2232,12a a a -++=⇒=.故答案为1.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.【答案】⎭【解析】设c为半焦距,则(),0F c,又()0,B b,所以:0BF bx cy bc+-=,以12A A为直径的圆的方程为Oe:222x y a+=,因为12i iPA PA⋅=u u u u r u u u u r,1,2i=,所以Oe与线段BF有两个交点(不含端点),所以ab a<>⎩即422422302c a c ac a⎧-+<⎨>⎩,故4223102e ee⎧-+<⎨>⎩,12e+<<.故填⎭.16.四面体A BCD-中,AB⊥底面BCD,AB BD==,1CB CD==,则四面体A BCD-的外接球的表面积为______【答案】4π【解析】如图,在四面体A BCD-中,AB⊥底面BCD,AB BD==1CB CD==,可得90BCD ∠=︒,补形为长方体,则过一个顶点的三条棱长分别为1,1,2=,则三棱锥A BCD -的外接球的半径为1. 其表面积为2414ππ⨯=.故答案为:4π.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.【解析】 (Ⅰ) ()1122n n n S a n N -+⎛⎫=--+∈ ⎪⎝⎭Q ,当2n ≥时,211122n n n S a ---⎛⎫=--+ ⎪⎝⎭,11112n n n n n n a S S a a ---⎛⎫∴=-=-++ ⎪⎝⎭,化为11221n n n n a a --=+,12,1n n n n n b a b b -=∴=+Q ,即当2n ≥时,11n n b b --=,令1n =,可得11112S a a =--+=,即112a =. 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是()1112nn n b n n a =+-⋅==,2n n n a ∴=. (Ⅱ)由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭ ()()111211221212121n n n n n +++⎛⎫==- ⎪----⎝⎭, 22311111121...2121212121n n n T +⎡⎤∴=-+-++-⎢⎥-----⎣⎦11124212163n +⎛⎫=-< ⎪-⎝⎭,可得162642n +<=,5n <, 因为n 是自然数,所以n 的最大值为4. 18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?【解析】(Ⅰ)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=, ()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=, ()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, ∴X 的分布列为(Ⅱ)选择延保一,所需费用1Y 元的分布列为:170009000110001300015000100502525100EY =⨯+⨯+⨯+⨯+⨯ 10720=(元). 选择延保二,所需费用2Y 元的分布列为:21000011000120001042010025100EY =⨯+⨯+⨯=(元).∵12EY EY >,∴该医院选择延保方案二较合算.19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ;(2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,又因为,M N 分别为1B C 和1D D 的中点,得11,,1,(1,2,1)2M N ⎛⎫- ⎪⎝⎭. (Ⅰ)证明:依题意,可得(0,0,1)n =r 为平面ABCD 的一个法向量,50,,02MN ⎛⎫=- ⎪⎝⎭u u u u r , 由此可得,0MN n ⋅=u u u u r r,又因为直线MN ⊄平面ABCD ,所以//MN 平面ABCD(Ⅱ),设1(,,)n x y z =u r 为平面1ACD 的法向量,则1110{0n AD n AC ⋅=⋅=u r u u u u r u r u u u r ,即220{20x y z x -+==,不妨设1z =,可得1(0,1,1)n =u r ,设2(,,)n x y z =u u r 为平面1ACB 的一个法向量,则2120{0n AB n AC ⋅=⋅=u u r u u u r u u r u u u r ,又1(0,1,2)AB =u u u r ,得20{20y z x +==,不妨设1z =,可得2(0,2,1)n =-u u r ,因此有121212cos ,10n n n n n n ⋅〈〉==-⋅u r u u r u r u u r u r u u r,于是12,10sin n n 〈〉=u r u u r , 所以二面角11D AC B --. (Ⅲ)依题意,可设111A E AB λ=u u u r u u u u r ,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+u u u r , 又(0,0,1)n =r 为平面ABCD 的一个法向量,由已知得1cos ,3NE n NE n NE n ⋅〈〉===⋅u u u r r u u u r r u u u r r ,整理得2430λλ+-=,又因为[0,1]λ∈,解得2λ=,所以线段1A E2.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点. (1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4p l y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【解析】(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫ ⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p p p∆=->+==, ∵直线py 4=平分AFB ∠, ∴AF BF k k 0+=, ∴1212pp y y 440x x --+=,即:12121212p px1x1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =.(2)由题意知,直线AB 的斜率存在,且不为零,设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy =+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pk pb∆=+>+==-, ∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴pb 2=.∴直线AB 的方程为:py kx 2=+.假设存在直线AB ,使得113PA PB PQ +=,即PQPQ3PA PB +=,作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、, ∴121212p pPQPQOQOQy y p 22·PA PB AA BB y y 2y y ++=+'=+=',∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p ·4k 2p PA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【解析】 (1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>', 对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立. ()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数; ②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得x <或x >,0<<, ()f x ∴在⎛ ⎝⎭为增函数,⎝⎭减函数.2a ⎛⎫-++∞ ⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立, ()f x ∴在()0,+∞为增函数。

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

2020年全国高考模拟理科数学卷(4)考试时间120分钟 总分150分第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设U =R ,A ={x |x 2-3x -4>0},B ={x |x 2-4<0},则=B A C U I )(A .{x |x ≤-1,或x ≥2}B .{x |-1≤x <2}C .{x |-1≤x ≤4}D .{x |x ≤4}2.若复数2()(1)m i mi ++是实数,则实数m 的值为( ) A. -1 B.-2 C.1 D.23.A .4163π-B .403C .8163π-D .3234. 已知某程序框图如图所示,则执行该程序后输出的结果是A .1-B .21C .1D .25. 在数列{}n a 中,12341,23,456,78910,a a a a ==+=++=+++则10a = ( ) A. 495 B.500 C.505 D.5106. ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )4A .100,3⎡⎤⎢⎥⎣⎦B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭UC .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭U8. 设()()2,cos sin cos cos 2a R f x x a x x x π⎛⎫∈=-+-⎪⎝⎭满足()(0)3f f π-=,求函数()f x 在11,424ππ⎡⎤⎢⎥⎣⎦上的最大值 ( ) A.1 B.2 C.3 D.9. 在R 上定义的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间[]2,1是减函数,则函数)(x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数10. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种B. 147种C. 144种D. 141种11. 已知椭圆()2222:10x y C a b a b+=>>,12,F F 为其左、右焦点,P 为椭圆C 上除长轴端点外的任一点,G 为12F PF ∆内一点,满足123PG PF PF =+u u u v u u u v u u u u v,12F PF ∆的内心为I ,且有12IG F F λ=u u v u u u u v(其中λ为实数),则椭圆C 的离心率e =( ) A .13 B .12 C .23D12. 在三棱锥A —BCD 中,AB =AC ,DB =DC ,4AB DB +=,AB ⊥BD ,则三棱锥 A —BCD 的外接球的体积的最小值为( )A. 3B. 43πC. 3D. 323π第Ⅱ卷本卷包括必考题和选考题两部分. 第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4 小题,每小题5 分.13. 若向量12,2a =,b a b ==且-,则a b =+ 。

2020年全国高考数学(理科)仿真冲刺模拟试卷4(含答案)

2020年全国高考数学(理科)仿真冲刺模拟试卷4(含答案)
nnnn
18.(12 分)[山东实验中学]为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问 卷随机调查了年龄在 20 周岁至 80 周岁的 100 人,他们年龄频数分布和支持“新农村建设”人数如 下表:
(1)根据上述统计数据填下面的 2×2 列联表,并判断是否有 95%的把握认为以 50 岁为分界点对 “新农村建设”政策的支持度有差异;
极点,以 x 轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆 C 的方程为 2 5sin , l 被圆 C 截得的弦长为 2 . (1)求实数 m 的值;
(2)设圆C 与直线l 交于点 A、 B ,若点 P 的坐标为 m, 5 ,且 m 0 ,求 PA PB 的值.
23.(10 分)【选修4-5:不等式选讲】
21 221
为( )
A. 3x 4y 0
B. 3x 5y 0
C. 4x 3y 0
D. 5x 4y 0
7.[天一大联考]已知
f x
Asinx B A 0, 0,
π 的图象如图所示,则
2
对称中心可以为( )
A. ,0
π
π
π
B.
π
,1
6 6
6 6
C. ,0
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.[金山中学]已知集合 A
x x2 3x 4 0
, B x x 1,则
AI B (

R
A.
B. 0,4
C. 1,4
D. 4,
2.[湘钢一中]已知 i 为虚数单位,若复数1 ai2 i是纯虚数,则实数 a 等于( )

2020高考理科数学仿真模拟卷(解析版)

2020高考理科数学仿真模拟卷(解析版)

2020年4月开学摸底考(新课标卷)高三数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .23.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >bC .c >b >aD .b >c >a4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u vu u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n- C .113n - D .1121n -+7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2-D .{2}(1,1]--U8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .69.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17B .27C .37D .4710.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .49512.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .2B C D 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln1f x x =+,()4f a =,则()f a -=________.14.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.16.四面体A BCD -中,AB ⊥底面BCD,AB BD ==,1CB CD ==,则四面体A BCD -的外接球的表面积为______三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =. (Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ; (2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124py y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由.21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3x ty =⎧⎪⎨=⎪⎩(t 为参数),曲线1C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθθ=-.(1)分别求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)设直线l 交曲线1C 于O ,A 两点,交曲线2C 于O ,B 两点,求||AB 的长.23.(本小题满分10分)选修4-5:不等式选讲已知0a >,0b >,0c >设函数()f x x b x c a =-+++,x ∈R (I )若1a b c ===,求不等式()5f x <的解集; (II )若函数()f x 的最小值为1,证明:14918a b b c c a++≥+++(a b c ++)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--【答案】D【解析】因为{}2,1,0,1,2A =-- ,{}0B x x =≤,所以{}2,1,0A B =--I .故选D.2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .2【答案】A【解析】()()()()221222255a i i a i a az i i i i +-++-===+++-Q 是纯虚数 2105205a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得:12a =-本题正确选项:A3.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >b C .c >b >a D .b >c >a【答案】D 【解析】a6π=ln22,b 6π=ln33,c 6π=lnππ,∵6π>0,∴a ,b ,c 的大小比较可以转化为ln22,ln33,lnππ的大小比较.设f (x )=lnx x,则f ′(x )=1−lnx x 2,当x =e 时,f ′(x )=0,当x >e 时,f ′(x )>0,当0<x <e 时,f ′(x )<0 ∴f (x )在(e ,+∞)上,f (x )单调递减,∵e <3<π<4∴ln33>lnππ>ln44=ln22,∴b >c >a ,故选:D .4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .【答案】A【解析】由于12201112ln 1ln 2222f ⎛⎫==> ⎪⎝⎭---,排除B 选项. 由于()()2222,23f e f e e e ==--,()()2f e f e >,函数单调递减,排除C 选项. 由于()10010020101f ee =>-,排除D 选项.故选A. 5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u v u u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-【答案】B【解析】()1111133333CE CB CA AC CB CA CD CA λμμμ+⎛⎫⎛⎫=-+=+--=+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r ,因为E 是AD 的中点, 所以1132λ+=,1132μ--=,解得15,26λμ==- ,13λμ+=-.故选B. 6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n - C .113n - D .1121n -+【答案】B【解析】111123n n n n n n a a a a a a -+-++= ,11123n n n a a a +-+= ,1111112()n nn n a a a a +--=-, 则1111211n n n n a a a a +--=-,数列111n n a a +⎧⎫-⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1111222n n n na a -+-=⨯= ,利用叠加法,211213211111111()()......()122.......2n n n a a a a a a a --+-+-++-=++++ , 1212121n n n a -==-- ,则121n n a =-.选B. 7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2- D .{2}(1,1]--U【答案】D【解析】由题意得21362k T ππ⎛⎫-=+ ⎪⎝⎭,k N ∈,得21T k π=+,故242k Tπω==+,因为06ω<<,k N ∈,所以2ω=.由2sin 263f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,得232k ππϕπ+=+,因为2πϕ<,故6πϕ=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,从而当,02x π⎡⎤∈-⎢⎥⎣⎦时,52666x πππ-≤+≤,令26t x π=+,则由题意得2sin 0t m -=在5,66t ππ⎡⎤∈-⎢⎥⎣⎦上有唯一解,故由正弦函数图象可得12m =-或11222m -<≤,解得{}(]21,1m ∈-⋃-.故选D8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .6【答案】B【解析】抛物线28y x =的焦点()2,0F ,准线l :2x =-,圆22(2)1x y -+=的圆心为()2,0F ,半径1r =,过点P 作PB 垂直准线l ,垂足为B ,由抛物线的定义可知|PB PF =,则1PA PQ PA PF r PA PB +≥+-=+-,∴当,,A P B 三点共线时PA PB +取最小值325+=,1514PA PQ PA PB ∴+≥+-≥-=.即有PA PQ +取得最小值4,故选B .9.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17 B .27C .37D .47【答案】D【解析】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同, 根据题意,如图,设5个区域依次为A,B,C,D,E ,分4步进行分析: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E ,与A,B 区域相邻,有3种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有3种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有2种颜色可选,则区域D,C 有3+2×2=7种选择,则不同的涂色方案有5×4×3×7=420种, 其中,A,C 区域涂色不相同的情况有: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E 与A,B,C 区域相邻,有2种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有2种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有1种颜色可选, 则区域D,C 有2+2×1=4种选择, 不同的涂色方案有5×4×2×4=240种,∴A,C 区域涂色不相同的概率为p =240420=47 ,故选D .10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数【答案】A【解析】根据题意可知:(12341234+++++x x x x y y y y +)()>0,又(12341234+++++x x x x y y y y +)()去掉括号即得:(12341234+++++x x x x y y y y +)() =1234T T T T +++>0,所以可知1234,,,T T T T 中至少有一个为正数,故选A11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .495【答案】D 【解析】试题分析:A ,如果输出的值为792,则a =792, I (a )=279,D (a )=972,b =D (a )−I (a )=972−279=693,不满足题意. B ,如果输出的值为693,则a =693,,I (a )=369,D (a )=963,b =D (a )−I (a )=963−369=594,不满足题意. C ,如果输出的值为594,则a =594,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,,不满足题意.D ,如果输出的值为495,则a =495,,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,满足题意.故选D .12.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).ABCD【答案】B【解析】连接EF ,因为EF //面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH //BC 交CD 于点G,交AB 于H 点,则GH //EF ,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH -FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N∠=α,因为sinα=1MN A M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H,故选B二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln 1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-214.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________. 【答案】1【解析】由正态分布的性质可得正态分布的图像对称轴为2X =,结合题意有:()()2232,12a a a -++=⇒=.故答案为1.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.【答案】⎭【解析】设c为半焦距,则(),0F c,又()0,B b,所以:0BF bx cy bc+-=,以12A A为直径的圆的方程为Oe:222x y a+=,因为12i iPA PA⋅=u u u u r u u u u r,1,2i=,所以Oe与线段BF有两个交点(不含端点),所以ab a<>⎩即422422302c a c ac a⎧-+<⎨>⎩,故4223102e ee⎧-+<⎨>⎩,12e+<<.故填⎭.16.四面体A BCD-中,AB⊥底面BCD,AB BD==,1CB CD==,则四面体A BCD-的外接球的表面积为______【答案】4π【解析】如图,在四面体A BCD-中,AB⊥底面BCD,AB BD==1CB CD==,可得90BCD ∠=︒,补形为长方体,则过一个顶点的三条棱长分别为1,1,2=,则三棱锥A BCD -的外接球的半径为1. 其表面积为2414ππ⨯=.故答案为:4π.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.【解析】 (Ⅰ) ()1122n n n S a n N -+⎛⎫=--+∈ ⎪⎝⎭Q ,当2n ≥时,211122n n n S a ---⎛⎫=--+ ⎪⎝⎭,11112n n n n n n a S S a a ---⎛⎫∴=-=-++ ⎪⎝⎭,化为11221n n n n a a --=+,12,1n n n n n b a b b -=∴=+Q ,即当2n ≥时,11n n b b --=,令1n =,可得11112S a a =--+=,即112a =. 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是()1112nn n b n n a =+-⋅==,2n n n a ∴=. (Ⅱ)由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭ ()()111211221212121n n n n n +++⎛⎫==- ⎪----⎝⎭, 22311111121...2121212121n n n T +⎡⎤∴=-+-++-⎢⎥-----⎣⎦11124212163n +⎛⎫=-< ⎪-⎝⎭,可得162642n +<=,5n <, 因为n 是自然数,所以n 的最大值为4. 18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?【解析】(Ⅰ)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=, ()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=, ()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, ∴X 的分布列为(Ⅱ)选择延保一,所需费用1Y 元的分布列为:170009000110001300015000100502525100EY =⨯+⨯+⨯+⨯+⨯ 10720=(元). 选择延保二,所需费用2Y 元的分布列为:21000011000120001042010025100EY =⨯+⨯+⨯=(元).∵12EY EY >,∴该医院选择延保方案二较合算.19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ;(2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,又因为,M N 分别为1B C 和1D D 的中点,得11,,1,(1,2,1)2M N ⎛⎫- ⎪⎝⎭. (Ⅰ)证明:依题意,可得(0,0,1)n =r 为平面ABCD 的一个法向量,50,,02MN ⎛⎫=- ⎪⎝⎭u u u u r , 由此可得,0MN n ⋅=u u u u r r,又因为直线MN ⊄平面ABCD ,所以//MN 平面ABCD(Ⅱ),设1(,,)n x y z =u r 为平面1ACD 的法向量,则1110{0n AD n AC ⋅=⋅=u r u u u u r u r u u u r ,即220{20x y z x -+==,不妨设1z =,可得1(0,1,1)n =u r ,设2(,,)n x y z =u u r 为平面1ACB 的一个法向量,则2120{0n AB n AC ⋅=⋅=u u r u u u r u u r u u u r ,又1(0,1,2)AB =u u u r ,得20{20y z x +==,不妨设1z =,可得2(0,2,1)n =-u u r ,因此有121212cos ,10n n n n n n ⋅〈〉==-⋅u r u u r u r u u r u r u u r,于是12,10sin n n 〈〉=u r u u r , 所以二面角11D AC B --. (Ⅲ)依题意,可设111A E AB λ=u u u r u u u u r ,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+u u u r , 又(0,0,1)n =r 为平面ABCD 的一个法向量,由已知得1cos ,3NE n NE n NE n ⋅〈〉===⋅u u u r r u u u r r u u u r r ,整理得2430λλ+-=,又因为[0,1]λ∈,解得2λ=,所以线段1A E2.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点. (1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4p l y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【解析】(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫ ⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p p p∆=->+==, ∵直线py 4=平分AFB ∠, ∴AF BF k k 0+=, ∴1212pp y y 440x x --+=,即:12121212p px1x1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =.(2)由题意知,直线AB 的斜率存在,且不为零,设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy =+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pk pb∆=+>+==-, ∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴pb 2=.∴直线AB 的方程为:py kx 2=+.假设存在直线AB ,使得113PA PB PQ +=,即PQPQ3PA PB +=,作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、, ∴121212p pPQPQOQOQy y p 22·PA PB AA BB y y 2y y ++=+'=+=',∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p ·4k 2p PA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【解析】 (1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>', 对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立. ()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数; ②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得x <或x >,0<<, ()f x ∴在⎛ ⎝⎭为增函数,⎝⎭减函数.2a ⎛⎫-++∞ ⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立, ()f x ∴在()0,+∞为增函数。

2020年普通高等学校招生全国统一考试仿真卷理科数学(四)含答案

2020年普通高等学校招生全国统一考试仿真卷理科数学(四)含答案

绝密 ★ 启用前 2020年普通高等学校招生全国统一考试仿真卷理科数学(四)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N =I ( ) A .{}0 B .{}1C .{}0,1D .{}1,0,1-2.设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .B .i -C .1i -+D .1i --3.已知()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则31322f f ⎛⎫⎛⎫+=⎪ ⎪ ⎪⎝⎭⎝⎭( ) A .52B .52-C .32-D .12-4.已知等差数列{}n a 的前项和为n S ,且96=πS ,则5tan a =( ) A .33B .3C .3-D .33-5.执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.已知函数()()sin ωϕ=+f x A x (0,0,)2ωϕπ>><A 在一个周期内的图象如图所示,则4π⎛⎫= ⎪⎝⎭f ( )A .22-B .22C .2D .2-7.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.若P 是圆()()22:331C x y ++-=上任一点,则点P 到直线1y kx =-距离的最大值( ) A .4B .6C .32+1D .109.已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的的取值范围是( ) A .()(),10,3-∞-U B .()()1,03,-+∞U C .()(),11,3-∞-UD .()()1,01,3-U10.已知,x y ∈R ,在平面直角坐标系xOy 中,点,)x y (为平面区域2040⎧⎪⎨⎪⎩≤≤≥≥y x y x 内任一点,则坐标原点与点,)x y (连线倾斜角小于3π的概率为( )A .116B .316C .3316D .333211.某几何体的直观图如图所示,AB 是O e 的直径,BC 垂直O e 所在的平面,且10AB BC ==,Q 为O e 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ uuu r的长为,CQ 的长度为关于的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .12.设双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点分别为1F ,2F ,122F F c =,过2F 作轴的垂线与双曲线在第一象限的交点为A ,已知3,2a Q c ⎛⎫⎪⎝⎭,22F Q F A >,点P 是双曲线C 右支上的动点,且11232+>PF PQ F F 恒成立,则双曲线的离心率的取值范围是( )A .10,⎛⎫+∞ ⎪ ⎪⎝⎭B .71,6⎛⎫⎪⎝⎭C .710,62⎛⎫ ⎪ ⎪⎝⎭D .101,2⎛⎫⎪ ⎪⎝⎭ 第Ⅱ卷本卷包括必考题和选考题两部分。

2020高考理科数学仿真模拟卷(解析版)

2020高考理科数学仿真模拟卷(解析版)

2020年4月开学摸底考(新课标卷)高三数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .23.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >bC .c >b >aD .b >c >a4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u vu u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n- C .113n - D .1121n -+7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2-D .{2}(1,1]--U8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .69.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17B .27C .37D .4710.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .49512.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .2B C D 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln1f x x =+,()4f a =,则()f a -=________.14.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.16.四面体A BCD -中,AB ⊥底面BCD,AB BD ==,1CB CD ==,则四面体A BCD -的外接球的表面积为______三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =. (Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ; (2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124py y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由.21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3x ty =⎧⎪⎨=⎪⎩(t 为参数),曲线1C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθθ=-.(1)分别求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)设直线l 交曲线1C 于O ,A 两点,交曲线2C 于O ,B 两点,求||AB 的长.23.(本小题满分10分)选修4-5:不等式选讲已知0a >,0b >,0c >设函数()f x x b x c a =-+++,x ∈R (I )若1a b c ===,求不等式()5f x <的解集; (II )若函数()f x 的最小值为1,证明:14918a b b c c a++≥+++(a b c ++)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--【答案】D【解析】因为{}2,1,0,1,2A =-- ,{}0B x x =≤,所以{}2,1,0A B =--I .故选D.2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .2【答案】A【解析】()()()()221222255a i i a i a az i i i i +-++-===+++-Q 是纯虚数 2105205a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得:12a =-本题正确选项:A3.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >b C .c >b >a D .b >c >a【答案】D 【解析】a6π=ln22,b 6π=ln33,c 6π=lnππ,∵6π>0,∴a ,b ,c 的大小比较可以转化为ln22,ln33,lnππ的大小比较.设f (x )=lnx x,则f ′(x )=1−lnx x 2,当x =e 时,f ′(x )=0,当x >e 时,f ′(x )>0,当0<x <e 时,f ′(x )<0 ∴f (x )在(e ,+∞)上,f (x )单调递减,∵e <3<π<4∴ln33>lnππ>ln44=ln22,∴b >c >a ,故选:D .4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .【答案】A【解析】由于12201112ln 1ln 2222f ⎛⎫==> ⎪⎝⎭---,排除B 选项. 由于()()2222,23f e f e e e ==--,()()2f e f e >,函数单调递减,排除C 选项. 由于()10010020101f ee =>-,排除D 选项.故选A. 5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u v u u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-【答案】B【解析】()1111133333CE CB CA AC CB CA CD CA λμμμ+⎛⎫⎛⎫=-+=+--=+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r ,因为E 是AD 的中点, 所以1132λ+=,1132μ--=,解得15,26λμ==- ,13λμ+=-.故选B. 6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n - C .113n - D .1121n -+【答案】B【解析】111123n n n n n n a a a a a a -+-++= ,11123n n n a a a +-+= ,1111112()n nn n a a a a +--=-, 则1111211n n n n a a a a +--=-,数列111n n a a +⎧⎫-⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1111222n n n na a -+-=⨯= ,利用叠加法,211213211111111()()......()122.......2n n n a a a a a a a --+-+-++-=++++ , 1212121n n n a -==-- ,则121n n a =-.选B. 7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2- D .{2}(1,1]--U【答案】D【解析】由题意得21362k T ππ⎛⎫-=+ ⎪⎝⎭,k N ∈,得21T k π=+,故242k Tπω==+,因为06ω<<,k N ∈,所以2ω=.由2sin 263f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,得232k ππϕπ+=+,因为2πϕ<,故6πϕ=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,从而当,02x π⎡⎤∈-⎢⎥⎣⎦时,52666x πππ-≤+≤,令26t x π=+,则由题意得2sin 0t m -=在5,66t ππ⎡⎤∈-⎢⎥⎣⎦上有唯一解,故由正弦函数图象可得12m =-或11222m -<≤,解得{}(]21,1m ∈-⋃-.故选D8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .6【答案】B【解析】抛物线28y x =的焦点()2,0F ,准线l :2x =-,圆22(2)1x y -+=的圆心为()2,0F ,半径1r =,过点P 作PB 垂直准线l ,垂足为B ,由抛物线的定义可知|PB PF =,则1PA PQ PA PF r PA PB +≥+-=+-,∴当,,A P B 三点共线时PA PB +取最小值325+=,1514PA PQ PA PB ∴+≥+-≥-=.即有PA PQ +取得最小值4,故选B .9.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17 B .27C .37D .47【答案】D【解析】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同, 根据题意,如图,设5个区域依次为A,B,C,D,E ,分4步进行分析: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E ,与A,B 区域相邻,有3种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有3种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有2种颜色可选,则区域D,C 有3+2×2=7种选择,则不同的涂色方案有5×4×3×7=420种, 其中,A,C 区域涂色不相同的情况有: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E 与A,B,C 区域相邻,有2种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有2种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有1种颜色可选, 则区域D,C 有2+2×1=4种选择, 不同的涂色方案有5×4×2×4=240种,∴A,C 区域涂色不相同的概率为p =240420=47 ,故选D .10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数【答案】A【解析】根据题意可知:(12341234+++++x x x x y y y y +)()>0,又(12341234+++++x x x x y y y y +)()去掉括号即得:(12341234+++++x x x x y y y y +)() =1234T T T T +++>0,所以可知1234,,,T T T T 中至少有一个为正数,故选A11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .495【答案】D 【解析】试题分析:A ,如果输出的值为792,则a =792, I (a )=279,D (a )=972,b =D (a )−I (a )=972−279=693,不满足题意. B ,如果输出的值为693,则a =693,,I (a )=369,D (a )=963,b =D (a )−I (a )=963−369=594,不满足题意. C ,如果输出的值为594,则a =594,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,,不满足题意.D ,如果输出的值为495,则a =495,,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,满足题意.故选D .12.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).ABCD【答案】B【解析】连接EF ,因为EF //面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH //BC 交CD 于点G,交AB 于H 点,则GH //EF ,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH -FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N∠=α,因为sinα=1MN A M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H,故选B二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln 1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-214.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________. 【答案】1【解析】由正态分布的性质可得正态分布的图像对称轴为2X =,结合题意有:()()2232,12a a a -++=⇒=.故答案为1.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.【答案】⎭【解析】设c为半焦距,则(),0F c,又()0,B b,所以:0BF bx cy bc+-=,以12A A为直径的圆的方程为Oe:222x y a+=,因为12i iPA PA⋅=u u u u r u u u u r,1,2i=,所以Oe与线段BF有两个交点(不含端点),所以ab a<>⎩即422422302c a c ac a⎧-+<⎨>⎩,故4223102e ee⎧-+<⎨>⎩,12e+<<.故填⎭.16.四面体A BCD-中,AB⊥底面BCD,AB BD==,1CB CD==,则四面体A BCD-的外接球的表面积为______【答案】4π【解析】如图,在四面体A BCD-中,AB⊥底面BCD,AB BD==1CB CD==,可得90BCD ∠=︒,补形为长方体,则过一个顶点的三条棱长分别为1,1,2=,则三棱锥A BCD -的外接球的半径为1. 其表面积为2414ππ⨯=.故答案为:4π.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.【解析】 (Ⅰ) ()1122n n n S a n N -+⎛⎫=--+∈ ⎪⎝⎭Q ,当2n ≥时,211122n n n S a ---⎛⎫=--+ ⎪⎝⎭,11112n n n n n n a S S a a ---⎛⎫∴=-=-++ ⎪⎝⎭,化为11221n n n n a a --=+,12,1n n n n n b a b b -=∴=+Q ,即当2n ≥时,11n n b b --=,令1n =,可得11112S a a =--+=,即112a =. 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是()1112nn n b n n a =+-⋅==,2n n n a ∴=. (Ⅱ)由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭ ()()111211221212121n n n n n +++⎛⎫==- ⎪----⎝⎭, 22311111121...2121212121n n n T +⎡⎤∴=-+-++-⎢⎥-----⎣⎦11124212163n +⎛⎫=-< ⎪-⎝⎭,可得162642n +<=,5n <, 因为n 是自然数,所以n 的最大值为4. 18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?【解析】(Ⅰ)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=, ()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=, ()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, ∴X 的分布列为(Ⅱ)选择延保一,所需费用1Y 元的分布列为:170009000110001300015000100502525100EY =⨯+⨯+⨯+⨯+⨯ 10720=(元). 选择延保二,所需费用2Y 元的分布列为:21000011000120001042010025100EY =⨯+⨯+⨯=(元).∵12EY EY >,∴该医院选择延保方案二较合算.19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ;(2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,又因为,M N 分别为1B C 和1D D 的中点,得11,,1,(1,2,1)2M N ⎛⎫- ⎪⎝⎭. (Ⅰ)证明:依题意,可得(0,0,1)n =r 为平面ABCD 的一个法向量,50,,02MN ⎛⎫=- ⎪⎝⎭u u u u r , 由此可得,0MN n ⋅=u u u u r r,又因为直线MN ⊄平面ABCD ,所以//MN 平面ABCD(Ⅱ),设1(,,)n x y z =u r 为平面1ACD 的法向量,则1110{0n AD n AC ⋅=⋅=u r u u u u r u r u u u r ,即220{20x y z x -+==,不妨设1z =,可得1(0,1,1)n =u r ,设2(,,)n x y z =u u r 为平面1ACB 的一个法向量,则2120{0n AB n AC ⋅=⋅=u u r u u u r u u r u u u r ,又1(0,1,2)AB =u u u r ,得20{20y z x +==,不妨设1z =,可得2(0,2,1)n =-u u r ,因此有121212cos ,10n n n n n n ⋅〈〉==-⋅u r u u r u r u u r u r u u r,于是12,10sin n n 〈〉=u r u u r , 所以二面角11D AC B --. (Ⅲ)依题意,可设111A E AB λ=u u u r u u u u r ,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+u u u r , 又(0,0,1)n =r 为平面ABCD 的一个法向量,由已知得1cos ,3NE n NE n NE n ⋅〈〉===⋅u u u r r u u u r r u u u r r ,整理得2430λλ+-=,又因为[0,1]λ∈,解得2λ=,所以线段1A E2.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点. (1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4p l y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【解析】(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫ ⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p p p∆=->+==, ∵直线py 4=平分AFB ∠, ∴AF BF k k 0+=, ∴1212pp y y 440x x --+=,即:12121212p px1x1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =.(2)由题意知,直线AB 的斜率存在,且不为零,设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy =+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pk pb∆=+>+==-, ∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴pb 2=.∴直线AB 的方程为:py kx 2=+.假设存在直线AB ,使得113PA PB PQ +=,即PQPQ3PA PB +=,作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、, ∴121212p pPQPQOQOQy y p 22·PA PB AA BB y y 2y y ++=+'=+=',∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p ·4k 2p PA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【解析】 (1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>', 对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立. ()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数; ②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得x <或x >,0<<, ()f x ∴在⎛ ⎝⎭为增函数,⎝⎭减函数.2a ⎛⎫-++∞ ⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立, ()f x ∴在()0,+∞为增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析 若 α∩β=m,n⊂α,n⊥m,如图 1,则 α 与 β 不一定垂直,故① 为假命题;若 m⊥α,m⊥β,根据垂直于同一条直线的两个平面平行,则 α ∥β,故②为真命题;若 m⊥α,n⊥β,m⊥n,则 α⊥β,故③为真命题;若 m ∥α,n∥β,m∥n,如图 2,则 α 与 β 可能相交,故④为假命题.故选 B.
A.2018 年 1 月至 4 月的仓储指数比 2017 年同期波动性更大 B.这两年的最大仓储指数都出现在 4 月份 C.2018 年全年仓储指数平均值明显低于 2017 年 D.2018 年各仓储指数的中位数与 2017 年各仓储指数中位数差异明显
答案 D
解析 通过图象可看出,2018 年 1 月至 4 月的仓储指数比 2017 年同期 波动性更大, 这两年的最大仓储指数都出现在 4 月份, 2018 年全年仓储指 数平均值明显低于 2017 年,所以 A,B,C 正确;2018 年各仓储指数的中位 数与 2017 年各仓储指数中位数基本在 52%,差异不明显,所以 D 错误.故 选 D.
9.函数 f(x)=21x+sinx 的图象大致是( ) 答案 C
解析 因为 f(x)=21x+sinx 为奇函数,所以排除 B,D;当 x>0 且 x→0 时, f(x)>0,排除 A.故选 C.
10 . 某 面 粉 供 应 商 所 供 应 的 某 种 袋 装 面 粉 质 量 服 从 正 态 分 布
图1
图2
4.已知复数 z1=1+2 i,z2=a+i(a∈R),若 z1,z2 在复平面中对应的向量
分别为O→Z1,O→Z2(O 为坐标原点),且|O→Z1+O→Z2|=2,则 a=( )
A.-1
B.1
C.-3
D.1 或-3
答案 D
解析 由题意知O→Z1=(1,-1),O→Z2=(a,1),因此O→Z1+O→Z2=(a+1,0), 故(a+1)2=4,解得 a=1 或-3,故选 D.
8.过点 P(1,1)的直线 l 将圆形区域{(x,y)|x2+y2≤4}分为两部分,其面 积分别为 S1,S2,当|S1-S2|最大时,直线 l 的方程是( )
A.x+y-2=0 B.x-2y+1=0 C.x-y-2=0 D.y-2x+1=0
答案 A
解析 因为点 P 坐标满足 x2+y2≤4,所以点 P 在圆 x2+y2=4 内,因此, 当 OP 与过点 P 的直线垂直时,|S1-S2|最大,因为直线 OP 的斜率为 kOP=11- -00 =1,所以此时直线 l 的斜率为 k=-1,因此,直线 l 的方程是 y-1=-(x- 1),整理得 x+y-2=0.故选 A.
答案 B
解析 选 B.
A={-1,0,1},B=12,1,2,所以 A∪B=-1,0,12,1,2.故
2.中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变 化趋势的一套指数体系.如图所示的折线图是 2017 年和 2018 年的中国仓储 指数走势情况.根据该折线图,下列结论中不正确的是( )
A.-1 B.0 C.1 D.2 答案 C
解析 依题意,f(x)=x02,,0-<x1≤≤1x.≤0, 故 f(x)在区间[-1,1]上的最大值 为 1.故选 C.
7.如图,在等腰三角形 ABC 中,已知∠BAC=120°,阴影部分是以 AB 为直径的圆与以 AC 为直径的圆的公共部分,若在△ABC 内部任取一点,则 此点取自阴影部分的概率为( )
N(10,0.12 )(单位:kg)现抽取 500 袋样本,X 表示抽取的面粉质量在(10,10.2) kg
的袋数,则 X 的平均值约为( )
(附:若 Z~N(μ,σ2 ),则 P(μ-σ<Z≤μ+σ)≈0.6826,P(μ-2σ<Z≤μ+
2σ)≈0.9544)
A.171
B.239
C.341
D.477
答案 B
解析 设每袋面粉的质量为 Z kg,则由题意得 Z~N(10,0.12 ),∴
P(10<Z≤10.2) =
1 2
P(9.8<Z≤10.2) = 12
P(μ

2σ<Z≤μFra bibliotek+ 2σ)≈0.4772.
由题


X~B(500,0.4772),所以 X 的平均值即 E(X)=500×0.4772=238.6≈239.故选
5.某几何体的三视图如图所示,则该几何体的体积为( )
A.30+π B.30+2π C.18-π4 D.18-π 答案 C
解析 易知,所求几何体为一个长方体中间挖去一个小圆柱.所以,V =3×2×3-π×41×1=18-π4,故选 C.
6.定义某种运算⊕,a⊕b 的运算原理如图所示.设 f(x)=(0⊕x)(2⊕x), 则 f(x)在区间[-1,1]上的最大值为( )
A. 93π-1
C. 93π-12 答案 C
B.1-
3π 9
D.12-
3π 9
解析 如图所示,取 BC 的中点 D,AC 的中点 O,连接 AD,DO,设 AB =2,在△ACD 中,AD=1,CD= 3,S△ACD= 23,∴S△ABC= 3,在扇形 OAD 中,∠AOD=60°,S 扇形 AOD=12·π3·1=π6,S△AOD= 43,∴S 阴影=26π- 43=π3- 23, ∴P=SS△阴A影BC=π3-323= 93π-21.故选 C.
3.已知 m,n 是两条不同直线,α,β 是两个不同平面,给出四个命题:
①若 α∩β=m,n⊂α,n⊥m,则 α⊥β;②若 m⊥α,m⊥β,则 α∥β;③
若 m⊥α,n⊥β,m⊥n,则 α⊥β;④若 m∥α,n∥β,m∥n,则 α∥β.
其中正确的命题是( )
A.①②
B.②③ C.①④ D.②④
答案 B
4套仿真模拟
2020高考仿真模拟(四)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共 150 分,考试时 间 120 分钟.
第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出 的四个选项中,只有一项是符合题目要求的. 1.设集合 A={x∈Z|x2<4},B={y|y=2x,x∈A},则 A∪B 中的元素个数 是( ) A.4 B.5 C.6 D.无数
相关文档
最新文档