九年级数学下册 27 相似 27.3 位似(3)导学案(新版)新人教版
九年级数学下册 27.3 位似教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案
27.3 位似一、教学目标1.核心素养通过学习位似,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解位似图形的概念,掌握位似图形的性质.(2)利用位似图形的性质,掌握作位似图形的方法,并学会对图形放大或者缩小.(3)会用图形的坐标变化来表示图形的位似变化,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化规律.(4)了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.3.学习重点了解位似图形的概念、性质;位似与平移、轴对称、旋转的异同.4.学习难点利用位似将一个图形放大或缩小;运用四种变换解决问题.二、教学设计(一)课前设计1.预习任务任务1 阅读教材P47-P48,思考:什么叫做位似图形?位似图形有什么特征?任务2 阅读教材P48-P50,思考:如何画位似图形?直角坐标系中图形的位似变化与对应点坐标变化的规律是什么?2.预习自测1.下列说法正确的是( )A.位似图形可以通过平移相互得到;B.位似图形的对应边平行且相等;C.位似中心到对应点的距离之比都相等;D.相似图形的位似中心不止一个。
答案:C解析:略2.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是( )答案:D解析:略3.如图,△ABC与△A′B′C′是以点O为位似中心的位似图形,已知BB′=2OB′,则△A′B′C′与△ABC 的面积比为( )A.1∶3 B.1∶4 C.1∶5 D.1∶9答案:D解析:略(二)课堂设计1.知识回顾(1)相似三角形的性质:对应角相等、对应边成比例;对应边之比等于相似比;周长之比等于相似比;面积之比等于相似比的平方.(2)前面我们已经学过的图形变换有:对称(轴对称与轴对称图形,中心对称与中心对称图形)变换:对称轴,对称中心.平移变换:平移的方向,平移的距离.旋转变换:旋转中心,旋转方向,旋转角度.相似变换:相似比.2.问题探究问题探究一什么是位似图形?位似图形有什么性质?重点、难点知识★▲●活动1 情景导入构建新知观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?归纳:如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.●活动2 自主探究位似图形的特征下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?对应边的关系(位置和数量)呢?每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点,所以都是位似图形。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
九年级数学下册27_3位似教案新版新人教版
作法 三:(1)在四边形ABCD内任取一点O;
(2)过点O别离作射线OA,OB,OC,OD;
(3)别离在射线OA,OB, OC,O D上取点A′、B′、C′、D′,
使得 ;Байду номын сангаас
(4)按序连接A′B′、B′C′、C′D′、D′A′,取得所要画的四 边形A′B′C′D′,如图4.
三、例题的用意
本节课安排了两个例题,例1是补充的一个例题,通过度辨位似图形,巩固位似图形的概念,让学生明白得位似图形必需知足两个条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都通过同一点,二者缺一不可.例2是教材P61例题,通过例2 的教学,使学生把握位似图形的画法,能够利用作位似图形的方式将一个图形放大或缩小.讲解例2时,要注意引导学生能够用不同的方式画出所要求作的图形,要让学生通过作图明白得符合要求的图形不惟一,这和所作的图形与所确信的位似中心的位置有关(如位似中心O可能选在四边形ABCD外,可能选在四边形ABCD内,可能选在四边形ABCD的一条边上,可能选在四边形ABCD的一个极点上).而且同一个位似中心的双侧各 有一个符合要求的图形(如例2 中的图2与图3),因此,位似中心的确信是作出图形的关键.要及时强调注意的问题(见难点的冲破方式④),及时总结作图的步骤(见例2),并让学生练习找 所给图形的位似中心的题目(如 课堂练习2),以使学生真正把握位似图形的概念与作图.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个极点上时,作 法略——能够让学生自己完成)
六、课堂练习
1.教材P61.一、2
2.画出所给图中的位似中心.
天津市宁河区九年级数学下册27相似27.3位似(3)导学案(无答案)新人教版(new)
27.3.3位似(3)学习目标:1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小。
能用坐标表示位似变形下图形的位置.3。
了解位似与相似的联系和区别,掌握位似图形的性质。
掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
学习过程:一、自主学习图中多边形相似吗?观察下面的四个图,你发现每个图中的两个多边形各对应点的连线有什么特征?(1)位似图形:如果两个多边形不仅,而且对应顶点的连线,对应边或,那么这样的两个图形叫做位似图形,这个点叫做,这时的相似比又称为.(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是图形,而相似图形不一定是图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;二、数学概念思考什么是位似图形,什么是位似中心?位似图形与形似图形的区别与联系?三、例题讲解:例:如图,点O 是△ABC 外的一点,分别在射线OA 、OB 、OC 上取一点D 、E 、F,使得3===OCOF OB OE OA OD ,连接DE 、EF 、FD ,所得△DEF 与△ABC 是否相似?证明你的结论。
四、总结反思:看谁说得好!1、说说你的收获;1、如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是_______2、如图表示△AOB和把它缩小后得到的△COD,求△COD和△AOB的相似比.3、如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.六、能力提升:看谁写得棒!1、如图,以O为位似中心,将四边形ABCD放大为原来的两倍.2、画出所给图中的位似中心.七、作业布置:课本57页,复习题27.(1)10题必做。
(2)11,12题选作一题。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
2019-2020学年九年级数学下册27.3位似导学案(新人教版).doc
2019-2020学年九年级数学下册27.3位似导学案(新人教版)【学习目标】我能了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质;我能掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小. 学习重点:位似图形的有关概念、性质与作图.学习难点:利用位似将一个图形放大或缩小. 学习过程:一、自主学习:活动1 教师活动:提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.。
(教材P47页思考)观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-1 学生活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行。
活动2 教师活动:提出问题:利用位似,可以将一个图形放大或缩小:(教材P47)把图1中的四边形ABCD 缩小到原来的21. 二、 合作交流探究与展示: 分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB ,OC ,OD ;(3)分别在射线OA , OB , OC ,OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.三、当堂检测:1.课本P48练习1、2题。
人教版九年级数学下册 27.3 位似 精品导学案2 新人教版
位似学习目标:1、知识和技能:(1)巩固位似图形及其有关概念。
(2)会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律。
(3)了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换2、过程和方法:经历在平面直角坐标系中位似图形对应点的坐标与相似比之间的关系的探究过程,发展学生归纳分析能力和动手操作能力。
3、情感、态度、价值观:让学生在应用有关知识解决实际问题的过程中提高应用意识,体验数形结合的思想方法在解题中的运用。
学习重点:用图形的坐标的变化来表示图形的位似变换学习难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律导学方法:自主探索法课时:2课时导学过程一、课前预习预习教材P61-63的有关内容,完成《导学案》中的教材导读和自主测评。
二、课堂导学1.导入我们学习了在平面直角坐标系中用坐标表示某些平移、轴对称、旋转等变换,一些特殊的相似变换也可以用图形坐标变化来表示,下面我们来探究用坐标来表示位似图形的变化。
2.出示任务,自主学习:(教材P59)图中有多边形相似吗?如果有,这种相似有什么特征?(教材P60)要把一个四边形缩小到原来的一半,该怎样做?3.合作探究探究:位似图形及其有关的概念:探究:利用位似可以将一个图形放大或缩小:三、展示反馈归纳:位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
四、学习小结1.相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,因此一些特殊的相似(如位似)也可以用图形坐标的变化来表示。
2.位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
3.在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的。
九年级数学下册 27 相似 课题 位似学案 (新版)新人教
课题:位似【学习目标】1.掌握位似图形的定义、性质及画法.2.掌握位似图形与相似图形的区别和联系.【学习重点】理解并掌握位似图形的定义、性质及画法.【学习难点】位似图形的多种画法.情景导入生成问题在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?自学互研生成能力知识模块一位似图形的定义【自主探究】阅读教材P47,思考:位似图形的特征:1.位似图形必定是相似图形.2.位似图形的对应点连线必相交于同一点,对应边互相平行.3.位似图形的对应边的比称为相似比,对应顶点连线相交的那个点称为位似中心.【合作探究】如图,指出各组图形中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.(图中两个四边形都是矩形)解:(1)、(2)、(3)中的两个图形都是位似图形,其中位似中心分别为A,A,P,而(4)中两个正方形就不是位似图形.知识模块二位似图形的性质【自主探究】(玉林中考)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1∶2,已知△ABC的面积是3,则△A′B′C′的面积是( D)A.3 B.6 C.9 D.12【合作探究】如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是( B)A.1∶2 B.1∶4C.1∶5 D.1∶6知识模块三位似图形的画法【自主探究】阅读教材P47思考:你有几种画法?(3种)【合作探究】教材P 48探究.(1)在四边形ABCD 外任取一点O(如图①);(2)作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点A′,B ′,C ′,D ′,使OA ′OA =OB ′OB =OC ′OC =OD ′OD =12;(4)顺次连接A′,B ′,C ′,D ′,则四边形A′B′C′D′也是四边形ABCD 缩小12的图形.解:(1)在四边形ABCD 的内部任取一点O(如图②);(2)连接OA ,OB ,OC ,OD ;(3)分别在OA ,OB ,OC ,OD 上截取点A′,B ′,C ′,D ′,使OA ′OA =OB ′OB =O C′OC =OD ′OD =12;(4)顺次连接A′,B ′,C ′,D ′,则四边形A′B′C′D′是将四边形ABCD 缩小12的图形. 交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 位似图形的定义知识模块二 位似图形的性质知识模块三 位似图形的画法检测反馈 达成目标【当堂检测】1.如图,△OAB 和△OCD 是位似图形,AB ∥CD 吗?为什么?解:AB∥CD.原因如下:∵△OAB 和△OCD 是位似图形,∴△DAB ∽△OCD ,∴∠OAB =∠OCD,∴AB ∥CD.2.如图,以O 为位似中心,画出将ABC 放大为原来的两倍的图形. 解:如图所示:【课后检测】见学生用书 课后反思 查漏补缺1.这节课的学习,你的收获是:_________________________________________________________________2.存在困惑:__________________________________________________________________。
2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。
九年级数学下册 第二十七章 相似 27.3 位似 位似图形导学案(新版)新人教版
位似图形学习目标:1.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.2.能说出平移、轴对称、旋转和位似这四种变换的异同,并能在复杂图形中找出这些变换.一、学前准备1.如图3,四边形和四边形位似,位似比,四边形和四边形位似,位似比.四边形和四边形是位似图形吗?位似比是多少?由此你能得到什么结论?二、探究活动(一)自主学习(阅读教材P48-P50内容,有疑问请记录下来,供合作学习时讨论)1.(1)如图在直角坐标系中,矩形的顶点坐标分别为(0,0),(6,0),(6,4),(0,4).如果将点O,A,B,C的横﹑纵坐标都缩小一半,得到点,,,,顺次连接点,,,,得到的图形是______________.(2)四边形与矩形是_________图形,位似中心是点_________,它们的相似比是_________.(3)如图1-34,已知△的顶点是坐标原点,顶点A,B的坐标分别为(-1,2),(-3,0).把△各个顶点的横﹑纵坐标都扩大到原来的3倍,得到点,,.连接,,.△与△OAB是位似图形吗?如果是,位似中心是哪点?(4)由(1)(2)(3)你能得出什么结论?2.在平面直角坐标系中,如果将一个多边形的顶点坐标扩大(或缩小)相同的倍数,所得的图形与原图形是______________.3.一般地,在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标是_____________或_____________. 4.检查预习:(1)课本P50练习1.(2)课本P50练习2:__________,__________,__________.5.如图1-35,四边形OABC的顶点坐标分别为(0,0),(2,0),(4,4),(-2,2).(1)如果四边形与四边形OABC位似,位似中心是原点,它的面积等于四边形OABC面积的倍,分别写出点,,坐标.(2)画出四边形.(二)合作学习:6.已知:在坐标平面内,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A1BC2的面积.三、归纳总结:1.你有什么收获?(从知识、方法、规律方面总结)2.你还有哪些疑惑?3.你认为老师上课过程中还有哪些需要注意或改进的地方?4.在展示中,哪位同学是你学习的榜样?哪个学习小组的表现最优秀?教(学)后记:感谢您的支持,我们会努力把内容做得更好!。
人教版九年级下第27章《相似》27.3位似导学案
人教版九年级下第27 章相像第 27.3位似导教案一、新知引入:1、假如两个图形不单是相像图形,并且,像这样的两个图形叫=====》位似图形 .2、位似中心与位似比K二、位似性质1、对应极点的连线经过位似中心,对应边互相平行2、位似中心能够出此刻任何地点,但只需 k值同样,则所得新图全等3、经过位似,能够将图形放大或减小; k>1图形放大, k<1图形减小例 1、如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点 O 为位第 1 页人教版九年级下第27 章相像似中心,相像比为1,把线段AB减小,求出对应点之间坐标3例 2、在平面直角坐标系中,有两点 A(4,1),B(6,4),C(2,3)以原点 O 为位似中心,相像比为 2,把△ABC 放大 2 倍,求出对应点的坐标三、讲堂练习1、如图,△OAB 和△ OCD 是位似图形,AB // CD 吗?2、以 O 为位似中心,将△ ABC 放大为本来的 2 倍A 3、已知△ ABC 与△ DEF 是位似三角形, D请确立其位似中心CFB E第 2 页人教版九年级下第27 章相像4、如图,四边形 ABCD 的坐标分别为 A (- 6,6), B (- 8,2), C (- 4,0),D (- 2,4),画出它的一个以原点 O 为位似中心,相像比为 1的位似图形.并2写出其对应极点的坐标yyAA66D 4 4 CB22B-10-5 CO510 x-5OD 5x-2-2-4 -4-6-65、如图表示△ AOB 和把它减小后获得的△ COD ,求它们的相像比6、如图,写出矩形 ABCD 各点的坐标,假如矩形 STUV 相像于 ABCD ,点 S 的坐标为 (2, 7),依据以下相像比 ,分别写出 T 、U 、 V 各点的坐标 .①相像比为 4;y②相像比为126 A D42 B COx5第 3 页人教版九年级下第27 章相像四、增补练习:1、以下图形是不是位似图形?假如是请指出位似中心,假如不是请说明原因。
人教版九年级数学下册第27章教案:27.3位似
1.理论介绍:首先,我们要了解位似的基本概念。位似是指在平面上,两个图形的形状相同,但大小不一定相同,且对应角相等,对应边成比例的几何关系。位似是几何变换中的重要内容,它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过地图的放大与缩小,了解位似在实际中的应用,以及如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了位似的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对位似的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调位似图形的性质和位似比的计算这两个重点。对于难点部分,我会通过具体图形和实例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似相关的实际问题,如如何通过位似比计算图形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量和计算,演示位似比的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“位似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在实践活动中,分组讨论和实验操作的部分,学生们表现得相当积极。他们通过合作探究,不仅巩固了所学知识,还提高了解决问题的能力。但我也注意到,有些小组在讨论过程中,可能会偏离主题,这时我需要及时引导他们回到主题上来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.3.3位似(3)
学习目标:
1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小。
能用坐标表示位似变形下图形的位置。
3. 了解位似与相似的联系和区别,掌握位似图形的性质。
掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
学习过程:
一、自主学习
图中多边形相似吗?观察下面的四个图,你发现每个图中的两个多边形各对应点的连线有什么特征?
(1)位似图形:如果两个多边形不仅,而且对应顶点的连线,对应边或,那么这样的两个图形叫做位似图形,这个点叫做,这时的相似比又称为.
(2)掌握位似图形概念,需注意:
①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是图形,而相似图形不一定是图形;
②两个位似图形的位似中心只有一个;
③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;
二、数学概念
思考什么是位似图形,什么是位似中心?位似图形与形似图形的区别与联系?
三、例题讲解:
例:如图,点O 是△ABC 外的一点,分别在射线OA 、OB 、OC 上取一点D 、E 、F ,使得
3===OC
OF OB OE OA OD ,连接DE 、EF 、FD ,所得△DEF 与△ABC 是否相似?证明你的结论.
四、总结反思:看谁说得好!
_______
和把它缩小后得到的△COD,求△COD 和△AOB 、如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.
六、能力提升:看谁写得棒!
1、如图,以O为位似中心,将四边形ABCD放大为原来的两倍.
2、画出所给图中的位似中心.
七、作业布置:
课本57页,复习题27.
(1)10题必做.
(2)11,12题选作一题.。