小学奥数往返行程问题
奥数行程问题(含答案)
行程问题讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。
行程问题内容丰富多彩、千变万化。
主要有一个物体的运动和两个或几物体的运动两大类。
两个或几个物体的运动又可以分为相遇问题、追及问题两类。
这一讲我们学习一个物体运动的问题的一些简单的相遇问题。
例题与方法例1.小明上学时坐车,回家时步行,在路上一共用了90分。
如果他往返都坐车,全部行程需30分。
如果他往返都步行,需多少分?(90-30÷2)×2=150例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。
汽车行驶了一半路程,在中途停留30分。
如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?280÷2÷﹙8÷2-0.5﹚-280÷8=5例3.一列火车于下午1时30分从甲站开出,每小时行60千米。
1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。
甲、乙两站相距多少千米?6-1.5=4.5﹙60+60﹚×﹙4.5-1﹚+60=480例4.苏步青教授是我国著名的数学家。
一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米。
甲带着一只狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。
小朋友们,你能解答这道题吗?100÷(6+4)×10=100例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
小学奥数往返行程问题
小学奥数往返行程问题小学奥数往返行程问题典型例题1甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?举一反三11、甲、乙两地之间的距离是360千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行40千米,第二辆汽车每小时行50千米,第二辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?2、A、B两城之间的距离是880千米,甲车和乙车同时从A城开往B城,甲车每小时行60千米,乙车车每小时行50千米,甲车车到达B城立即返回,两辆车从开出到相遇共用了多少小时?3、东、西两城之间的.距离是600千米,客车和货车同时从东城开往西城,客车每小时行65千米,货车车每小时行55千米,客车车到达西城立即返回,客车从开出到与货车相遇共用了多少小时?典型例题2甲、乙两人同时从东村骑车到西村去,经过4.5小时甲到达西村后立即返回东村,在距离西村15千米处遇到乙。
已知甲每小时比乙快6千米,求东西两村相距多少千米?举一反三21、小黄和小林同时从学校去电影院,小黄每分钟比小林多走20米,30分钟后,小黄刚到电影院立即返回,在距离电影院350米处遇到小林,小黄每分钟走多少米?2、甲、乙两辆汽车同时从南站开往北站,甲车每小时比乙车多行12千米,甲车行驶4个半小时到达北站后,没有停留,立即从原路返回,在距离北站30千米的地方和乙车相遇。
求两站之间的距离。
3、甲、乙两辆汽车同时从东站开往西站,甲车每小时比乙车多行14千米。
甲车行驶5小时到达西站后,立即按原路返回,在离西站42千米处于乙车相遇。
求东西两站之间的距离。
典型例题3A、B两地相距21千米,上午8时甲、乙两车分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后也立即返回,上午10时他们第二次相遇,此时甲走的路程比乙多9千米。
甲共行了多少千米?甲每小时行多少千米?举一反三31、A、B两地相距21千米,上午9时整,甲、乙两人分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,上午11时他们第二次相遇。
小学奥数行程问题50道详解
行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。
小学奥数行程问题应用题100题及答案
小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。
已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。
已知牛牛每分钟走50米,求甲、乙两地之间的路程。
(7)上学路上当当发现田田在他前面,于是就开始追田田。
当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。
问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。
15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。
(word完整版)六年级奥数--行程问题
六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
小学五年级奥数题行程问题
小学五年级奥数题行程问题1.小学五年级奥数题行程问题张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。
答案解析:第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
这道题重要是要求出汽车速度与工程师的速度之比。
2.小学五年级奥数题行程问题1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?答案1、解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时)。
2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。
小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度X时间(S=v X t)速度=路程+时间(v=s+t)时间=路程+速度(t=s + v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程♦总时间(「平=’・: 一;;•・例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往” 与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90x2=180 (千米),摩托车“往”的速度是每小时30千米,所用时间是:90+30=3 (小时), 摩托车“返”的速度是每小时45千米,所用时间是:90+45=2 (小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90x2+ (90+30+90+45)=180+5=36 (千米/小时)1、?山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20 千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(;」上):2;路程一定2「1「二:(1"1 ।[:),牢记平均速度公式,就不会错。
二、相遇问题公式:相遇路程=速度和x相遇时间:(L+l)xt=S相遇时间=相遇路程♦速度和:S+(L+1)=t相遇路程+相遇时间=速度和:S+t=(L+\)甲的速度=速度和一乙的速度:,:=S+t—1二乙的速度=速度和一甲的速度:k=S+t—L重要概念:甲的时间=乙的时间=相遇时间:'l=2=t甲的路程+乙的路程=相遇路程:’1, 飞=s例题.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时行6千米,乙每小时走4千米,二人几小时后相遇?分析:根据(相遇路程)小(速度和)=相遇时间,要求相遇时间,首先要求相遇路程,再求速度和。
四年级奥数行程问题及答案【三篇】
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。
【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。
求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。
【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。
【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。
⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。
小学奥数行程问题
行程问题【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【解答】后来小刚的速度是小明的(300-100)÷(200-100)=2倍,所以小明每100秒行150米,因此全程是1600+150×3=2050米。
【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?【解答】后来的速度比是(4×0.9):(3×1.2)=1:1,所以甲行3/7,乙还离A地4/7-3/7=1/7,即AB两地相距17÷1/7=119千米。
【题目3】从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?【解答】上山速度看作1,下山速度看作2,去时下山路程是1,上山路程是2/3,返回时上山路程是1,下山路程是2/3,所以有7÷(1÷2+2/3÷1)×(2/3÷2+1÷1)=8小时。
【题目4】甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。
原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米【题目5】小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。
小学奥数行程问题大汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。
(完整版)小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
小学六年级数学思维训练奥数题—行程问题专练
小学六年级数学思维训练奥数题—行程问题专练1.小天和爸爸同时分别从天安门和正阳门出发(天安门广场北起天安门,南至正阳门),相向而行。
小天每分钟走50米,爸爸的速度是小天的120%,相遇后,小天继续向前走9.6分钟到达正阳门。
天安门广场南北长多少米?2.一家人靠窗坐在速度为72千米/时的火车里,一列有30节车厢的货运火车迎面驶来,当货车车头经过窗口时开始计时,直到最后一节车厢驶过窗口共用时18秒。
已知货运火车每节车厢长16米,每两节车厢(包括车头)间距1.2米。
如果货运火车车头长24头,货车的速度是多少?3.从火车站坐公交车去泰山风景区,途中与同时从风景区开往火车站的某两出租车相遇,相遇点离火车站5千米。
相遇后两车继续以原速前进。
到达风景区后,我们发现有东西丢在火车站,又立即乘公交车返回。
在途中与返回的那辆出租车第二次相遇,相遇点在离风景区2.5千米处。
火车站与风景区之间相距多少千米呢?4.甲、乙两人沿着同一条路同时从山脚和山顶相向出发,甲上山行完全程要4小时,乙下山行完全程要6小时,两人在距中点150千米处相遇。
泰山山顶到山脚路程长多少米?5.甲船逆水航行600米需要3分钟,返回原地需要2分钟;乙船逆水航行同一段水路,需要4分钟。
(1)水流速度是多少?(2)乙船静水速度是多少?(3)乙船返回原地需要多少分钟?6.火车通过450米的大桥用时32秒,通过2200米的隧道时,火车的速度提高了一倍,所以通过隧道只用了51秒,火车的车长为多少米?7.一列火车长200米,它以每秒10米的速度穿过一座大桥,从车头上桥到车尾离开大桥共需80秒,这座桥长为()米。
8.一辆卡车、一辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在距B地20千米处第二次相遇,A、B两地间的路程是多少千米?9.甲、乙两车分别从A、B两地同时发出相向而行,相遇时距中5,求A、B两地的路程。
四年级奥数行程问题
四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。
甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。
如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。
一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。
中午放学时,小光跑不回家,只用了10分钟。
小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。
她俩同时从同一地点出发,相背而行。
问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。
她俩同时从同一地点出发,相背而行。
经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。
汽车每小时行80千米,客车每小时比汽车少行5千米。
6小时候,两车在途中相遇。
两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。
经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。
甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。
这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。
3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。
几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。
兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。
六年级奥数行程问题
1、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车距离中点36千米,甲乙两地相距千米2、小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回公用5小时。
小明来回共走了公里。
3、一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的倍。
4、一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下,逆风跑70米,也用了10秒。
在无风的时候,他跑100米要用秒。
5、AB两城相距56千米,有甲乙丙三人,甲乙从A城,丙从B城同时出发,相向而行。
甲乙丙分别以每小时6千米、5千米、4千米的速度行进。
求出发后经过小时,乙在甲丙之间的中点?6、主人追他的狗,狗跑三步的时间主任跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑了出了步。
7、兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点。
8、骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离出发地2100时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人。
9、一个自行车选手在相距950公里的甲乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。
他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点据甲地有 公里10、如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上。
11、动物园有8米的大树,两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米。
稍大的猴子爬到树顶,下来的速度比原来快了2倍。
五年级奥数行程问题
行程问题(一)例1.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?练习1.小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?练习2.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从A、B两地相向而行,在距中点20千米处相遇,求A、B两地的路程。
例2.快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习3.兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?练习4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗全部给五(1)班的同学去植,平均每人值多少棵树?例3.甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?练习5.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?练习6.甲、乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。
上午11时甲到达B 地后立即返回,在距B地24千米处与乙相遇。
求A、B两地相距多少千米?例4.甲、乙两队学生从相距18 千米的两地同时出发,相向而行。
一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?练习7.两支队伍从相距55千米的两地相向而行。
通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数往返行程问题
小学奥数往返行程问题
典型例题1
甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?
举一反三1
1、甲、乙两地之间的距离是360千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行40千米,第二辆汽车每小时行50千米,第二辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?
2、A、B两城之间的距离是880千米,甲车和乙车同时从A城开往B城,甲车每小时行60千米,乙车车每小时行50千米,甲车车到达B城立即返回,两辆车从开出到相遇共用了多少小时?
3、东、西两城之间的距离是600千米,客车和货车同时从东城开往西城,客车每小时行65千米,货车车每小时行55千米,客车车到达西城立即返回,客车从开出到与货车相遇共用了多少小时?
典型例题2
甲、乙两人同时从东村骑车到西村去,经过4.5小时甲到达西村后立即返回东村,在距离西村15千米处遇到乙。
已知甲每小时比乙快6千米,求东西两村相距多少千米?
举一反三2
1、小黄和小林同时从学校去电影院,小黄每分钟比小林多走20米,30分钟后,小黄刚到电影院立即返回,在距离电影院350米处遇到小林,小黄每分钟走多少米?
2、甲、乙两辆汽车同时从南站开往北站,甲车每小时比乙车多
行12千米,甲车行驶4个半小时到达北站后,没有停留,立即从原
路返回,在距离北站30千米的地方和乙车相遇。
求两站之间的距离。
3、甲、乙两辆汽车同时从东站开往西站,甲车每小时比乙车多
行14千米。
甲车行驶5小时到达西站后,立即按原路返回,在离西
站42千米处于乙车相遇。
求东西两站之间的`距离。
典型例题3
A、B两地相距21千米,上午8时甲、乙两车分别从A、B两地
出发,相向而行,甲到达B地后立即返回,乙到达A地后也立即返回,上午10时他们第二次相遇,此时甲走的路程比乙多9千米。
甲
共行了多少千米?甲每小时行多少千米?
举一反三3
1、A、B两地相距21千米,上午9时整,甲、乙两人分别从A、
B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立
即返回,上午11时他们第二次相遇。
此时,甲行的路程比乙行的路
程多5千米。
甲每小时行多少千米?
2、A、B两城相距160千米,早晨6时整,甲车和乙车分别从A、B两城出发,相向而行,甲车到达B城后立即返回,乙车到达A城
后立即返回,12时整他们第二次相遇。
此时,甲行的路程比乙行的
路程多24千米。
甲车每小时行多少千米?。