【高考一轮复习】2018课标版理数2.9函数模型及应用 夯基提能作业本

合集下载

2018届高三数学一轮复习 第二章 函数 第九节 函数模型及应用夯基提能作业本 理

2018届高三数学一轮复习 第二章 函数 第九节 函数模型及应用夯基提能作业本 理

第九节函数模型及应用A组基础题组1.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A.118元B.105元C.106元D.108元2.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么( )A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车,其间距最少为5 mD.人追不上汽车,其间距最少为7 m3.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是( )A.y=2xB.y=x2-1C.y=2x-2D.y=log2x4.(2016北京朝阳统一考试)设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是( )A.15B.16C.17D.185.将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水量符合指数衰减曲线y=ae nt.若5分钟后甲桶和乙桶的水量相等,又过了m分钟后甲桶中的水只有升,则m的值为( )A.7B.8C.9D.106.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.根据预算得羊皮手套的年利润L万元与年广告费x万元之间的函数解析式为L=-(x>0).则当年广告费投入万元时,该公司的年利润最大.7.某化工厂生产一种溶液,按市场要求杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤次才能达到市场要求.(已知lg 2≈0.301,lg 3≈0.477 1)8.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v的值为2千克/年;当4≤x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.9.(2017黑龙江牡丹江十五中期末)有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在装有一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.B组提升题组10.(2016山东威海模拟)已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:则下列说法正确的是( )①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④11.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花100元的日常维修等费用(租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A.3 000元B.3 300元C.3 500元D.4 000元12.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为.13.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为级;9级地震的最大振幅是5级地震最大振幅的倍.14.已知某物体的温度θ(单位:℃)随时间t(单位:min)的变化规律是θ=m·2t+21-t(t≥0且m>0).(1)如果m=2,求经过多长时间物体的温度为5 ℃;(2)若物体的温度总不低于2 ℃,求m的取值范围.答案全解全析A组基础题组1.D 设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108,故选D.2.D 设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值,为7(m).3.D 根据x=0.50,y=-0.99,代入各选项计算,可以排除A;根据x=2.01,y=0.98,代入各选项计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.4.B 由题意,分流前每年创造的产值为100t(万元),分流x人后,每年创造的产值为(100-x)(1+1.2x%)t(万元),则由解得0<x≤.因为x∈N*,所以x的最大值为16.5.D 令a=ae nt,则=e nt,由已知得=e5n,故=e15n,∴t=15,m=15-5=10.6.答案 4解析L=-=-×(x>0).当-=0,即x=4时,L取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.7.答案8解析设过滤n次能达到市场要求,则2%≤0.1%,即≤,所以nlg≤-1-lg 2,即n(lg 2-lg 3)≤-1-lg 2,所以n≥7.39,又n∈N*,所以n的最小值为8.8.解析(1)由题意得当0<x≤4时,v=2;当4≤x≤20时,设v=ax+b,显然v=ax+b在[4,20]内是减函数,由已知得解得所以v=-x+,故函数v=(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得f(x)=当0<x≤4时, f(x)为增函数,故f(x)max=f(4)=4×2=8;当4<x≤20时, f(x)=-x2+x=-(x2-20x)=-(x-10)2+, f(x)max=f(10)=12.5.所以当0<x≤20时, f(x)的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.9.解析(1)由题意知k=3,∴k=1.(2)因为k=4,所以y=当0≤x≤4时,由-4≥4,解得-4≤x<8,所以0≤x≤4.当4<x≤14时,由28-2x≥4,解得x≤12,所以4<x≤12.综上可知,当y≥4时,0≤x≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)能,理由:在第12分钟时,水中洗衣液的浓度为2×+1×=5(克/升),又5>4,所以在第12分钟时还能起到有效去污的作用.B组提升题组10.D 买小包装时每克费用为元,买大包装每克费用为=元,而>,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润为8.4-1.8×3-0.7=2.3(元).而2.3>2.1,所以卖1大包盈利多,故选D.11.B 设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N*),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50,当且仅当58+x=70-x,即x=6时,等号成立,故每套房月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.12.答案180解析依题意知:=(0<x≤20,8≤y<24),即x=(24-y),∴阴影部分的面积S=xy=(24-y)·y=(-y2+24y)=-(y-12)2+180(8≤y<24).∴当y=12时,S取最大值180.13.答案6;10 000-3,则M=lg 103-lg 10-3=3-(-3)=6.解析由题意,A=1 000=103,A设9级地震,5级地震的最大振幅分别为A9,A5,则lg A9-9=lg A5-5,得lg A9-lg A5=4,即lg=4,∴=10 000.14.解析(1)若m=2,则θ=2·2t+21-t=2,当θ=5时,2t+=,令x=2t,x≥1,则x+=,即2x2-5x+2=0,解得x=2或x=(舍去),当x=2时,t=1.故经过1 min,物体的温度为5 ℃.(2)物体的温度总不低于2 ℃等价于对于任意的t∈[0,+∞),θ≥2恒成立,即m·2t+≥2(t≥0)恒成立,亦即m≥2(t≥0)恒成立.令y=,则0<y≤1,故对于任意的y∈(0,1],m≥2(y-y2)恒成立,因为y-y2=-+≤,所以m≥.因此,当物体的温度总不低于2 ℃时,m的取值范围是.。

【高考数学】2018最新高三数学课标一轮复习课件:2.9 函数模型及其应用(专题拔高配套PPT课件)

【高考数学】2018最新高三数学课标一轮复习课件:2.9 函数模型及其应用(专题拔高配套PPT课件)

关闭
由题意知24t=4 096,即16t=4 096,解得t=3.
关闭
C
解析 答案
第二章
知识梳理 双击自测
2.9 函数模型及其应用
考情概览 知识梳理 核心考点 学科素养
-8-
3.已知某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+1),设 这种动物第2年有100只,到第8年它们发展到( ) A.100只 B.200只 C.300只 D.400只
第二章
知识梳理 双击自测
2.9 函数模型及其应用
考情概览 知识梳理 核心考点 学科素养
-4-
2.三种增长型函数之间增长速度的比较
函数 性质 在(0,+∞) 上的增减性 增长速度 图象的变化 值的比较 y=ax(a>1) 单调 递增 越来越快 随 x 的增大 逐渐表现为与 y轴 平行 y=logax(a>1) 单调 递增 越来越慢 随 x 的增大 逐渐表现为与 y=xn(n>0) 单调 递增 相对平稳 随 n 值变化而 各有不同
关闭
y=1.002x>y=0.25x>y=log2x+1
答案
第二章
知识梳理 双击自测
2.9 函数模型及其应用
考情概览 知识梳理 核心考点 学科素养
-10-
5.有一批材料可以建成200 m的围墙,如果用此材料在一边靠墙的 地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩 形(如图所示),则围成的矩形最大面积为 (围墙厚度不计).
关闭
设矩形的长为 x m, 则宽为 S=x·
200 -������ 4
200 -������ 4
m,
= 4(-x2 +200x),

2018高三数学(理)一轮复习课件:2-9函数模型及其应用

2018高三数学(理)一轮复习课件:2-9函数模型及其应用
2.9
函数模型及其应用
知识梳理 知识梳理 双基自测
-2-
1 2
1.常见的函数模型 (1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0); (2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0); ������ (3)反比例函数模型:f(x)= (k 为常数,k≠0); ������ (4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1); (5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1); (6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
C. ������������
D. (������ + 1)(������ + 1)-1
关闭
设年平均增长率为 x,则(1+x)2=(1+p)(1+q), 故 x= (1 + ������)(1 + ������)-1.
D
解析 答案
关闭
知识梳理 知识梳理 双基自测
-6-
1 2 3 4 5
3.(教材例题改编P123例1)某工厂生产一种产品的总成本y(万元) 与产量x(台)之间的函数关系是y=0.1x2+10x+300(0<x≤240,x∈N). 若每台产品的售价为25万元,生产的产品全部卖出,则该工厂获得 最大利润(利润=销售收入-产品成本)时的产量是( ) A.70台 B.75台 C.80台 D.85台
-9-
考点1
考点2
考点3
考点4
解 (1)由题意可知 x 的取值范围为 10≤x≤90.

2018年高考数学总复习 2.9 函数模型及其应用演练提升同步测评 文 新人教B版

2018年高考数学总复习 2.9 函数模型及其应用演练提升同步测评 文 新人教B版

2.9 函数模型及其应用A 组 专项基础训练(时间:20分钟)1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是( )A.C .指数函数模型 D .对数函数模型【解析】 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.【答案】 A2.(2017·四川德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10 【解析】 ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f (t )=a e nt满足f (5)=a e 5n=12a ,可得n =15ln 12,∴f (t )=a ·⎝ ⎛⎭⎪⎫12t5, 因此,当k min 后甲桶中的水只有a4 L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k5=14,∴k =10,由题可知m =k -5=5,故选A. 【答案】 A3.(2017·合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )【解析】 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.4.(2017·北京朝阳统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18【解析】 由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16. 【答案】 B5.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A .2B .6C .8D .10【解析】 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x100,令104·(100-10x )·70·x100≥112×104,解得2≤x ≤8.故x 的最小值为2.【答案】 A6.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.【解析】 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.7.(2017·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.【解析】 当t =0时,y =a ,当t =8时,y =a e -8b=12a , ∴e -8b=12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,所以再经过16 min.【答案】 168.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝ ⎛⎭⎪⎫x 2+8x (x >0).则当年广告费投入________万元时,该公司的年利润最大.【解析】 由题意得L =512-⎝ ⎛⎭⎪⎫x 2+8x =432-12⎝ ⎛⎭⎪⎫x -4x 2(x >0).当x -4x =0,即x =4时,L 取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大. 【答案】 4B 组 专项能力提升 (时间:10分钟)9.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)( )A .19B .20C .21D .22【解析】 操作次数为n 时的浓度为⎝ ⎛⎭⎪⎫910n +1,由⎝ ⎛⎭⎪⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,∴n ≥21.【答案】 C10.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14 【解析】 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15. 【答案】 A11.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.【解析】 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,y =e10ln 2=210=1 024.【答案】 2ln 2 1 02412.一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【解析】 (1)设每年砍伐面积的百分比为x (0<x <1). 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝ ⎛⎭⎪⎫12110. 即每年砍伐面积的百分比为1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年剩余面积为原来的22,则a (1-x )m=22a , 即⎝ ⎛⎭⎪⎫12m 10=⎝ ⎛⎭⎪⎫1212,所以m 10=12,解得m =5.故到今年为止,已砍伐了5年. (3)设从今年开始,最多还能砍伐n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 所以⎝ ⎛⎭⎪⎫12n 10≥⎝ ⎛⎭⎪⎫1232, 即n 10≤32, 解得n ≤15.故今后最多还能砍伐15年.。

2018届高考数学一轮复习2.9

2018届高考数学一轮复习2.9

-22-
第二章
考点一 考点二
第九节 函数模型及其应用
主干知识回顾 名师考点精讲 综合能力提升
-23-
第二章
第九节 函数模型及其应用
主干知识回顾 名师考点精讲 综合能力提升
-7-
x y
1.99 1.5
3 4.04
4 7.5
5.1 12
6.12 18.01
第二章
知识清单 基础自测
第九节 函数模型及其应用
主干知识回顾 名师考点精讲 综合能力提升
-8-
3.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟, 在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发 到返回原地所经过的路程y和其所用的时间x的函数图象为 ( )
一次函数与二次函数模型 ★ (1)了解指数函数、对数 的应用 函数以及幂函数的增长 特征,知道直线上升、指 数增长、对数增长等不 分段函数模型 ★ 同函数类型增长的含义; (2)了解函数模型(如指数 函数、对数函数、幂函 数、分段函数等在社会 指数、对数函数模型的应 生活中普遍使用的函数 用 模型)的广泛应用
-13-
基本初等函数模型的求解技巧 (1)根据题意正确建立基本初等函数(一次函数、二次函数、对数函数、 指数函数等)模型,并写出相应的定义域; (2)利用基本初等函数的性质或不等式与求导方法求解问题; (3)对于证明问题可采用直接证明或反证法.
第二章
考点一 考点二
第九节 函数模型及其应用
主干知识回顾 名师考点精讲 综合能力提升
第九节 函数模型及其应用
主干知识回顾 名师考点精讲 综合能力提升
-18-
第二章
考点一 考点二

2018届高三数学(文)一轮复习夯基提能作业本第二章 函数 第七节 函数的图象 Word版含解析

2018届高三数学(文)一轮复习夯基提能作业本第二章 函数 第七节 函数的图象 Word版含解析

第七节函数的图象
组基础题组
.函数的图象可能是( )
.函数的图象大致是( )
.设奇函数()的定义域为],当∈]时,函数()的图象如图所示,则满足不等式()<的的取值范围为( )
.().().()∪().()∪()
.函数()的大致图象是( )
.如图,定义在∞)上的函数()的图象由一条线段及抛物线的一部分组成,则()的解析式为.
.设奇函数()在(∞)上为增函数,且(),则不等式<的解集为.
.当∈()时,函数()的图象始终在函数的图象的下方,则实数的取值范围是. .已知函数()(∈),且().
()求实数的值;
()作出函数()的图象;
()根据图象指出()的单调递减区间;
()若方程()只有一个实数根,求的取值范围.
.已知函数()的图象与函数()的图象关于点()对称.
()求()的解析式;
()若()(),且()在区间(]上为减函数,求实数的取值范围.
组提升题组
.(浙江分)函数的图象是( )。

【高考一轮】2018课标版文科数学一轮复习 夯基提能练习题460页(含答案详解)

【高考一轮】2018课标版文科数学一轮复习 夯基提能练习题460页(含答案详解)

2018课标版文科数学一轮复习夯基提能练习题目录2018课标版文科数学一轮复习1.1集合夯基提能作业本(含答案)2018课标版文科数学一轮复习1.2命题及其关系、充分条件与必要条件夯基提能作业本(含答案)2018课标版文科数学一轮复习1.3简单的逻辑联结词、全称量词与存在量词夯基提能作业本(含答案)2018课标版文科数学一轮复习2.1函数及其表示夯基提能作业本(含答案)2018课标版文科数学一轮复习2.2函数的单调性与最值夯基提能作业本(含答案)2018课标版文科数学一轮复习2.3函数的奇偶性与周期性夯基提能作业本(含答案)2018课标版文科数学一轮复习2.4二次函数与幂函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.5指数与指数函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.6对数与对数函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.7函数的图象夯基提能作业本(含答案)2018课标版文科数学一轮复习2.8函数与方程夯基提能作业本(含答案)2018课标版文科数学一轮复习2.9函数模型及其应用夯基提能作业本(含答案)2018课标版文科数学一轮复习3.1变化率与导数、导数的计算夯基提能作业本(含答案) 2018课标版文科数学一轮复习3.2导数与函数的单调性夯基提能作业本(含答案)2018课标版文科数学一轮复习3.3导数与函数的极值、最值夯基提能作业本(含答案) 2018课标版文科数学一轮复习3.4导数与函数的综合问题夯基提能作业本(含答案)2018课标版文科数学一轮复习4.1任意角和弧度制及任意角的三角函数夯基提能作业本(含答案)2018课标版文科数学一轮复习4.2同角三角函数基本(含答案)关系式与诱导公式夯基提能作业本2018课标版文科数学一轮复习4.3三角函数的图象与性质夯基提能作业本(含答案)2018课标版文科数学一轮复习4.4函数y=Asin(ωx+φ)的图象及应用夯基提能作业本(含答案)2018课标版文科数学一轮复习4.5两角和与差的正弦、余弦和正切公式及二倍角公式夯基提能作业本(含答案)2018课标版文科数学一轮复习4.6简单的三角恒等变换夯基提能作业本(含答案)2018课标版文科数学一轮复习4.7正弦定理和余弦定理夯基提能作业本(含答案)2018课标版文科数学一轮复习4.8解三角形夯基提能作业本(含答案)2018课标版文科数学一轮复习5.1平面向量的概念及其线性运算夯基提能作业本(含答案) 2018课标版文科数学一轮复习5.2平面向量基本(含答案)定理及坐标表示夯基提能作业本2018课标版文科数学一轮复习5.2平面向量基本(含答案)定理及坐标表示夯基提能作业本2018课标版文科数学一轮复习5.3平面向量的数量积与平面向量应用举例夯基提能作业本(含答案)2018课标版文科数学一轮复习6.1数列的概念及简单表示法夯基提能作业本(含答案) 2018课标版文科数学一轮复习6.2等差数列及其前n项和夯基提能作业本(含答案)2018课标版文科数学一轮复习6.3等比数列及其前n项和夯基提能作业本(含答案)2018课标版文科数学一轮复习6.4数列求和夯基提能作业本(含答案)2018课标版文科数学一轮复习7.1不等关系与不等式夯基提能作业本(含答案)2018课标版文科数学一轮复习7.2一元二次不等式及其解法夯基提能作业本(含答案) 2018课标版文科数学一轮复习7.3二元一次不等式(组)及简单的线性规划问题夯基提能作业本(含答案)2018课标版文科数学一轮复习7.4基本(含答案)不等式及其应用夯基提能作业本2018课标版文科数学一轮复习8.1空间几何体及其三视图、直观图夯基提能作业本(含答案)2018课标版文科数学一轮复习8.2空间几何体的表面积和体积夯基提能作业本(含答案) 2018课标版文科数学一轮复习8.3空间点、直线、平面之间的位置关系夯基提能作业本(含答案)2018课标版文科数学一轮复习8.4直线、平面平行的判定与性质夯基提能作业本(含答案) 2018课标版文科数学一轮复习8.5直线、平面垂直的判定与性质夯基提能作业本(含答案) 2018课标版文科数学一轮复习9.1直线的倾斜角与斜率、直线的方程夯基提能作业本(含答案)2018课标版文科数学一轮复习9.2直线的交点与距离公式夯基提能作业本(含答案)2018课标版文科数学一轮复习9.3圆的方程夯基提能作业本(含答案)2018课标版文科数学一轮复习9.4直线与圆、圆与圆的位置关系夯基提能作业本(含答案) 2018课标版文科数学一轮复习9.5椭圆夯基提能作业本(含答案)2018课标版文科数学一轮复习9.6双曲线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.7抛物线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.8直线与圆锥曲线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.9圆锥曲线的综合问题夯基提能作业本(含答案)2018课标版文科数学一轮复习10.1随机事件的概率夯基提能作业本(含答案)2018课标版文科数学一轮复习10.2古典概型与几何概型夯基提能作业本(含答案)2018课标版文科数学一轮复习10.3随机抽样夯基提能作业本(含答案)2018课标版文科数学一轮复习10.4用样本(含答案)估计总体夯基提能作业本2018课标版文科数学一轮复习10.5变量的相关关系、统计案例夯基提能作业本(含答案) 2018课标版文科数学一轮复习10.6概率与统计的综合问题夯基提能作业本(含答案) 2018课标版文科数学一轮复习11.1数系的扩充与复数的引入夯基提能作业本(含答案) 2018课标版文科数学一轮复习11.2算法与程序框图夯基提能作业本(含答案)2018课标版文科数学一轮复习11.3合情推理与演绎推理夯基提能作业本(含答案)2018课标版文科数学一轮复习11.4直接证明与间接证明夯基提能作业本(含答案)2018课标版文科数学一轮复习12.1坐标系夯基提能作业本(含答案)2018课标版文科数学一轮复习12.2参数方程夯基提能作业本(含答案)2018课标版文科数学一轮复习13.1绝对值不等式夯基提能作业本(含答案)2018课标版文科数学一轮复习13.2不等式的证明夯基提能作业本(含答案)2018课标版文科数学一轮复习阶段检测卷01(含答案)2018课标版文科数学一轮复习阶段检测卷02(含答案)2018课标版文科数学一轮复习阶段检测卷03(含答案)2018课标版文科数学一轮复习阶段检测卷04(含答案)2018课标版文科数学一轮复习阶段检测卷05(含答案)2018课标版文科数学一轮复习阶段检测卷06(含答案)第一节集合A组基础题组1.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( )A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)2.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=( )A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}3.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )A.-3∈AB.3∉BC.A∩B=BD.A∪B=B4.(2016陕西西安模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]5.已知集合A=,则集合A中的元素个数为( )A.2B.3C.4D.56.(2016山东,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}7.(2017山东临沂期中)设集合M={-1,0,1,2},N={x|lg(x+1)>0},则M∩N=( )A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}8.(2016辽宁沈阳模拟)设集合A=,B={b,a+b,-1},若A∩B={2,-1},则A∪B=( )A.{2,3}B.{-2,2,5}C.{2,3,5}D.{-1,2,3,5}9.已知A={0,m,2},B={x|x3-4x=0},若A=B,则m= .10.已知集合A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁R B)= .11.已知集合A={x|1≤x<5},C={x|-a<x≤a+3},若C∩A=C,则a的取值范围为.B组提升题组12.(2017山西大同模拟)已知全集为R,集合M={-1,0,1,5},N={x|x2-x-2≥0},则M∩(∁R N)=( )A.{0,1}B.{-1,0,1}C.{0,1,5}D.{-1,1}13.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或414.设集合M={x|-1≤x<2},N={y|y<a},若M∩N≠⌀,则实数a的取值范围是( )A.[-1,2)B.(-∞,2]C.[-1,+∞)D.(-1,+∞)15.(2016广西南宁模拟)已知全集U={x∈Z|0<x<8},集合M={2,3,5},N={x|x2-8x+12=0},则集合{1,4,7}为( )A.M∩(∁U N)B.∁U(M∩N)C.∁U(M∪N)D.(∁U M)∩N16.(2016辽宁沈阳模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为( )A.15B.16C.20D.2117.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0},若A⊆B,则实数a的取值范围是( )A.(-∞,-1)B.(-∞,-1]C.(-∞,-2)D.(-∞,-2]18.(2016辽宁沈阳二中月考)设[x]表示不大于x的最大整数,集合A={x|x2-2[x]=3},B=,则A∩B= .答案全解全析A组基础题组1.B M∩N={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.2.A 由题意可得B={1,3,5},∴A∩B={1,3},故选A.3.C 化简A={y|y≥-1},因此A∩B={x|x≥2}=B.4.A 由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.5.C ∵∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x的值分别为5,3,1,-1,故集合A中的元素个数为4.6.A 由题意知A∪B={1,3,4,5},又U={1,2,3,4,5,6},∴∁U(A∪B)={2,6},故选A.7.C ∵M={-1,0,1,2},N={x|lg(x+1)>0}=(0,+∞),∴M∩N={1,2}.8.D 由A∩B={2,-1},可得或当时,此时B={2,3,-1},所以A∪B={-1,2,3,5};当时,此时不符合题意,舍去.9.答案-2解析由题意知B={0,-2,2},若A=B,则m=-2.10.答案(-∞,1]∪[2,+∞)解析由题意知B={x|x2-2x<0}={x|0<x<2},∴∁R B=(-∞,0]∪[2,+∞),又A=[-1,1],∴A∪(∁R B)=(-∞,1]∪[2,+∞).11.答案a≤-1解析因为C∩A=C,所以C⊆A.①当C=⌀时,满足C⊆A,此时-a≥a+3,解得a≤-;②当C≠⌀时,要使C⊆A,则有解得-<a≤-1.由①②,得a≤-1.B组提升题组12.A ∵全集为R,N={x|x2-x-2≥0}={x|x≤-1或x≥2},∴∁R N={x|-1<x<2},又集合M={-1,0,1,5},∴M∩(∁R N)={0,1}.故选A.13.A ∵集合A={x∈R|ax2+ax+1=0}中只有一个元素,即ax2+ax+1=0只有一个解,∴当a≠0时,Δ=a2-4a=0,解之得a=0(舍)或a=4.当a=0时,A=⌀,不合题意.∴a=4.14.D 借助数轴可知a>-1,故选D.15.C由已知得U={1,2,3,4,5,6,7},N={2,6},又M={2,3,5},所以∁U N={1,3,4,5,7},∁U M={1,4,6,7},M∪N={2,3,5,6},M∩N={2},所以M∩(∁U N)={3,5},∁U(M∩N)={1,3,4,5,6,7},(∁U M)∩N={6},∁U(M∪N)={1,4,7},故选C.16.D 由x2-2x-3≤0,得(x+1)(x-3)≤0,则-1≤x≤3,又x∈N,故集合A={0,1,2,3}.由题意知A*B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A*B={1,2,3,4,5,6},∴A*B中的所有元素之和为1+2+3+4+5+6=21.17.B A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x>a}.因为A⊆B,所以a≤-1.18.答案{-1,}解析∵x2-2[x]=3,∴[x]=,又[x]≤x<[x]+1,∴∴-1≤x<1-或1+<x≤3,∴[x]=-1或[x]=2或[x]=3.结合x2=2[x]+3,可得x=-1或x=或x=3.∴A={-1,,3}.由<2x<8得-3<x<3,∴B={x|-3<x<3}.∴A∩B={-1,}.第二节命题及其关系、充分条件与必要条件A组基础题组1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤02.(2016陕西五校三模)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定3.设a,b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2015安徽,3,5分)设p:x<3,q:-1<x<3,则p是q成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.若p是¬q的充分不必要条件,则¬p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.a<0,b<0的一个必要条件为( )A.a+b<0B.a-b>0C.>1D.<-17.原命题p:“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0B.1C.2D.48.直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是( )A.-3<m<1B.-4<m<2C.0<m<1D.m<19.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是.11.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是.12.已知函数f(x)=+a(x≠0),则“f(1)=1”是“f(x)为奇函数”的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)B组提升题组13.给定下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④14.(2016山东烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是( )A.a≥2B.a≤2C.a≥-2D.a≤-215.(2016辽宁大连双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∂x0∈R,f(x0)=f(-x0)”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(2016广东佛山一模)已知a,b都是实数,那么“>”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.(2016江西鹰潭余江一中月考)在下列给出的命题中,正确命题的个数为( )①函数f(x)=2x3-3x+1的图象关于点(0,1)中心对称;②若x+y≠0,则x≠1或y≠-1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sin A<cos B.A.1B.2C.3D.418.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是.19.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2+2x-8>0,且q是p的必要不充分条件,则实数a的取值范围是.答案全解全析A组基础题组1.D 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.B 命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p 的否命题.3.D a>b不能推出a2>b2,例如a=-1,b=-2;a2>b2也不能推出a>b,例如a=-2,b=1.故“a>b”是“a2>b2”的既不充分也不必要条件.4.C 令A={x|x<3},B={x|-1<x<3}.∵B⫋A,∴p是q的必要不充分条件.故选C.5.B ∵p是¬q的充分不必要条件,∴¬q是p的必要不充分条件.“若¬p,则q”是“若¬q,则p”的等价命题,∴¬p是q的必要不充分条件,故选B.6.A 若a<0,b<0,则一定有a+b<0,故选A.7.C 当c=0时,ac2=bc2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.8.C 若直线x-y+m=0与圆x2+y2-2x-1=0,即(x-1)2+y2=2有两个不同交点,则<,即|m+1|<2,解得-3<m<1,这是直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的充要条件,因此直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件可以是0<m<1,故选C.9.答案若a+b+c≠3,则a2+b2+c2<3解析根据否命题的定义知否命题为若a+b+c≠3,则a2+b2+c2<3.10.答案②③解析对于①,原命题的否命题为“若a≤b,则a2≤b2”,是假命题.对于②,原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题.对于③,原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,是真命题.11.答案m=-2解析∵f(x)=x2+mx+1的对称轴为直线x=-,∴f(x)的图象关于直线x=1对称⇔-=1⇔m=-2.12.答案充要解析若f(x)=+a是奇函数,则f(-x)=-f(x),即f(-x)+f(x)=0,∴+a++a=2a++=0,即2a+=0,∴2a-1=0,即a=,f(1)=+=1.若f(1)=1,即f(1)=+a=1,解得a=,代入得,f(-x)=-f(x),f(x)是奇函数,∴“f(1)=1”是“f(x)为奇函数”的充要条件.B组提升题组13.D 只有一个平面内的两条相交直线都与另一个平面平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.14.A p:|x|≤2⇔-2≤x≤2.因为p是q的充分不必要条件,所以有[-2,2]⫋(-∞,a],即a≥2.15.A 若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以q⇒/p,故选A.16.B 由ln a>ln b⇒a>b>0⇒>,故必要性成立;当a=1,b=0时,满足>,但ln b无意义,所以ln a>ln b不成立,故充分性不成立,故选B.17.C 对于①,由f(x)+f(-x)=2x3-3x+1-2x3+3x+1=2,得函数f(x)=2x3-3x+1的图象关于点(0,1)中心对称,∴①正确;对于②,“若x+y≠0,则x≠1或y≠-1”的逆否命题为“若x=1且y=-1,则x+y=0”,该逆否命题正确,∴②正确;对于③,实数x,y满足x2+y2=1,如图,表示过圆O上任一点(x,y)和点(-2,0)的连线的斜率,则的最大值为,∴③正确;对于④,△ABC为锐角三角形,则A+B>,则A>-B,又A<,-B>0,∴sin A>sin=cos B,∴④错误.∴正确命题的个数是3.18.答案①③④解析对于①,ac2>bc2,c2>0,所以a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.19.答案(-∞,-4]解析不等式x2-4ax+3a2<0的解集为A=(3a,a)(a<0),不等式x2+2x-8>0的解集为B={x|x<-4或x>2},因为q是p的必要不充分条件,所以A⫋B,故实数a的取值范围是(-∞,-4].第三节简单的逻辑联结词、全称量词与存在量词A组基础题组1.(2015湖北,3,5分)命题“∂x0∈(0,+∞),ln x0=x0-1”的否定是( )A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∂x0∈(0,+∞),ln x0≠x0-1D.∂x0∉(0,+∞),ln x0=x0-12.(2015浙江,4,5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n03.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q4.下列命题中的假命题为( )A.∀x∈R,e x>0B.∀x∈N,x2>0C.∂x0∈R,ln x0<1D.∂x0∈N*,sin=15.设非空集合A,B满足A⊆B,则以下表述一定正确的是( )A.∂x0∈A,x0∉BB.∀x∈A,x∈BC.∀x∈B,x∉AD.∀x∈B,x∈A6.(2016湖南四县一模)下列命题中,为真命题的是( )A.∂x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.“a>1,b>1”是“ab>1”的充分条件7.(2016云南昆明一中考前强化)已知命题p:∀x∈R,x+≥2;命题q:∂x∈,使sin x+cosx=,则下列命题中,为真命题的是( )A.(¬p)∧qB.p∧(¬q)C.(¬p)∧(¬q)D.p∧q8.已知命题p:∂x0∈R,使sin x0=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的结论是( )A.②③B.②④C.③④D.①②③9.命题p的否定是“对所有正数x,>x+1”,则命题p是.10.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题:①p∨q;②p∧q;③(¬p)∧(¬q);④(¬p)∨q.其中为假命题的序号为.11.若命题p:关于x的不等式ax+b>0的解集是,命题q:关于x的不等式(x-a)(x-b)<0的解集是{x|a<x<b},则在命题“p∧q”“p∨q”“¬p”“¬q”中,是真命题的是.12.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是.B组提升题组13.下列说法中正确的是( )A.命题“∀x∈R,e x>0”的否定是“∂x∈R,e x>0”B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题C.“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x2+2x)min≥(ax)max”D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题14.下列说法错误的是( )A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.若命题p:∂x0∈R,+x0+1<0,则¬p:∀x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy≥”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假15.若函数f(x),g(x)的定义域和值域都是R,则f(x)>g(x)(x∈R)成立的充要条件是( )A.∂x0∈R,f(x0)>g(x0)B.有无穷多个x∈R,使得f(x)>g(x)C.∀x∈R,f(x)>g(x)+1D.R中不存在x使得f(x)≤g(x)16.已知命题p:∂x0∈R,tan x0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},现有以下结论:①命题“p且q”是真命题;②命题“p且¬q”是假命题;③命题“¬p或q”是真命题;④命题“¬p或¬q”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④17.(2016湖南邵阳石齐中学月考)下列命题正确的个数是( )①“在三角形ABC中,若sin A>sin B,则A>B”的逆命题是真命题;②若p:x≠2或y≠3,q:x+y≠5,则p是q的必要不充分条件;③“∀x∈R,x3-x2+1≤0”的否定是“∀x∈R,x3-x2+1>0”;④“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.A.1B.2C.3D.418.已知命题p:“∀x∈[1,2],x2≥a”,命题q:“∂x0∈R,+2ax0+2-a=0成立”,若命题“p∧q”是真命题,则实数a的取值范围为( )A.(-∞,-2]B.(-2,1)C.(-∞,-2]∪{1}D.[1,+∞)19.下列结论:①若命题p:∂x0∈R,tan x0=2;命题q:∀x∈R,x2-x+>0.则命题“p∧(¬q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3;③“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”.其中正确结论的序号为.(把你认为正确结论的序号都填上)20.给定两个命题,命题p:对任意实数x,ax2>-ax-1恒成立,命题q:关于x的方程x2-x+a=0有实数根.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是.答案全解全析A组基础题组1.A 特称命题的否定为全称命题,所以∂x0∈(0,+∞),ln x0=x0-1的否定是∀x∈(0,+∞),ln x≠x-1,故选A.2.D “f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.3.A 由题意知,命题p为真命题,命题q为假命题,故¬q为真命题,所以p∧(¬q)为真命题.4.B 对于选项A,由函数y=e x的图象可知,∀x∈R,e x>0,故选项A为真命题;对于选项B,当x=0时,x2=0,故选项B为假命题;对于选项C,当x0=时,ln=-1<1,故选项C为真命题;对于选项D,当x0=1时,sin=1,故选项D为真命题.综上知选B.5.B 根据集合之间的关系以及全称、特称命题的含义可得B正确.6.D 因为y=e x>0,x∈R恒成立,所以A不正确;因为当x=-5时,2-5<(-5)2,所以B不正确;当a=b=0时,a+b=0,但是没有意义,所以C不正确;“a>1,b>1”是“ab>1”的充分条件,显然正确.故选D.7.A 在命题p中,当x<0时,x+<0,所以命题p为假命题,所以¬p为真命题;在命题q中,sinx+cos x =sin,当x=时,sin x+cos x=,所以q为真命题,故选A.8.A ∵>1,∴命题p是假命题.∵x2+x+1=+≥>0,∴命题q是真命题.由真值表可以判断“p∧q”为假,“p∧(¬q)”为假,“(¬p)∨q”为真,“(¬p)∨(¬q)”为真,所以只有②③正确,故选A.9.答案∂x 0∈(0,+∞),≤x0+1解析因为p是¬p的否定,所以只需将全称量词变为存在量词,再对结论否定即可.10.答案②③④解析显然命题p为真命题,则¬p为假命题.∵f(x)=x2-x=-,∴函数f(x)在区间上单调递增.∴命题q为假命题,则¬q为真命题.∴p∨q为真命题,p∧q为假命题,(¬p)∧(¬q)为假命题,(¬p)∨q为假命题.11.答案¬p、¬q解析依题意可知命题p和q都是假命题,所以“p∧q”为假、“p∨q”为假、“¬p”为真、“¬q”为真.12.答案[-8,0]解析当a=0时,不等式显然成立;当a≠0时,由题意知解得-8≤a<0.综上,a的取值范围是-8≤a≤0.B组提升题组13.B 全称命题“∀x∈M,p(x)”的否定是“∂x∈M,¬p(x)”,故命题“∀x∈R,e x>0”的否定是“∂x∈R,e x≤0”,A错;命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题为“已知x,y∈R,若x=2且y=1,则x+y=3”,是真命题,故原命题是真命题,B正确;“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x+2)min≥a”,由此可知C错;命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为“若函数f(x)=ax2+2x-1只有一个零点,则a=-1”,而函数f(x)=ax2+2x-1只有一个零点⇔a=0或a=-1,故D错.故选B.14.D 易知A、B正确;由xy≥⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.15.D A是f(x)>g(x)(x∈R)成立的必要不充分条件,所以A不符合;对于B,由于在区间(0,1)内也有无穷多个数,因此无穷性是说明不了任意性的,所以B也不符合;对于C,由∀x∈R, f(x)>g(x)+1可以推导出∀x∈R,f(x)>g(x),即充分性成立,但f(x)>g(x)成立时不一定有f(x)>g(x)+1,比如f(x)=x2+0.5,g(x)=x2,因此必要性不成立,所以C不符合;易知D符合,所以选D.16.D ∵命题p:∂x0∈R,tan x0=1为真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}为真命题,∴“p且q”是真命题,“p且¬q”是假命题,“¬p或q”是真命题,“¬p或¬q”是假命题,故①②③④都正确.17.C “在△ABC中,若sin A>sin B,则A>B”的逆命题为“在△ABC中,若A>B,则sin A>sin B”,在△ABC中,若A>B,则a>b,根据正弦定理可知sin A>sin B,∴逆命题是真命题,∴①正确;¬p:x=2且y=3,¬q:x+y=5,显然¬p⇒¬q,则由原命题与逆否命题的等价性知q⇒p,则p是q的必要条件;由x≠2或y≠3,推不出x+y≠5,比如x=1,y=4时,x+y=5,不满足x+y≠5,∴p不是q的充分条件,∴p是q的必要不充分条件,∴②正确;“∀x∈R,x3-x2+1≤0”的否定是“∂x∈R,x3-x2+1>0”,∴③不对;“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,∴④正确.18.C 若p是真命题,即a≤(x2)min,x∈[1,2],所以a≤1;若q是真命题,即+2ax0+2-a=0有解,则Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.命题“p∧q”是真命题,则p是真命题,q也是真命题,故有a≤-2或a=1.19.答案①③解析在①中,命题p是真命题,命题q也是真命题,故“p∧(¬q)”是假命题是正确的.在②中,由l1⊥l2,得a+3b=0,所以②不正确.在③中“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”,正确.20.答案(-∞,0)∪解析若p真,则a=0或故0≤a<4.若q真,则(-1)2-4a≥0,即a≤.∵“p∨q”为真命题,“p∧q”为假命题,∴p,q中有且仅有一个为真命题.若p真q假,则<a<4;若p假q真,则a<0.综上,实数a的取值范围为(-∞,0)∪.第一节函数及其表示A组基础题组1.函数g(x)=+log2(6-x)的定义域是( )A.{x|x>6}B.{x|-3<x<6}C.{x|x>-3}D.{x|-3≤x<6}2.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是( )A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+73.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )A.g(x)=2x2-3xB.g(x)=3x2-2xC.g(x)=3x2+2xD.g(x)=-3x2-2x4.已知f(x)=则f+f的值等于( )A.1B.2C.3D.-25.具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-;②y=x+;③y=f(x)=中满足“倒负”变换的函数是( )A.①②B.②③C.①③D.只有①6.(2015湖北,7,5分)设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x|B.|x|=xsgn|x|C.|x|=|x|sgn xD.|x|=xsgn x7.设函数f(x)=若f=4,则b= .8.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)·f(b),且f(1)=1,则++++…+= .9.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(a,c为常数).已知此工人组装第4件产品用时30分钟,组装第a件产品用时15分钟,那么c和a 的值分别是, .10.根据如图所示的函数y=f(x)(x∈[-3,2))的图象,写出函数的解析式.11.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式;(2)求函数y=f(x2-2)的值域.B组提升题组12.(2016陕西西安模拟)已知函数f(x)=若f(4)=2f(a),则实数a的值为( )A.-1或2B.2C.-1D.213.函数y=的定义域为R,则实数k的取值范围为( )A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤014.设映射f:x→-x2+2x-1是集合A={x|x>2}到集合B=R的映射.若对于实数p∈B,在A中不存在对应的元素,则实数p的取值范围是( )A.(1,+∞)B.[-1,+∞)C.(-∞,-1)D.(-∞,-1]15.已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( )A.f(x)=x2-12x+18B.f(x)=x2-4x+6C.f(x)=6x+9D.f(x)=2x+316.(2016湖南邵阳石齐中学月考)已知函数f(x)=-1的定义域是[a,b](a,b∈Z),值域是[0,1],那么满足条件的整数数对(a,b)共有( )A.2个B.3个C.5个D.无数个17.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数6.时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( )A.y=B.y=C.y=D.y=18.已知函数f(x)满足对任意的x∈R都有f+f=2成立,则f+f+…+f= .19.已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为.20.已知函数f(x)=2x-1,g(x)=求f(g(x))和g(f(x))的解析式.答案全解全析A组基础题组1.D 由解得-3≤x<6,故函数的定义域为[-3,6).2.B ∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.3.B 设g(x)=ax2+bx+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴解得∴g(x)=3x2-2x.4.C f=-cos=cos=,f=f+1=f+2=-cos+2=+2=,故f+f=3.5.C 易知①满足条件;②不满足条件;对于③,易知f=满足f=-f(x),故③满足“倒负”变换,故选C.6.D 由已知可知xsgn x=而|x|=所以|x|=xsgn x,故选D.7.答案解析f=3×-b=-b,若-b<1,即b>,则3×-b=-4b=4,解得b=,与b>矛盾,舍去;若-b≥1,即b≤,则=4,即-b=2,解得b=.8.答案2016解析已知f(a+b)=f(a)f(b),令b=1,∵f(1)=1,∴f(a+1)=f(a),即=1,由于a是任意实数,所以当a取1,2,3,…,2016时,==…==1.故++++…+=2016.9.答案60;16解析因为组装第a件产品用时15分钟,所以=15,①所以必有4<a,且==30.②联立①②解得c=60,a=16.10.解析由题图易知:当-3≤x<-1时,f(x)=-x-,当-1≤x<1时,f(x)=x-,当1≤x<2时,f(x)=1,综上,f(x)=11.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知整理得∴解得∴f(x)=x2+x.(2)由(1)知y=f(x2-2)=(x2-2)2+(x2-2)=(x4-3x2+2)=-,当x2=时,y取最小值-,故函数y=f(x2-2)的值域为.B组提升题组12.A f(4)=log24=2,因而2f(a)=2,即f(a)=1,当a>0时,f(a)=log2a=1,因而a=2,当a≤0时, f(a)=a2=1,因而a=-1,故选A.13.B 由题意,知kx2+kx+1≠0对任意实数x恒成立,当k=0时,1≠0恒成立,∴k=0符合题意.当k≠0时,Δ=k2-4k<0,解得0<k<4.综上,0≤k<4.14.B 令y=-x2+2x-1=-(x-1)2,当x>2时,y<-1,而对于实数p∈R,在A={x|x>2}中不存在对应的元素,所以实数p的取值范围是[-1,+∞),故选B.15.B 由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=x2-4x+6,故选B.16.C ∵函数f(x)=-1的值域是[0,1],∴1≤≤2,∴0≤|x|≤2,∴-2≤x≤2,∴[a,b]⊆[-2,2].又由于仅当x=0时,f(x)=1,当x=±2时,f(x)=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a,b)有(-2,0),(-2,1),(-2,2),(-1,2),(0,2),共5个.17.B 根据规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表,即当余数分别为7、8、9时可增选一名代表.因此用取整函数可表示为y=.故选B.18.答案7解析由f+f=2,得f+f=2,f+f=2,f+f=2,又f==×2=1,∴f+f+…+f=2×3+1=7.19.答案-解析①当a>0时,1-a<1,1+a>1,此时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-.不符合,舍去.②当a<0时,1-a>1,1+a<1,此时f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-.综上可知,a的值为-.20.解析当x≥0时,g(x)=x2,则f(g(x))=2x2-1,当x<0时,g(x)=-1,则f(g(x))=-3,∴f(g(x))=当2x-1≥0,即x≥时,g(f(x))=(2x-1)2,当2x-1<0,即x<时,g(f(x))=-1,∴g(f(x))=第二节函数的单调性与最值A组基础题组1.(2016北京,4,5分)下列函数中,在区间(-1,1)上为减函数的是( )A.y=B.y=cos xC.y=ln(x+1)D.y=2-x2.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( )A.f(x)=-xB.f(x)=x3C.f(x)=ln xD.f(x)=2x3.函数f(x)=x|x-2|的单调减区间是( )A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)4.(2015吉林长春质量检测(二))已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是( )A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)5.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( )A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)6.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1B.1C.6D.127.已知f(x)=的值域为R,那么a的取值范围是.8.已知函数f(x)=则f(x)的最小值是.9.已知f(x)=(x≠a),若a>0且f(x)在(1,+∞)内单调递减,则a的取值范围为.10.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.。

高考数学一轮复习 第2章 函数、导数及其应用 2.9 函数模型及其应用课后作业 理

高考数学一轮复习 第2章 函数、导数及其应用 2.9 函数模型及其应用课后作业 理

2.9 函数模型及其应用[基础送分 提速狂刷练]一、选择题1.(2018·福州模拟)在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列函数最接近的(其中a ,b 为待定系数)是( ) A .y =a +bx B .y =a +b xC .y =ax 2+b D .y =a +bx答案 B解析 由x =0时,y =1,排除D ;由f (-1.0)≠f (1.0),排除C ;由函数值增长速度不同,排除A.故选B.2.(2017·云南联考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升,故选A.3.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )A .2.4元B .3元C .2.8元D .3.2元 答案 B解析 设每本定价x 元(x ≥2),销售总收入是y 元,则y =⎣⎢⎡⎦⎥⎤5×104-x -20.2×4×103·x=104·x (9-2x )≥9×104.∴2x 2-9x +9≤0⇒32≤x ≤3,故选B.4.(2017·南昌期末)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 答案 A解析 设仓库与车站距离为x ,土地费用为y 1,运输费用为y 2,于是y 1=k 1x,y 2=k 2x ,∴⎩⎪⎨⎪⎧2=k 110,8=10k 2,解得k 1=20,k 2=45.设总费用为y ,则y =20x +4x5≥220x ·4x5=8. 当且仅当20x =4x5,即x =5时取等号.故选A.5.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下, 在该市用丙车比用乙车更省油 答案 D解析 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误;对于B 选项,由图可知甲车消耗汽油最少;对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误;对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.故选D.6.(2017·北京朝阳测试)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a en t .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8,则m 的值为( )A .7B .8C .9D .10 答案 D解析 根据题意知12=e 5n ,令18a =a e n t ,即18=e n t,因为12=e 5n ,故18=e 15n,比较知t =15,m =15-5=10.故选D.7.(2016·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元 答案 D解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+x -p +,x >280,依题有280×p %+x -p +x=(p +0.25)%,解得x =320.故选D.8.(2017·北京朝阳区模拟)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是( )A .投资3天以内(含3天),采用方案一B .投资4天,不采用方案三C .投资6天,采用方案一D .投资12天,采用方案二 答案 D解析 由图可知,投资3天以内(含3天),方案一的回报最高,A 正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B 正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C 正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D 错误.故选D.9.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11 答案 C解析 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.10.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3000元B .3300元C .3500元D .4000元 答案 B解析 由题意,设利润为y 元,租金定为3000+50x 元(0≤x ≤70,x ∈N ).则y =(3000+50x )(70-x )-100(70-x )=(2900+50x )·(70-x )=50(58+x )(70-x )≤50⎝⎛⎭⎪⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润,故选B.二、填空题11.(2017·金版创新)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2.∴当t =12a ,即A =14a 2时,D 取得最大值.12.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y =a e-bt(cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e -8b=12a , ∴e -8b=12,容器中的沙子只有开始时的八分之一时,即y =a e -bt=18a . e-bt=18=(e -8b )3=e -24b,则t =24,所以再经过16 min. 13.(2014·北京高考改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________.答案 3.75分钟解析 由已知得⎩⎪⎨⎪⎧9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎪⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝ ⎛⎭⎪⎫116t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量不大于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.答案 (1)y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,⎝ ⎛⎭⎪⎫116t -0.1,t >0.1 (2)0.6解析 (1)设y =kt ,由图象知y =kt 过点(0.1,1), 则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1).由y =⎝ ⎛⎭⎪⎫116t -a 过点(0.1,1),得1=⎝ ⎛⎭⎪⎫1160.1-a ,解得a =0.1,∴y =⎝ ⎛⎭⎪⎫116t -0.1(t >0.1).(2)由⎝ ⎛⎭⎪⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室. 三、解答题15.(2017·济宁期末)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x 元/件(1≤x ≤2),则新增的年销量P =4(2-x )2(万件).(1)写出今年商户甲的收益f (x )(单位:万元)与x 的函数关系式;(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.解 (1)由题意可得:f (x )=[1+4(2-x )2](x -1),1≤x ≤2.(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f ′(x )=8(x -2)(x -1)+1+4(2-x )2=12x 2-40x +33=(2x -3)(6x -11),可得当x ∈⎣⎢⎡⎭⎪⎫1,32时,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫32,116时,函数f (x )单调递减; 当x ∈⎝⎛⎦⎥⎤116,2时,函数f (x )单调递增.∴x =32时,函数f (x )取得极大值,f ⎝ ⎛⎭⎪⎫32=1;又f (2)=1.∴当x =32或x =2时,函数f (x )取得最大值1(万元).因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益. 16.(2017·北京模拟)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f (x )=a 1x 2-4x +6,g (x )=a 2·3x+b 2(a 1,a 2,b 2∈R ).(1)求函数f (x )与g (x )的解析式; (2)求甲、乙两个工厂今年5月份的利润;(3)在同一直角坐标系下画出函数f (x )与g (x )的草图,并根据草图比较今年1~10月份甲、乙两个工厂的利润的大小情况.解 (1)依题意:由f (1)=6,解得a 1=4, 所以f (x )=4x 2-4x +6. 由⎩⎪⎨⎪⎧g =6,g=8,得⎩⎪⎨⎪⎧3a 2+b 2=6,9a 2+b 2=8,解得a 2=13,b 2=5,所以g (x )=13×3x +5=3x -1+5.(2)由(1)知甲厂在今年5月份的利润为f (5)=86万元,乙厂在今年5月份的利润为g (5)=86万元,故有f (5)=g (5),即甲、乙两个工厂今年5月份的利润相等.(3)作函数图象如下:从图中可以看出今年1~10月份甲、乙两个工厂的利润: 当x =1或x =5时,有f (x )=g (x ); 当x =2,3,4时,有f (x )>g (x ); 当x =6,7,8,9,10时,有f (x )<g (x ).。

2018课标版理数一轮(2)第二章-函数(含答案)5 第五节 指数与指数函数夯基提能作业本

2018课标版理数一轮(2)第二章-函数(含答案)5 第五节 指数与指数函数夯基提能作业本

第五节 指数与指数函数A 组 基础题组1.(2016贵州适应性考试)函数y=a x+2-1(a>0且a ≠1)的图象恒过的点是( ) A.(0,0)B.(0,-1)C.(-2,0)D.(-2,-1)2.已知a=20.2,b=0.40.2,c=0.40.6,则( ) A.a>b>c B.a>c>b C.c>a>bD.b>c>a3.(2017沈阳回民中学月考)函数y=a x-1a (a>0,且a ≠1)的图象可能是( )4.(2016莱芜模拟)函数y=|2x-1|在区间(k-1,k+1)上不单调,则k 的取值范围是( ) A.(-1,+∞) B.(-∞,1) C.(-1,1)D.(0,2)5.已知函数f(x)= 1-2-x ,x ≥0,2x -1,x <0,则函数f(x)是( )A.偶函数,在[0,+∞)上单调递增B.偶函数,在[0,+∞)上单调递减C.奇函数,且单调递增D.奇函数,且单调递减6.化简a · -1a+( a 5)5+ a 66= .7.若函数y=(a 2-1)x在R 上为增函数,则实数a 的取值范围是 . 8.已知函数f(x)=a -x(a>0,且a ≠1),且f(-2)>f(-3),则a 的取值范围是 . 9.化简下列各式: (1) 279 0.5+0.1-2+ 21027 -2-3π0+3748;(2) a 7· a -33÷ a -3· a -13.10.设函数f(x)=a x-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(1)求k的值;(2)若f(1)<0,试判断函数的单调性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围.B组提升题组11.若函数f(x)=a x,x>1,(2-3a)x+1,x≤1是R上的减函数,则实数a的取值范围是()A.23,1 B.34,1 C.23,34D.23,+∞12.如图,平行四边形OABC的面积为8,对角线AC⊥CO,AC与BO交于点E,某指数函数y=a x(a>0,且a≠1)的图象经过点E,B,则a=()A. B.3 C.2 D.313.(2017北京海淀月考)定义区间[x1,x2]的长度为x2-x1,已知函数f(x)=3|x|的定义域为[a,b],值域为[1,9],则区间[a,b]的长度的最大值为,最小值为.14.(2016济南模拟)已知函数f(x)=x+1(0≤x<1),2x-12(x≥1),设a>b≥0,若f(a)=f(b),则b·f(a)的取值范围是.15.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式1a x+1bx-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.答案全解全析 A 组 基础题组1.C 解法一:因为函数y=a x(a>0且a ≠1)的图象恒过点(0,1),将该图象向左平移2个单位,再向下平移1个单位得到y=a x+2-1(a>0且a ≠1)的图象,所以y=a x+2-1(a>0且a ≠1)的图象恒过点(-2,0),选项C 正确. 解法二:令x+2=0,得x=-2,此时y=a 0-1=0,所以y=a x+2-1(a>0且a ≠1)的图象恒过点(-2,0),选项C 正确. 2.A 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b>c;因为a=20.2>1,b=0.40.2<1,所以a>b.综上,a>b>c.3.D 当x=-1时,y=1a -1a=0,所以函数y=a x-1a的图象必过定点(-1,0),结合选项可知选D.4.C 由于函数y=|2x-1|在(-∞,0)上递减,在(0,+∞)上递增,而函数在区间(k-1,k+1)上不单调,所以有0∈(k-1,k+1),则k-1<0<k+1,解得-1<k<1.5.C 易知f(0)=0,当x>0时,f(x)=1-2-x,-f(x)=2-x-1,而-x<0,则f(-x)=2-x-1=-f(x);当x<0时,f(x)=2x-1,-f(x)=1-2x,而-x>0,则f(-x)=1-2-(-x)=1-2x=-f(x).综上,函数f(x)是奇函数,又易知其单调递增,故选C. 6.答案 - -a解析 由题意可知a<0,故原式=- -(-a )2a+a+(-a)=- -a .7.答案 a> 2或a<- 2解析 由y=(a 2-1)x在(-∞,+∞)上为增函数,得a 2-1>1,解得a> 2或a<- 2. 8.答案 (0,1)解析 因为f(x)=a -x= 1a x,且f(-2)>f(-3),所以函数f(x)在定义域上单调递增,所以1a >1,解得0<a<1. 9.解析 (1)原式= 259 12+10.12+ 6427 -23-3+3748=53+100+916-3+3748=100. (2)原式= a 7·a -33÷ a -3·a -13= a 73÷ a -13=a 76÷a -16=a 86=a 43.10.解析 (1)∵f(x)是定义域为R 的奇函数,∴f(0)=a 0-(k-1)a 0=1-(k-1)=0,∴k=2. (2)由(1)知f(x)=a x-a -x(a>0且a ≠1).∵f(1)<0,∴a -1a <0,又a>0且a ≠1,∴0<a<1,∴y=a x 在R 上单调递减,y=a -x 在R 上单调递增,故f(x)=a x -a -x在R 上单调递减.不等式f(x 2+tx)+f(4-x)<0可化为f(x 2+tx)<f(x-4),∴x 2+tx>x-4,∴x 2+(t-1)x+4>0恒成立,∴Δ=(t-1)2-16<0,解得-3<t<5.∴所求实数t的取值范围是-3<t<5.B组提升题组11.C依题意知,a的取值应满足0<a<1,2-3a<0,(2-3a)×1+1≥a1,解得23<a≤34.12.A设点E(t,a t),则点B的坐标为(2t,2a t).∵点B在函数y=a x的图象上,∴2a t=a2t,∴a t=2.∴平行四边形OABC的面积=OC·AC=a t·2t=4t.又平行四边形OABC的面积为8,∴4t=8,∴t=2,∴a=2(负值舍去).故选A.13.答案4;2解析由3|x|=1得x=0,由3|x|=9得x=±2,故满足题意的定义域为[-2,m](0≤m≤2)或[n,2](-2≤n≤0),故区间[a,b]的最大长度为4,最小长度为2.14.答案34,2解析函数的图象如图所示.因为a>b≥0,f(a)=f(b),所以12≤b<1且32≤f(a)<2.所以34≤b·f(a)<2.15.解析(1)因为f(x)的图象过点A(1,6),B(3,24),所以b·a=6,b·a3=24,解得a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,12x+13x-m≥0恒成立,即m≤12x+13x在x∈(-∞,1]时恒成立.因为y=12x与y=13x均为减函数,所以y=12x+13x也是减函数,所以当x=1时,y=12x+13x在(-∞,1]上取得最小值,且最小值为56.所以m≤56,即m的取值范围是-∞,56.。

高考数学一轮复习 第二章 函数 第九节 函数模型及其应用夯基提能作业本 文

高考数学一轮复习 第二章 函数 第九节 函数模型及其应用夯基提能作业本 文

第九节函数模型及其应用A组基础题组1.下表是在某个投资方案中,整理到的投入资金x(万元)与收益y(万元)的统计表.你认为投入资金x与收益y选择下列哪个模拟函数比较恰当( )A.y=ax+b(a≠0)B.y=a·b x(a≠0,b>0且b≠1)C.y=ax2+bx+c(a≠0)D.y=blog a x+c(b≠0,b>0且a≠1)2.某工厂6年来生产某种产品的情况:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系的图象正确的是( )3.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m3的,按m元/m3收费;用水超过10 m3的,超过部分加倍收费.某职工某月缴水费16m元,则该职工这个月实际用水为( )A.13 m3B.14 m3C.18 m3D.26 m34.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为万件,要使附加税不少于128万元,则R的取值范围是( )A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]5.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A.16小时B.20小时C.24小时D.28小时6.某航空公司规定,乘飞机所携带行李的质量x(kg)与其运费y(元)的关系由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为kg.7.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为升.8.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了km.9.某医药研究所研发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式;(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病的有效时间.10.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.B组提升题组1.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为元.2.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=x2-200x+80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为100元,则该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该单位不亏损?3.(2017山西孝义模拟)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超出1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数y=f(x)的解析式及其定义域;(2)当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?答案精解精析A组基础题组1.B 画出大致散点图如图所示,根据散点图可知选B.2.A 前3年年产量的增长速度越来越快,说明呈高速增长,只有A、C图象符合要求,而后3年年产量保持不变,故选A.3.A 设该职工用水x m3时,缴纳的水费为y元,由题意得y=则10m+(x-10)·2m=16m,解得x=13.4.A 根据题意,要使附加税不少于128万元,需×160×R%≥128,整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8].5.C 由已知得192=e b,①48=e22k+b=e22k·e b,②将①代入②得e22k=,则e11k=,当x=33时,y=e33k+b=e33k·e b=×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C.6.答案19解析由图象可求得一次函数的解析式为y=30x-570,令30x-570=0,解得x=19.7.答案8解析因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).8.答案9解析设出租车行驶x km时,付费y元,则y=由y=22.6,解得x=9.9.解析(1)由题图,设y=当t=1时,由y=4得k=4,由=4得a=3.所以y=(2)由y≥0.25得或解得≤t≤5.因此服药一次后治疗疾病有效的时间是5-=(小时).10.解析(1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,k>0,故x==≤=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka-(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正根⇔判别式Δ=(-20a)2-4a2(a2+64)≥0⇔a≤6.所以当a不超过6千米时,可击中目标.B组提升题组1.答案 4.24解析∵m=6.5,∴[m]=6,则所需通话费为1.06×(0.5×6+1)=4.24(元).2.解析设该单位每月获利为S(单位:元),则S=100x-y=100x-=-x2+300x-80 000=-(x-300)2-35 000,因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能使该单位不亏损.3.解析(1)当x≤6时,y=50x-115.令50x-115>0,解得x>2.3.∵x∈N*,∴3≤x≤6,x∈N*.当x>6时,y=[50-3(x-6)]x-115.令[50-3(x-6)]x-115>0,有3x2-68x+115<0.又x∈N*,∴6<x≤20(x∈N*),故y=(2)对于y=50x-115(3≤x≤6,x∈N*),显然当x=6时,y max=185(元).对于y=-3x2+68x-115=-3+(6<x≤20,x∈N*),当x=11时,y max=270(元).又∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.。

2018届高三数学(理)一轮复习夯基提能作业本:第三章 导数及其应用 第二节 导数与函数的单调性

2018届高三数学(理)一轮复习夯基提能作业本:第三章 导数及其应用 第二节 导数与函数的单调性

第二节导数与函数的单调性A组基础题组1.函数f(x)=e x-x的单调递增区间是()A.(-∞,1]B.1,+∞)C.(-∞,0]D.(0,+∞)2.(2015湖南,5,5分)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数3.若幂函数f(x)的图象过点,则函数g(x)=e x f(x)的单调递减区间为()A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)4.(2017四川乐山一中期末)f(x)=x2-alnx在(1,+∞)上单调递增,则实数a的取值范围为()A.a<1B.a≤1C.a<2D.a≤25.对于实数集R上的可导函数f(x),若(x2-3x+2)f'(x)<0恒成立,则在区间1,2]上必有()A.f(1)≤f(x)≤f(2)B.f(x)≤f(1)C.f(x)≥f(2)D.f(x)≤f(1)或f(x)≥f(2)6.函数f(x)=x3-15x2-33x+6的单调减区间为.7.已知函数f(x)=ax+lnx,则当a<0时,f(x)的单调递增区间是,单调递减区间是.8.若f(x)=xsinx+cosx,则f(-3),f,f(2)的大小关系是.9.已知函数f(x)=+-lnx-,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间.10.已知函数f(x)=x2+alnx.(1)当a=-2时,求函数f(x)的单调递减区间;(2)若函数g(x)=f(x)+在1,+∞)上单调,求实数a的取值范围.B组提升题组11.(2016聊城模拟)已知函数y=xf'(x)的图象如图所示(其中f'(x)是函数f(x)的导函数),则下面四个图象中,y=f(x)的图象大致是()12.设函数f(x)=e x+x-2,g(x)=lnx+x2-3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<013.若函数y=-x3+ax有三个单调区间,则a的取值范围是.14.(2016秦皇岛模拟)已知函数f(x)=lnx,g(x)=ax2+2x,a≠0.若函数h(x)=f(x)-g(x)在1,4]上单调递减,求a的取值范围.15.已知函数f(x)=alnx-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为,且对于任意的t∈1,2],函数g(x)=x3+x2在区间(t,3)上总不是单调函数,求m的取值范围.答案全解全析A组基础题组1.D∵f(x)=e x-x,∴f'(x)=e x-1,令f'(x)>0,得e x-1>0,即x>0,故f(x)的单调递增区间是(0,+∞).2.A解法一:函数f(x)的定义域为(-1,1),任取x∈(-1,1),有f(-x)=ln(1-x)-ln(1+x)=-f(x),则f(x)是奇函数.又∵当x∈(0,1)时,f'(x)=+=>0,∴f(x)在(0,1)上是增函数.综上,选A.解法二:同解法一知f(x)是奇函数.当x∈(0,1)时,f(x)=ln=ln=ln.∵y=(x∈(0,1))是增函数,y=lnx也是增函数,∴f(x)在(0,1)上是增函数.综上,选A.解法三:同解法一知f(x)是奇函数.任取x1,x2∈(0,1),且x1<x2.f(x1)-f(x2)=ln(1+x1)-ln(1-x1)-ln(1+x2)+ln(1-x2)=ln=ln.∵(1-x1x2+x1-x2)-(1-x1x2+x2-x1)=2(x1-x2)<0,且(1+x1)·(1-x2)>0,(1+x2)(1-x1)>0,∴0<<1,∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)在(0,1)上是增函数.综上,选A.3.D设幂函数f(x)=x a,因为图象过点,所以=,a=2,所以f(x)=x2,故g(x)=e x x2,则g'(x)=e x x2+2e x x=e x(x2+2x),令g'(x)<0,得-2<x<0,故函数g(x)的单调递减区间为(-2,0).4.D由f(x)=x2-alnx,得f'(x)=2x-,∵f(x)在(1,+∞)上单调递增,∴2x-≥0,即a≤2x2在(1,+∞)上恒成立,∵x∈(1,+∞)时,2x2>2,∴a≤2.故选D.5.A由(x2-3x+2)f'(x)<0知,当x2-3x+2<0,即1<x<2时,f'(x)>0,所以f(x)是区间1,2]上的单调递增函数,所以在区间1,2]上必有f(1)≤f(x)≤f(2).6.答案(-1,11)解析由f(x)=x3-15x2-33x+6得f'(x)=3x2-30x-33,令f'(x)<0,即3(x-11)(x+1)<0,解得-1<x<11,所以函数f(x)的单调减区间为(-1,11).7.答案;解析由已知得f(x)的定义域为(0,+∞).当a<0时,因为f'(x)=a+=,所以当x≥-时,f'(x)≤0,当0<x<-时,f'(x)>0,所以f(x)的单调递增区间为,单调递减区间为.8.答案f(-3)<f(2)<f解析函数f(x)为偶函数,因此f(-3)=f(3).又f'(x)=sinx+xcosx-sinx=xcosx,当x∈时,f'(x)<0.所以f(x)在区间上是减函数,所以f>f(2)>f(3)=f(-3).9.解析(1)对f(x)求导得f'(x)=--,由f(x)在点(1,f(1))处的切线垂直于直线y=x,得f'(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-lnx-,则f'(x)=,令f'(x)=0,解得x=-1或x=5.因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f'(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时,f'(x)>0,故f(x)在(5,+∞)内为增函数.所以f(x)的单调减区间为(0,5),单调增区间为(5,+∞).10.解析(1)由题意知,函数的定义域为(0,+∞),当a=-2时,f'(x)=2x-=,由f'(x)<0得0<x<1,故f(x)的单调递减区间是(0,1).(2)由题意得g'(x)=2x+-,因函数g(x)在1,+∞)上单调,故:①若g(x)为1,+∞)上的单调增函数,则g'(x)≥0在1,+∞)上恒成立,即a≥-2x2在1,+∞)上恒成立,设φ(x)=-2x2.∵φ(x)在1,+∞)上单调递减,∴在1,+∞)上,φ(x)max=φ(1)=0,∴a≥0.②若g(x)为1,+∞)上的单调减函数,则g'(x)≤0在1,+∞)上恒成立,易知其不可能成立.∴实数a的取值范围为0,+∞).B组提升题组11.C由条件可知当0<x<1时,xf'(x)<0,所以f'(x)<0,函数f(x)递减.当x>1时,xf'(x)>0,所以f'(x)>0,函数f(x)递增.所以当x=1时,函数f(x)取得极小值.当x<-1时,xf'(x)<0,所以f'(x)>0,函数f(x)递增,当-1<x<0,xf'(x)>0,所以f'(x)<0,函数f(x)递减,所以当x=-1时,函数取得极大值.符合条件的只有C项.12.A∵f(x)=e x+x-2,∴f'(x)=e x+1>0,则f(x)在R上为增函数,又f(0)=e0-2<0,f(1)=e-1>0,且f(a)=0,∴0<a<1.∵g(x)=lnx+x2-3,∴g'(x)=+2x.当x∈(0,+∞)时,g'(x)>0,∴g(x)在(0,+∞)上为增函数,又g(1)=ln1-2=-2<0,g(2)=ln2+1>0,且g(b)=0,∴1<b<2,∴a<b,∴故选A.13.答案(0,+∞)解析因为y'=-4x2+a,且y=-x3+ax有三个单调区间,所以方程-4x2+a=0有两个不等的实根,所以Δ=02-4×(-4)×a>0,所以a>0.14.解析h(x)=lnx-ax2-2x,x∈(0,+∞),所以h'(x)=-ax-2.因为h(x)在1,4]上单调递减,所以当x∈1,4]时,h'(x)=-ax-2≤0恒成立,即a≥-恒成立,令G(x)=-,则a≥G(x)max,G(x)=-1.因为x∈1,4],所以∈,所以G(x)max=-(此时x=4),所以a≥-.15.解析(1)f'(x)=(x>0),当a>0时,f(x)的单调增区间为(0,1],单调减区间为1,+∞);当a<0时,f(x)的单调增区间为1,+∞),单调减区间为(0,1];当a=0时,f(x)不是单调函数.(2)由(1)及题意得f'(2)=-=1,解得a=-2,∴f(x)=-2lnx+2x-3,f'(x)=,∴g(x)=x3+x2-2x,∴g'(x)=3x2+(m+4)x-2.∵对任意的t∈1,2],g(x)在区间(t,3)上总不是单调函数,且g'(0)=-2,∴对于任意的t∈1,2],g'(t)<0恒成立,且g'(3)>0,∴∴-<m<-9.。

2018版高考数学(理)一轮复习文档:第二章函数与基本初等函数I2.9含解析

2018版高考数学(理)一轮复习文档:第二章函数与基本初等函数I2.9含解析

1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a、b为常数,a≠0)反比例函数模型f(x)=错误!+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=ax n+b(a,b为常数,a≠0)2。

三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n〉0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x〈x n〈a x 【知识拓展】1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +错误!(a 〉0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-错误!]和[错误!,+∞)上单调递增,在[-错误!,0)和(0,错误!]上单调递减.(2)当x >0时,x =错误!时取最小值2错误!,当x 〈0时,x =-错误!时取最大值-2错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(2)幂函数增长比直线增长更快.( × )(3)不存在x 0,使000log .x n a a x x <<( × )(4)在(0,+∞)上,随着x 的增大,y =a x (a >1)的增长速度会超过并远远大于y =x a (a >0)的增长速度.( √ )(5)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b 〉0,b ≠1)增长速度越来越快的形象比喻.( × )1.(教材改编)已知某种动物繁殖量y (只)与时间x (年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到()A.100只B.200只C.300只D.400只答案B解析由题意知100=a log3(2+1),∴a=100。

2018课标版理数一轮(2)第二章-函数(含答案)1第一节函数及其表示夯基提能作业本

2018课标版理数一轮(2)第二章-函数(含答案)1第一节函数及其表示夯基提能作业本

2018课标版理数一轮(2)第二章-函数(含答案)1第一节函数及其表示夯基提能作业本第一节函数及其表示A组基础题组1.(2017四川巴中中学月考)下列哪个函数与y=x是同一个函数()A.y=x 2x B.y=2log2x C.y= x2D.y=(x3)32.(2016安徽六校联考)已知函数f(x)=x|x|,若f(x0)=4,则x0的值为()A.-2B.2C.-2或2D.23.函数f(x)=ln1+1x+1-x2的定义域为()A.(-1,1]B.(0,1]C.[0,1]D.[1,+∞)4.已知函数f(x)=log3x,x>0,a x+b,x≤0,且f(0)=2,f(-1)=3,则f(f(-3))=()A.-2B.2C.3D.-35.已知函数f(x)对任意x∈R都有f(x+3)-f(x)=1,且f(-1)=3,则f(2015)=()B.675C.4D.56.函数f(x)=4-xln x的定义域为.7.(2017安徽芜湖一中期末)已知a,b为两个不相等的实数,集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x 表示把M中的元素x映射到集合N中仍为x,则a+b等于.8.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为.9.设函数f(x)=ax+b,x<0,2x,x≥0,且f(-2)=3,f(-1)=f(1).(1)求f(x)的解析式;(2)在如图所示的直角坐标系中画出f(x)的图象.10.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1. (1)求函数f(x)的解析式; (2)求函数y=f(x 2-2)的值域.B 组提升题组11.(2017沈阳五中期中)已知实数a ≠0,函数f(x)= 2x +a , x <1,-x -2a ,x ≥1.若f(1-a)=f(1+a),则a 的值为( )A.-32 B .-32或-34 D.32或-3412.如果函数f(x)满足:对任意实数a,b 都有f(a+b)=f(a)·f(b),且f(1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2017)f (2016)= . 13.已知函数y=f(x 2-1)的定义域为[- 3, 3],则函数y=f(x)的定义域为 .14.(2015浙江,10,6分)已知函数f(x)=x+2x-3,x≥1,lg(x2+1),x<1,则f(f(-3))=,f(x)的最小值是.15.行驶中的汽车在刹车时由于惯性作用要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(米)与汽车的车速x(千米/时)满足以下关系:y=x2200+mx+n(m,n是常数).如图是根据多次试验数据绘制的刹车距离y(米)与汽车的车速x(千米/时)的关系图.(1)求出y关于x的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.答案全解全析A组基础题组1.D y=x的定义域为R.而y=x 2x的定义域为{x|x∈R且x≠0},y=2log2x的定义域为{x|x∈R,且x>0},排除A、B;y=2的定义域为R,但对应关系与y=x的对应关系不同,排除C;y=(x3)3=x的定义域、对应关系与y=x的均相同,故选D.2.B当x≥0时,f(x)=x2,此时f(x0)=4即x02=4,解得x0=2(舍负).当x<0时,f(x)=-x2,此时f(x0)=4即-x02=4,无解.所以x0=2,故选B.3.B由条件知1+1x>0,x≠0,1-x2≥0,即x<-1或x>0,x≠0,-1≤x≤1.则x∈(0,1].∴原函数的定义域为(0,1].4.B f(0)=a0+b=1+b=2,解得b=1.f(-1)=a-1+b=a-1+1=3,解得a=12.故f(-3)=12-3+1=9,f(f(-3))=f(9)=log39=2.5.B因为f(x+3)=f(x)+1,所以f(x+3×2)=f(x+3)+1=f(x)+2,f(x+3×3)=f(x+3×2)+1=f(x)+3,则当n∈N*时,有f(x+3n)=f(x)+n,故f(2015)=f(2+3×671)=f(2)+671=f(-1)+672=675.6.答案(0,1)∪(1,4]解析要使函数有意义,应满足:x>0,x≠1,4-x≥0,解得0<x≤4且x≠1,所以函数的定义域为(0,1)∪(1,4].< p="">7.答案 4解析由已知可得M=N,故a2-4a=-2,b2-4b+1=-1a2-4a+2=0,b2-4b+2=0,所以a,b是方程x2-4x+2=0的两根,故a+b=4.8.答案f(x)=x+1,-1≤x<0 -12x,0≤x≤2解析由题图可知,当-1≤x<0时,f(x)=x+1;当0≤x≤2时,f(x)=-1 2x,所以f(x)=x+1,-1≤x<0,-12x,0≤x≤2.9.解析(1)由f(-2)=3,f(-1)=f(1)得-2a+b=3,-a+b=2,解得a=-1,b=1,所以f(x)=-x+1,x<0,2x,x≥0.(2)f(x)的图象如图.10.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知c=0,a(x+1)2+b(x+1)+c=a x2+bx+c+x+1,整理得c=0,ax2+(2a+b)x+a+b+c=a x2+(b+1)x+c+1, ∴2a+b=b+1,a≠0,a+b+c=c+1,c=0,解得a=12,b=12,c=0.∴f(x)=12x2+12x.(2)由(1)知y=f(x2-2)=12(x2-2)2+12(x2-2)=12(x4-3x2+2)=12x2-322-18,当x2=32时,y取最小值-18,故函数y=f(x2-2)的值域为-18,+∞.B组提升题组11.B分类讨论:(1)当a>0时,1-a<1,1+a>1.这时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-32,不符合题意,舍去.(2)当a<0时,1-a>1,1+a<1,这时f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-34,符合题意.综合(1)(2)知a的值为-34.12.答案 2016解析由f(a+b)=f(a)f(b),令b=1,结合f(1)=1, 得f(a+1)=f(a),即f (a +1)f (a )=1,由于a 是任意实数,所以当a 取1,2,3,…,2016时,f (2)f (1)=f (3)f (2)=…=f (2017)f (2016)=1.故f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2017)f (2016)=2016.13.答案 [-1,2]解析∵y=f(x 2-1)的定义域为[- 3, 3],∴x∈[- 3, 3],x 2-1∈[-1,2], ∴y=f(x)的定义域为[-1,2]. 14.答案 0;2 2-3解析∵-3<1,∴f(-3)=lg[(-3)2+1]=lg10=1,∴f(f(-3))=f(1)=1+21-3=0.当x ≥1时,f(x)=x+2x -3≥2 当且仅当x= 时取“=”);当x<1时,x 2+1≥1,∴f(x)=lg(x 2 +1)≥0.又∵2 2-3<0,∴f(x)min =2 2-3. 15.解析(1)由题意及函数图象,得 402200+40m +n =8.4,602200+60m +n =18.6,解得m=1100,n=0,所以y=x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.</x≤4且x≠1,所以函数的定义域为(0,1)∪(1,4].<>。

高考数学一轮复习学案:2.9 函数模型及其应用(含答案)

高考数学一轮复习学案:2.9 函数模型及其应用(含答案)

高考数学一轮复习学案:2.9 函数模型及其应用(含答案)2.9函数模型及其应用函数模型及其应用最新考纲考情考向分析1.了解指数函数.对数函数.幂函数的增长特征,结合具体实例体会直线上升.指数增长.对数增长等不同函数类型增长的含义.2.了解函数模型如指数函数.对数函数.幂函数.分段函数等在社会生活中普遍使用的函数模型的广泛应用.考查根据实际问题建立函数模型解决问题的能力,常与函数图象.单调性.最值及方程.不等式交汇命题,题型以解答题为主,中高档难度.1几类函数模型函数模型函数解析式一次函数模型fxaxba,b为常数,a0反比例函数模型fxkxbk,b为常数且k0二次函数模型fxax2bxca,b,c为常数,a0指数函数模型fxbaxca,b,c为常数,b0,a0且a1对数函数模型fxblogaxca,b,c为常数,b0,a0且a1幂函数模型fxaxnba,b为常数,a02.三种函数模型的性质函数性质yaxa1ylogaxa1yxnn0在0,上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logax0时,xa时取最小值2a,当x0的增长速度5“指数爆炸”是指数型函数yabxca0,b0,b1增长速度越来越快的形象比喻题组二教材改编2P102例3某工厂一年中各月份的收入.支出情况的统计图如图所示,则下列说法中错误的是A收入最高值与收入最低值的比是31B结余最高的月份是7月C1至2月份的收入的变化率与4至5月份的收入的变化率相同D前6个月的平均收入为40万元答案D解析由题图可知,收入最高值为90万元,收入最低值为30万元,其比是31,故A正确;由题图可知,7月份的结余最高,为802060万元,故B正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由题图可知,前6个月的平均收入为1640603030506045万元,故D错误3P104例5生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为Cx12x22x20万元一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件答案18解析利润Lx20xCx12x182142,当x18时,Lx有最大值4P107A组T4用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________答案3解析设隔墙的长度为x02.3,x为整数,3x6,xZ.当x6时,y503x6x1153x268x115.令3x268x1150,有3x268x115400,则总利润最大时,该门面经营的天数是________答案300解析由题意,总利润y400x12x2100x20000,0x400,60000100x,x400,当0x400时,y12x300225000,所以当x300时,ymax25000;当x400时,y60000100x20000,综上,当门面经营的天数为300时,总利润最大为25000元函数应用问题典例12分已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为Rx万美元,且Rx4006x,040.1写出年利润W万美元关于年产量x万部的函数解析式;2当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大并求出最大利润思维点拨根据题意,要利用分段函数求最大利润列出解析式后,比较二次函数和“对勾”函数的最值的结论规范解答解1当040时,WxRx16x4040000x16x7360.所以W6x2384x40,040.4分2当040时,W40000x16x7360,由于40000x16x240000x16x1600,当且仅当40000x16x,即x5040,时,取等号,所以此时W的最大值为5760.10分综合知,当x32时,W取得最大值6104万美元12分解函数应用题的一般步骤第一步审题弄清题意,分清条件和结论,理顺数量关系;第二步建模将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步解模求解数学模型,得到数学结论;第四步还原将用数学方法得到的结论还原为实际问题的意义;第五步反思对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性。

2018版高考数学一轮复习课件:第2章 第9节 函数模型及其应用

2018版高考数学一轮复习课件:第2章 第9节 函数模型及其应用
[答案] (1)× (2)× (3)× (4)√
上一页
返回首页
下一页
第六页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
2.已知某种动物繁殖量 y(只)与时间 x(年)的关系为 y=alog3(x+1),设这种动 物第 2 年有 100 只,到第 8 年它们发展到( )
ቤተ መጻሕፍቲ ባይዱ
A.100 只
B.200 只
高三一轮总复习
B [由表格知当 x=3 时,y=1.59,而 A 中 y=23=8,不合要求,B 中 y=log23 ∈(1,2),C 中 y=12(32-1)=4,不合要求,D 中 y=2.61cos 3<0,不合要求,故选 B.]
上一页
返回首页
下一页
第九页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
在(0,+∞) 单调递增 上的增减性
单调递增
单调递增
增长速度 越来越快
越来越慢
相对平稳
图象的变化
随 x 的增大逐
渐表现为 与 y轴 平行
随 x 的增大逐 渐表现为 与 x轴 平行
随 n 值变化而 各有不同
值的比较 存在一个 x0,当 x>x0 时,有 logax<xn<ax
上一页
返回首页
下一页
第三页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
(1)A (2)D [(1)前 3 年年产量的增长速度越来越快,说明呈高速增长,只有 A、C 图象符合要求,而后 3 年年产量保持不变,产品的总产量应呈直线上升,故 选 A.
(2)依题意知当 0≤x≤4 时,f(x)=2x;当 4<x≤8 时,f(x)=8;当 8<x≤12 时, f(x)=24-2x,观察四个选项知,选 D.]

2018版高考数学一轮总复习第2章函数导数及其应用2.9函数模型及其应用模拟演练文

2018版高考数学一轮总复习第2章函数导数及其应用2.9函数模型及其应用模拟演练文

2018版高考数学一轮总复习 第2章 函数、导数及其应用 2.9 函数模型及其应用模拟演练 文[A 级 基础达标](时间:40分钟)1.现有一组数据如下:( )A .v =log 2tB .v =log 12 tC .v =t 2-12D .v =2t -2答案 C解析 取t =1.99≈2(或t =5.1≈5),代入A 得v =log 22=1≠1.5;代入B ,得v =log 122=-1≠1.5;代入C ,得v =22-12=1.5;代入D ,得v =2×2-2=2≠1.5,故选C.2.[2017·河南模拟]根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 答案 D解析 (回顾检验法)∵c A=15,故A >4,则有c2=30,解得c =60,A =16,将c =60,A=16代入解析式检验知正确.故选D.3.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A .100元B .110元C .150元D .190元 答案 D解析 设售价提高x 元,利润为y 元,则依题意得y =(1000-5x )×(20+x )=-5x 2+900x +20000=-5(x -90)2+60500.故当x =90时,y max =60500,此时售价为每件190元.4.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据lg 2≈0.3010)( )A .3B .4C .5D .6答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此需4次,故选B.5.[2017·武汉模拟]国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A .3000元B .3800元C .3818元D .5600元 答案 B解析 由题意可建立纳税额y 关于稿费x 的函数解析式为y =⎩⎪⎨⎪⎧0,x ≤800x -,800<x ≤4000,0.11x ,x >4000显然由0.14(x -800)=420,可得x =3800.6.某生产厂商更新设备,已知在未来x (x >0)年内,此设备所花费的各种费用总和y (万元)与x 满足函数关系y =4x 2+64,欲使此设备的年平均花费最低,则此设备的使用年限x 为________.答案 4解析 y x=4x +64x≥24x ·64x =32,当且仅当4x =64x,即x =4时等号成立.7.若某商场将彩电价格由原价(2250元/台)提高40%,然后在广告上写出“大酬宾八折优惠”,则商场每台彩电比原价多卖________元.答案 270解析 由题意可得每台彩电比原价多卖2250×(1+40%)×80%-2250=270(元). 8.[2017·盐城模拟]某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.答案 180解析 依题意,知20-x x =y -824-y ,即x =54(24-y ),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y )(8<y <24),∴当y =12时,S 有最大值为180.9.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解 (1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3000,整理得5x -14-3x≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10. (2)设利润为y 元,则y =900x·100⎝ ⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫5+1x -3x 2=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112,故x =6时,y max =457500元.10.一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?解 (1)设每年降低的百分比为x (0<x <1).[B 级 知能提升](时间:20分钟)11.[2017·云南联考]某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升,故选A.12.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt.假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8,则m 的值为________.答案 10解析 根据题意12=e 5n ,令18a =a e nt ,即18=e nt,因为12=e 5n ,故18=e 15n,则t =15,m =15-5=10.13.[2017·金版创新]“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2,∴当t =12a ,即A =14a 2时,D 取得最大值.14.[2017·佛山模拟]某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S=⎩⎪⎨⎪⎧3x +k x -8+x ,x ,已知每日的利润L =S -C ,且当x =2时,L =3.(1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意,得L =⎩⎪⎨⎪⎧2x +k x -8+x,11-x x,因为x =2时,L =3,所以3=2×2+k2-8+2.解得k =18.(2)当0<x <6时,L =2x +18x -8+2, 所以L =2(x -8)+18x -8+18=-[ 2(8-x )+188-x]+18≤-2-x188-x+18=6.当且仅当2(8-x )=188-x,即x =5时取得等号. 当x ≥6时,L =11-x ≤5. 所以当x =5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.。

2018届高三数学理一轮复习夯基提能作业本第二章函数第二节函数的单调性与最值含解析

2018届高三数学理一轮复习夯基提能作业本第二章函数第二节函数的单调性与最值含解析

第二节函数的单调性与最值A组基础题组1.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·f(x1)-f(x2)]<0”的是( )(x)=-x(x)=x3(x)=lnx(x)=2x2.(2017广州七中期末)函数f(x)=|x-2|x的单调递减区间是( ),2] ,0],2],+∞)3.已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是( )A.(-∞,1]B.(-∞,-1],+∞),+∞)4.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是(全集为R) ( )A.(-1,2)B.(1,4)C.(-∞,-1)∪4,+∞)D.(-∞,-1]∪2,+∞)5.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈-2,2]的最大值等于( )6.函数y=-x(x≥0)的最大值为.7.已知函数f(x)为R上的减函数,若m<n,则f(m) f(n);若f<f(x),则实数x的取值范围是.8.已知函数f(x)=x2-2ax-3在区间1,2]上具有单调性,则实数a的取值范围为.9.(2017武汉四中期中)已知函数f(x)=ax+(1-x)(a>0),且f(x)在0,1]上的最小值为g(a),求g(a)的最大值.10.已知f(x)=(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.B组提升题组11.(2016郑州模拟)已知f(x)=(a>0且a≠1)是R上的单调递增函数,则实数a 的取值范围为( )A.(1,+∞),8)C.(4,8)D.(1,8)12.(2017湖北枣阳一中期末)已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值( )A.可能为0B.恒大于0C.恒小于0D.可正可负13.函数y=与y=log3(x-2)在(3,+∞)上具有相同的单调性,则实数k的取值范围是.14.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.15.已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.(1)证明:f(x)在定义域上为减函数;(2)若f(3)=-1,求f(x)在2,9]上的最小值.答案全解全析A组基础题组“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·f(x1)-f(x2)]<0”等价于在(0,+∞)上f(x)为减函数,易判断f(x)=-x符合题意,选A.f(x)=|x-2|x=其图象如图,由图象可知函数的单调递减区间是1,2].因为函数f(x)在(-∞,-a)上是单调函数,所以由题意知-a≥-1,即a≤1,故选A.由函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,知不等式-3<f(x+1)<1即为f(0)<f(x+1)<f(3),所以0<x+1<3,所以-1<x<2,不等式-3<f(x+1)<1的解集的补集是(-∞,-1]∪2,+∞).由已知可得,当-2≤x≤1时,f(x)=x-2,此时f(x)递增,当1<x≤2时,f(x)=x3-2,此时f(x)也递增,又在x=1处f(x)连续,∴f(x)的最大值为f(2)=23-2=6.6.答案解析令t=,则t≥0,y=t-t2=-+,当t=,即x=时,y max=.7.答案>;(-1,0)∪(0,1)解析由题意知f(m)>f(n);>1,且x≠0.故-1<x<1且x≠0.即实数x的取值范围是(-1,0)∪(0,1).8.答案(-∞,1]∪2,+∞)解析函数f(x)=x2-2ax-3的图象开口向上,对称轴为直线x=a,画出草图如图所示.由图象可知,函数在(-∞,a]和a,+∞)上都具有单调性,但单调性不同,因此要使函数f(x)在区间1,2]上具有单调性,只需a≤1或a≥2,从而a∈(-∞,1]∪2,+∞).9.解析f(x)=x+,当a>1时,a->0,此时f(x)在0,1]上为增函数,∴g(a)=f(0)=;当0<a<1时,a-<0,此时f(x)在0,1]上为减函数,∴g(a)=f(1)=a;当a=1时,f(x)=1,此时g(a)=1.∴g(a)=∴g(a)在(0,1)上为增函数,在1,+∞)上为减函数,∴当a=1时,g(a)取最大值1.10.解析(1)证明:任取x1,x2∈(-∞,-2),且x1<x2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)内单调递增.(2)任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,又由题意知f(x1)-f(x2)>0,所以(x1-a)(x2-a)>0恒成立,所以a≤1.所以0<a≤1.B组提升题组因为f(x)是R上的单调递增函数,所以解得4≤a<8.由x1x2<0不妨设x1<0,x2>0.因为x1+x2<0,所以x1<-x2<0.又∵f(x)在(-∞,0)上单调递增,∴f(x1)<f(-x2),又f(-x2)=-f(x2),∴f(x1)+f(x2)<0.13.答案(-∞,-4)解析由于y=log3(x-2)在(3,+∞)上为增函数,故函数y===2+在(3,+∞)上也是增函数,则有4+k<0,得k<-4.14.解析(1)证明:任取x1,x2∈(0,+∞),且x2>x1,则x2-x1>0,x1x2>0,f(x2)-f(x1)=-=-=>0,∴f(x2)>f(x1),∴f(x)在(0,+∞)上是增函数.(2)∵f(x)在上的值域是,又f(x)在上单调递增,∴f=,f(2)=2.易得a=.15.解析(1)证明:令x1=x2,则f(1)=f(x1)-f(x1)=0,故f(1)=0.任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f<0,即f(x1)-f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是减函数.(2)∵f(x)在(0,+∞)上是减函数,∴f(x)在2,9]上的最小值为f(9).由f=f(x1)-f(x2)得,f=f(9)-f(3),∴f(9)=2f(3)=-2.即f(x)在2,9]上的最小值为-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九节函数模型及应用A组基础题组1.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A.118元B.105元C.106元D.108元2.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么()A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车,其间距最少为5 mD.人追不上汽车,其间距最少为7 m3.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=2x-2D.y=log2x4.(2016北京朝阳统一考试)设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.185.将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水量符合指数衰减曲线y=ae nt.若5分钟后甲桶和乙桶的水量相等,又过了m分钟后甲桶中的水只有升,则m的值为()A.7B.8C.9D.106.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.根据预算得羊皮手套的年利润L万元与年广告费x万元之间的函数解析式为L=-(x>0).则当年广告费投入万元时,该公司的年利润最大.7.某化工厂生产一种溶液,按市场要求杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤次才能达到市场要求.(已知lg 2≈0.301,lg 3≈0.477 1)8.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v的值为2千克/年;当4≤x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.9.(2017黑龙江牡丹江十五中期末)有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在装有一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.B组提升题组10.(2016山东威海模拟)已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:则下列说法正确的是()①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④11.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花100元的日常维修等费用(租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元12.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为.13.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为级;9级地震的最大振幅是5级地震最大振幅的倍.14.已知某物体的温度θ(单位:℃)随时间t(单位:min)的变化规律是θ=m·2t+21-t(t≥0且m>0).(1)如果m=2,求经过多长时间物体的温度为5 ℃;(2)若物体的温度总不低于2 ℃,求m的取值范围.答案全解全析A组基础题组1.D 设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108,故选D.2.D 设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值,为7(m).3.D 根据x=0.50,y=-0.99,代入各选项计算,可以排除A;根据x=2.01,y=0.98,代入各选项计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.4.B 由题意,分流前每年创造的产值为100t(万元),分流x人后,每年创造的产值为(100-x)(1+1.2x%)t(万元),则由解得0<x≤.因为x∈N*,所以x的最大值为16.5.D 令a=ae nt,则=e nt,由已知得=e5n,故=e15n,∴t=15,m=15-5=10.6.答案 4解析L=-=-×(x>0).当-=0,即x=4时,L取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.7.答案8解析设过滤n次能达到市场要求,则2%≤0.1%,即≤,所以nlg≤-1-lg 2,即n(lg 2-lg 3)≤-1-lg 2,所以n≥7.39,又n∈N*,所以n的最小值为8.8.解析(1)由题意得当0<x≤4时,v=2;当4≤x≤20时,设v=ax+b,显然v=ax+b在[4,20]内是减函数,由已知得解得所以v=-x+,故函数v=(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得f(x)=当0<x≤4时, f(x)为增函数,故f(x)max=f(4)=4×2=8;当4<x≤20时, f(x)=-x2+x=-(x2-20x)=-(x-10)2+, f(x)max=f(10)=12.5.所以当0<x≤20时, f(x)的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.9.解析(1)由题意知k=3,∴k=1.(2)因为k=4,所以y=当0≤x≤4时,由-4≥4,解得-4≤x<8,所以0≤x≤4.当4<x≤14时,由28-2x≥4,解得x≤12,所以4<x≤12.综上可知,当y≥4时,0≤x≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)能,理由:在第12分钟时,水中洗衣液的浓度为2×+1×=5(克/升),又5>4,所以在第12分钟时还能起到有效去污的作用.B组提升题组10.D 买小包装时每克费用为元,买大包装每克费用为=元,而>,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润为8.4-1.8×3-0.7=2.3(元).而2.3>2.1,所以卖1大包盈利多,故选D.11.B 设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N*),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50,当且仅当58+x=70-x,即x=6时,等号成立,故每套房月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.12.答案180解析依题意知:=(0<x≤20,8≤y<24),即x=(24-y),∴阴影部分的面积S=xy=(24-y)·y=(-y2+24y)=-(y-12)2+180(8≤y<24).∴当y=12时,S取最大值180.13.答案6;10 000解析由题意,A=1 000=103,A-3,则M=lg 103-lg 10-3=3-(-3)=6.设9级地震,5级地震的最大振幅分别为A9,A5,则lg A9-9=lg A5-5,得lg A9-lg A5=4,即lg=4,∴=10 000.14.解析(1)若m=2,则θ=2·2t+21-t=2,当θ=5时,2t+=,令x=2t,x≥1,则x+=,即2x2-5x+2=0,解得x=2或x=(舍去),当x=2时,t=1.故经过1 min,物体的温度为5 ℃.(2)物体的温度总不低于2 ℃等价于对于任意的t∈[0,+∞),θ≥2恒成立,即m·2t+≥2(t≥0)恒成立,亦即m≥2(t≥0)恒成立.令y=,则0<y≤1,故对于任意的y∈(0,1],m≥2(y-y2)恒成立,因为y-y2=-+≤,所以m≥.因此,当物体的温度总不低于2 ℃时,m的取值范围是.。

相关文档
最新文档