初中数学竞赛辅导资料(67)

合集下载

初中数学竞赛辅导资料(66)

初中数学竞赛辅导资料(66)

初中数学竞赛辅导资料(66)辅助圆甲内容提要1. 经过两个点可以画无数个圆;经过三个点作圆,必须是不在同一直线上的三个点,可以作一个圆,并且只能作一个圆.2. 经过四点作圆(即四点共圆)有如下的判定定理:① 到一个定点的距离相等的所有的点在同一个圆上(圆的定义). ② 一组对角互补的四边形顶点在同一圆上. ③ 一个外角等于它的内对角的四边形顶点共圆. ④ 同底同侧顶角相等的三角形顶点共圆.推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径). 3. 画出辅助圆就可以应用圆的有关性质.常用的有:① 同弧所对的圆周角相等.② 圆内接四边形对角互补,外角等于内对角. ③ 圆心角(圆周角)、弧、弦、弦心距的等量关系. ④ 圆中成比例线段定理:相交弦定理4. 证明 型如ab+cd=m 2常用切割线定理 乙例题例1.已知:点O 是△ABC 的外心,BE ,CD 是高.求证:AO ⊥DE证明:延长AO 交△ABC 的外接圆于F ,连接BF. ∵O 是△ABC 的外心∴AF 是△ABC 外接圆的直径,∠ABF=Rt ∠. ∵BE ,CD 是高,∠BDC=∠CEB=Rt ∠.∴B ,C ,E ,D 四点共圆(同斜边的直角三角形顶点共圆) ∴∠ADE=∠ECB=∠F. ∴∠AGD=∠ABF=Rt ∠, 即AO ⊥DE.例2.正方形ABCD 的中心为O,面积为1989cm 2,P 为正方形内的一点,且∠OPB=45,PA ∶PB=5∶14,则PB=____cm. (1989年全国初中数学联赛题) 解:∵∠OPB=∠OAB=45∴ABOP 四点共圆(同底同侧顶角相等的三角形顶点共圆)∴∠APB=∠AOB=Rt ∠.在Rt △APB 中,设PA 为5x ,则PB 是14x. ∴(5x)2+(14x)2=1989. 解得x=3, 14x.=42. ∴PB=42 (cm).例3.已知:平行四边形ABCD 中,CE ⊥AB 于E ,AF ⊥BC 于F.求证:AB ×AE+CB ×CF=AC 2. 证明:作BG ⊥AC 交AC 于G. ∵CE ⊥AB , AF ⊥BC.∴A ,F ,B ,G 和B ,E ,C ,G 分别共圆.(对角互补的四边形顶点共圆)根据切割线定理,得 AB ×AE=AG ×AC CB ×CF=CG ×AC∴AB ×AE+CB ×CF=AC(AG+CG)=AC 2.例4.已知:AD 是Rt △ABC 斜边的高,角平分线BE 交AD 于F.求证:AE 2=AB 2-BE ×BF.分析:根据同角的余角相等,可证AE=AF.由射影定理AB 2=BD ×BC.故只要证AE ×AF =BD ×BC -BE ×BF 创造应用切割线定理的条件,作△ABC 的 外接圆并延长BE 交圆于G ,得F 、D 、C 、G 四点共圆 . ∴ BD ×BC=BF ×BG .∴右边= BF ×BG.- BE ×BF=BF(BG -BE)=BF ×EG 从而转为要证AE ×AF= BF ×BG . 即AFEGBF AE = 只要证△AEG ∽△BFA ……(证明由同学自已完成)例5已知:从⊙O 外一点P 作⊙O 的两条切线PA ,PB 切点A 和B ,在AB 上任取一点C ,经过点C 作OC 的垂线交PA 于M ,交PB 于N. 求证:OM=ON.证明:连结OA ,OB .∵A ,B 是切点 ∴OA ⊥PA ,OB ⊥PB.又∵OC ⊥MN.∴A ,M ,C ,O 和B ,N ,O ,C 分别共圆.(辅助圆可以不画) 根据同弧所对的圆周角相等,得 ∠OAC=∠OMC , ∠ONC=∠OBC. ∵OA=OB , ∴∠OAC=∠OBC.∴∠OMC=∠ONC , ∴OM=ON.丙练习661.已知:AD 是△ABC 的高,DE ,DF 分别是△ADB 和△ADC 的高 求证: B ,C ,F ,E 四点共圆2.已知:两条线段AB 和CD 相交于点P ,且PA ×PB=PC ×PD. 求证:A ,B ,C ,D 四点共圆.3.已知:⊙O 和⊙O ,相交于A ,B ,过点A 作一直线交⊙O 于C ,交⊙O ,于D ,分别过 点C 和点D 作⊙O 和⊙O ,的切线相交于点P .求证:P ,C ,B ,D 四点在同一个圆上.4.已知:E 是正方形ABCD 边BC 上的一点,过点E 作AE 的垂线和∠C 的外角平分线交于点F. 求证:AE=AF.5.已知:M 是平行四边形ABCD 对角线AC 上的一点,过点M 画两组对边的垂线段分别交AB ,CD 于E ,F 交AD ,BC 于G ,H.求证:EG ∥FH.6.已知:△ABC 的三条高AD ,BE ,CF 交于点H. 求证:BH ×BE+CH ×CF=BC 2.7.已知:AB 是⊙O 的直径,C 是半圆上的一点,CD ⊥AB 于D ,G 是CD 上的一点,AG 的延长线交半圆于H. 求证:CD 2+AD 2=AG ×AH.8.已知:AD 是△ABC 的角平分线 . 求证:AD 2=AB ×AC.=DB ×DC9.已知:凸五边形ABCDE 中.∠A=3α,BC=CD=DE ,∠C=∠D=180.=2α. 求证:AC ,AD ,AE 三等分∠A. (1990年全国初中数学联赛题) 10.求证:圆上一点到圆内接四边形两组对边的距离的积相等11.求证:圆内接四边形两组对边积的和等于两对角线的积(托列密定理)12.如图已知:圆内接四边形ABCD 中,由AB 上一点M 作MP ⊥BC ,MQ ⊥CD , MR ⊥DA ,PR 交MQ 于N.求证:MABMNR PN =. (1983年福建省初中数学联赛题)13.如图已知:∠ACE=∠CDE=Rt ∠,点B 在CE 上,CA=CB=CD ,过A ,C ,D 的圆交AB 于F.求证:点F是△CDE的内心(1995年全国初中数学联赛题)13。

初中数学竞赛辅导资料(七年级上) (2)

初中数学竞赛辅导资料(七年级上) (2)

数的整除(一)内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2己知五位数x 1234能被12整除, 求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X 能被3整除时,x=2,5,8 当末两位X 4能被4整除时,X =0,4,8 ∴X =8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。

练习1.分解质因数:(写成质因数为底的幂的连乘积)①593 ② 1859 ③1287 ④3276 ⑤10101 ⑥10296 2.若四位数a 987能被3整除,那么 a=_______________ 3.若五位数3412X 能被11整除,那么 X =__________- 4.当 m=_________时,535m 能被25整除5.当 n=__________时,n 9610能被7整除6.能被11整除的最小五位数是________,最大五位数是_________7.能被4整除的最大四位数是____________,能被8整除的最小四位数是_________8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9. 从1到100这100个自然数中,能同时被2和3整除的共_____个, 能被3整除但不是5的倍数的共______个。

初中数学竞赛辅导资料(66)

初中数学竞赛辅导资料(66)

初中数学竞赛专题选讲(初三.22)辅助圆一、内容提要1. 经过两个点可以画无数个圆;经过三个点作圆,必须是不在同一直线上的三个点,可以作一个圆,并且只能作一个圆。

2. 经过四点作圆(即四点共圆)有如下的判定定理:① 到一个定点的距离相等的所有的点在同一个圆上(圆的定义). ② 一组对角互补的四边形顶点在同一圆上。

③ 一个外角等于它的内对角的四边形顶点共圆. ④ 同底同侧顶角相等的三角形顶点共圆。

推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径). 3. 画出辅助圆就可以应用圆的有关性质.常用的有:① 同弧所对的圆周角相等.② 圆内接四边形对角互补,外角等于内对角。

③ 圆心角(圆周角)、弧、弦、弦心距的等量关系.④ 圆中成比例线段定理:相交弦定理4. 证明 型如ab+cd=m 2常用切割线定理 二、例题例1。

已知:点O 是△ABC 的外心,BE ,CD 是高.求证:AO ⊥DE证明:延长AO 交△ABC 的外接圆于F,连接BF 。

∵O 是△ABC 的外心 ∴AF 是△ABC 外接圆的直径,∠ABF=Rt ∠。

∵BE ,CD 是高,∠BDC=∠CEB=Rt ∠.∴B ,C ,E ,D ∴∠ADE=∠ECB=∠F. ∴∠AGD=∠ABF=Rt ∠, 即AO ⊥DE 。

例2。

正方形ABCD 的中心为O,面积为1989cm 2,P 为正方形内的一点,且∠OPB=45 ,PA ∶PB=5∶14,则PB=____cm. (1989年全国初中数学联赛题) 解:∵∠OPB=∠OAB=45∴ABOP 四点共圆(同底同侧顶角相等的三角形顶点共圆) ∴∠APB=∠AOB=Rt ∠.在Rt △APB 中,设PA 为5x ,则PB 是14x 。

∴(5x )2+(14x )2=1989. 解得x=3, 14x 。

=42。

∴PB=42 (cm).例3。

已知:平行四边形ABCD 中,CE ⊥AB 于E ,AF ⊥BC 于F.求证:AB ×AE+CB ×CF=AC 2。

(完整版)初中数学竞赛专题选讲-配方法(含答案)

(完整版)初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法]一、内容提要1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2土2ab+b2写成完全平方式(a土b) 2.有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a +b配上2ab, ②由 2 ab 配上a +b ,③由a2土2ab配上b2.2. 运用配方法解题,初中阶段主要有:①用完全平方式来因式分解例如:把x4+4因式分解.2 2 2 2 2母乱=x +4 + 4x — 4x =(x +2) — 4x = ...........这是由a2+b2配上2ab.②二次根式化简常用公式:福|a ,这就需要把被开方数写成完全平方式.例如:化简、一5一2 6.我们把5-2*写成2 - 2逐+ 3=(克V - ^ 2^3 + (V3)2=(V2 —V3 ).这是由2 ab配上a2+b2.③求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即a >0, .,•当a=0时, a2的值为0是最小值.例如:求代数式a2+2a — 2的最值... a2+2a— 2= a2+2a+1 - 3=(a+1) 2- 3当a=— 1时,a +2a— 2有最小值—3.这是由a2土2ab配上b2④有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程x2+y2+2x-4y+5=0的解x, y.解:方程x2+y2+2x-4y+1 + 4= 0.配方的可化为(x+1) 2+(y - 2) 2=0.要使等式成立,必须且只需x 1 0y 2 0x 1 y2解得此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.二、例题2 2 2 2例 1.因式分解:a b —a +4ab— b +1.解:a b — a +4ab — b +1 = a b +2ab+1+( — a +2ab — b ) (折项,分组)=(ab+1 ) 2 - (a - b):(配方)= (ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)本题的关键是用折项,分组,树立配方的思想^例2.化简下列二次根式:①J7 5 ;②*2焰;③了10时3 2豆. 解:化简的关键是把被开方数配方①(7 4>/3 = J4 2 2/3 3 = J(2 V3)2=2 < 3 = 2 + 43.②户=居=疗=\吁<2(73 1)=无V2 2 . 2③\;10 4^3 2龙=寸10 4》(。

初中数学竞赛精品标准教程及练习67参数法证平几

初中数学竞赛精品标准教程及练习67参数法证平几

初中数学竞赛精品标准教程及练习67参数法证平几参数法证平几是初中数学竞赛中常见的题型,它可以通过设定参数来简化问题,并通过解方程来求解解。

下面是精品标准教程及练习,共计1200字以上。

参数法证平几的基本思想是通过设定参数来简化问题,从而使问题的解决变得更加容易。

在参数法证平几中,我们通常会设定两个未知数,并通过列方程的方式求解得到平几的相关信息。

接下来,我们通过一个具体的例子来介绍参数法证平几的方法:【例题】已知三角形ABC,D为BC边上的一点,AD边垂直于BC边,证明:AD²=BD×CD。

解题思路:设BC=a,AC=b,AB=c,AD=h,BD=x,CD=a-x根据勾股定理可得:AC²=AD²+CD²b²=h²+(a-x)²根据相似三角形的性质可知:AC÷AD=BC÷BDb÷h=a÷xx = ah ÷ b将x的值代入上式得:h² + (a - ah ÷ b)² = b²h² + (a² - 2ah + (ah ÷ b)²) = b²h² + a² - 2ah + a²h² ÷ b² - 2ah + a² = b²h² + a² - 4ah + a²h² ÷ b² =b²整理得:h² + a² - 4ah + a²h² ÷ b² = b²(1 + a² ÷ b²) × (h² + a²) - 4ah = b²而另一方面:h² + a² - 4ah + a²h² ÷ b² = h² + a² - 4ah + a² × a²h² ÷ (a × b)²= h² + a² - 4ah + a⁴h² ÷ a²b²= (h² + a²) × (1 - 4ah ÷ (h² × b²)) = b²由此可知:(1 + a² ÷ b²)(h² + a²) - 4ah = (h² + a²) × (1 - 4ah ÷ (h² × b²))因此,AD²=BD×CD成立。

初中数学竞赛辅导资料课件.doc

初中数学竞赛辅导资料课件.doc

初中数学竞赛辅导资料一元一次方程解的讨论甲内容提要1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x-1)=0, |x|=6, 0x=0, 0x=2的解分别是: x=-3, x=0或x=1, x=±6, 所有的数,无解。

2, 关于x 的一元一次方程的解(根)的情况:化为最简方程ax=b 后,讨论它的解:当a ≠0时,有唯一的解 x=ab ; 当a=0且b ≠0时,无解;当a=0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立)3, 求方程ax=b(a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b乙例题例1 a 取什么值时,方程a(a -2)x=4(a -2) ①有唯一的解?②无解?③有无数多解?④是正数解?解:①当a ≠0且a ≠2 时,方程有唯一的解,x=a 4 ②当a=0时,原方程就是0x= -8,无解;③当a=2时,原方程就是0x=0有无数多解④由①可知当a ≠0且a ≠2时,方程的解是x=a4,∴只要a 与4同号, 即当a>0且a ≠2时,方程的解是正数。

例2 k 取什么整数值时,方程①k(x+1)=k -2(x -2)的解是整数?②(1-x )k=6的解是负整数?解:①化为最简方程(k +2)x=4当k+2能整除4,即k+2=±1,±2,±4时,方程的解是整数∴k=-1,-3,0,-4,2,-6时方程的解是整数。

②化为最简方程kx=k -6,当k ≠0时x=k k 6 =1-k6, 只要k 能整除6, 即 k=±1,±2,±3,±6时,x 就是整数当 k=1,2,3时,方程的解是负整数-5,-2,-1。

初中数学竞赛辅导资料(66)

初中数学竞赛辅导资料(66)

初中数学竞赛专题选讲(初三。

22)辅助圆一、内容提要1. 经过两个点可以画无数个圆;经过三个点作圆,必须是不在同一直线上的三个点,可以作一个圆,并且只能作一个圆.2. 经过四点作圆(即四点共圆)有如下的判定定理:① 到一个定点的距离相等的所有的点在同一个圆上(圆的定义)。

② 一组对角互补的四边形顶点在同一圆上。

③ 一个外角等于它的内对角的四边形顶点共圆。

④ 同底同侧顶角相等的三角形顶点共圆。

推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径)。

3. 画出辅助圆就可以应用圆的有关性质。

常用的有:① 同弧所对的圆周角相等.② 圆内接四边形对角互补,外角等于内对角. ③ 圆心角(圆周角)、弧、弦、弦心距的等量关系.④ 圆中成比例线段定理:相交弦定理 ,切割线定理. 4. 证明 型如ab+cd=m 2常用切割线定理 二、例题例1。

已知:点O 是△ABC 的外心,BE ,CD 是高。

求证:AO ⊥DE证明:延长AO 交△ABC 的外接圆于F ,连接BF∵O 是△ABC 的外心 ∴AF 是△ABC 外接圆的直径,∠ABF=Rt ∠。

∵BE,CD 是高,∠BDC=∠CEB=Rt ∠.∴B,C ,E ,D 四点共圆(∴∠ADE=∠ECB=∠F 。

∴∠AGD=∠ABF=Rt ∠, 即AO ⊥DE. 例2。

正方形ABCD 的中心为O ,面积为1989cm 2,P 为正方形内的一点,且∠OPB=45 ,PA ∶PB=5∶14,则PB=____cm. (1989年全国初中数学联赛题) 解:∵∠OPB=∠OAB=45∴ABOP 四点共圆(同底同侧顶角相等的三角形顶点共圆) ∴∠APB=∠AOB=Rt ∠。

在Rt △APB 中,设PA 为5x,则PB 是14x 。

∴(5x)2+(14x )2=1989。

解得x=3, 14x 。

=42。

∴PB=42 (cm )。

例3。

已知:平行四边形ABCD 中,CE ⊥AB 于E ,AF ⊥BC 于F 。

初中数学竞赛辅导资料

初中数学竞赛辅导资料

初中数学竞赛辅导资料解三角形甲内容提要1. 由三角形的已知元素,求出所有未知元素的过程叫做解三角形.2. 解直角三角形所根据的定理 (在Rt △ABC 中,∠C=Rt ∠). ① 边与边的关系: 勾股定理----――c 2=a 2+b 2. ② 角与角的关系:两个锐角互余----∠A+∠B=Rt ∠ ③ 边与角的关系:(锐角三角函数定义)SinA=c a , CosA=c b , tanA=b a , CotA=ab. ④ 互余的两个角的三角函数的关系:Sin(90-A)= CosA , Cos(90-A)= SinA , tan(90-A)= CotA, Cot(90-A)= tanA. ⑤;余弦、余切随着角度的增大而减小(即减函数).3. 解斜三角形所根据的定理 (在△ABC 中)① 正弦定理:SinCcSinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系:Sin(180-A)= sinA , Cos(180-A)= - cosA , tan(180-A)=-cotA , cotA(180-A)=-tanA. ④ S △ABC =21absinC=21bcsinA=21casinB.4. 与解三角形相关的概念:水平距离,垂直距离,仰角,俯角,坡角,坡度,象限角,方位角等. 乙例题例1. 已知:四边形ABCD 中,∠A =60,CB ⊥AB ,CD ⊥AD ,CB =2,CD =1.求:AC 的长.解:延长AD 和BC 相交于E ,则∠E =30.在Rt △ECD 中,∵sinE=CECD, ∴CE=30sin 1=1÷21=2. EB =4. 在Rt △EAB 中, ∵tanE=EBAB,∴AB=EBtan30。

(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。

【例3】 解关于x 的方程02)1(2=+--a ax x a 。

思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。

【例4】设方程04122=---x x ,求满足该方程的所有根之和。

思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。

【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。

思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。

初中数学竞赛辅导资料

初中数学竞赛辅导资料

初中数学竞赛辅导资料初中数学竞赛辅导资料(70)正整数简单性质的复习甲. 连续正整数⼀. n 位数的个数:⼀位正整数从1到9,共9个,两位数从10到99,共90个,三位数从100到999共9×102个,那么 n 位数的个数共__________.(n 是正整数)练习:1. ⼀本书共1989页,⽤0到9的数码,给每⼀页编号,总共要⽤数码___个. 2. 由连续正整数写成的数1234……9991000是⼀个_______位数;100110021003……19881989是_______位数.3. 除以3余1的两位数有____个,三位数有____个,n 位数有_______个.4. 从1到100的正整数中,共有偶数____个,含 3的倍数____个;从50到1000的正整数中,共有偶数____个,含3的倍数____个.⼆. 连续正整数的和:1+2+3+……+n=(1+n)×2n . 把它推⼴到连续偶数,连续奇数以及以模m 有同余数的连续数的和.练习:5.计算2+4+6+……+100=__________.6. 1+3+5+……+99=____________.7. 5+10+15+……+100=_________.8. 1+4+7+……+100=____________.9. 1+2+3+……+1989其和是偶数或奇数?答______10. 和等于100的连续正整数共有______组,它们是______________________.11. 和等于100的连续整数共有_____组,它们是__________________________.三. 由连续正整数连写的整数,各位上的数字和整数 123456789各位上的数字和是:(0+9)+(1+8)+…+(4+5)=9×5=45;1234…99100各位数字和是(0+99)+(1+98)+…+(49+50)+1=18×50+1=901.练习:12. 整数 1234……9991000各位上的数字和是_____________.13. 把由1开始的正整数依次写下去,直到第198位为⽌:位198011121234567891这个数⽤9除的余数是__________. (1987年全国初中数学联赛题)14. 由1到100这100个正整数顺次写成的数1234……99100中:①它是⼀个________位数;②它的各位上的数字和等于________;③从这⼀数中划去100个数字,使剩下的数尽可能⼤,那么剩下的数的前⼗位是___________________________.四.连续正整数的积:① 1×2×3×…×n 记作n ! 读作n 的阶乘.② n 个连续正整数的积能被n !整除.如:2!|a(a+1), 3!|a (a+1)(a+2), n !|a(a+1)(a+2)…(a+n -1). a 为整数.③ n ! 中含有质因数m 的个数是m n +2m n +…+??i m n . [x]表⽰不⼤于x 的最⼤正整数,i=1,2,3… m i ?n如:1×2×3×…×10的积中,含质因数3的个数是:+????2310310=3+1=4 练习:15. 在100!的积5的个数是:____16.⼀串数1,4,7,10,……,697,700相乘的积中,末尾共有零_______个(1988年全国初中数学联赛题)17. 求证:10494 | 1989!18. 求证:4! | a(a 2-1)(a+2) a 为整数五. 两个连续正整数必互质练习:19. 如果n+1个正整数都⼩于2n, 那么必有两个是互质数,试证之.⼄. 正整数⼗进制的表⽰法⼀. n+1位的正整数记作:a n ×10n +a n -1×10n -1+……+a 1×10+a 0其中n 是正整数,且0?a i ?9 (i=1,2,3,…n)的整数, 最⾼位a n ≠0.例如:54321=5×104+4×103+3×102+2×10+1.例题:从12到33共22个正整数连写成A=121314…3233. 试证:A 能被99整除.证明:A=12×1042+13×1040+14×1038+……+31×104+32×102+33=12×10021+13×10020+14×1019+……+31×1002+32×100+33.∵ 100的任何次幂除以9的余数都是1,即100 n =(99+1) n ≡1 (mod 9)∴ A=99k+12+13+14+……+31+32+33 (k 为正整数 )=99 k+(12+33)+(13+32)+…+(22+23)=99k+45×11=99k+99×5.∴A 能被99整除.练习:20. 把从19到80的连结两位数连写成19202122…7980.试证明这个数能被1980整除⼆. 常见的⼀些特例 99999个n =10 n -1, 33333个n =31(10 n -1), 9111111= 个n (10 n -1). 例题:试证明12,1122,111222,11112222,……这些数中的任何⼀个,都是两个相邻的正整数的积.证明:第n 个数是2122221111个个n n =)110(91 -n ×10 n +)110(92-n =)110(91 -n (10 n +2) =331103110+-?-n n=)13110(3110+-?-n n = 33333个n ×433333)1(个-n . 证毕. 练习:21. 化简 99999个n × 99999个n +199999个n =_______________________________. 22. 化简2122222-1111个个n n =____________________________________________. 23. 求证119901111个是合数. 24. 已知:存在正整数 n,能使数11111个n 被1987整除. 求证:数p= 11111个n 99999个n 88888个n77777个n 和数q= 111111个+n 919999个+n 818888个+n717777个+n 都能被1987整除. (1987年全国初中数学联赛题)25. 证明:把⼀个⼤于1000的正整数分为末三位⼀组,其余部分⼀组,若这两组数的差,能被7(或13)整除,则这个正整数就能被7(或13)整除.26. 求证: 11111个n ×110000个-n 5+1是完全平⽅数. 丙. 末位数的性质.⼀.⽤N (a)表⽰⾃然数的个位数. 例如a=124时,N (a)=4; a=-3时,N (a)=3.1. N (a 4k+r )=N (a r ) a 和k 都是整数,r=1,2,3,4.特别的:个位数为0,1,5,6的整数,它们的正整数次幂的个位数是它本⾝.个位数是4,9 的正偶数次幂的个位数也是它本⾝.2. N (a)=N (b)?N (a -b)=0?10 |(a -b).3. 若N (a)=a 0, N (b)=b 0. 则N (a n )=N (a 0n ); N (ab)=N (a 0b 0).例题1:求①53100 ;和②777的个位数. 解:①N (53100)=N (34×24+4)=N (34)=1②先把幂的指数77化为4k+r 形式,设法出现4的因数.77=77-7+7=7(76-1)+4+3=7(72-1)(74+72+1)+4+3=7×4×12× (74+72+1)+4+3=4k+3∴N(777)=N(74k+3)=N(73)=3.练习:27. 19891989的个位数是______,999的个位数是_______.28. 求证:10 | (19871989-19931991).29. 2210×3315×7720×5525的个位数是______.⼆. ⾃然数平⽅的末位数只有0,1,4,5,6,9;连续整数平⽅的个位数的和,有如下规律:12,22,32,……,102的个位数的和等于 1+4+9+6+5+5+9+4+0=45.1. ⽤这⼀性质计算连续整数平⽅的个位数的和例题1. 填空:12,22,32,……,1234567892的和的个位数的数字是_______.(1991年全国初中数学联赛题)解:∵12,22,32,……,102的个位数的和等于 1+4+9+6+5+5+9+4+0=45.11到20;21到30;31到40;………123456781到123456789,的平⽅的个位数的和也都是45. 所以所求的个位数字是:(1+4+9+6+5+5+9+4+0)×(12345678+1)的个位数5.2. 为判断不是完全平⽅数提供了⼀种⽅法例题2. 求证:任何五个连续整数的平⽅和不能是完全平⽅数.证明:(⽤反证法)设五个连续整数的平⽅和是完全平⽅数,那么可记作:(n -2)2+(n -1)2+n 2+(n+1)2+(n+2)2=k 2 (n, k 都是整数)5(n 2+2)=k 2 .∵ k 2是5的倍数,k 也是5的倍数.设k=5m, 则5(n 2+2)=25m 2.n 2+2=5m 2.n 2+2是5的倍数,其个位数只能是0或5,那么 n 2的倍数是8或3.但任何⾃然数平⽅的末位数,都不可能是8或3.∴假设不能成⽴∴任何五个连续整数的平⽅和不能是完全平⽅数.3.判断不是完全平⽅数的其他⽅法例题3. 已知:a 是正整数.求证: a(a+1)+1不是完全平⽅数证明:∵a(a+1)+1=a 2+a+1,且a 是正整数∴ a 2< a(a+1)+1=a 2+a+1<(a+1)2,∵a 和a+1是相邻的两个正整数,a(a+1)+1介于它们的平⽅之间∴a(a+1)+1不是完全平⽅数例题4. 求证:11111个n (n>1的正整数) 不是完全平⽅数证明:根据奇数的平⽅数除以4必余1,即(2k+1)2=4(k+1)+1.但 11111个n =1100111112-个n =4k+11=4k+4×2+3=4(k+2)+3 即11111个n 除以4余数为3,⽽不是1,∴它不是完全平⽅数.例题5. 求证:任意两个奇数的平⽅和,都不是完全平⽅数.证明:设2a+1,2b+1(a,b 是整数)是任意的两个奇数.∵(2a+1)2+(2b+1)2=4a 2+4a+1+4b 2+4b+1=4(a 2+b 2+a+b)+2.这表明其和是偶数,但不是4的倍数,故任意两个奇数的平⽅和,都不可能是完全平⽅数.三. 魔术数:将⾃然数N 接写在每⼀个⾃然数的右⾯,如果所得到的新数,都能被N整除,那么N 称为魔术数.常见的魔术数有:a) 能被末位数整除的⾃然数,其末位数是1,2,5 (即10的⼀位正约数是魔术数) b) 能被末两位数整除的⾃然数,其末两位数是10,20,25,50(即100的两位正约数也是魔术数))c) 能被末三位数整除的⾃然数,其三末位数是100,125,200,250,500(即1000的三位正约数也是魔术数)练习:30. 在⼩于130的⾃然数中魔术数的个数为_________.(1986年全国初中数学联赛题)四. 两个连续⾃然数,积的个位数只有0,2,6;和的个位数只有1,3,5,7,9. 练习:31. 已知:n 是⾃然数,且9n2+5n+26的值是两个相邻⾃然数的积,那么n 的值是:___________________. (1985年上海初中数学竞赛题)丁. 质数、合数1. 正整数的⼀种分类:??).1(.)1( 1然数整除和本⾝外还能被其他⾃除合数;然数整除和本⾝外不能被其他⾃除质数; 2. 质数中,偶数只有⼀个是2,它也是最⼩的质数.3. 互质数:是指公约数只有1的两个正整数. 相邻的两个正整数都是互质数.例题:试写出10个连续⾃然数,个个都是合数.解:答案不是唯⼀的,其中的⼀种解法是:令A=1×2×3×4×5×6×7×8×9×10×11那么A+2,A+3,A+4,A+5,A+6,A+7,A+8,A+9,A+10,A+11就是10个连续数,且个个都是合数.⼀般地,要写出n 个连续⾃然数,个个是合数,可⽤令m=n+1, 那么m !+2, m !+3, m !+4, +……+ m !+n+1 就是所求的合数.∵m !+i (2?i ?n+1) 有公约数i.练习:32. 已知质数a ,与奇数b 的和等于11,那么a=___,b=___.33. 两个互质数的最⼩公倍数是72,若这两个数都是合数,那么它们分别等于____,____.34. 写出10个连续正奇数,个个都是合数,可设m=(10+1)×2, m !=22!那么所求的合数是22!+3,_____,____,____,……35. 写出10个连续⾃然数,个个都是合数,还可令 N=2×3×5×7×11.(这⾥11=10+1,即N 是不⼤于11的质数的积).那么 N+2,N+3,N+4,……N+11就是所求的合数.这是为什么?如果要写15个呢?36. 已知:x, m, n 都是正整数 . 求证:24m+2+x 4n 是合数.戊.奇数和偶数1.整数的⼀种分类:)12(.2)02(2,余数为即除以整除的整数奇数:不能被,余数为即除以整除的整数;偶数:能被2. 运算性质:奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数.奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.(奇数)正整数=奇数,(偶数)正整数=偶数.4. 其他性质:①两个连续整数必⼀奇⼀偶,其和是奇数,其积是偶数.②奇数的平⽅被4除余1;偶数的平⽅能被4整除;除以4余2或3的整数不是平⽅数.a) 2n (n 为正整数)不含⼤于1的奇因数.b) 若两个整数的和(差)是奇数,则它们必⼀奇⼀偶.c) 若n 个整数的积是奇数,则它们都是奇数.例1. 设m 与n 都是正整数,试证明m 3-n 3为偶数的充分必要条件是m -n 为偶数.证明:∵m 3-n 3=(m -n )(m 2+mn+n 2).当m -n 为偶数时,不论m 2+mn+n 2是奇数或偶数,m 3-n 3都是偶数;∴m -n 为偶数是m 3-n 3为偶数的充分条件.当m -n 为奇数时,m, n 必⼀奇⼀偶,m 2,mn ,n 2三个数中只有⼀个奇数,∴m 2+mn+n 2是奇数,从⽽m 3-n 3也是奇数.∴m -n 为偶数,是m 3-n 3为偶数的必要条件.综上所述m 3-n 3为偶数的充分必要条件是m -n 为偶数.例2. 求⽅程x 2-y 2=1990的整数解.解:(x+y)(x -y)=2×5×199.若x, y 同是奇数或同是偶数,则 x+y ,x -y 都是偶数,其积是4的倍数,但1990不含4的因数,∴⽅程左、右两边不能相等.若x, y 为⼀奇⼀偶,则x -y ,x+y 都是奇数,其积是奇数,但1990不是奇数,∴⽅程两边也不能相等.综上所述,不论x, y 取什么整数值,⽅程两边都不能相等.所以原⽅程没有整数解本题是根据整数的⼀种分类:奇数和偶数,详尽地讨论了⽅程的解的可能性.练习:37. 设n 为整数,试判定n 2-n+1是奇数或偶数.38. 1001+1002+1003+……+1989其和是偶数或奇数,为什么?39. 有四个正整数的和是奇数,那么它们的⽴⽅和,不可能是偶数,试说明理由.40. 求证:⽅程x 2+1989x+9891=0没有整数根.41. 已知: =?=++++.0321321n x x x x x x x x n n ;求证:n 是4的倍数. 42. 若n 是⼤于1的整数,p=n+(n 2-1)2)1(1n --试判定p 是奇数或偶数,或奇偶数都有可能. (1985年全国初中数学联赛题)已. 按余数分类1. 整数被正整数 m 除,按它的余数可分为m 类,称按模m 分类.如:模m=2,可把整数分为2类:{2k}, {2k+1} k 为整数,下同模m=3,可把整数分为3类:{3k}, {3k+1},{3k+2}.……模m=9,可把整数分为9类:{9k},{9k+1},{9k+2}.…{9k+8}.2. 整数除以9的余数,与这个整数各位上的数字和除以9的余数相同.如:6372,5273,4785各位数字和除以9的余数分别是0,8,6. 那么这三个数除以9的余数也分别是0,8,6.3. 按模m 分类时,它们的余数有可加,可乘,可乘⽅的性质.如:若a=5k 1+1, b=5k 2+2.则a+b 除以5 余数是3 (1+2);ab 除以5余2 (1×2);b 2 除以5余4 (22).例1. 求19891989除以7的余数.解:∵19891989=(7×284+1)1989,∴19891989≡11989 ≡1 (mod 7).即19891989除以7的余数是1.练习:43. 今天是星期⼀,99天之后是星期________.44. n 个整数都除以 n -1, ⾄少有两个是同余数,这是为什么? 45. a 是整数,最简分数7a 化为⼩数时,若为循环⼩数,那么⼀个循环节最多有⼏位?4. 运⽤余数性质和整数除以9的余数特征,可对四则运算进⾏检验例2. 下列演算是否正确?① 12625+9568=21193 ;② 2473×429=1060927.解:①⽤各位数字和除以9,得到余数:12625,9568,21193除以9的余数分别是7,1,7.∵ 7+1≠7,∴演算必有错.② 2473,429,1060927除以9的余数分别是7,6,7.⽽7×6=42,它除以9余数为6,不是7,故演算也有错.注意:发现差错是准确的,但这种检验并不能肯定演算是绝对正确.练习:46. 检验下列计算有⽆差错:①372854-83275=289679 ;②23366292÷6236=3748.5. 整数按模分类,在证明题中的应⽤例3. 求证:任意两个整数a 和b ,它们的和、差、积中,⾄少有⼀个是3的倍数.证明:把整数a 和b 按模3分类,再详尽地讨论.如果a, b 除以3,有同余数 (包括同余0、1、2),那么a, b 的差是3的倍数;如果a, b 除以3,余数不同,但有⼀个余数是0,那么a, b 的积是3的倍数;如果a, b 除以3,余数分别是1和2,那么a, b 的和是3的倍数.综上所述任意两个整数a ,b ,它们的和、差、积中,⾄少有⼀个是3的倍数.(分类讨论时,要求做到既不重复⼜不违漏)例4. 已知: p ?5,且 p 和2p+1都是质数.求证:4p+1是合数.证明:把整数按模3分类. 即把整数分为3k,3k+1,3k+2 (k 为整数)三类讨论∵p 是质数,∴不能是3的倍数,即p ≠3k ;当p=3k+1时, 2p+1=2(3k+1)+1=3(2k+1). ∴ 2p+1不是质数,即p ≠3k+1;只有当质数p=3k+2时, 2p+1=2(3k+2)+1=6k+5.∴2 p+1也是质数,符合题设.这时,4p+1=4(3k+2)+1=3(4k+3)是合数. 证毕练习:47. 已知:整数a 不能被2和3整除 . 求证:a 2+23能被24整除.48. 求证:任何两个整数的平⽅和除以8,余数不可能为6.49. 若正整数a 不是5的倍数. 则a 8+3a 4-4能被100整除.50. 已知:⾃然数n>2求证:2n -1和2n +1中,如果有⼀个是质数,则另⼀个必是合数.51.设a,b,c 是三个互不相等的正整数,求证 a 3b -ab 3,b 3c -bc 3,c 3a -ca 3三个数中,⾄少有⼀个能被10整除. (1986年全国初中数学联赛题)庚. 整数解1. ⼆元⼀次⽅程 ax+by=c 的整数解:当a,b 互质时,若有⼀个整数的特解?==00y y x x 那么可写出它的通解)(00为整数k ak y y bk x x ?-=+= 2. 运⽤整数的和、差、积、商、幂的运算性质整数±整数=整数,整数×整数=整数,整数÷(这整数的约数)=整数, (整数)⾃然数=整数3. ⼀元⼆次⽅程,⽤求根公式,根的判别式,韦达定理讨论整数解.4. 根据已知条件讨论整数解.例1. ⼩军和⼩红的⽣⽇.都在10⽉份,且星期⼏也相同,他们⽣⽇的⽇期的和等于34,⼩军⽐⼩红早出⽣,求⼩军的⽣⽇.解:设⼩军和⼩红的⽣⽇分别为x, y ,根据题意,得=+=-347x y k x y (k=1,2,3,4) 2x=34-7k x=17-k 27 k=1, 3时, x 没有整数解;当k=2时, ==.2410y x ,当k=4时,?==.313y y x , (10⽉份没有31⽇,舍去) ∴⼩军的⽣⽇在10⽉10⽇例2. 如果⼀个三位数除以11所得的商,是这个三位数的各位上的数的平⽅和,试求符合条件的所有三位数. (1988年泉州市初⼆数学双基赛题)解:设三位数为100a+10b+c, a, b, c 都是整数,0那么 1191110100c b a b a c b a +-++=++ ,且-8( 1)当a -b+c=0时,得9a+b=a 2+b 2+c 2.以b=a+c 代⼊,并整理为关于a 的⼆次⽅程,得2a 2+2(c -5)a+2c 2-c=0根据韦达定理??-=-=+.2522121c c a a c a a ,这是必要⽽⾮充分条件. ∵5-c>0, 以c=0, 1, 2, 3, 4 逐⼀讨论a 的解.当 c=2, 4时,⽆实数根;当c=1, 3时,⽆整数解;只有当c=0时,a=5;或 a=0. (a=0不合题意,舍去)∴只有c=0, a=5, b=5适合∴所求的三位数是550;(2)当a -b+c=11时,得9a+b+1=a 2+b 2+c 2.以b=a+c 代⼊,并整理为关于a 的⼆次⽅程,得2a 2+2(c -16)a+2c 2-23c+131=0.仿(1)通过韦达定理,由c 的值逐⼀以讨论a 的解.只有当c=3时, a=8, b=0适合所有条件.即所求三位数为803.综上所述,符合条件的三位数有550和803.练习:52. 正整数x 1, x 2, x 3,……x n 满⾜等式x 1+x 2+x 3+x 4+x 5=x 1x 2x 3x 4x 4x 5那么 x 5的最⼤值是________. (1988年全国初中数学联赛题)53. 如果p, q, pq q p 12,12-- 都是整数,.且p>1, q>1, 试求p+q 的值. (1988年全国初中数学联赛题) 54.能否找到这样的两个正整数m 和n ,使得等式m 2+1986=n 2成⽴. 试说出你的猜想,并加以证明. (1986年泉州市初⼆数学双基赛题) 55.当m 取何整数时,关于x 的⼆次⽅程m 2x 2-18mx+72=x 2-6x 的根是正整数,并求出它的根. (1988年泉州市初⼆数学双基赛题) 56.若关于x 的⼆次⽅程(1+a )x 2+2x+1-a=0的两个实数根都是整数,那么a 的取值是________________. (1989年泉州市初⼆数学双基赛题) 57.不等边三⾓形的三条边都是整数,周长的值是28,最⼤边与次⼤边的差⽐次⼤边与最⼩边的差⼤1,适合条件的三⾓形共有____个,它们的边长分别是:______________________________________________________________. 58.直⾓三⾓形三边长都是整数,且周长的数值恰好等于⾯积的数值,求各边长. 59.鸡翁⼀,值钱;,鸡母⼀,值钱三;鸡雏三,值钱⼀.百钱买百鸡,问鸡翁、鸡母、鸡雏各⼏何? 60. 甲买铅笔4⽀,笔记本10本,⽂具盒1个共付1.69元,⼄买铅笔3⽀,笔记本7本,⽂具盒1个共付1.26元,丙买铅笔、笔记本、⽂具盒各1,应付⼏元?若1×2×3×4×……×99×100=12 n ×M ,其中M 为⾃然数,n 为使得等式成⽴的最⼤⾃然数,则M 是( )(A).能被2整除,不能被3整除 . (B).能被3整除,但不能被2整除.(C).被4整除,不能被3整除. (D).不能被3整除,也不能被2整除.(1991年全国初中数学联赛题)练习701. 9+90×2+900×3+990×4=68492. 2893 79563. 30,300,3×10n -14. 50, 33, 476, 317 .5.25506.2500.7. 10501. 1717. 9.奇数 (1+1989)×21989 . 10有两组:18,19,20,21,22; 9,10,11,12,13,14,15,16.11.有四组:除上题中的两组外,尚有-8到16;-17到2212. 13501. 13. 余数是6(由1到102刚好是198位).14. (1)192 (2)901 (3)9999978596 15.516. 60个. 计算积中含质因数5的个数是:从10,25,40,55,……700这组数中含质因数5⽽25,100,175,……700含有52因数,应各加且250,625,含有53因数,应再各加1个5625 含有54因数,再加1个5. ∴总共是17. ??+++625198912519892519895198918. 把a(a 2-1)(3a+2)化为a(a+1)(a -1)[(2a+4)+(a -2)]=2(a -1)a(a+1)(a+2)+(a -2)(a -1)a(a+1).19.因为它们都⼩于2n,n 组中的⼀个互质.20. 易证能被21. 原数=(10n22. 原数=91=(3110-n )2=( 个n 2)3333( (109-1) =91×(10995+1) (10-1)×N (N 为整数) 24. p= n×(103n +9×102n +8×10n +7) q=11111+n ×(103n+3+9×102n+2+8×10n+1+7) ∵10n =9×个n 1111+1, 103n+3,102n+2,10n+1除以个n 1111的余数分别为103,102,10.∴q 的第⼆因式除以个n 1111的余数分别为1×103+9×102+8×10+7…… 25.设A=103 M+N , 7|(M -N).A=103 M+N=103 M+M -M+N=1001M -(M -N).26. 原数=1)510(9110++?-n n =…… 27. 1. 28. 71与33的个位数相同. 29 . 0.30. 9个(1,25,10,20,25,50,100,125).31. 2,6. 可设9n 2+5n+26=m(m+1), 配⽅,分解因式32. 2,9. 33. 8,9.34. 22!+3,22!+5,22!+7,………22!+19,22!+2135. 可设2×3×5×7×11×13×17,那么 N+2,N+3,……N+16即所求.36. (22n+1)2+(x 2n )2+2×22n+1×x 2n -4×22n ×x 2n =(22n+1+x 2n )2-(2 ×2m ×x n )2……37. 奇数. 38 奇数 .39. 4个正整数的和为奇数,则这4个数中有1个或3个是奇数.40. 若有奇数根,则奇+奇+奇≠0;若有偶数根,则偶+偶+奇≠0.41. 若n 为奇数,则与(1)⽭盾;若n 为偶数,由(1)可知,偶数必成双,再由(2)知n 是4的倍数.42. 奇数 43. 星期⼆,∵9 9除以7余数是1.44. 除以整数n -1的余数,最多只有n -1种45. 六位. ∵除以7,余数除0以外,只有6种.46. ①不对,∵⽤9除的余数 11-7≠5,②错.8×2=32,除以9余数不是6.47. a=6k ±1, a 2+23=12k(3k ±1)+2448. 把整数按模4分类为4n, 4n+1, 4n+2, 4n+3.其平⽅后除以8余数分别为0,1,4,1任何两个余数的和都不等于6.49. a 8+3a 4-4=(a 4+4)(a 2+1)(a 2-1), a ≠5k ,则a=5k ±1,5k ±2, a 2 除以5的余数分别为1和4, a 4 除以5余数均为1.50. 2 n 不是3的倍数,可分别设为3k+1,3k -1.51. (同练习69第10题). 52. 5 53. 854. 不可能.(n+m)(n -m)=1986 按n+m, n -m 同奇,同偶讨论.m 2-1)x 2-6(3m-1)x+72=0, [(m+1)x-12][(m-1)x-6]=0.; x 2=16-m . ∵⽅程的根是⾃然数,∴ 11,2,3,4,11,2,3,6.m m +=??-=? 0,1,2,3,5,11;2,3,4,7.m m =??=? ∴m=2,;或m=3.∴当m=2时,x 1=4;或 x 2=6. 当 m=3时, x 1=x 2=3. 56. a=-3,-2, 0, 1 (x 1+x 2=-a +12, x 1x 2=-1+a+12)57. 有三个,其边长分别是:11,9,8; 12,9,7; 13,9,6.58. 6,8,10或5,12,13.59. 设鸡翁,鸡母,鸡雏⼀只分别值 x,y,z 钱,则1001531003x y z x y z ++=++=??消去⼀元,得⼆元⼀次⽅程: 7x+4y=200. 求⾃然数解,得有四组答案:12,8,4,0,4,11,18,25,84;81;78;75.x x x x y y y y z z z z ============???? 60.=++=++12673169104 z y x z y x x+y+z=40 .61. 选(A). 根据连续整数的积的性质,100!含因数2共97个,含因数3有48个……。

初中数学竞赛辅导资料(六)

初中数学竞赛辅导资料(六)

初中数学竞赛辅导资料(六)(含答案) 分式甲内容提要1. 除式含有字母的代数式叫做分式。

分式的值是由分子、分母中的字母的取值确定的。

(1)分式BA 中,当B ≠0时有意义;当A 、B 同号时值为正,异号时值为负,反过来也成立。

分子、分母都化为积的形式时,分式的符号由它们中的负因数的个数来确定。

(2)若A 、B 及BA 都是整数,那么A 是B 的倍数,B是A 的约数。

(3)一切有理数可用BA 来表示,其中A 是整数,B是正整数,且A 、B 互质。

2. 分式的运算及恒等变形有一些特殊题型,要用特殊方法解答方便。

乙例题 例1.x取什么值时,分式xx x x 23222+--的值是零?是正数?是负数?解: xx x x 23222+--=)2()3)(1+-+x x x x (以零点-2,-1,0,3把全体实数分为五个区间,标在数轴上(如上图)当x=-1,x=3时分子是0,分母不等于0,这时分式的值是零;当x<-2, -1<x<0, x>3时,分式的值是正数(∵负因数的个数是偶数)当-2<x<-1, 0<x<3时,分式的值是负数(∵负因数的个数是奇数)例2.m 取什么值时,分式172-+m m 的值是正整数?解:172-+m m =1922-+-m m =2+19-m当例3.计算14++x x +32--x x -12-+x x -34++x x19-m >-2且m -1是9的约数时,分式的值是正整数即m -1=1,3,9,-9 解得m=2,4,10,-8。

3答:(略)解:用带余除法得,原式=1+13+x +1+31-x -1-13-x -1-31+x =)1)(1()1(3)1(3-++--x x x x +)3)(3()3()3(+---+x x x x=162-x -+962-x =)9)(1(4822--x x 4.已知(a+b )∶(b+c)∶(c+a)=3∶4∶5 求①a ∶b ∶c ②bcc aba +-22解:设a+b=3k,则b+c=4k,c+a=5k,全部相加 得2(a+b+c )=12k, 即a+b+c=6k, 分别减上列各式得a=2k, b=k, c=3k∴①a ∶b ∶c =2∶1∶3 ②bc c ab a +-22=k k k kk k 3)3(2)2(22⨯⨯-+=61例5.一个两位数除以它的两个数位上的数字和,要使商为最小值,求这个两位数;如果要使商为最大值呢?解:设这个两位数为10x+y ,那么0<x ≤9, 0≤y ≤9y x yx ++10=1+yx x +9 当x 取最小值1,y 取最大值9时,分式yx x+9的值最小;当x 取最大值9,y 取最小值0时,分式yx x +9的值最大。

初中数学竞赛辅导资料

初中数学竞赛辅导资料
返过来也成立,方程9x+3y=10和4x-2y=1都没有整数解,
∵〔9,3〕=3,而3不能整除10;〔4,2〕=2,而2不能整除1.
一般我们在正整数集合里研究公约数,〔a,b〕中的a,b实为它们的绝对值.
2,二元一次方程整数解的求法:
假设方程ax+by=c有整数解,一般都有无数多个,常引入整数k来表示它的通解〔即所有的解〕.k叫做参变数.
∵x=1时,y=7,∴ 是一个整数解
∴通 ∴整数k=0,1,2
把k=0,1,2代入通解,得原方程所有的正整数解
答:甲、乙两种书分别买1和7本或6和4本或11和1本.
丙练习10
1,求以下方程的整数解
①公式法:x+7y=4,5x-11y=3
②整除法:3x+10y=1,11x+3y=4
2, 求方程的正整数解:①5x+7y=87, ②5x+3y=110
3,一根长10000毫米的钢材,要截成两种不同规格的毛坯,甲种毛坯长300毫米,乙种毛坯长250毫米,有几种截法可百分之百地利用钢材?
4,兄弟三人,老大20岁,老二年龄的2倍与老三年龄的5倍的和是97,求兄弟三人的岁数.
5,以下方程中没有整数解的是哪几个?答:________〔填编号〕
方法一,整除法:求方程5x+11y=1的整数解
解:x= = (1),
设 是整数〕,那么y=1-5k (2),
把〔2〕代入〔1〕得x=k-2(1-5k)=11k-2
∴原方程所有的整数解是 〔k是整数〕
方法二,公式法:
设ax+by=c有整数解 那么通解是 〔x0,y0可用观察法〕
3,求二元一次方程的正整数解:
例2求方程5x+6y=100的正整数解

初中数学竞赛辅导资料

初中数学竞赛辅导资料

第一篇 一元一次方程的讨论第一部分 基本方法1。

方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解. 2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解.问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3, ⑤3x +1=3x -1, ⑥x +2=2+x2。

关于x 的方程ax =x +2无解,那么a __________ 3。

在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解; 当a _____时,有无数多解; 当a ____时,解是负数. 4。

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

初中数学竞赛辅导讲义(总77页)

初中数学竞赛辅导讲义(总77页)

初中数学竞赛辅导讲义-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x例2. 已知z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21证:左边=21(1 - 31 + 31 - 51+ …… +121-n - 121+n ) =21(1- 121+n )∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21 [小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

初中数学竞赛辅导资料(1)

初中数学竞赛辅导资料(1)

初中数学比赛指导资料(5)a n的个位数甲内容大纲.1. 整数 a 的正整数次a n,它的个位数字与 a 的末位数的n 次的个位数字同样。

比方2002 3与 23的个位数字都是8。

7位数是 5,620的个位数是6。

3.2, 3, 7 的正整数次的个位数字的律下表:指数12345678910⋯⋯底22486248624⋯⋯数33971397139⋯⋯77931793179⋯⋯其律是: 2 的正整数次的个位数是按2、 4、 8、 6 四个数字循出,即 24k+1与 21, 24K+2与 22,24K+3与 23,24K+4与 24的个位数是同样的(K 是正整数)。

3 和 7 也有似的性。

4. 4, 8,9 的正整数次的个位数,可模拟上述方法,也可以用4= 22,8= 23,9= 32化以 2、3 底的。

5.上所述,整数 a 的正整数次的个位数有以下的一般律:a4K+m与 a m的个位数同样 (k,m 都是正整数。

乙例例 1的个位数是多少?解:与 32003的个位数是同样的,∵ 2003= 4× 500+ 3,∴ 32003与 33的个位数是同样的,都是7,∴2003 的个位数是 7。

例 2 明 632000+ 1472002的和能被 10 整除的原由解:∵ 2000= 4×500, 2002= 4× 500+ 2∴ 632000与 34的个位数同样都是1,1472002与 72的个位数同样都是9,∴ 632000+ 1472002的和个位数是0,∴ 632000+ 1472002的和能被10 整除。

例 3K 取什么正整数,3k+2k是 5 的倍数?例 4解:列表察个位数的律K =1234⋯⋯3 的个位数3971⋯⋯2 的个位数2486⋯⋯3k+ 2k的个位数55⋯⋯从表中可知,当 K= 1,3 , 3k+ 2k的个位数是5,∵ a m与 a4n+m的个位数同样( m,n 都是正整数, a 是整数);∴当 K 任何奇数, 3k+ 2k是 5 的倍数。

初中数学竞赛辅导资料(60)

初中数学竞赛辅导资料(60)

初中数学竞赛专题选讲(初三.16)解三角形一、内容纲要1. 由三角形的已知元素,求出所有未知元素的过程叫做解三角形 .2. 解直角三角形所依照的定理(在 Rt △ABC 中,∠ C=Rt ∠ ).① 边与边的关系:2 2 2勾股定理----―― c =a +b . ② 角与角的关系:两个锐角互余----∠ A+ ∠ B=Rt ∠ ③ 边与角的关系: (锐角三角函数定义)SinA= a ,CosA= b,tanA=a ,CotA= b .Ac cba④ 互余的两个角的三角函数的关系:Sin(90 - A)= CosA , Cos(90 - A)= SinA , cbtan(90 - A)= CotA,Cot(90 -A)= tanA.BaC⑤ 特别角的三角函数值:角 A 的度数 030 45 6090SinA 的值CosA 的值 1tanA 的值 0不CotA 的值存 在1 2 3212 23 2 12223 13 不 存3在313 03锐角的正弦、正切随着角度的增大而增大(即增函数) ;余弦、余切随着角度的增大而减小(即减函数) .3. 解斜三角形所依照的定理(在△ ABC 中 )① 正弦定理:abc (R 是△ ABC 外接圆半径 ).SinASinB=2R.SinC② 余弦定理:c 2=a 2+b 2- 2abCosC ; b 2=c 2+a 2- 2ca CosB ; a 2=c 2+b 2- 2cbCosA.③ 互补的两个角的三角函数的关系:Sin(180 - A)= sinA , Cos(180 - A)= - cosA ,tan(180 - A)= - cotA ,cotA(180 - A)= -tanA.④ S △ABC = 1 absinC=1 bcsinA= 1 casinB.22 24. 与解三角形相关的看法: 水平距离,垂直距离,仰角,俯角,坡角,坡度,象限角,方向角等 . 二、例题例 1. 已知:四边形 ABCD 中,∠ A = 60 , CB ⊥ AB ,CD ⊥ AD , CB =2, CD = 1.求: AC 的长 .解:延长 AD 和 BC 订交于 E ,则∠ E = 30 .E在 Rt △ECD 中,∵ sinE=CD,CE∴ CE=1 =1÷ 1= 2. EB = 4.sin 302在 Rt △EAB 中, ∵ tanE=AB,EBD1C4 3y2 ∴ AB=EBtan30 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛辅导资料(67)
参数法证平几
甲内容提要
1.联系数量间关系的变数叫做参变数,简称参数.
2.有一类平面几何的证明,可以根据图形性质引入参数,布列方程,通过计算来完成,我们称它为参数法.其关键是正确选定参数和准确的进行计算. 乙例题
例1如图已知:AB 是⊙O 的直径,C 是半圆上的一点,
CD ⊥AB 于D ,⊙N 与⊙O 内切且与AB 、CD 分 别切于E ,F.
求证:AC=AE. 分析:选取两圆半径为参数,通过半径联系AC ,AE 的关系.
证明:设⊙O ,⊙
N 半径分别为R 和r ,连接ON ,NE. 根据勾股定理: OE=
2
2
)-(R r
r -=r R 2-R 2
, AE=OA +OE =R+
r R 2-R 2
; OD=OE -r=r R 2-R 2
-r , AD=OA +OD =R+
r R 2-R
2
-r
根据射影定理AC 2=AD ×AB=(R+
r R 2-R
2
-r)×2R
=2R 2
+2R r R 2-R 2-2Rr
=R 2+2R r R 2-R 2+(R 2
-2Rr)
=(R+r R 2-R 2
)2
∴AC= R+r R 2-R
2
.
∴AC=AE
例2. 已知:△ABC 的内切圆I 和边AB ,BC ,CA 分别切于D ,E ,F ,
AC ×BC =2AD ×DB. 求证:∠C =Rt ∠.
证明:设AD =x, 则DB =c -x.
代入AC ×BC =2AD ×DB. 得 ab=2x(c -x).
2x 2
-2cx+ab=0.
∴x=
4222
ab c c -±
=
2
22
ab c c -±, 又根据切线长定理得x =
2
a
b c -+,

2
22
ab c c -±

2
a
b c -+.
D
E
O
C
c 2-2ab=a 2-2ab+b 2
.
∴ c 2
=a 2
+b 2
. ∴ ∠C =Rt ∠.
例3.已知:等边三角形ABC 中,P 是中位线DE 上一点,BP ,CP 的延长线分别交AC 于F ,
交AB 于G .
求证:
BC
3CF
1BG
1=

.
证明:设△ABC 边长为a, PD =m, PE=n, BG=x, CF=y. ∵DE 是△ABC 的中位线, ∴DE ∥BC ,DE =
2
1BC.
∴⎪⎪⎪⎩
⎪⎪⎪⎨⎧
-
=
-=
)2(2)
1(2y a
y a n x a x a
m
(1)+(2):
y
a y x
a x a
n m 22-+
-=
+.

y
a x a 212121-
+-
=,
2
3
)11(2=+y x a , ∴
a
y
x
311=+
.
∴BC
3
CF
1BG
1=
+.
例4.已知:如图四边形ABCD 中,过点B 的直线交AC 于M ,交CD 于N ,且
CD
CN AC
AM =
S △ABC ∶S △ABD ∶S △BCD =1∶3∶4.
求证:M ,N 平分AC 和CD.
证明:设S △ABC =1, 则S △ABD =3, S △BCD =4, S △ACD =3+4-1=6.

CD
CN AC
AM ==k (0<k<1).连结AN.
根据高相等的三角形面积的比等于底的比,得 k ==△△CD CN S S ACD ACN , ∴S △ACN =6k ;
k S ==
△△AC
AM S ACN
AMN , ∴S △AMN =6k ×k =6k 2;
C
A
k ==
△△CD CN S S BCD BCN , ∴S △BCN =4k ;
k ==△△AC
AM S S ABC
ABM , ∴S △ABM =k ; S △BMC =1-k.
∵S △ACN -S △AMN =S △MNC =S △BCN -S △BMC ∴6k -6k 2
=4k -(1-k) .
6k 2
-k -1=0. ∴k=2
1;或k=
3
1. (k=
3
1.不合题意,舍去.)

CD
CN AC
AM ==k=2
1.
∴AM =MC ,CN =ND .
即M ,N 平分AC 和CD.
例5.已知:如图△ABC 中,AD 是高,AB +DC =AC +BD. 求证:AB =AC.
证明:设AB =c ,AC =b, BD=m, DC=n. 根据勾股定理
得⎩⎨⎧+=+-=-.
2222m b n c m c n b ; ⎩⎨
⎧-=--+=-+.
))(())((n b m c m c m c n b n b ;


⎧-=-+=+.m n c b m c n b ;
⎩⎨
⎧-=--=-.
c b m n b c m n ;
∴c -b=b -c , b=c. 即AB =AC. 例6. 如图已知:一条直线截△ABC 三边AB ,BC ,AC 或延长线于D ,E ,F. 求证:
1FA
CF EC
BE DB
AD =⋅⋅ (曼奈拉斯定理)
证明:设∠BDE =α,∠DEB =β,∠F =γ.
根据正弦定理: 在△BDE 中,
βαSin DB in =
S B E βαSin Sin DB BE =


在△CEF 中,γ
β
Sin EC Sin CF =γ
βSin Sin EC
CF =⇒;
在△ADF 中,)
180
(αγ
-=
Sin FA Sin AD )
180
(αγ-=

Sin Sin FA
AD .
A
n
B
D
∵Sin(180)α- =Sin α.

=FA AD EC CF DB BE ⋅
⋅.
β
αSin Sin ×
γ
βSin Sin ×
1)
180
(=αγ-
Sin Sin .
即1FA
CF EC
BE DB
AD =⋅⋅.
丙练习67
1. 已知:如图三条弦AB ,CD ,EF 两两相交于G ,H ,I.
IA =GD =HE ,IC =GF =HB. 求证:△GHI 是等边三角形.
2. 已知:在矩形ABCD 中,AP ⊥BD 于P ,PE ⊥BC 于E ,PF ⊥CD 于F .
求证:PA 3
=PE ×PF ×BD
3. 已知:△ABC 的两条高AD ,BE 相交于H ,
求证:过A ,B ,H 三点的圆与过A ,C ,H 三点的圆是等圆.
4. 已知:AB 是⊙O 的直径,P 是半圆上的一点,PC ⊥AB 于C ,以PC 为半径的⊙P 交⊙O 于D ,E.
求证:DE 平分PC.
5. 已知:△ABC 的两条高AD 和BE 相交于P ,且AD =BC ,F 是BC 的中点.
求证:PD +PF =
2
1BC
6. 已知:平行四边形ABCD 中,∠A <∠B ,AC 2
×BD 2
=AB 4
+AD 4
.
求证:∠A =
3
1∠B.
7. 求证:四边形内切圆的圆心,它到一组对角的顶点的距离的平方的比,等于该组角的 两边的乘积的比.
8. 已知:AB 是⊙O 的直径,E 是半圆上的一点,过点E 作⊙O 的切线和过A ,B 的⊙O 的两条切线分别相交于D ,C ,四边形ABCD 的对角线AC ,BD 交于F ,EF 的延长线交AB 于H. 求证:EF=FH.
9. 已知:如图⊙M 和 ⊙N 相交于A ,B ,公共弦AB 的延长线交两条外公切线于P ,Q.
求证:PA=QB ; PQ 2=AB 2+CD 2. 10. 已知:正方形ABCD 内一点P ,满足等式
PA ∶PB ∶PC =1∶2∶3.
求证:∠APB =135 .
11. 一个直角三角形斜边为c,内切圆半径是r,求内切圆面积与直角三角形面积的比.
(提示:引入参数a 和b 表示两直角边)
(1979年美国中学数学竞赛试题)
返回目录 参考答案。

相关文档
最新文档