黄岗三角函数式的化简与求值

合集下载

4.4 三角函数的求值化简、和证明

4.4 三角函数的求值化简、和证明
2


2 tan

得 tan( ) 2 tan , tan( ) 1 又 0

4
,0

4
, 0

2



4
规律总结: 本例中,首先由 4 tan

2
1 tan
2

2
的形式
联想倍角公式,求得 tan ,再利用角的交换求

,0

, 且3sin sin

和2 的构造待求式 ,从而可求出 的一个三角函数值,再根据 、 的范 围求 的范围,从而确定角
2
的关系式可求出 的正切值,再根据
【解】
2 1 由4 tan 1 tan 得 tan 2 2 2 2 1 tan 2 由3sin[( ) ] sin[( ) ]

1 cos 20 求 sin10 (cot 5 tan 5 ) 的值. 2sin 20
2007年5月
3 答案: 2
黄冈中学网校达州分校
4 4 2 sin(2 ), 4 tan 1 tan , 求 的值 2 2
【思路分析】

【例3】 已知0
2007年5月 黄冈中学网校达州分校


sin 20 2sin 60 cos 20 2 cos 60 sin 20 cos 20





3.
规律总结: 给角求值(无条件求值)的关键是考虑角与 角之间的关系,构造特殊角,或者利用正负相抵消, 分子分母约去公因式等手段达到求值的目的. 变式训练2—1:

三角函数求值与化简的三种常用方法

三角函数求值与化简的三种常用方法

. .




# 參 麝 參

罄I 张
菌子 璇
_
3 ^ (
Q si


c o s ^
) 1 2' =

2 s i nQ

4 9


co








co
s 夕


Z b b
评 析 由 + 求 出 :
si n 夕
co s 夕
^ n s i

co s 6 是 解 题 的 突 破 口 。

s i n夕 co s0


s i n夕


倒 化 简 + + 5


s in 2
/ n 2 I s —


解 易 知 > :
si n l
c o s 1 。
故 + + / l
s i n 2
/ I
—sΒιβλιοθήκη in 2 =
/ + + ( s i n1
c o s l


/(
o n c s i
种 常 用 方 法 是 : 弦 切 互 化 法 , 和 积 转
换法

巧用“
” 1


换法

下 面 举 例
分 析 , 供 大 家 学 习 与 参考 。 一 、 弦 切 互 化 法
例 已 知 + 1
t a n ( 2 0 1 9 兀
? 2
)=

(完整版)三角函数化简求值证明技巧

(完整版)三角函数化简求值证明技巧

第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。

练习:已知sin(α+β)=,cos(α-β)=,求的值。

2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。

这其中以“1”的变换为最常见且最灵活。

“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。

这往往用到倍、半角公式。

考点15 三角函数式的化简与求值(答案)

考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos

3sin
=
0
,则
tan

4
=


−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=

1 2
,故选 A

4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan

tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.

g3.1049三角函数的化简、求值与证明doc

g3.1049三角函数的化简、求值与证明doc

g3.1049 三角函数的化简、求值与证明一、知识回顾1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

二、基本训练1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 ( )AB、 C 、23 D 、23-2、函数22y sin x x =-+的最小正周期 ( )A 、2πB 、πC 、3πD 、4π3、tan 70cos10(3tan 201)-等于 () A 、1 B 、2 C 、-1 D 、-24、已知46sin (4)4m m mαα--=≠-,则实数m 的取值范围是______。

5、设10,sin cos 2απαα<<+=,则cos2α=_____。

三、例题分析例1、化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+例2、设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值。

第29课时三角函数式的化简、求值与证明doc

第29课时三角函数式的化简、求值与证明doc

课题:三角函数式的化简、求值与证明教学目标:能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明. 教学重点:有关公式的灵活应用及一些常规技巧的运用.(一)主要知识:1三角函数求值问题一般有三种基本类型:1. 给角求值,即在不查表的前提下,求三角函数式的值;2. 给值求值,即给出一些三角函数,而求与这些三角函数式有某种联系的三角式的值;3. 给值求角,即给出三角函数值,求符合条件的角.2. 三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中:①所含函数和角的名类或种类最少;②各项的次数尽可能地低;③出现的项数最少;④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.3. 三角恒等式的证明要求:利用已知三角公式通过恒等变形,论证所给等式左、右相等•(二)主要方法:1. 寻求角与角之间的关系,化非特殊角为特殊角;2. 正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值;3. 一些常规技巧:“1 ”的代换、切割化弦、和积互化、异角化同角等.4. 三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化.5. 三角恒等式的证明:三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是化繁为简、左右归一、变更命题等,使等式两端的“异”化为“同”:②有条件的等式常用方法有:代入法、消去法、综合法、分析法等.(三)典例分析:问题1.1已知tan -:14 =2,求22sin : cos : cos :的值;1 3tan12 3;2 (cot tan二)(1 tan : tan】)-问题2.sin 12 (4cos1 212 -2) 2 2 2 '问题3. 1求证:泄2cos「「也;si n^ si n^2 thx Ex'3 COs4X1 —cos4x1 1问题4.已知tan「一2 , tan—1,且0一求2「:的值(四)巩固练习:1.化简1 tan15等于A 鸟1 -ta n15 °JIJI5. tan cotA. -1B. -2C. 1D. 2886. tan 20 4sin 201 7.已知tan :tan: = 已知〉「均为锐角U 壽"2 =73江5■: 兀亠5兀A.-B. 5C.—或—D.-444 48.已知:「均为锐角,且满足 3sin 2〉• 2sin 2 三, 3sin 2〉-2sin 2: =0 .B.-^C.32D. 12.、1 - sin8 -1 cos8:2A.「sin4B. sin 4C.sin4-2cos4D. 2sin4「cos43. ( 06萍乡模拟) A. .3tan (H a )訂tanB.C. 2.32、3 34.已知sin 八心,m +5 4 -2 mm 5(r 9< “则 tan9= --------------tan - 6 314.已知 sin 2, - - 2sin :,求证:tan - - 3tan :13.若 COS H " cos :1, sin 「sin 」 23 则 COS=求证: c c TE二亠 2|.:29.已知: tan 2 v - 2tan 2「1,求证:cos2 =1 2cos 2^(五)课后作业:―1 sin 4二】 cos4_:i 10.-1 sin 4二一cos4_:i22cos a 1Tt 2 H2tan( )sin ()44A. cot ;B. cot2_「C. tan _::;D. tan2a11. ( 05全国川文)2sin 2:1 cos2: 2cos : cos2-:s=A. tan :; B. tan 2 ; C. 1 ; D.1(六)走向高考:3兀1016. ( 06 安徽)已知',ta n =件 cot :4 3(I)求tan 二的值;2 口口Ct 2 O.5sin 8sin cos 11cos -8(n)求 22 22的值^2sin fa_nI 2丿15.( 04全国)已知〉为锐角,且tan 〉=1,求sin 2二 cos: -sin t sin 2 cos 2:的值17. (05福建文)已知n __ . 1 x ::: O,sin x cosx2 5(I)求sin x — cosx 的值;(n)求2 sin 2x 2 sin x1 —ta nx318.(05全国n文)已知:•为第二象限的角,sin ,:为第一象限的角,cos:5求tan(2:--)的值.5 13。

三角函数化简求值的技巧

三角函数化简求值的技巧
三角函数化简与求值常用技巧
三角函数化简与求值常用技巧
三角函数在高考中通常以中低档题型出现,难度不大,但由 于三角公式的特殊性,解题中往往也涉及一些小的变换技 巧,如果处理得当,往往可以事半功倍,快速而准确地得到 正确结论.通常情况下,三角变换应从“角度、函数、常数、 次数、结构”等几方面着手解决.
一、三角变换,角为先锋 三角函数作为一种特殊函数,其“角”的特殊性不容忽视,因此我们在三角函数恒等变换 中,应该首先注意角的形式,从统一角的角度出发,往往能够达到事半功倍的效果.
【例 1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
【变式演练】已知 sin
x-π
4
=3,则
sin
2x 的值为(
)
5
A.- 7 25
B. 7 25
C. 9 25
D.16 25
【解析】法一、sin 2x=cos(2x- π )=1-2sin2(x- π )=1-2×(3)2= 7 ,选 B.
2
4
5 25
法二、依题意得 2(sin x-cos x)=3,1(sin x-cos x)2= 9 ,1-sin 2x=18,sin 2x= 7 ,选
C、
9 13
D、
13 9
【例
1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
C、
9 13
D、
13 9
【分析】依题意,可求得 tan α=

三角函数式的化简.docx

三角函数式的化简.docx

三角函数式的化简三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将 较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出 数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量 不含根式等.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成 同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降 低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中 的差异,再选择适当的三角公式恒等变形.(一) 知识点 1、辅助角公式tzsin a+bcos a =yja + /72sin(«+cp),"cos (p= _______________ ,其中v si“0= ------------------------ ,btan 一, V Y a2、降幕公式:・2sins= _________________, cos a= _________________ (二)例题讲解⑴求./(X )的最小正周期;(2)当«e[0,兀]时,若./(«) = 1,求a 的值.审题视角(1)在/(X )的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、 降幕等转化方法.(2)当/(x )=dsinx+方cosx 的形式时,可考虑辅助角公式.=-\/3cos 2r+sin xcos x —萌 siiFx+sin xcos 兀所以最小正周期T=n.(2)由 /((X )— 1,得 2sin (2a+守=1,厂 *7又 aW[0,兀],所以 2c (+je 专,-y 所以2a+|=y 或2°+申=晋,角卩称为辅助角.sin a cos a - ___________xcos x.[2分][6分][8分]例1、(12分)已知函数y (x )=2cosin 2x+sin ⑴因为X%)=2cossin 2x+sin xcosx1 • (2010-福建)计算 sin 43°cos 13°B 誓—cos 43°sin 13。

三角函数化简求值常用技巧

三角函数化简求值常用技巧

三角函数化简求值常用技巧三角函数式的化简和求值是高考考查的重点内容之一。

掌握化简和求值问题的解题规律和一些常用技巧,以优化我们的解题效果,做到事半功倍。

这也是解决三解函数问题的前提和出发点。

一、切割化弦例1、已知 )2(cot tan22≥=+m m x x ,求xx 4cos 14cos 3-+的值。

解: 24cos 14cos 34cos 1)4cos 3(24cos 12cos 444cos 1)2cos 1(484cos 12sin 48)4cos 1(812sin 2112sin 412sin 2112sin 41cos sin 2)cos (sin cos sin cos sin sin cos cos sin 2cot tan 2222222222222244222222m x x m x x x x x x x x x x x x x x x x x x x x x x x x x x x =-+∴=-+=-+=---=--=--=-=-+=+=+∴=+Θ 点评:由已知式与待求式的差异知,若选择“从已知到未知”,必定要“切切割化弦”;利用降幂公式实现已知与未知的统一。

二、统一配凑例2、已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值. 解:注意到2α= (α-β)+(α+β),于是可用配凑法求解。

∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=点评:本题以凑角的形式来实现未知与已知的统一,这是三角函数化简求值的常用技巧之一。

三、异角化同例3、已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:22=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x x x x x x x x x x x x x x x ππππππππππ又解Θ 点评:本题求解关键是将如何将已知条件中的角与目标关系式中的角统一起来。

第27讲 三角函数式的化简、求值,证明(解析版)-高考数学二轮复习

第27讲 三角函数式的化简、求值,证明(解析版)-高考数学二轮复习

第27讲 三角函数式的化简、求值,证明一、知识与方法1三角函数式的3种基本题型(1)化简三角函数式.这是一种不指明答案的恒等变形.(2)求值问题.已知某任意角的某一三角比的值,求这个角的其他三角比的值.注意公式的合理选择,特别当心开方运算时根号前正、负的选取,应根据题设条件是否指明角所在的象限,确定最后结果是一组解还是两组解.(3)证明简单的三角恒等式,包括一般三角恒等式的证明和条件三角恒等式的证明. (4)不论是化简,求值还是证明,合理精准地恒等变形是关键. 2两种最常用的变换技巧(1)"1"的代换(如"1"用"22sin cos αα+"代换,用"22sec tan αα-"代换等)(2)切割化弦.在证明和化简的三角式中,若同时含有正弦、余弦、正切、余切、正割、余割,不妨将它们统一化为正弦和余弦,这便是“切割化弦",切割化弦的实质是消元的思想,有时,也可能反过来,即弦化切割.不论是切割化弦还是弦化切割,其目的是减少三角比的“种类”,使解题方向更趋明朗.本专题讲的是同角三角函数式的化简.求值证明.二、典型例题【例1】(1)设2tan cos sin 1θθθ+=,求26cos cos θθ+的值; (2)已知tan 3α=,求2sin 3sin cos 1ααα-+的值; (3)已知1sin(3)cos(5),(0,)5πθπθθπ---=∈,求23sin ()2sin[(1)k k πθπ--++2]cos[(1)]2cos ()()k k k θπθπθ----+∈Z 的值.【分析】第(1)问,由已知式求出一个三角式的值代入欲求式化简即可.第(2)问,有3种解法:(1)通过“1"的代换后弦化切,再把条件代入计算;(2)通过“1'的代换,再化为同一三角函数再约分;(3)把条件tan 3α=化为sin 3cos αα=结合公式22sin cos 1αα+=,通过解方程求sin ,cos αα的值,当然必须对α的取值范图分类讨论.第(3)问,由条件出现sin cos θθ+,结合公式22sin cos 1θθ+=总可认求出sin cos ,sin cos θθθθ-,从而求出sin ,cos θθ的值,这里正确运用诱导公式以及题中所给θ的取值范图的讨论是解题的关键点.【解析】(1)由2tan cos sin 1θθθ+=,即2sin sin 1θθ+=, 得22sin 1sin cos θθθ=-=()()263222cos cos sin sin sin 1cos sin sin (1sin )sin 2sin sin 2sin 1cos 2sin (1sin )3sin 1θθθθθθθθθθθθθθθθθ∴+=+=+-=+-=-=--=--=- 根据已知条件,有2sin sin 10θθ+-=. 解关于sin θ的一元二次方程,得1sin 2θ-=(|sin |1,θ∴舍去sin θ=⎭∴26cos cos 1θθ+=-= (2)解法一 ∵22tan 3,sincos 1ααα=+=∴原式()22222222sin 3sin cos cos sin 3sin cos sin cos sin cos ααααααααααα-+=-++=+(1) 将(1)式分子分母同除以2cos α,得222tan 3tan 111tan ααα-+=+ 即原式1=. 解法二∵22tan 3,sin 3cos sincos 1a αααα=∴=+=,故22222222222222sin 3sin cos 1sin 3sin cos sin cos sin cos 2sin 3sin cos cos sin cos 29cos 9cos cos cos 19cos cos αααααααααααααααααααααα-+-++=+-+=+⨯-+==+解法三由已知tan 3α=,知α为第一、三象限的角.(i)当α为第一象限的角时 由22sin tan 3cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩∴原式22sin 3sin cos 1311ααα=-+=-⨯+=⎝⎭(ii)当α为第三象限的角时由22sin tan 3cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩sin αα==∴原式22sin 3sin cos 1311ααα⎛⎛⎛=-+=-⨯+= ⎝⎭⎝⎭⎝⎭综上所述,2sin 3sin cos 11ααα-+=. (3)解法一由已知可得1sin cos 5θθ+=.(1) 两边平方整理得242sin cos 025θθ=-<. ∴.sin cos 02πθπθθ<<∴->从而249(sin cos )12sin cos 25θθθθ-=-=. 可得7sin cos 5θθ-=(2) 联立(1)(2)解得43sin ,cos 55θθ==-222211223sin ()2sin[(1)]cos[(1)]2cos ()3(1)(sin )2(1)sin (1)cos()2(1)cos 543sin 2sin cos 2cos 25k k k kk k k k πθπθπθπθθθθθθθθθ+---++---+⎡⎤⎡⎤=----⋅----⎣⎦⎣⎦=--=解法二 当02πθ<<时,sin cos 1θθ+>1sin cos 1,52πθθθπ+=<∴<<原式条件移项得1sin cos 5θθ=-,两边平方得221sin cos 5θθ⎛⎫=- ⎪⎝⎭,即22121cos cos cos 255θθθ-=-+,整理得:225cos 5cos 20θθ-+= 解得3cos 5θ=-或4cos 5θ=(舍),从而4sin 5θ=. 而2222sin ()sin ,cos ()cos k k πθθπθθ-=+=,由于1,1k k +-同为奇数或同为偶数,∴sin[(1)]cos[(1)]sin cos k k πθπθθθ++--=.∴原式22543sin 2sin cos 2cos 25θθθθ=--=【例2】(1)当270180x -︒<<-︒时,(2)化简33sin (1cot )cos (1tan )αααα+++.【分析】第(1)问,被开方数展开可化为22cos2x,,则先确定2x的范围,再确定1cos 2x 的等号.第(2)问,运用“化弦法",即把非正弦和非余弦的函数化为正弦和余弦的方法,在三角变换中有着广泛的应用. 【解析】(1)原式=====∵当270180x-︒<<-︒时,13590,cos022x x-︒<<-︒∴<∴原式cos2x=-(2)原式33sin(1cot)cos(1tan)αααα=+++()33332222cos sinsin1cos1sin coscos sin sin cossin cossin cossin(cos sin)cos(cos sin)(cos sin)sin cos cos sinαααααααααααααααααααααααααα⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭++=+=+++=++=+【例3】(1)求证:2(1sin cos)(1sin)(1cos)2x xx x-+-+=(2)已知22tan2tan1αβ=+,求证:22sin2sin1βα=-.【分析】证明三角恒等式一般可以采用的方法有:(1)从左到右化简;(2)从右到左化筒;(3)两边同时化简得出同一个结果.当然还可以运用一些特殊的技巧,如换元法、方程思想等.总之,不论采用何种方法,有一点是一致的:“盯住目标,执果变形”.三角条件恒等式的证明方法灵活多样,总结如下.思路一:对条件等式进行恒等变形,得到欲证的结论.思路二:对欲证等式的一边进行恒等变形,化条件代入再变形得到另一边.思路三:禾用分析怯,从被证等式出发,逐步探求使等式成立的充分条件,一直到已知条件.由于每一步推出关系可逆,从而判断欲证等式成立.【解析】证法一左边1cos sin sin cosx x x x=+--右边22(1sin)cos2(1sin)cos2x x x x-++-=22sin2cos2sin cos2x x x x-+-=1cos sin sin cosx x x x=+--=左边故原式成立.证法二左边1cos sin sin cos x x x x =+--22cos 2sin 2sin cos 2x x x x+--==22sin cos 2sin cos 12(cos sin )2x x x x x x +-++-=()2cos sin 2(cos sin )12x x x x -+-+=()2cos sin 12x x -+=右边故原式成立. 证法三令1sin ,cos x m x n -==.222222sin cos 1(1) 1.2x x m n m n m+=∴-+=∴+=∴右边222()222(1)222m n m n mn m mnm n ++++====+=左边.故原式成立. 证法四构造方程2(sin )2(1sin )x x x x -=-,化简得222sin 0x x x -+= ∴2221cos 0x x x -+-=∴[(1cos )][(1cos )]0x x x x ---+= ∴1cos x x =-或1cos x x =+ 将1cos x x =+代人原方程可得2(1cos sin )(1cos )(1sin )2x x x x +-=+-(2)证法一(由条件等式解出2sin β,代人待证等式,将它转化为三角恒等式的证明)()222222222222222222221sin sin tan 2tan 1,tan tan 12cos 1sin sin 1tan 1sin cos cos sin 2sin 1sin 1tan sin cos 1cos ββαββαββαααααβαααααα=+∴=-==----∴====-+++证法二(从条件人手“切割化弦”,逐步推出结论) ∵()2222tan 2tan 1,1tan 21tan αβαβ=+∴+=+即()2222222cos sin cos sin cos cos ββαααβ++=即22cos 2cos βα=, 即()221sin 21sin βα-=-,三、易错警示【例】已知7sin cos ,(0,)13αααπ+=∈,求tan α的值. 【错解】由7sin cos 13αα+=得60sin cos 169αα⋅=-. ∴22sin cos 60sin cos 169αααα⋅=-+,得2tan 60tan 1169αα=-+. 从而可得21260tan 169tan 600,tan 5ααα++=∴=-或5tan 12α=-. 【分析】上述解法没有从sin cos αα+与sin cos αα⋅的值的内在联系判断sin ,cos αα的正负号.事实上,由60sin cos 169αα⋅=-应意识到sin 0,cos 0.,2παααπ⎛⎫><∴∈ ⎪⎝⎭,另外,还应注意到sin cos αα±和sin cos αα⋅之间的内在联系,总之,解题要注音细节,善于挖掘隐含条件. 【正确的解法】如下: 由7sin cos 13αα+=得60sin cos 169αα⋅=-∴sin 0,cos 0αα><且sin cos αα> ∴由7sin cos 1360sin cos 169αααα⎧+=⎪⎪⎨⎪⋅=-⎪⎩解得12sin 135cos 13αα⎧=⎪⎪⎨⎪=-⎪⎩从而12tan 5α=-四、难题攻略【例】求证:sin cos 2(sin cos )1cos 1sin 1sin cos x x x x x x x x--=++++. 【分析】在上面的方法提炼中归纳了证明三角恒等式的常用的方法,不论采用哪种方法,证明时都可"盯住目标,执果变形".若从左推向右,则右边是“目标",也就是对左边变形要得到“果”.对于本题,可以有认下几种思路: 思路一:由左到右,以右式为“果",左式通分,分子因式分解产生因子(sin cos )x x -,分母适当变形再分解出现1sin cos x x ++,则等式即可获证. 思路二:拟由左到右,因为右式分母有因子1sin cos x x ++,故将左边分母、分子同乘以1+sin cos x x +,对分母上的因子1sin cos x x ++保留,其余的进行恒等变形,朝右之“果"前进. 思路三:化左、右两边为同分母,则1sin cos x x ++是最简单的形式, 利用cos 1sin sin 1cos ,1sin cos 1cos sin x x x xx x x x--==++和等比定理,即可达到目的. 【解析】 证法一左边22sin sin cos cos (sin cos )(1sin cos )(1cos )(1sin )1sin cos cos sin x x x x x x x x x x x x x x +---++==+++++222(sin cos )(1sin cos )1sin cos 2sin 2cos 2cos sin x x x x x x x x x x-++=+++++ =22(sin cos )(1sin cos )(1sin cos )x x x x x x -++=++ 2(sin cos )1sin cos x x x x-=++ =右边∴所证等式成立 证法二 左边=1sin cos sin cos 1sin cos 1cos 1sin x x x x x x x x ++⎛⎫- ⎪++++⎝⎭=1sin (1sin cos )cos (1sin cos )1sin cos 1cos 1sin x x x x x x x x x x ++++⎡⎤-⎢⎥++++⎣⎦=221sin cos sin cos 1sin cos 1cos 1sin x x x x x x x x ⎛⎫+-- ⎪++++⎝⎭=()1sin 1cos cos 1sin 1sin cos x x x x x x +---+++=2(sin cos )1sin cos x x x x-++=右边∴所证等式成立 证法三cos 1sin cos 1sin 1sin cos 1sin cos sin 1cos sin 1cos 1cos sin 1sin cos sin cos sin 1cos cos 1sin 2(sin cos )1cos 1sin 1sin cos 1sin cos 1sin cos x x x xx x x x x x x xx x x xx x x x x x x x x x x x x x x x-+-==+++-+-==++++-+--∴-=-=++++++++∴所证等式成立.五、强化训练1.k 在什么范围内,对于0,2πθ⎡⎤∈⎢⎥⎣⎦,总有不等式2cos 2sin 220k k θθ+--<成立?【解析】22cos 2sin 2202(sin 1)2cos .k k k θθθθ+--<⇔-<-. ①0,,1sin 10.2πθθ⎡⎤∈∴--⎢⎥⎣⎦当,sin 10,2πθθ=-=时此时对一切.k R ∈不等式①恒成立.当0,,1sin 10,2πθθ⎡⎫∈--<⎪⎢⎣⎭时时,此时不等式①可化为222cos (sin 1)2(sin 1)212(sin 1)22(sin 1)2(sin 1)2sin 1k θθθθθθθ--+-+⎡⎤>==-++⎢⎥---⎣⎦12(1sin )2.21sin θθ⎡⎤=--+-⎢⎥-⎣⎦令1sin ,01,t t θ=-<则又函数2y t t=+在(0,1]上是减函数; 2y t t ∴=+的最小值为 3,故1121,(2).22y y ---- 要使1(2)0, 22k y πθ⎡⎫⎪--∈⎢⎣>⎭对,均成立,则需12k >-综上所述k 的取值范围是1(,).2-+∞2.设12,x x 是关于x 的方程222(sin 1)sin 0x x αα+++=的两根,且1222x x -,求α的取值范围.【解析】由韦达定理得122122(sin 1),sin .x x x x a α⎧⎨⎩+=-+= []2222121212()()42(sin 1)4sin 8sin 48,x x x x x a a s a τ∴-=+-=-+-⇒+解不等式,得1sin .2a① []222(sin 1)4sin 8sin 40.a a α∆=+-=+解不等式,得1sin -.2a ≥ ② 由①②得1157sin ,.226666a a aππππ--故或 并解即得().66k a k k Z ππππ-+∈3.偶函数()f x 在(,0)[0,)-∞+∞上有意义,且在[,0)-∞上是减函数.(6)0f =,设217()2cos sin ,0,42g m m πθθθθ⎡⎤=+-∈⎢⎥⎣⎦.求()0g θ<且[()]0f g θ>时m 的取值范围.【解析】解法一:()f x 是偶函数,且在(,0)-∞上是减函数, ∴()f x 在(0,)+∞上是增函数,又f⑹=0(6)0,(,6)(6,),()0.f x f x ∴-=∈-∞-⋃+∞>则当时217()0,()6,2cos sin 6.4g g m m θθθθ<∴<-+-<-又即 亦即2172(1sin)sin 6,4m m θθ-+-<-,整理得[]28sin 4sin 17320.sin ,0,1.m m x x θθθ-+->=∈①设设[]2()841732.0,,|0,1,()0.2h x x mx m x h x πθ⎡⎤=-+-∈∴∈>⎢⎥⎣⎦问题等价于恒成立② 当min 0,()(0)17320,4mh x h m <==->时此时无解;① 当2min 01,()1732024;42m m h x m x =--><≤恒成立,解得 ② 当min 1,()(1)13240 4.4m h x h m m >==->>时恒成立,解得 综上,使得()0(())0g f g θθ<>且时 m 的取值范围是 2.m > 解法二:同解法一得28sin 4sin 17320,m m θθ-+->即[]21717(sin )82sin ,sin 0,1,sin 0.44m θθθθ->-∈∴-> 从而282sin ,17sin 4m θθ->-m 只需大于282sin 17sin 4θθ--的最大值 令171317sin ,,.444t t θ⎡⎤=-∈⎢⎥⎣⎦则 21782()225417(2)172228t y t t t t --==-+-= 当且仅当154t =时等号成立, 2.m ∴>。

湖北省黄冈中学高考数学 典型例题16 三角函数式的化简与求值

湖北省黄冈中学高考数学 典型例题16 三角函数式的化简与求值

高考数学典型例题详解 三角函数 化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场 (★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80°=21 (1-cos40°)+21(1+cos160°)+ 3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)= 41解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100°=-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值. 命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识. 错解分析:在求f--1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式. 2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用. 3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练 一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),则tan 2βα+的值是( ) A.21B.-2C.34D.21或-2二、填空题2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________.3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题 4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x的值. 参考答案 难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二:∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=6556)65406572(21-=--歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0. tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2.答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21,247)34()43(1)34(432tan tan 1tan tan )2tan(.34)21(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β答案:2473.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即 答案:6556三、4.答案:2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解 π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t ..21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当。

黄岗三角函数式的化简与求值

黄岗三角函数式的化简与求值

难点16 三角函数式的化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°) =1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值. 命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),则tan 2βα+的值是( ) A.21 B.-2 C.34 D. 21或-2 二、填空题 2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题 4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x 的值.参考答案难点磁场 解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯= 解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21, 247)34()43(1)34(432tan tan 1tan tan )2tan(.34)21(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β 答案:2473.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即 答案:6556 三、4.答案:2 752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x xx x x x x x x x x x x x x ππππππππππ又解 2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解 π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1. 7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t . .21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当。

三角函数的化简与求值

三角函数的化简与求值

1.三角恒等变换的两原则(1)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式。

(2)消除异差:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构式等方面的差异。

2.三角函数式的化简 (1)化简要求①三角函数名称尽量少;②次数尽量低;③能求值的尽量求值; ④尽量使分母不含三角函数;⑤使被开方数不含三角函数. (2)化简思路对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用,另外,还可以用切割化弦、变量代换、角度归一等方法 (3)化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂,和差化积,积化和差等。

3.三角恒等式的证明 (1)证明三角恒等式的方法观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),确定从该等式的哪些证明(也可两边同时化简),当从解决差异方面不易入手时,可采用转换命题法或用分析法等。

(2)证明三角条件等式的方法首先观察条件与结论的差异,从解决这一差异入手,确定从结论开始.通过变换,将已知表达式代入得出结论,或通过变换已知条件得出结论,如果这两种方法都证不出来,可采用分析法;如果已知条件含参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法等。

1. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),如 (1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ (答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729); (3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)(2)三角函数名互化(切化弦),如 (1)求值sin 50(13tan10)+(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

湖北省黄冈中学高考数学 典型例题16 三角函数式的化简与求值.doc

湖北省黄冈中学高考数学 典型例题16 三角函数式的化简与求值.doc

高考数学典型例题详解 三角函数 化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场 (★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 2cos 280°+3cosos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 2cos 280°+3sin 2os80°=21 (1-cos40°)+21(1+cos160°)+ 3sinos80° =1-21cos40°+21cos160°+3sinos(60°+=1-21cos40°+21(cos1os40°-sin1in40°)+3sincos60°cossin60°sin=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 2=1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 2cos 280°+3sinos80°y =cos 2sin 280°-3cosin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100°=-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 2cos 280°+3sinos80°=41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值; (3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值. 命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识. 错解分析:在求f--1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2.(3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式. 2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用. 3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练 一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),则tan 2βα+的值是( ) A.21B.-2C.34D.21或-2二、填空题2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________.3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题 4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D,求函数y =10432log 21++x x 的最小值,并求取得最小值时x的值. 参考答案 难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二:∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=6556)65406572(21-=--歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0. tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2.答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21,247)34()43(1)34(432tan tan 1tan tan )2tan(.34)21(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β答案:2473.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即 答案:6556三、4.答案:2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解 π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t ..21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当。

三角函数的化简求值

三角函数的化简求值

三角函数的化简求值一.主要公式:1.诱导公式:=-)sin(απ =-)c o s (απ =+)s i n (απ=+)cos(απ =-)s i n (α =-)cos(α=-)2sin(απ =-)2c o s (απ =+)2sin(απ =+)2c o s (απ2.和、差角公式: =+)sin(βα =-)s i n (βα ; =+)cos(βα =-)c o s (βα ; =+)tan(βα =-)t a n (βα ; 3.二倍角公式:=α2sin =α2c o s = = =α2tan ; 4.降幂公式: =2sin 2α=2c o s2α=2t a n2α;5.半角公式sin 2α= c o s 2α= t a n 2α= ;6.升幂公式:=+αcos 1 ,=-αcos 1 ;=+αsin 1 ,=-αsin 1 。

7.万能公式:=αsin =αcos =αtan ; 8.三角形ABC 中的相关公式:=+)sin(B A =+)cos(B A =+)t a n (B A =+2sinBA =+2cosB A =+2tan B A ; 9.常用公式结论:=+ααcot tan =ααcos sin =-α2sin 1 =+α2sin 1 =+βαtan tan =-βαt a n t a n ;sin 3α= cos3α= 1tan 1tan αα+=-10.辅助角公式:=+ααcos sin = =+ααcos 3sin ==+x b x a cos sin = 。

二、例题分析:例1已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值.例2.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan的值.((Ⅱ)求β. ( π3β=)例3.已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.例 4.是否存在锐角,αβ,使得①223παβ+=;②22tantan αβ=同时成立?若存在,求出,αβ;若不存在,说明理由。

高考数学难点突破_难点16__三角函数式的化简与求值

高考数学难点突破_难点16__三角函数式的化简与求值

高考数学难点突破_难点16__三角函数式的化简与求值在高考数学中,三角函数式的化简与求值是一个很常见的难点。

在解决这一难点时,我们需要掌握一些基本的化简公式和常用的解题技巧。

首先,我们来回顾一下一些常见的三角函数化简公式:1.两角之和的三角函数公式:sin(A+B) = sinA·cosB + cosA·sinBcos(A+B) = cosA·cosB - sinA·sinBtan(A+B) = (tanA + tanB) / (1 - tanA·tanB)2.两角之差的三角函数公式:sin(A-B) = sinA·cosB - cosA·sinBcos(A-B) = cosA·cosB + sinA·sinBtan(A-B) = (tanA - tanB) / (1 + tanA·tanB)3.倍角的三角函数公式:sin2A = 2sinA·cosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)4.半角的三角函数公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)](在这里需要根据A的范围来确定取正还是取负)掌握了这些基本的化简公式后,我们可以运用它们来解决一些常见的难点问题。

1.求三角函数值:高考中经常会出现需要求一些特定角度的三角函数值的问题。

我们可以通过套用基本的化简公式,将所给的角度化简到我们熟悉的角度(如30°,45°,60°等),然后代入公式求值即可。

例如,要求sin75° 的值,我们可以化简为sin(45°+30°),然后套用两角之和的公式,得到sin45°·cos30° + cos45°·sin30°。

例析三角函数求值与化简的三种常用方法

例析三角函数求值与化简的三种常用方法

题过程简单明了。
作 者 单 位 :湖 北 省 巴 东 县 第 三 高 级 中 学
(责任编辑 郭正华)
16
三 、巧 用 “1”的 变 换 法
例3


1+tanx 1-tanx
=5+2
6,则
1c -os sin 2x2x=


:由
1+tanx 1-tanx
=tan(45°+x
),可

tan(45°+x)=5+2 6。
1c -os sin 2x2x=1+ sic no(s 90 (9 °0+°2 +x2x ))
m
=
3。 2
(3)原





2x2
-(3+1)x+
3 2=
0,解

x1
=
23,x2
=
1 2
,所

ìïïsinθ= í
3, 2或
îïïcosθ=
1 2
ìïïcosθ= í
3, 2又
îïïsinθ=
1 2



x∈
(0,2π),所
以θ=
π 3
或θ=
π。 6
评析:已 知 sinθ+cosθ,sinθ-cosθ, sinθcosθ 中的任 何 一 个 值,则 另 两 个 式 子 的 值均可求出。
知识篇·知识结构与拓展 高一使用 2020年4月
■张红梅
三角函数求值与化简的三种常用方法:
弦切互化法、和积转换法、巧用 “1”的 变 换 法。
下 面 举 例 分 析 ,供 大 家 学 习 与 参 考 。

三角函数的化简与求值

三角函数的化简与求值
a2 b2sin(α+φ)(其中cos
φ=
2
a
2
a b
,sin φ=
b
2
a b2
).
二、二倍角公式
sin 2α=2sin αcos α;
高考第一轮复习用书· 数学(理科)
第四章 4.2 三角函数的化简与求值
cos 2α=cos α-sin α=1-2sin α=2cos α-1; tan 2α=
7 2 = sin( -x).
第四章 4.2 三角函数的化简与求值
题型1 三角函数式的化简
例1 (1)化简sin(3x+ )cos(x- )+cos(3x+ )cos(x+ );
3
6
3
3
(2)化简
tan α tan2α tan2α tan α
+ 3 (sin α-cos α).
2
2
高考第一轮复习用书· 数学(理科)
第四章 4.2 三角函数的化简与求值
三、半角公式 sin =±
2 θ
1 cos θ , 2
cos =±
2
θ
1 cos θ , 2
tan =±
2
θ
1 cos θ , 1 cos θ
θ 其中符号“±”的选取由 角的范围确定. 2
用正余弦来表示正切的半角公式: tan =
α 2
s in α 1 cos α = 1 cos α s in α
= 1 m2
m
2 ,tan 5 = 1 ta n 2 5
2 ta n 5
=
1 m m 2 1 1 m
2
m
2

三角函数的求值与化简

三角函数的求值与化简

三角函数的求值与化简一 三角函数式的化简与证明 1.两角和与差的三角函数公式 sin(α+β)=sin αcos β+cos αsin β(S α+β) sin(α-β)=sin αcos β-cos αsin β.(S α-β) cos(α+β)=cos αcos β-sin αsin β;(C α+β) cos(α-β)=cos αcos β+sin αsin β.(C α-β) tan (α+β)=tan α+tan β1-tan αtan β;(T α+β)tan (α-β)=tan α-tan β1+tan α·tan β(T α-β)2.二倍角公式sin 2α=2sin αcos α;(S 2α)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(C 2α) tan 2α=2tan α1-tan 2α.(T 2α)3.公式的变形与应用(1)两角和与差的正切公式的变形 tan α+tan β=tan (α+β)/(1-tan αtan β); tan α-tan β=tan (α-β)/(1+tan αtan β). (2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2.(3)降幂公式 sin 2α=1-cos 2α2;cos 2α=1+cos 2α2. (4)其他常用变形sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α;1±sin α=⎝⎛⎭⎫sin α2±cos α22; tan α2=sin α1+cos α=1-cos αsin α.5.角的拆分与组合 (1)已知角表示未知角例如,2α=(α+β)+(α-β),2β=(α+β)-(α-β), α=(α+β)-β=(α-β)+β, α=⎝⎛⎭⎫π4+α-π4=⎝⎛⎭⎫α-π3+π3. 例1化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.即时训练1化简:sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)=________.例24cos 50°-tan 40°=( ) A.2B.2+32C.3D.22-1 (2)已知cos ⎝⎛⎭⎫α-β2=-513,sin ⎝⎛⎭⎫α2-β=45且0<β<π2<α<π,则sin(α+β)的值为________.即时训练2.(1)已知α为锐角,且sin α(1+3tan 10°)=1,则α的值为________. (2)已知α,β∈(0,π),且tan (α-β)=12,tan β=-17,求2α-β的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点16 三角函数式的化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值. 命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),则tan 2βα+的值是( ) A.21 B.-2 C.34 D. 21或-2 二、填空题2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x 的值.参考答案难点磁场 解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21, 247)34()43(1)34(432tan tan 1tan tan )2tan(.34)2(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β 答案:2473.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即 答案:6556 三、4.答案:2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x xx x x x x x x x x x x x ππππππππππ又解 2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解 π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1. 7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t . .21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当。

相关文档
最新文档