浙江省湖州市2020届高三数学上学期期末考试试题含解析
人教版数学高三期末测试精选(含答案)8
【答案】C
x 0,
9.设点
P(
x,
y)
在不等式组
2x
y
0,
表示的平面区域上,则 z
x y 3 0
(x 1)2 y2 的
最小值为( )
A.1
B. 5 5
C. 2
D. 2 5 5
【来源】辽宁省沈阳市东北育才学校 2019 届高三第五次模拟数学(文)试题
【答案】D
10.已知各项均为正数的等比数列an 单调递增,且 a1 a3 36,a1 a2 a3 26 ,
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .若 ABC 的面积为
b2 c2 a2 ,则角 A =(
A. ab ac
B. c b a 0
C. cb2 ab2
D. ac a c 0
【来源】2019 年上海市格致中学高三上学期第一次检测数学试题
【答案】C
6.已知 a,b ∈ R,则 a > |b|是 a|a| > b|b|的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
则 Ð B =___________. 【来源】重庆市綦江实验中学校 2017-2018 学年高一下学期半期考试数学(理)试题.
【答案】150
23.已知等差数列an 的公差为 2,若 a1,a3 ,a4 成等比数列,则 a2 ________.
【来源】安徽省阜阳三中 2018-2019 学年高二上学期第一次调研考试数学(文)试题
浙江省湖州市19-20学年高三上学期期末数学试卷 (有解析)
浙江省湖州市19-20学年高三上学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 已知集合A ={−2,0,2},B ={x|x 2−x −2=0},则A ∪B =( )A. {−1,2,−2,0}B. {2}C. {0,2}D. {−2,2,0}2. 设i 是虚数单位,若复数z =1+2i ,则复数z 的模为( )A. 1B. 2√2C. √3D. √5 3. 已知各项不为0的等差数列{a n }满足a 4−2a 72+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 8b 10=( )A. 1B. 8C. 4D. 24. 设实数x,y 满足约束条件{x +y ⩽4x −y ⩽2x −1⩾0,则目标函数z =y x+1的取值范围是( )A. (−∞,−12]⋃[0,32]B. [14,32] C. [−12,14] D. [−12,32] 5. 设x ∈R ,则“|x −1|<1”是x 3<8的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 6. 已知双曲线的方程为x 2a 2−y 2b 2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB|=m ,F 1为另一焦点,则△ABF 1的周长为( )A. 2a +2mB. a +mC. 4a +2mD. 2a +4m7. 已知离散型随机变量ξ满足二项分布且ξ∼B (3,p ),则当p 在(0,1)内增大时,( )A. D (ξ)减少B. D (ξ)增大C. D (ξ)先减少后增大D. D (ξ)先增大后减小 8. 已知函数,若函数g(x)=f(x)−m 有三个不同的零点,则实数m 的取值范围为( ) A. [−12,1] B. [−12,1) C. (−14,0) D. (−14,0]9. 已知f(x)=x +1x −2(x >0),则f(x)有( ) A. 最大值为0 B. 最小值为0 C. 最大值为−4 D. 最小值为−410. 记min{a,b}={a,a ≤b b,a >b,已知矩形ABCD 中,AB =2AD ,E 是边AB 的中点,将△ADE 沿DE 翻折至△A′DE(A′∉平面BCD),记二面角A′−BC −D 为α,二面角A′−CD −E 为β,二面角A′−DE −C 为γ,二面角A′−BE −D 为θ,则min{α,β,γ,θ}=( )A. αB. βC. γD. θ二、填空题(本大题共7小题,共36.0分)11. 某几何体的三视图(单位:cm)如图所示,则该几何体的体积为______ cm 3,表面积为______ cm 2.12. 二项式(√x +1x )6的展开式中常数项等于 ,有理项共有 项.13. 斜率为1的直线与椭圆x 24+y 23=1相交于A ,B 两点,线段AB 的中点为M(m,1),则m =__________.14. 在△ABC 中,若,则sin A 的最大值为 . 15. 从装有质地均匀大小相同的3个白球、2个红球的袋中随机取出2个小球,则取出的小球是同色球的概率是__________.16. 已知函数f(x)=lnx +2ax,g(x)=1x −a ,且f(x)g(x)≤0在定义域内恒成立,则实数a 的取值范围为______.17. 正方形ABCD 的边长为2,E ,M 分别为BC ,AB 的中点,点P 是以C 为圆心,CE 为半径的圆上的动点,点N 在正方形ABCD 的边上运动,则PM ⃗⃗⃗⃗⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ 的最小值是______. 三、解答题(本大题共5小题,共74.0分)18. 在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知2bcosA =2c −√3a.(1)求B ;(2)设函数,求f(A)的最大值.19. 如图,四边形ABCD 为菱形.将△CBD 沿BD 翻折到△EBD 的位置.(1)求证:直线BD ⊥平面ACE ;(2)若二面角E −BD −C 的大小为60°,∠DBF =60°,求直线CE 与平面ABE 所成角的正弦值.20.已知数列{a n}的前n项和S n=12n2+12n,(1)求数列{a n}的通项公式;(2)令b n=1a n a n+1,求数列{b n}的前2015项和T2015.21.已知点F是抛物线C:y2=4x的焦点,直线l与抛物线C相切于点P(x0,y0)(y0>0),连接PF交抛物线于另一点A,过点P作l的垂线交抛物线C于另一点B.(1)若y0=1,求直线l的方程;(2)求三角形PAB面积S的最小值.22.已知函数f(x)=a x+x2−xlna(a>0,a≠1).(1)求函数f(x)的单调区间;(2)若存在x1,x2∈[−1,1],使得|f(x1)−f(x2)|≥e−1(e是自然对数的底数),求实数a的取值范围。
2020年浙江省湖州市第十二高级中学高三数学理期末试题含解析
2020年浙江省湖州市第十二高级中学高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知是偶函数,f(x)在(-∞,2]上单调递减,,则的解集是A. B.C. D.参考答案:D【分析】先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【点睛】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.2. 下列命题错误的是( )A.命题“若x2<1,则﹣1<x<1”的逆否命题是若x≥1或x≤﹣1,则x2≥1B.“am2<bm2”是”a<b”的充分不必要条件C.命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0D.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题参考答案:D【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】对于A,写出逆否命题,比照后可判断真假;对于B,利用必要不充分条件的定义判断即可;对于C,写出原命题的否定形式,判断即可.对于D,根据复合命题真值表判断即可;【解答】解:命题“若x2<1,则﹣1<x<1”的逆否命题是若x≥1或x≤﹣1,则x2≥1,故A正确;“am2<bm2”?”a<b”为真,但”a<b”?“am2<bm2”为假(当m=0时不成立),故“am2<bm2”是”a<b”的充分不必要条件,故B正确;命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0,故C正确;命题“p或q”为真命题,则命题“p”和命题“q”中至少有一个是真命题,故D错误,故选:D【点评】本题借助考查命题的真假判断,考查充分条件、必要条件的判定及复合命题的真假判定.3. 已知是虚数单位,,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件参考答案:A试题分析:当时,成立,反之,当时,即,即且,∴或,∴反之不一定成立,∴ “”是“”的充分不必要条件.考点:充分必要条件.4. 已知集合= ()A .{0,1}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2} 参考答案: A5. 设等比数列的前项和为,若,,,则( ) A .B .C .D .参考答案:C 略6. 复数的值为 ( ) A .B .C .D .参考答案: C7. 将函数y=cosx+sinx (x∈R)的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.B.C.D参考答案:【知识点】两角和与差的正弦函数;函数y=Asin (ωx+φ)的图象变换.C4 C5B 解析:由已知当时,平移后函数为,其图象关于y 轴对称,且此时m 最小。
山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题含答案
绝密★启用并使用完毕前高考针对性训练数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设12i2iz -=+,则z =()A .iB .i-C .4i 5+D .4i 5-2.若sin cos αα-=,则tan α=()A .1B .1-C .2D .2-3.()6111x x ⎛⎫+- ⎪⎝⎭展开式中2x 的系数为()A .5-B .5C .15D .354.已知{}n a 是等比数列,且27844a a a a =-=-,则3a =()A .B .C .2-D .2±5.某单位设置了a ,b ,c 三档工资,已知甲、乙、丙三人工资各不相同,且甲的工资比c 档高,乙的工资比b 档高,丙领取的不是b 档工资,则甲、乙、丙领取的工资档次依次为()A .a ,b ,cB .b ,a ,cC .a ,c ,bD .b ,c ,a6.三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥.若该三棱锥的最长的棱长为9,最短的棱长为3,则该三棱锥的最大体积为()A B C .18D .367.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P在C 上,且2122PF PF a ⋅= ,PO = ,则C 的离心率为()A B C .3D .28.已知函数()f x 的定义域为R ,且()()()yf x xf y xy x y -=-,则下列结论一定成立的是()A .()11f =B .()f x 为偶函数C .()f x 有最小值D .()f x 在[]0,1上单调递增二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学投篮两次,第一次命中率为23.若第一次命中,则第二次命中率为34;若第一次未命中,则第二次命中率为12.记()1,2i A i =为第i 次命中,X 为命中次数,则()A .22()3P A =B .4()3E X =C .4()9D X =D .123(|)4P A A =10.已知ABC △内角A ,B ,C 的对边分别为a ,b ,c ,外接圆半径为R .若1a =,且()sin sin sin A b B c b C -=+,则()A .3sin 2A =B .ABC △面积的最大值为34C .3R =D .BC 边上的高的最大值为611.已知函数()sin ln f x x x =⋅,则()A .曲线()y f x =在πx =处的切线斜率为ln πB .方程()2024f x =有无数个实数根C .曲线()y f x =上任意一点与坐标原点连线的斜率均小于1eD .2()2x y f x =-在()1,+∞上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.数列{}n a 满足22n n a a +-=,若11a =,44a =,则数列{}n a 的前20项的和为______.13.在正四棱柱1111ABCD A B C D -中,4AB =,16AA =,M ,N 分别是AB ,AD 的中点,则平面1MNC 截该四棱柱所得截面的周长为______.14.已知抛物线22x y =与圆()()22240x y rr +-=>相交于四个不同的点A ,B ,C ,D ,则r 的取值范围为______,四边形ABCD 面积的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)近年来,我国众多新能源汽车制造企业迅速崛起.某企业着力推进技术革新,利润稳步提高.统计该企业2019年至2023年的利润(单位:亿元),得到如图所示的散点图.其中2019年至2023年对应的年份代码依次为1,2,3,4,5.(1)根据散点图判断,y a bx =+和2y c dx =+哪一个适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果,建立y 关于x 的回归方程;(3)根据(2)的结果,估计2024年的企业利润.参考公式及数据;1221ˆni ii ni i x ynx ybx nx==-=-∑∑,ˆˆay bx =-,52155i i x ==∑,541979ii x ==∑,51390i i y ==∑,511221i i i x y ==∑,5214607.9i i i x y ==∑16.(本小题满分15分)如图,在三棱台ABC DEF -中,平面ABC ⊥平面BCFE ,AF DE ⊥,45ABC CBF ∠=∠=︒,1AC AB >=.(1)求三棱台ABC DEF -的高;(2)若直线AC 与平面ABF 所成角的正弦值为155,求BC .17.(本小题满分15分)已知函数()22xxf x a =+-,其中0a >且1a ≠.(1)若()f x 是偶函数,求a 的值;(2)若0x >时,()0f x >,求a 的取值范围.18.(本小题满分17分)已知点21,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆2222:1(0)x y E a b a b +=>>上,A 到E的两焦点的距离之和为.(1)求E 的方程;(2)过抛物线()2:1C y x m m =->上一动点P ,作E 的两条切线分别交C 于另外两点Q ,R .(ⅰ)当P 为C 的顶点时,求直线QR 在y 轴上的截距(结果用含有m 的式子表示);(ⅱ)是否存在m ,使得直线QR 总与E 相切.若存在,求m 的值;若不存在,说明理由.19.(本小题满分17分)高斯二项式定理广泛应用于数学物理交叉领域.设,y q ∈R ,*n ∈N ,记[]11n n q q-=++⋅⋅⋅+,[][][][]!11n n n =⨯-⨯⋅⋅⋅⨯,并规定[]0!1=.记1(,)()()()()n n q F x n x y x y x qy x q y -=+=++⋅⋅⋅+,并规定()0,0()1q F x x y =+=.定义[][][](,),0(,)11(),1,2,,kqn kq F x n k D F x n n n n k x y k n-=⎧⎪=⎨-⋅⋅⋅-++=⋅⋅⋅⎪⎩(1)若1y q ==,求(),2F x 和1(,2)q D F x ;(2)求[][]!(0,)!k qn k D F n n -;(3)证明:[]0(0,)(,)!k nq k k D F n F x n x k ==∑.2024年5月济南市高三模拟考试数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案ABACBCDC二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDADBCD三、填空题:本题共3小题,每小题5分,共15分.12.21013.14.4);四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)2y c dx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:52211()115i i x x ===∑,511785i i y y ===∑,52215222221553905()4607.95317.9550.8537455()5()9795ˆ5i ii ii xy x ydx x ==-⨯-⨯⨯====⎛⎫-⨯-⨯ ⎪⎝⎭∑∑,239055()0.8568.655ˆ5ˆcy d x =-⨯=-⨯=,所以,268.65ˆ0.85y x =+.(3)令6x =,268.650.85699.25ˆy=+⨯=,估计2024年的企业利润为99.25亿元.另解(此种解法酌情给分):(1)y a bx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:1234535x ++++==,511785i i y y ===∑,()()515222151221537851 5.13ˆ555105i ii i i x yx ybx x==-⨯-⨯⨯====-⨯-⨯∑∑,()78 5.1362.7ˆˆa y b x =-⨯=-⨯=,所以,7ˆ62. 5.1yx =+.(3)令6x =,62.7 5.1693.3ˆy=+⨯=,估计2024年的企业利润为93.3亿元.16.【解析】解:(1)作FO BC ⊥于点O ,因为平面ABC ⊥平面BCFE ,所以FO ⊥平面ABC ,FO 即为三棱台ABC DEF -的高.又因为AB ⊂平面ABC ,所以FO AB ⊥.连接AO ,因为AB DE ∥,AF DE ⊥,所以AB AF ⊥,FO AF F = ,所以AB ⊥平面AFO ,又AO ⊂平面AFO ,所以AB AO ⊥.45ABC CBF ∠=∠=︒,1AB =.所以1AO =,BO FO ==ABC DEF -.(2)以O 为原点,在面ABC 内,作OG BC ⊥,以OG ,OB ,OF 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O xyz -,则,22A ⎛⎫ ⎪ ⎪⎝⎭,B,F,,,022AB ⎛⎫=- ⎪ ⎪⎝⎭,FB =,设平面ABF 的法向量为(),,n x y z =则022n FB n AB x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可取()1,1,1n = ,设BC BO λ=,则22,022AC ⎛⎫=-- ⎪ ⎪⎝⎭,设直线AC 与平面ABF 所成角为α,15sin cos ,5AC n α===,化简得281890λλ-+=,解得32λ=或34λ=(舍去,因为AC AB >,所以1λ>),所以BC =.17.【解析】(1)由题意,()()11f f -=,即112222a a +-=+-,解得,12a =或2a =-(舍)又经检验,12a =时,()f x 是偶函数.所以,a 的值为12.(2)当12a =时,0x ∀>,1()22202x xf x ⎛⎫=+->= ⎪⎝⎭成立;当12a >且1a ≠时,0x ∀>,1()22222xx x xf x a ⎛⎫=+->+- ⎪⎝⎭,又12202xx⎛⎫+-> ⎪⎝⎭已证,故此时符合题意;当102a <<时,()ln 2ln 2x xf x a a '=+,易知,此时()f x '在R 上单调递增,且(0)ln(2)0f a =<'.故存在00x >,使得当0(0,)x x ∈时,()0f x '<,从而()f x 单调递减,所以,存在02x >,使得0(0)02x f f ⎛⎫<= ⎪⎝⎭,故此时不合题意.综上所述,12a ≥且1a ≠.18.【解析】(1)由题意2a =,得a =又21,2A ⎛⎫ ⎪ ⎪⎝⎭在E 上,得221112a b +=,从而1b =.故E 的方程为2212x y +=.(2)(ⅰ)当P 为C 的顶点时,()0,P m ,不妨设R 在第一象限,直线PR 的方程为y kx m =-,联立E 的方程为2212x y +=可得222(21)4220k x kmx m +-+-=.由22222Δ(4)4(21)(22)8(21)0km k m k m =-+-=-+=可得2221k m +=.联立直线PR 的方程y kx m =-与抛物线2:C y x m =-的方程可得x k =,则R 点的纵坐标为22212122R m m m y k m m ---=-=-=,由对称性知2212Q m m y --=,故直线QR 在y 轴上的截距为2212m m --.(ⅱ)要使(2)中的直线QR 与E 相切,必有22112m m b --==,即2230m m --=,解得3m =或1-(舍去).设()11,P x y ,()22,Q x y ,()33,R x y ,则2113y x =-,2223y x =-,2333y x =-.直线PQ 的方程为211121()y y y y x x x x --=--,即1212()3y x x x x x =+--.联立椭圆方程2212x y +=可得222121212122()14()(3)2(3)20x x x x x x x x x x ⎡⎤++-++++-=⎣⎦.由[]22212121212Δ4()(3)42()12(3)2x x x x x x x x ⎡⎤⎡⎤=++-+++-⎣⎦⎣⎦22221212128(2228)0x x x x x x =+---=可得222212*********x x x x x x +---=,即121212250x x y y y y ++++=.同理可得131313250x x y y y y ++++=.因为直线1112(1)50x x y y y ++++=同时经过点QR ,所以QR 的直线方程为1112(1)50x x y y y ++++=.联立椭圆方程2212x y +=可得222111118(1)8(5)16480x y x x y x y ⎡⎤++++++=⎣⎦,于是[]2222211111111Δ8(5)48(1)(1648)64(1)(3)0x y x y y y x y ⎡⎤=+-+++=+--=⎣⎦.故直线QR 与椭圆相切,因此3m =符合题意.19.【解析】(1)若1y q ==,222(,2)()()(1)(1)F x x y x qy x q xy y x =++=+++=+,而[]11(,2)2()(1)()2(1)q q D F x x y q x y x =+=++=+.(2)当0k =时,[][](1)2!(0,)(0,)(0,)!n n k n q q n k D F n D F n F n q y n --===.当0k ≠时,由[][][](0,)11(0)kn kq qD F n n n k y -=-⋅⋅⋅++[][][][][]()(1)()(1)/22!11!n k n k n k n k n kn k n n n n k qyqy n k --------=-⋅⋅⋅-+=-,可得[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=.因此[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=,0,1,2,,k n = .(3)要证[]0(0,)(,)!k nq k k D F n F x n x k ==∑,只需证[][][][][]1()(1)/2(1)/200!!()()()![]!!!nnn n k n k n k kk k n k k k k n n x y x qy x qy q y x q x y n k k n k k -------==++⋅⋅⋅+==--∑∑.令1()()()()nn k k k G y x y x qy x q y a y -==++⋅⋅⋅+=∑,一方面,110101()()()()n nkkk k k n n k k k n k k x y G qy x y a q y xa xq a q a y a q y -+-==+=+=+++∑∑,另一方面,10101()()()()n nnnkn k n n k k k n k k x q y G y x q y a y xa xa q a y a q y +-==+=+=+++∑∑,当1q ≠且0x ≠时,由于()()()()nx y G qy x q y G y +=+,比较两式中ky 的系数可得111k k n k k k k xq a q a xa q a ---+=+,则[]1111(1)[]k n k k kk q n k a q q a x q x k ----+-==-⋅,由0na x =可知[][][](1)1120120!!!k k n k k k k k k n a a a a a q x a a a n k k -----=⋅⋅⋅⋅⋅=-.当1q =时,由[]11n n q qn -=++⋅⋅⋅+=,[]!!n n =可知()[][]00!C ![]!nn nn k k k n k kn k k n x y y x yx n k k --==+==-∑∑,此时命题也成立.当0x =时,[](1)/2(0,)(,)(0,)!k nq n n nk qk D F n F x n qy D F n x k -====∑也成立.综上所述,()()[]00,,!knq k k D F n F x n x k ==∑.。
浙江省湖州市2020-2021学年高三上学期期末数学试卷 (解析版)
22.已知函数 f(x)=mx3﹣x+sinx+nex(m,n∈R),e 为自然对数的底数. (Ⅰ)当 m=0 且 n=1 时,证明:f(x)>0; (Ⅱ)当 n=0 时,函数 f(x)在区间[0,+∞)上单调递增,求实数 m 的取值范围.
所以以 AB 为直径的圆的圆心为 M(3,2),半径为 r=
,
若该圆上恰有三个点到直线 y=x+b(b>0)的距离为 2,
则圆心 M 到直线的距离 d=2,即
,解得 b=﹣1+2 或﹣1﹣2 (舍去),
所以 b=2
,
故答案为:4,2
.
15.一个口袋中有 7 个大小相同的球,其中红球 3 个,黄球 2 个,绿球 2 个.现从该口袋中
则
,
令 f′(x)=0,解得
,x2=1﹣a,
因为 x>0,所以
>0,x2=1﹣a>0,故 0<a<1;
则
>1,x2=1﹣a<1,
当 x∈(0,1﹣a)时,f'(x)>0,所以 f(x)单调递增,
当 x∈(1﹣a, )时,f'(x)<0,所以 f(x)单调递减,
又当 x→0 时,f(x)→﹣∞,当 x→+∞时,f(x)→+∞, 因为函数 f(x)有三个零点,
11.椭圆
的焦距是
,离心率是
.
12.设(1﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则 a3=
2019-2020学年浙江省湖州市市第四高级中学高三数学文期末试题含解析
2019-2020学年浙江省湖州市市第四高级中学高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 复数z=i2(1+i)的虚部为()A.1 B.i C.– 1 D.– i参考答案:C2. 如果把直角三角形的三边都增加同样的长度,则得到的这个新三角形的形状为( ) A.锐角三角形 B.直角三角形C.钝角三角形 D.由增加的长度决定参考答案:A设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,a+b>c.新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.而(a+x)2+(b+x)2-(c+x)2=x2+2(a+b-c)x>0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.3. 设,且为正实数,则2 1 0参考答案:D4. 设a,b是两条不同直线,α,β是两个不同平面,下列四个命题中正确的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊥α,b⊥β,α⊥β,则a⊥bD.若a?α,b?β,a∥b,则α∥β参考答案:C【考点】命题的真假判断与应用;空间中直线与平面之间的位置关系.【专题】综合题;空间位置关系与距离.【分析】对四个选项中的命题依据相关的立体几何知识逐一判断即可【解答】解:对于选项A,将一个圆锥放到平面上,则它的每条母线与平面所成的角都是相等的,故“若a,b与α所成的角相等,则a∥b“错;对于选项B,若a∥α,b∥β,α∥β,则a与b位置关系可能是平行,相交或异面,故B错;对于选项C,若a⊥α,b⊥β,α⊥β,则a⊥b是正确的,两个平面垂直时,与它们垂直的两个方向一定是垂直的;对于选项D,由面面平行的定理知,一个面中两条相交线分别平行于另一个平面中的两条线才能得出面面平行,故D错.故选C.【点评】本题以立体几何中线面位置关系为题面考查了命题真假的判断,熟练掌握空间中点线面的位置关系是解答的关键5. 已知,关于的一元二次不等式对于一切实数恒成立,又,使成立,则的最小值为A.1 B.C.2 D.参考答案:D6. 设函数,若的图象与图象有且仅有两个不同的公共点,则下列判断正确的是(A)当时,(B)当时,(C)当时,(D)当时,参考答案:B7. 若,则下列不等式成立的是( )A. B. C. D.参考答案:D8. 若复数满足(其中是虚数单位),则的实部为()(A)6 (B)1 (C)(D)参考答案:A略9. 设集合,则()(A)(B)(C)(D)参考答案:A略10.函数的最小正周期是()A. B.C.D.答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知实数满足不等式组,则的取值范围为_______________.参考答案:试题分析:不等式组,所确定的平面区域记为,.当位于中轴右侧(包括轴)时,,平移可得;当位于中轴左侧时,,平移可得,所以,的取值范围为,故答案为.考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12. 由曲线所围成的图形面积是 .e-2略13. 已知函数,其中e为自然对数的底数,若不等式恒成立,则的最大值为____________。
浙江省湖州市德清县第三中学2020年高三数学文期末试卷含解析
浙江省湖州市德清县第三中学2020年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等比数列满足>0,=1,2,…,且,则当≥1时,=()A.n(2n-1) B.(n+1)2 C.n2 D.(n-1)2参考答案:A2. 已知两个等差数列和的前n项和分别A n和B n,且,则使得为整数的正整数n的值是()A、1,3,5,8,11B、所有正整数C、1,2,3,4,5D、1,2,3,5,11参考答案:D3. 在复平面内,复数Z=(i是虚数单位),则复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:A【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,求出,再进一步求出在复平面内对应的点的坐标,则答案可求.【解答】解:Z==,则.则在复平面内对应的点的坐标为:(1,1),位于第一象限.故选:A.4. 如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③ ;④ .其中“同簇函数”的是A.①②B.①④C.②③D.③④参考答案:D略5. 在如图所示正方体ABCD﹣A1B1C1D1中,E是BC1与B1C的交点,给出编号为①②③④⑤的五个图,则四面体A1﹣CC1E的侧视图和俯视图分别为()A.①和⑤B.②和③C.④和⑤D.④和③参考答案:B【考点】简单空间图形的三视图.【分析】根据三视图的画图规则,即可得出结论.【解答】解:根据三视图的画图规则,可得四面体的侧视图和俯视图分别为②和③.故选:B.6. (多选题)下列函数中,既是偶函数,又在(0,+ ∞)上单调递增的是()A. B.C. D.参考答案:BC【分析】易知A,B,C,D四个选项中的函数的定义域均为,先利用与的关系判断奇偶性,再判断单调性,即可得到结果.【详解】由题,易知A,B,C,D四个选项中的函数的定义域均为,对于选项A,,则为奇函数,故A不符合题意;对于选项B,,即为偶函数,当时,设,则,由对勾函数性质可得,当时是增函数,又单调递增,所以在上单调递增,故B符合题意;对于选项C,,即为偶函数,由二次函数性质可知对称轴为,则在上单调递增,故C符合题意;对于选项D,由余弦函数的性质可知是偶函数,但在不恒增,故D不符合题意;故选:BC【点睛】本题考查由解析式判断函数的奇偶性和单调性,熟练掌握各函数的基本性质是解题关键.7. 在△ABC中,,,则△ABC的面积为()DA.3B.4C.6D.参考答案:C略8. 设集合A=,B=,则A B=( )A. B. C. D.参考答案:D9. 不超过实数x的最大整数称为x的整数部分,记作[x],已知f(x)=cos([x]﹣x),给出下列结论:①f(x)是偶函数;②f(x)是周期函数,且最小正周期为π;③f(x)的单调递减区间为[k,k+1)(k∈Z);④f(x)的值域为[cos1,1].其中正确的结论是()A.③B.①③C.③④D.②③参考答案:A【考点】命题的真假判断与应用.【分析】作函数f(x)=cos([x]﹣x)的图象,结合图象逐一核对四个命题得答案.【解答】解:作函数f(x)=cos(x﹣[x])的图象如下,①y=f(x)不是偶函数,故①不正确;②y=f(x)为周期函数,周期为1,故②不正确;③当x∈[k,k+1)时,f(x)是单调递减函数,故③正确;④y=f(x)的最小值不存在,最大值为1,故④不正确;∴正确结论的序号是③,故选:A.10. 已知则()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知等腰的斜边,则.参考答案:1考点:向量的运算12. 设,,则的值是________.参考答案:略13. 为⊿内两点,且满足,,则⊿的面积与⊿的面积比为参考答案:4:514.已知复数在映射下的象为,则的原象为____.参考答案:答案:15. 在△ABC中,点D在边BC上,且DC=2BD,AB∶AD∶AC=3∶k∶1,则实数k的取值范围为.参考答案:16. 某地球仪上北纬纬线长度为cm,该地球仪的表面上北纬东经对应点与北纬东经对应点之间的球面距离为 cm(精确到0.01).参考答案:17. 计算: +log3= .参考答案:-1【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解: +log3=log35+log3=log3()=log3=﹣1.故答案为:﹣1三、解答题:本大题共5小题,共72分。
人教版数学高三期末测试精选(含答案)3
【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3
人教版数学高三期末测试精选(含答案)4
人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。
2020届浙江省湖州市高三上学期期末考试数学试题(解析版)
浙江省湖州市2020届高三上学期期末考试数学试题一、选择题1.若集合{}|12A x x =<<,集合{}|224xB x =≤<,则AB =( )A. ()1,2B. [)1,2C. [)0,2D. ()0,2【答案】B【解析】易得{}{}{}12|224|222|12xx B x x x x =≤<=≤<=≤<.故A B ={}|12x x ≤<.故选:B. 2.已知复数4212iz i+=-(i 为虚数单位),则复数z 的模z =( ) A. 1B.C. 2D. 4【答案】C【解析】由题422221212i i z i i ++====--. 故选:C.3.已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( ) A. -4 B. -6C. -8D. -10【答案】B【解析】因为等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,2314a a a ∴=即()()211146a a a +=+ 解得18a =- 故选:B .4.实数x 、y 满足约束条件100y y x y x ≤⎧⎪-≥⎨⎪+≥⎩,则目标函数()10y z x x +=≠的取值范围是( )A. ()2,2-B. ()(),22,-∞-+∞C. (][),22,-∞-+∞D. []22-,【答案】C【解析】画出可行域,易得()10y z x x+=≠的几何意义为(),x y 到()0,1-的斜率, 又(1,1),(1,1)B C --.故11121y z x ++=≥=或11121y z x ++=≤=-- 故()10y z x x+=≠的取值范围是(][),22,-∞-+∞故选:C.5.若x ∈R ,则“31x >”是“1x >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】因为3y x =为增函数,故31x >解得1x >,又1x >解得1x >或1x <-,故“31x >”是“1x >”的充分不必要条件. 故选:A.6.已知双曲线221164x y -=的左、右焦点分别为1F ,2F ,过2F 的直线l 交双曲线于P ,Q 两点.若PQ 长为5,则1PQF ∆的周长是( ) A. 13B. 18C. 21D. 26【答案】D【解析】易得1PQF ∆的周长为114101626PQ PF QF PQ PQ a ++=++=+=. 故选:D.7.已知离散型随机变量ξ满足二项分布且()3,B p ξ,则当p ()0,1内增大时,( ) A. ()D ξ减小 B. ()D ξ增大C. ()D ξ先减小后增大D. ()D ξ先增大后减小【答案】D【解析】易得二项分布()3(1)D p p ξ=-为关于p 的二次函数,对称轴为12p =,故当p 在()0,1内增大时()D ξ先增大后减小.故选:D8.已知函数()22,01,0x x x f x x x⎧-≥⎪=⎨<⎪⎩,若函数()()g x f x x m =-+恰有三个零点,则实数m的取值范围是( ) A. ()1,2,04⎛⎤-∞-- ⎥⎝⎦B. ()12,0,4⎡⎫+∞⎪⎢⎣⎭C. [)12,0,4⎛⎤--+∞ ⎥⎝⎦D. [)1,20,4⎛⎫+∞ ⎪⎝⎭【答案】A【解析】根据()22,01,0x x x f x x x⎧-≥⎪=⎨<⎪⎩的图像,取绝对值可知()f x x m =-如图.当()f x x m =-的函数图像有三个交点时分两种情况①当直线y x m =-与抛物线部分相交于三个点时,临界条件分别为y x m =-过原点时,此时0m =,以及与抛物线相切,此时2220x x x m x x m -=-⇒--=判别式11404m m ∆=+=⇒=-,故1,04m ⎛⎤∈- ⎥⎝⎦②当直线y x m =-与抛物线部分相交于1个点,与1y x=-相交于两点,此时临界条件为直线y x m =-与1y x =-相切,此时2110x m x mx x-=-⇒-+= 判别式2402m m ∆=-=⇒=±,由图得y x m =-中0m <,故2m =-为临界条件. 故此时(),2m ∈-∞-综上所述, ()1,2,04m ⎛⎤∈-∞-- ⎥⎝⎦. 故选:A9.已知实数a ,b ,c 满足22221a b c ++=,则2ab c +的最小值是( ) A. 34-B. 98-C. -1D. 43-【答案】B【解析】若2ab c +取最小值,显然,a b 异号且0c <.故2221222c a b ab ab -=+≥=-,即2221ab c ≥-,故221992212488ab c c c c ⎛⎫+≥+-=+-≥- ⎪⎝⎭,当且仅当1,4c =-,a b 分别取4±时等号成立. 故选:B10.在三棱锥S ABC -中,ABC ∆为正三角形,设二面角S AB C --,S BC A --,S CA B --的平面角的大小分别为,,,,2παβγαβγ⎛⎫≠⎪⎝⎭,则下面结论正确的是( )A. 111tan tan tan αβγ++的值可能是负数B. 32παβγ++< C.αβγπ++>D. 111tan tan tan αβγ++的值恒为正数 【答案】D【解析】作S 在底面ABC 的投影O ,再分别作,,OM AB ON BC OP AC ⊥⊥⊥,设ABC ∆边长为a .①当O 在ABC ∆内时,易得,,αβγ分别为,,SMO SNO SPO ∠∠∠.由ABCABOBCOACOSSSS=++可得1110tan tan tan MO NO PO aSO SO SO SOαβγ++=++=>. 当S 无限接近O 时易得αβγ++接近0,故C 错误.②当O 在ABC ∆外时,不妨设O 在,AC BC 的延长线构成的角内. 易得,,αβγ分别为,,SMO SNO SPO ππ∠-∠-∠.由ABCABOBCOACOSSSS=--可得1110tan tan tan MO NO PO aSO SO SO SOαβγ++=--=>.且当S 无限接近O 时易得αβγ++接近2π,故B 错误.综上,A 也错误. 故选:D 二、填空题11.某几何体的三视图如图所示(单位:cm ),则该几何体的体积为______3cm ,表面积为______2cm .【答案】 (1). 56 (2). 76+【解析】画出对应的直观图五棱柱1111ABEE A DCFF D -.(1)易得体积为31444224562cm ⨯⨯-⨯⨯⨯=. (2)表面积(31442422442224762cm ⎛⎫⨯⨯+⨯⨯+⨯-⨯⨯⨯+=+ ⎪⎝⎭故答案为:56;76+12.二项式61x ⎫⎪⎭的展开式中常数项等于______,有理项共有______项.【答案】 (1). 15 (2). 4【解析】 (1)根据二项式定理通项公式6321661rrrrr r T C C x x --+⎛⎫=⋅=⋅ ⎪⎝⎭.故取常数项时63022rr -=⇒=.此时常数项为2615C =. (2)当取有理项时, 632r-整数.此时0,2,4,6r =.故共有4项.故答案为:(1). 15 (2). 4【点睛】本题主要考查了二项式定理的运用,属于中等题型.13.已知直线()2x my m R =+∈与椭圆22195x y +=的相交于A ,B 两点,则AB 的最小值为______;若307AB =,则实数m 的值是______. 【答案】 (1).103(2). ±1 【解析】联立221952x y x my ⎧+=⎪⇒⎨⎪=+⎩()225920250m y my ++-=,故12y y -=.的故弦长()2223014615959mABm m+⎛⎫==-⎪++⎝=⎭.(1)故当0m=时有最小值103AB=.(2)若307AB=则22430611597mm⎛⎫-=⇒=⎪+⎝⎭,故1m=±.故答案为:(1).103(2). ±114.设ABC∆三边a,b,c所对的角分别为A,B,C.若2223b a c+=,则tantanCB=______,tan A的最大值是______.【答案】(1). -2 (2).【解析】(1)222222222222tan sin cos2tan sin cos2a c bcC C B a c baca b cB BC a b cbab+-⋅+-===+-+-⋅()222222222234223a b a b aaa b b a++-===--+-+(2)由(1)tan2tanC B=-,故[]tan tantan tan()tan()tan tan1B CAπB C B CB C+=-+=-+=⋅-()2tan tan2tan2tan11tan12tan12tantanB BBBB B BB--===⋅-++,因为2223b a c+=故B为锐角.故112tantanBB≤=+故答案为:(1). -2(2).15.现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是______.【答案】25【解析】由题意,5个不同的小球全排列为55120A=,的同一色的有222223248A A A ⨯⨯⨯=种,同二色的有22222324A A A ⨯⨯=种情况. 故同一颜色的小球不相邻的排列总数有120482448--=种. 故相同颜色的球都不相邻的概率是4821205=. 故答案为:2516.对任意[]1,x e ∈,关于x 的不等式()2ln ln x x a ax a x a R +≤+∈恒成立,则实数a 的取值范围是______. 【答案】{}1【解析】由()()2ln ln ln 0x x a ax a x x a x a +≤+⇒--≤,因为()()ln 0x a x a --=的两根分别为12,ax a x e ==,且a e a >恒成立.故()()ln 0x a x a --≤恒成立即a a x e ≤≤在[]1,x e ∈上恒成立,故11aa a e e ≤⎧⇒=⎨≥⎩.故实数a 的取值范围是{}1. 故答案为:{}117.正方形ABCD 的边长为2,E ,M 分别为BC ,AB 的中点,点P 是以C 为圆心,CE 为半径的圆上的动点,点N 在正方形ABCD 的边上运动,则PM PN ⋅的最小值是______.【答案】1【解析】易得1CP =,()()()2PM PN CM CP CN CP CM CN CP CM CN CP ⋅=-⋅-=⋅-⋅++()11CM CN CP CM CN CM CN CM CN =⋅-⋅++≥⋅-++,当且仅当(),CP CM CN +同向时取等号.即考虑1CM CN CM CN ⋅-++的最小值即可.当N 与C 重合时, 1011CM CN CM CN CM ⋅-++=-+=当N 与C 不重合时,设,CM CN 夹角为θ,由图易得当N 在CD 上时cos θ,当N 在M 时, cos θ取最大值为1,故cosθ⎤∈⎥⎦, 利用向量模长不等式有()1cos 1CM CN CM CN CM CN CM CN θ⋅-++≥⋅-++()cos 115111CN CM CM CN θ⎛⎫=⋅⋅--+≥⋅⋅= ⎪⎭,且两次“≥”不能同时取“=”.故此时11CM CN CM CN ⋅-++>综上所述, PM PN ⋅的最小值是1故答案为:1三、解答题18.已知函数()()1sin sin 34x x x R f x π⎛⎫=⋅+-∈ ⎪⎝⎭. (1)求3f π⎛⎫⎪⎝⎭的值和()f x 的最小正周期; (2)设锐角ABC ∆的三边a ,b ,c 所对的角分别为A ,B ,C ,且124A f ⎛⎫= ⎪⎝⎭,2a =,求b c +的取值范围.解:由题()11sin sin 24x x x f x ⎛⎫=⋅+- ⎪ ⎪⎝⎭211sin cos 224x x x =+-1111cos 22sin 244426x x x π⎛⎫=-+-=- ⎪⎝⎭. (1)121sin 32362f πππ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,22T ππ==.(2)11sin 2264A f A π⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=, 利用正弦定理sin sin sin a b cA B C==,解得b B =,23c B π⎛⎫=- ⎪⎝⎭,所以2sin sin 4sin 36b c B B B ππ⎤⎛⎫⎛⎫+=+-=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦, 由于02032B C B πππ<<⎧⎪⎨<=-<⎪⎩,解得62B ππ<<,所以2,633B πππ⎛⎫+∈ ⎪⎝⎭,所以(b c ⎤+∈⎦,综上可得b c +的取值范围是(4⎤⎦.19.如图,三棱锥D ABC -中,AD CD =,AB BC ==AB BC ⊥.(1)求证:AC BD ⊥;(2)若二面角D AC B --的大小为150︒且BD =时,求BCD ∆的中线BM 与面ABC 所成角的正弦值.(1)证明:取AC 中点O ,连BO ,DO ,∵AD CD =,AB BC =, ∴AC BO ⊥,AC DO ⊥,,BO DO ⊂平面BOD ,且BO DO O =,∴AC ⊥平面BOD ,又BD ⊂平面BOD ,∴AC BD ⊥.(2)解:由(1)知BOD ∠是二面角D AC B --的平面角, ∴150BOD ∠=︒,又由AC ⊥平面BOD 知平面BOD ⊥平面ABC , 所以在平面BOD 内作OZ OB ⊥,则OZ ⊥面ABC ,可建如图坐标系,又易得4OB =,故BOD ∆中由余弦定理可得OD =于是可得各点坐标为()0,4,0A -,()4,0,0B ,()0,4,0C,(D -,∴(M -,∴(BM =-, 又平面ABC 的一个法向量为()0,0,1n =, 所以直线BM 与面ABC所成角的正弦值3sin 2856n BM n BMθ⋅===. 法二:由(1)知BOD ∠是二面角D AC B --的平面角,∴150BOD ∠=︒. 作DP BO ⊥于P ,则由AC ⊥平面BOD 知DP ⊥平面ABC ,且30DOP ∠=︒, 又易得4OB =,故在BOD ∆中由余弦定理可得OD =,∴sin DP DO DOP =∠=又M 为DC 中点,所以M 到平面ABC 的距离12d DP ==因为BD =8DC =,BC =∴222cos 2BD BC CD DBC BD BC +-∠==⋅ ∴12BM BM BD BC ==+==所以直线BM 与面ABC 所成角的正弦值sin 28d BM θ===. 20.已知n S 是数列{}n a 的前n 项和,已知11a =且()12n n nS n S +=+,*n N ∈. (1)求数列{}n a 的通项公式; (2)设()()*24141nn n a b n N n =-∈-,数列{}n b 的前n 项和为n P ,若112020nP +<,求正整数n 的最小值.解:(1)解析1:(累乘法)由()1122n n n n S n nS n S S n+++=+⇒=,所以2n ≥时, 121121n n n n n S S S S S S S S ---=⋅⋅()111431123212n n n n n n n n ++-=⋅⋅⋯⋅⋅=---, 又111S a ==也成立,所以()12n n n S +=,所以当2n ≥时,1n n n a S S n -=-=,又11a =也成立,所以n a n =. 解析2:(配凑常数数列)()1122n n n n S S nS n S n n++=+⇒=+()()()1211n n S S n n n n +⇒=+++,故()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭为常数列,即()111212n S S n n ==+⨯,所以()12n n n S +=,所以当2n ≥时,1n n n a S S n -=-=,又11a =也成立,所以n a n =.解析3:(直接求n a )()1122n n n n nS n S na S ++=+⇒=,所以()112n n n a S --=,两式相减可得()()11121n n n n a a an n a n n n ++=+⇒=≥+,又因为22a =,所以212n a an ==,即当2n ≥时,n a n =,当1n =也成立,故n a n =.(2)解析(裂项相消):由上题可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭,所以()()1111111111335572121n n n P n n =--++--++-+--+()11121nn =-+-+,所以11201912120202n P n n +=<⇒>+,故n 的最小值为1010. 21.已知点F 是抛物线C :24y x =的焦点,直线l 与抛物线C 相切于点()()000,0P x y y >,连接PF 交抛物线于另一点A ,过点P 作l 的垂线交抛物线C 于另一点B .(1)若01y =,求直线l 的方程; (2)求三角形PAB 面积S 的最小值. 解:(1)由01y =得1,14P ⎛⎫⎪⎝⎭, 设直线l 的方程为()114t y x -=-, 由()21144t y x y x⎧-=-⎪⎨⎪=⎩得24410y ty t -+-=,因为直线l 与抛物线C 相切,故()2164410t t ∆=--=,解得12t =. 故所求直线l 的方程()11124y x -=-,即122y x =+.(2)设切线l 的方程为()00t y y x x -=-,211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 又由A ,F ,P 三点共线,故//FA FP ,2111,4y y FA ⎛⎫=- ⎪⎝⎭,2001,4y FP y ⎛⎫=- ⎪⎝⎭,化简可得,104y y =-,20044,A y y ⎛⎫- ⎪⎝⎭,由()0024t y y x x y x⎧-=-⎨=⎩得2004440y ty y x -+-=, 因为直线l 与抛物线C 相切,故024y t =,即02y t =, 故直线PB 的方程为()0002y y y x x -=--,3002204y y x y y +--=,因此点A 到直线PB 的距离为2204y d +==,由300222044y y x y y y x ⎧+--=⎪⎨⎪=⎩得()23000880y y y y y +-+=,0208y y y +=-,2008y y y =--,故200082y y y B y P =-=+,所以220004118222PAB y S d PB y y ∆+==+320414y y ⎛⎫+= ⎪⎝⎭33001411644y y ⎛⎛⎫=+≥= ⎪ ⎝⎭⎝等号成立当且仅当004y y =,即02y =时等号成立. 此时三角形PAB 面积S 的最小值为16. 22.已知函数()()2log ln a f x x x x =+-,1a >. (1)求证:()f x 在()1,+∞上单调递增;(2)若关于x 的方程()1f x t -=在区间()0,∞+上有三个零点,求实数t 的值;(3)若对任意的112,,x x a a -⎡⎤∈⎣⎦,()()121f x f x e -≤-恒成立(e 为自然对数的底数),求实数a 的取值范围. 解:(1)()()2ln 1'21ln x f x xx a =⋅+-,∵1x >,∴()'0f x >,故()f x 在()1,+∞上单调递增.(2)()()()()2222ln ln ln 'ln x x a a f x x a +-=,令()()()222ln ln ln g x x x a a =+-,()()22'ln 0g x a x=+>,()10g =, 故当()0,1x ∈,()'0g x <,()1,x ∈+∞,()'0g x >,即()f x 在()0,1x ∈上单调递减;在()1,x ∈+∞上单调递增.()11f =, 若()()11f x t f x t -=⇔=±在区间()0,∞+上有三个零点,则11t -=,2t =. (3)()f x 在1,1x a -⎡⎤∈⎣⎦上单调递减;在(]1,x a ∈上单调递增.故()()min 11f x f ==,()()max 1max ,f x f f a a ⎧⎫⎛⎫=⎨⎬⎪⎝⎭⎩⎭, 令()()112ln h a f f a a a a a ⎛⎫=-=+- ⎪⎝⎭,∴()0h a <, 故()max 1ln f x a a =+-,∴ln 1ln 1a a e a a e -≤-⇒-≤-, 因为1a >,设()ln a a a ϕ=-则1'()10a aϕ=->,故()ln a a a ϕ=-为增函数, 又()ln 1e e e e ϕ=-=-. ∴(]1,a e ∈.。
2020年1月2020届浙江省湖州市高三上学期期末考试数学参考答案
2019学年第一学期期末高三调研测试数学参考答案及评分标准一、选择题:12345678910BCBCADDABD二、填空题:11.56,287612.15,413.310,114.224,15.2516.117.51三、解答题:18.(本小题满分14分)已知函数413sin sin xx xf R x .(Ⅰ)求3f的值和x f 的最小正周期;(Ⅱ)设锐角ABC 的三边a b c ,,所对的角分别为A B C ,,,且412A f,2a ,求b c 的取值范围.解:(Ⅰ)331132242f .----------2分23331cos211111sin sin cos sin sin cos sin 2224224444xf xx xx x x x x 1sin 226x .-----------5分所以x f 的最小正周期为.--------6分(Ⅱ)由(Ⅰ)知111sin sin 226462A f A A,因为A 为ABC 的内角,所以66A,所以3A .----------8分由22444sin sin sin sin sin 32333sinsin 33a b c c bB cB A B CB,,所以32344sin sin sin cos 4sin 322633b cBBB B B.---------10分因为ABC 为锐角三角形,所以2622032BBCB,------12分所以2633B,,所以234b c ,.-------14分19.(本小题满分15分)如图,三棱锥ABC D 中,AD CD ,42AB BC ,BC AB .(Ⅰ)求证:AC BD ;(Ⅱ)若二面角DACB 的大小为150且47BD时,求三角形DBC 中线BM 与面ABC 所成角的正弦值.(Ⅰ)证明:取AC 中点O ,连BO DO ,,因为AD CD ,ABBC ,所以ACBO ACDO ,,BO DO ,平面BOD ,且BO DOO ,所以AC平面BOD ,又BD 平面BOD ,所以ACBD .------------6分(Ⅱ)由(Ⅰ)知BOD 是二面角D ACB 的平面角,所以150BOD ,-----------8分而由AC平面BOD 知平面BOD 平面ABC ,故在平面BOD 内作OzOB ,则Oz平面ABC ,故可如图建系,又易得4OB ,故在BOD 中由余弦定理可得43OD ,于是可得各点坐标为040400040A B C ,,,,,,,,,6023D,,,所以323M,,,所以723BM,,,-----------12分又平面ABC 的一个法向量为001n ,,,-------13分所以BM 与平面ABC 所成角的正弦值342sin2856n BM nBM.--------15分另解:由(Ⅰ)知BOD 是二面角DACB 的平面角,所以150BOD ,------------8分作DPBO 于P ,则由AC平面BOD 知DP 平面ABC ,且30DOP ,又易得4OB ,故在BOD 中由余弦定理可得43OD,所以sin 23DPDO DOP ,------------10分又M 为DC 中点,所以M 到平面ABC 的距离132d DP ,-----11分因为47842BDDC BC ,,,所以222514cos 228BDBC CDDBCBD BC,所以2211221422BM BMBD BCBD BCBD BC ,-------13分所以BM 与平面ABC 所成角的正弦值342sin28214d BM.--------15分ABCDM320.(本小题满分15分)已知n S 是数列n a 的前n 项和,已知11a 且12n n nS n S ,N n.(Ⅰ)求数列n a 的通项公式;(Ⅱ)设N nna b n nn14412,数列n b 的前n 项和为n P .若112020nP ,求正整数n 的最小值.解:(Ⅰ)由1122n n n n S n nS n S S n,------1分所以2n时,123421123321n n nnn n nS S S S S S S S S S S S S S 11153411233212n n n n n n n n .------3分又111S a 也成立,所以12n n n S .-----5分所以2n时,11122nn nn n n n a S S n ,又11a 也成立,所以n a n .---------7分(Ⅱ)由(Ⅰ)知241111212141nnn n b n n n ,---------10分所以111111111111133557212121nnnn Pn n n ------12分所以20191112120202nP n n ------------14分从而n 的最小值是1010.-----------15分21.(本小题满分15分)已知点F 是抛物线C :24y x 的焦点,直线l 与抛物线C 相切于点00,P x y (00y ),连接PF 交抛物线于另一点A ,过点P 作l 的垂线交抛物线C 于另一点B .(Ⅰ)若10y ,求直线l 的方程;(Ⅱ)求三角形PAB 面积S 的最小值.解:(Ⅰ)由01y 得1,14P,-------------------1分设直线l 的方程为114t y x,-------------------2分由21144t y xyx得24410yty t -------------------3分因为直线l 与抛物线C 相切,故2164410t t ,解得12t.------------4分故所求直线l 的方程11124y x即122y x.----------------------------5分4方法二:由01y 得1,14P,故切线直线l 的方程002y yxx 即124y x.-----------5分(Ⅱ)设切线l 的方程为00t y y xx ,211,4y Ay ,222,4y By ,又由,,A F P 三点共线,故//FA FP ,而2111,4yFAy ,201,4y FPy ,化简可得104y y ,-----------------------------------------------------------------6分故244,Ay y ,--------------------------------------------------------------------7分由24t y y xx yx得2004440y ty ty x ,因为直线l 与抛物线C 相切,故024y t ,即02y t,------------------------------8分故直线PB 的方程为02y y y x x ,即30002204yy x y y ,因此点A 到直线PB 的距离为302200022004244444y y y y dy y y ,-----------------------------------------------------10分由3000222044yy x y y yx 得23000880y y y y y ,028y y y ,即2008y y y ,故2002200448112PBy y y y y y --------------------------------------12分所以22002241148122244PABy Sd PBy y y y y 3200414y y ------------------------------------------------------------------------------------14分33141421644y y y y 等号成立当且仅当4y y ,即02y 时等号成立,此时三角形PAB 面积S 的最小值为16.-----------------------------------------------------15分22.(本小题满分15分)已知函数x xxx f a ln log 21a .(Ⅰ)求证:f x 在1+,上单调递增;(Ⅱ)若关于x 的方程1f xt 在区间,0上有三个零点,求实数t 的值;(Ⅲ)若对任意的aa x x ,,121,1e 21x f x f 恒成立(e 为自然对数的底数),求实数a的取值范围.解:(Ⅰ)11'1+2log ln a f x xxx a.---------------------2分因为1,1a x,所以11'1+2log 0ln a f xx x x a,---------------------3分所以fx 在1+,上单调递增.---------------------4分(II)因为01x 时,分别有11<0x,12logln axx a所以'0f x,---------------------5分结合第(I )小题,可得min1f xf ,---------------------6分所以1=1=1t f ,故=2t .---------------------8分(Ⅲ)由(II)可知,fx 在1,1a 单调递减,1a ,上单调递增所以1maxmax ,f xf af a .---------------------9分1f af a12ln a aa ,令12ln g xxxx ,则2221'110g xxxx所以10g a g ,所以maxf xf a .---------------------11分所以11212max,,,1ln x x a a f x f x f a f a a ,以下只需要ln 1a ae ,---------------------13分由ln h x x x 的单调性解得,1ae .---------------------15分。
(全国三卷地区适用)2020届高三上学期期末数学(文)教学质量检测卷及答案【测试范围:高中全部内容】
绝密★启用前2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.测试范围:高中全部内容。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=A.{3} B.{2,3} C.{﹣1,3} D.{1,2,3}2.已知复数312iz=-(i是虚数单位),则z=A.36i55+B.36i55-C.12i55-D.12i55+3.袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为A.35B.34C.710D.454.移効支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发明”的普及情况,随机调査了100位学生,共中使用过移功支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.已知实数x0是函数f(x)6x=的一个零点,若0<x1<x0<x2,则A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>06.已知等比数列{a n}的公比12q=,该数列前9项的乘积为1,则a1=A.8 B.16 C.32 D.647.若函数f(x)=x2ln2x,则f(x)在点(12,)处的切线方程为A.y=0 B.2x﹣4y﹣1=0 C.2x+4y﹣1=0 D.2x﹣8y﹣1=08.过正方体ABCD﹣A1B1C1D1的顶点A作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作A.1 个B.2 个C.3 个D.4 个9.执行如图所示的程序框图,输出的结果为A.22019﹣1 B.22019﹣2 C.22020﹣2 D.22020﹣110.已知双曲线2211620x y -=的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|=A .12B .6C .4D .211.已知命题p :∃x ∈R ,使x 2+x +1<0;命题q :∀x ∈R ,都有e x ≥x +1.下列结论中正确的是A .命题“p ∧q ”是真命题B .命题“p ∧¬q ”是真命题C .命题“¬p ∧q ”是真命题D .命题“¬p ∨¬q ”是假命题12.若函数()()231sin 1f x m x m x =+++是偶函数,则y =f (x )的单调递增区间是A .(﹣∞,1)B .(1,+∞)C .(﹣∞,0)D .(0,+∞)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (3,﹣2),=b (m ,1).若向量(-a 2b )∥b ,则m =__________. 14.数列{a n }中,a n ﹣a n ﹣1=2(n ≥2),S 10=10,则a 2+a 4+a 6+…+a 20=__________.15.已知椭圆2295x y +=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是__________.16.在Rt △ABC 中,∠ABC =90°,∠C =30°,AB =1,D 和E 分别是边BC 和AC 上一点,DE ⊥AC ,将△CDE沿DE 折起使点C 到点P 的位置,则该四棱锥P ﹣ABDE 体积的最大值为__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的所对的边分别为a ,b ,c ,且满足b cos C =(2a ﹣c )cos B . (1)求角B 的大小;(2)若b =4,a +c =8,求△ABC 的面积. 18.(本小题满分12分)在四棱锥P ﹣ABCD 中,ABCD 是矩形,PA =AB ,E 为PB 的中点. (1)若过C ,D ,E 的平面交PA 于点F ,求证:F 为PA 的中点;(2)若平面PAB ⊥平面PBC ,求证:BC ⊥PA . 19.(本小题满分12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW •h ),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(1)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(2)求月平均用电量的中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户? 20.(本小题满分12分)已知函数f (x )=x ln x +ax 2﹣1,且f '(1)=﹣1. (1)求a 的值;(2)若对于任意x ∈(0,+∞),都有f (x )﹣mx ≤﹣1,求m 的最小值. 21.(本小题满分12分)已知抛物线y =x 2上的A ,B 两点满足OA OB ⋅=u u u r u u u r2,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得|MF |=λ|MO |(λ>0),若存在请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l的参数方程为1121x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求直线l 及曲线C 1的直角坐标方程,并判断曲线C 1的形状; (2)已知点P (1,1),直线l 交曲线C 1于A ,B 两点,求11PA PB+的值. 23.(本小题满分10分)选修4-5:不等式选讲已知f (x )=|x ﹣1|+|2x +3|. (1)求不等式f (x )>4的解集;(2)若关于x 的不等式|x +1|﹣|x ﹣m |≥|t ﹣1|+|2t +3|(t ∈R )能成立,求实数m 的取值范围.2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2,3},B ={x |x 2﹣2x >0},则A ∩B = A .{3} B .{2,3}C .{﹣1,3}D .{1,2,3}2.已知复数312iz =-(i 是虚数单位),则z = A .36i 55+ B .36i 55- C .12i 55- D .12i 55+ 3.袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为 A .35B .34C .710D .454.移効支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发 明”的普及情况,随机调査了100位学生,共中使用过移功支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.已知实数x 0是函数f (x )6x x=-的一个零点,若0<x 1<x 0<x 2,则 A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>06.已知等比数列{a n }的公比12q =,该数列前9项的乘积为1,则a 1=A .8B .16C .32D .647.若函数f (x )=x 2ln2x ,则f (x )在点(102,)处的切线方程为 A .y =0B .2x ﹣4y ﹣1=0C .2x +4y ﹣1=0D .2x ﹣8y ﹣1=08.过正方体ABCD ﹣A 1B 1C 1D 1的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作 A .1 个B .2 个C .3 个D .4 个9.执行如图所示的程序框图,输出的结果为A .22019﹣1B .22019﹣2C .22020﹣2D .22020﹣110.已知双曲线2211620x y -=的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|= A .12B .6C .4D .211.已知命题p :∃x ∈R ,使x 2+x +1<0;命题q :∀x ∈R ,都有e x ≥x +1.下列结论中正确的是A .命题“p ∧q ”是真命题B .命题“p ∧¬q ”是真命题C .命题“¬p ∧q ”是真命题D .命题“¬p ∨¬q ”是假命题12.若函数()()231sin 1f x m x m x =+++是偶函数,则y =f (x )的单调递增区间是A .(﹣∞,1)B .(1,+∞)C .(﹣∞,0)D .(0,+∞)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (3,﹣2),=b (m ,1).若向量(-a 2b )∥b ,则m =__________. 14.数列{a n }中,a n ﹣a n ﹣1=2(n ≥2),S 10=10,则a 2+a 4+a 6+…+a 20=__________.15.已知椭圆2295x y +=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是__________.16.在Rt △ABC 中,∠ABC =90°,∠C =30°,AB =1,D 和E 分别是边BC 和AC 上一点,DE ⊥AC ,将△CDE 沿DE 折起使点C 到点P 的位置,则该四棱锥P ﹣ABDE 体积的最大值为__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的所对的边分别为a ,b ,c ,且满足b cos C =(2a ﹣c )cos B . (1)求角B 的大小;(2)若b =4,a +c =8,求△ABC 的面积.18.(本小题满分12分)在四棱锥P ﹣ABCD 中,ABCD 是矩形,PA =AB ,E 为PB 的中点. (1)若过C ,D ,E 的平面交PA 于点F ,求证:F 为PA 的中点; (2)若平面PAB ⊥平面PBC ,求证:BC ⊥PA . 19.(本小题满分12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW •h ),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(1)若样本中月平均用电量在[240,260)的居民有30户,求样本容量; (2)求月平均用电量的中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户? 20.(本小题满分12分)已知函数f (x )=x ln x +ax 2﹣1,且f '(1)=﹣1. (1)求a 的值;(2)若对于任意x ∈(0,+∞),都有f (x )﹣mx ≤﹣1,求m 的最小值. 21.(本小题满分12分)已知抛物线y =x 2上的A ,B 两点满足OA OB ⋅=u u u r u u u r2,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得|MF |=λ|MO |(λ>0),若存在请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l的参数方程为11212x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)求直线l及曲线C1的直角坐标方程,并判断曲线C1的形状;(2)已知点P(1,1),直线l交曲线C1于A,B两点,求11PA PB的值.23.(本小题满分10分)选修4-5:不等式选讲已知f(x)=|x﹣1|+|2x+3|.(1)求不等式f(x)>4的解集;(2)若关于x的不等式|x+1|﹣|x﹣m|≥|t﹣1|+|2t+3|(t∈R)能成立,求实数m的取值范围.2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学·参考答案13.【答案】2-【解析】∵向量=a (3,﹣2),=b (m ,1),∴()2324m -=--,a b , ∵(-a 2b )∥b ,∴﹣4m =3﹣2m ,∴m 32=-.故答案为:32-.14.【答案】100【解析】由a n ﹣a n ﹣1=2(n ≥2),知数列{a n }是公差为2的等差数列,由S 10=10,得110910102d a ⨯+=,即1912a d +=, a 2+a 4+a 6+…+a20()()11092102da d ⨯=++=10a 1+100d 11910454510452a d d a d d ⎛⎫=++=++ ⎪⎝⎭=10+45×2=100.故答案为:100. 15【解析】椭圆2295x y +=1的a =3,b =c =2,e 23=,设椭圆的右焦点为F ',连接PF ', 线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得|PF '|=2|AO |=4,设P 的坐标为(m ,n),可得323-m =4,可得m32=-,n 2=,由F (﹣2,0),可得直线PF的斜率为2322=-+ 另解:由|PF '|=2|AO |=4,|PF |=6﹣4=2,|FF '|=2c =4,可得cos ∠PFF'4161612244+-==⨯⨯,sin ∠PFF'== 可得直线PF 的斜率为sin 'cos 'PFF PFF ∠=∠16.【答案】9【解析】在△ABC 中,∵∠ABC =90°,∠C =30°,AB =1,∴AC =2,BC=B 到AC 的距离d ABBC AC ⋅==, 设DE =x ,则0<x 2≤,CE=, ∴四边形ABDE 的面积S 11122x=⨯=(1﹣x2), 显然当平面PDE ⊥平面ABDE 时,棱锥的体积最大,此时,PE ⊥平面ABDE ,∴棱锥的体积V (x )13=S •PE 12=(x ﹣x 3), V ′(x )12=(1﹣3x 2),故当0<x 3<时,V ′(x )>0,当3<x 2<V ′(x )<0,∴当x =V (x )取得最大值12)=.17.【解析】(1)由b cos C=(2a﹣c)cos B,以及正弦定理得sin B cos C+cos B sin C=2sin A cos B,即sin(B+C)=sin A=2sin A cos B(sin A>0),可得cos B12 =,则Bπ3=.(6分)(2)由b=4,a+c=8及余弦定理b2=a2+c2﹣2ac cos B得16=a2+c2﹣ac=(a+c)2﹣3ac=64﹣3ac,可得ac=16,则△ABC的面积S12=ac sin B12=⨯162⨯=12分)18.【解析】(1)因为ABCD是矩形,所以,CD∥AB,又AB⊂平面PAB,CD⊄平面PAB,所以CD∥平面PAB,又CD⊂平面CDEF,平面CDEF∩平面PAB=EF,所以CD∥EF,所以AB∥EF,又在△PAB中,E为PB的中点,所以,F为PA的中点.(6分)(2)因为PA=AB,E为PB的中点,所以AE⊥PB,AE⊂平面PAB又平面PAB⊥平面PBC,平面PAB∩⊥平面PBC=PB,所以AE⊥平面PBC,BC⊂平面PBC,所以AE⊥BC,又ABCD是矩形,所以AB⊥BC,AE∩AB=A,AB,AE⊂平面PAB,所以,BC⊥平面PAB,PA⊂平面PAB,所以BC⊥PA.(12分)19.【解析】(1)由(0.0020+0.0095+0.0110+0.0125+x+0.0050+0.0025)×20=1,解得x=0.0075,∴月平均用电量在[240,260)的频率为0.0075×20=0.15,设样本容量为n,则0.15n=30,解得n=200.(4分)(2)∵(0.0020+0.0095+0.0110)×20=0.45<0.5,∴月平均用电量的中位数[220,240)内,设中位数a,则0.45+0.0125×(a﹣220)=0.5,解得a=224,∴中位数为224.(8分)(3)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为:0.25,0.15,0.1,0.05,∴月平均用电量在[260,280)的用户中应抽取220.10.250.150.10.05⨯=+++4户.(12分)20.【解析】(1)对f(x)求导,得f'(x)=1+ln x+2ax,所以f'(1)=1+2a=﹣1,解得a=﹣1.(4分)(2)由f(x)﹣mx≤﹣1,得x ln x﹣x2﹣mx≤0,因为x∈(0,+∞),所以对于任意x∈(0,+∞),都有ln x﹣x≤m.设g(x)=ln x﹣x,则()1'1g xx=-,令g'(x)=0,解得x=1,(8分)当x变化时,g(x)与g'(x)的变化情况如下表:x(0,1) 1 (1,+∞)g'(x)+ 0 ﹣g(x)增极大值减所以当x =1时,g (x )max =g (1)=﹣1,因为对于任意x ∈(0,+∞),都有g (x )≤m 成立,所以m ≥﹣1, 所以m 的最小值为﹣1.(12分)21.【解析】(1)由题意知,B (2,4),设A (t ,t 2),由OA OB ⋅=u u u r u u u r2,得2t +4t 2=2,解得t 12=(舍)或t =﹣1,∴A (﹣1,1).(4分) (2)由条件知()222221()4x x x y λ+-=+,把y =x 2代入得()2221110216y y λλ⎛⎫-+-+=⎪⎝⎭,∴2234∆λλ⎛⎫=-⎪⎝⎭, 当λ=1时,M有两个点,当λ=M 有两个点,当12λ<<时,M 点有四个,当λ>1,M 点有两个,当0λ<<,M 点不存在.(8分) (3)设B (211x x ,),A (222x x ,),由题意得:2212122x x x x +=,解得x 1x 2=﹣2.设直线AB 的方程为y =kx +m ,联立2y kx my x=+⎧⎨=⎩,得x 2﹣kx ﹣m =0,得x 1x 2=﹣m , 又x 1x 2=﹣2,∴m =2,则直线经过定点(0,2), ∴S 四边形OABC =S △OAB +S △OBC =S △OAB +S △OBF()1211111192232248x x x x x =⨯⨯-+⨯⨯=+≥=, 当且仅当143x =等号成立,四边形OABC 面积最小, ∴B (43,169).(12分) 22.【解析】(1)∵直线l的参数方程为1121x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).∴直线l的直角坐标方程为)11y x -=-,1y =+-∵曲线C 1:ρ=4cos θ+4sin θ,∴曲线C 1的直角坐标方程为(x ﹣2)2+(y ﹣2)2=8,是以(2,2)为圆心,为半径的圆.(5分) (2)联立直线的参数方程与圆的直角坐标方程得)2160t t --=.记该方程的两根为t 1,t 2,由直线参数方程的几何意义可得|PA |=|t 1|,|PB |=|t 2|,121t t +=,t 1t 2=﹣6,故1212121211t t t t PA PB t t t t +-+===.(10分)23.【解析】(1)由题意可得|x ﹣1|+|2x +3|>4,当x ≥1时,x ﹣1+2x +3>4,解得x ≥1; 当32-<x <1时,1﹣x +2x +3>4,解得0<x <1; 当x 32≤-时,1﹣x ﹣2x ﹣3>4,解得x <﹣2. 可得原不等式的解集为(﹣∞,﹣2)∪(0,+∞).(5分)(2)由(1)可得|t ﹣1|+|2t +3|32134123322t t t t t t ⎧⎪+≥⎪⎪=+-<<⎨⎪⎪--≤-⎪⎩,,,,可得t32=-时,|t﹣1|+|2t+3|取得最小值52,关于x的不等式|x+1|﹣|x﹣m|≥|t﹣1|+|2t+3|(t∈R)能成立,等价为52≤|x+1|﹣|x﹣m|的最大值,由|x+1|﹣|x﹣m|≤|m+1|,可得|m+1|52≥,解得m32≥或m72≤-.(12分)。
浙江省台州市2023-2024学年高一上学期期中数学试题含解析
2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。
浙江省湖州市2020年高三上学期期末数学试卷(理科)(I)卷
浙江省湖州市2020年高三上学期期末数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016高二下·鹤壁期末) 设a是实数,且,则实数a=()A . ﹣1B . 1C . 2D . ﹣22. (2分)二项式 (n N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是()A . 1B . 2C . 3D . 43. (2分)(2018·河南模拟) 执行如图所示的程序框图,则输出的值为()A . 14B . 13C . 12D . 114. (2分)⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,已知PA=6,PO=12,AB=,则⊙O的半径为()A . 4B . 6-C . 6+D . 85. (2分)已知向量=(m,-2),=(4,-2m),条件p:,条件q:m=2,则p是q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要6. (2分)已知函数,且函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则的取值范围为()A .B .C .D .7. (2分)已知一个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得几何体的体积是().A . 4cm3B . 6cm3C . 8cm3D . 12cm38. (2分) (2018高二下·聊城期中) 在四个不同的盒子里面放了个不同的水果,分别是桔子、香蕉、葡萄、以及西瓜,让小明、小红、小张、小李四个人进行猜测小明说:第个盒子里面放的是香蕉,第个盒子里面放的是葡萄;小红说:第个盒子里面放的是香蕉,第个盒子里面放的是西瓜;小张说:第个盒子里面敬的是香蕉,第个盒子里面放的是葡萄;小李说:第个盒子里面放的是桔子,第个盒子里面放的是葡萄;如果说:“小明、小红、小张、小李,都只说对了一半。
浙江省湖州、衢州、丽水三地市2020届高三上学期教学质量检测数学试卷(含答案)
浙江省湖州、衢州、丽⽔三地市2020届⾼三上学期教学质量检测数学试卷(含答案)湖州、衢州、丽⽔三地市教学质量检测试卷⾼三数学(2018.1)第Ⅰ卷(选择题,共 40 分)⼀、选择题(本⼤题共 10 ⼩题,每⼩题 4 分,共 40 分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.已知全集 U ? ?1, 2, 3, 4, 5, 6? ,集合 P ? ?1, 4? , Q ? ?3, 5? ,则 eU ? P Q? ?A.?2, 6?B.?2, 3, 5, 6? C.?1, 3, 4, 5 ?D. ?1, 2, 3, 4, 5, 6?2.我国古代著名的思想家庄⼦在《庄⼦·天下篇》中说:“⼀尺之棰,⽇取其半,万世不竭.”若把“⼀尺之棰”的长度记为 1 个单位,则“⽇取其半”后,⽊棒剩下部分的长度组成数列的通项公式是A.ann 21B. an ? n 2C.an1 2n3.设 l 为直线, ? , ? 是两个不同的平⾯,下列命题中正确的是D.an1 ?n?12 ??A.若 ? ? ? , l //? ,则 l ? ?B.若 l //? , l // ? ,则 ? // ?C.若 l ? ? , l // ? ,则 ? // ?D.若 l ? ? , l ? ? ,则 ? // ?4.已知 ? 为锐⾓,且 cos 2? ? ? 7 ,则 tan? ? 25A. 3 5B. 4 5C. 3 4D. 4 35.某四棱锥的三视图如图所⽰(单位: cm ),则该四棱锥的体积(单位: cm3 )是 A. 43 C. 4B. 8 3D. 822正(主)视图2侧(左)视图俯视图(第 5 题图)6.若 c ? R ,则“ c ? 4 ”是“直线 3x ? 4y+c ? 0 与圆 x2 ? y2 +2x ? 2 y ?1 ? 0 相切”的A.充分不必要条件 C.充要条件B.必要不充分条件 D.既不充分也不必要条件,y满⾜? ?x xy? N,30,则x3y的最⼤值是y ? N,A. 3B. 5C. 7D. 98.已知函数 f ? x? ? x ?1 ? x ? x ?1 ,则⽅程 f ?2x ?1? ? f ? x? 所有根的和是A. 1 3B. 1C. 4 3D. 29.已知等腰 Rt?ABC 内接于圆 O ,点 M 是下半圆弧上的动点(如图所⽰).现将上半圆⾯沿 AB 折π起,使所成的⼆⾯⾓ C ? AB ? M 为.则直线 AC 与直线 OM 所成C4⾓的最⼩值是A.π 12B.π 6AOBC.π 4D.πM310.已知 a,b, c ? R 且 a ? b ? c ? 0 , a ? b ? c ,则 b 的取值范围是 a2 ? c2A. ??? ?5 5,5 5B.1 5,1 5C. ? 2,2D. ??? ?2, 5 5第Ⅱ卷(⾮选择题部分,共 110 分)注意事项:⽤钢笔或签字笔将试题卷中的题⽬做在答题卷上,做在试题卷上⽆效.⼆、填空题(本⼤题共 7 ⼩题,多空题每题 6 分,单空题每题 4 分,共 36 分.)11.椭圆 x2 ? y2 ? 1的长轴长是▲,离⼼率是▲. 4312.在 ? x ?1? ? ?2 ? x?3 的展开式中,常数项是▲,含 x 的⼀次项的系数是▲.ab ? ▲, z1 ? z2 的最⼩值是▲.15.在锐⾓ ?ABC 中, AD 是 BC 边上的中线.若 AB ? 3 , AC ? 4 , ?ABC 的⾯积是 3 3 ,则 AD ? ▲.16.设 m?R ,若函数 f (x) ?| x3 ? 3x ? 2m | +m 在 x ?[0, 2] 上的最⼤值与最⼩值之差为 3 ,则 m ?▲.17 .设点 P 是 ?ABC 所在平⾯内动点,满⾜ C P ? ? C A? ? C B, 3?+4? ? 2 ( ?, ? ? R ),PA = PB = PC .若 AB ? 3 ,则 ?ABC 的⾯积最⼤值是▲.三、解答题(本⼤题共 5 ⼩题,共 74 分.解答应写出⽂字说明、证明过程或演算步骤.) 18.(本⼩题满分 14 分)已知函数 f ? x? ?3sin2x62sinxcosx.(Ⅰ) 求函数 f ? x? 的最⼩正周期;(Ⅱ) 当 x ?[? ? , ? ] 时,求函数 f ? x? 的最⼤值和最⼩值.4419.(本⼩题满分 15 分)已知函数 f ? x? ? x2 ? ax ? ln x ( a ?R ).(Ⅰ)当 a ?1 时,求曲线 f ? x? 在点 P ?1, 0? 处的切线⽅程;(Ⅱ)若函数 f ? x?有两个极值点 x1 , x2 ,求 f ? x1 ? x2 ? 的取值范围.20.(本⼩题满分 15 分)已知矩形 ABCD 满⾜ AB ? 2 , BC ? 2 , ?PAB 是正三⾓形,平⾯ PAB ? 平⾯ ABCD .(Ⅰ)求证: PC ? BD ;P(Ⅱ)设直线 l 过点 C 且 l ? 平⾯ ABCD ,点 F 是AlFD直线 l 上的⼀个动点,且与点 P 位于平⾯ ABCD 的同侧.记直线 PF 与平⾯ PAB 所成的⾓为? ,若 0 ? CF ? 3 ?1,求 tan? 的取值范围.21.(本⼩题满分 15 分)已知抛物线 C : y2 =2 px ( p ? 0 )上的点 M ?m, ?2? 与其焦点的距离为 2 .(Ⅰ)求实数 p 与 m 的值;y(Ⅱ)如图所⽰,动点 Q 在抛物线 C 上,QBA直线 l 过点 M ,点 A 、 B 在 l 上,且满⾜ QA ? l ,OxMB 2MQB // x 轴.若为常数,求直线 l 的⽅程.MA(第 21 题图)满⾜:a1=1,an?1ln1an(nN?),设数列1 an的前n项和为Tn.证明:(Ⅰ) an ? 0 ( n ? N? );(Ⅱ)an +13an an ? 3(n ? N?);(Ⅲ)n2 +5n 6Tnn2 +5n 4(n ? N?).湖州、衢州、丽⽔三地市教学质量检测参考答案⼀、选择题(本⼤题共 10 ⼩题,每⼩题 4 分,共 40 分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)题号 12345678910答案 ACDD⼆、填空题(本⼤题共 7 ⼩题,多空题每题 6 分,单空题每题 4 分,共 36 分.)11. 4 , 1 212. 8 , ?47413.10 , 514. ?1, 23715.216. ? 1 217. 9三、解答题(本⼤题共 5 ⼩题,共 74 分.解答应写出⽂字说明、证明过程或演算步骤.) 18.(本⼩题满分 14 分)已知函数 f ? x? ?3sin2x62sinxcosx.(Ⅰ) 求函数 f ? x? 的最⼩正周期;(Ⅱ)当 x ?[? ?, ] 时,求函数fx 的最⼤值和最⼩值.44解:(Ⅰ) f ? x? ? 3[sin 2x cos ? ? cos 2xsin ? ] ?sin 2 x -----------4 分663 cos 2x 1 sin 2x22sin2x3---------------------------------------6分因此函数 f ? x? 的最⼩正周期 T ? ? ---------------------------------------8 分(Ⅱ)因为 ? ? ? x ? ? ,所以 ? ? ? 2x+ ? ? 5? ----------------------------10 分4sin2x+31 -----------------------------------------------12分因此,当 x= ? 时, f ? x? 的最⼤值为1,12当 x= ? ? 时, f ? x? 的最⼩值为 ? 1 .---------------------------------------------14 分4219.(本⼩题满分 15 分)已知函数 f ? x? ? x2 ? ax ? ln x ( a ?R ).(Ⅰ)当 a ?1 时,求曲线 f ? x? 在点 P ?1, 0? 处的切线⽅程;(Ⅱ)若函数 f ? x? 有两个极值点 x1 , x2 ,求 f ? x1 ? x2 ? 的取值范围.解:(Ⅰ)当 a ?1 时, f ? x? ? x2 ? x ? ln x则 f ?? x? ? 2x ?1? 1 -----------------------------------------------------2 分x所以 f ? 1 ? 2 ----------------------------------------------------------------4 分因此曲线 f ? x? 在点 P ?1, 0? 处的切线⽅程为 2x ? y ? 2 0 .---------------6 分(Ⅱ)由题意得 f ?? x? ? 2x ? a ? 1 ? 0 ,------------------------------------7 分x故 2x2 ? ax ?1 ? 0 的两个不等的实根为 x1 , x2 .? a2 ? 8 ? 0由韦达定理得?x1x2a 2,解得a22.x1x21 2--------------9 分故fx1 x2 = x1 x2 2.-------------11分设 g ?a? = ? a2 ? ln a ( a ? 2 2 ),42则 g??a? = ? a ? 1 ? 2 ? a2 ? 0 .------------------------------------------------------------13 分2 a 2a故 g?a? 在 2 2,+? 单调递减,所以 g ?a? ? g 2 2 ? ?2 ? ln 2 .因此 f ? x1 ? x2 ? 的取值范围是 ??,? 2 ? ln 2 .----------------------------------------15 分20.(本⼩题满分 15 分)已知矩形 ABCD 满⾜ AB ? 2 , BC ? 2 , ?PAB 是正三⾓形,平⾯ PAB ? 平⾯ ABCD .(Ⅰ)求证: PC ? BD ;(Ⅱ)设直线 l 过点 C 且 l ? 平⾯ ABCD ,点 F 是直线 l 上的⼀个动点,且与点 P 位于平⾯ ABCD 的同侧.记直线 PF 与平⾯ PAB 所成的⾓为? ,若 0 ? CF ? 3 ?1,求 tan? 的取值范围.PG AE BlFDC解:(Ⅰ) 取 AB 的中点 E ,连接 PE , EC .-------2 分由点 E 是正 ?PAB 边 AB 的中点, PE ? AB ,⼜平⾯ PAB ? 平⾯ ABCD ,平⾯ PAB 平⾯ ABCD=AB ,所以 PE ? 平⾯ ABCD ,则 PE ? BD .----------4 分因为 BE ? 1 ? 2 ? BC , ?EBC ? ?BCD ? 90? ,所以 ?EBC ∽ ?BCD . BC 2 2 CD故 ?ECB ? ?BDC ,则 CE ? BD ,--------------------6 分CE PE ? E ,故 BD ? 平⾯ PEC ,⼜ PC ? 平⾯ PEC因此 PC ? BD .-------------------------------------------7 分(Ⅱ)在平⾯ PAB 内过点 B 作直线 m // FC ,过 F 作 FG ? m 于 G ,连接 PG 。
2020年浙江省湖州市大云昆中学校高三数学理联考试题含解析
2020年浙江省湖州市大云昆中学校高三数学理联考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 学校高中部共有学生2000名,高中部各年级男、女生人数如下表,已知在高中部学生中随机抽取1名学生,抽到高三年级女生的概率是0.18,现用分层抽样的方法在高中部抽取50名学生,则应在高二年级抽取的学生人数为( )B解答: 解:因为高中部学生中随机抽取1名学生,抽到高三年级女生的概率是0.18,所以,解得x=360.所以高一人数为373+327=700,高三人数为360+340=700,所以高二人数为2000﹣700﹣700=600.所以高一,高二,高三的人数比为700:600:700=7:6:7,所以利用分层抽样从高中部抽取50人,则应在高二抽取的人数为人. 故选B .2. 已知 椭圆的右焦点为,右准线为,点,线段交于点,若,则=( )A.B.2 C. D. 3参考答案: C3. i 为虚数单位,则=( )A .﹣iB .﹣1C .iD .1参考答案:A【考点】复数代数形式的混合运算. 【专题】数系的扩充和复数.【分析】根据两个复数代数形式的乘除法,虚数单位i 的幂运算性质化简为i ,根据=i 4×503+3=i 3,求得结果.【解答】解:∵===i ,则=i 4×503+3=i 3=﹣i ,故选:A .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题.4. “”是“-4>0”的(A )必要而不充分条件 (B )充分而不必要条件 (C )充要条件 (D )既不充分也不必要条件 参考答案:B5. 设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3 C.6 D.9参考答案:C【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选C.6. 已知定义在上的可导函数的导函数为,若对于任意实数,有,且为奇函数,则不等式的解集为A.B.C.D .参考答案:B7. x,y满足约束条件目标函数z=2x+y,则z的取值范围是()(A)(B)(C)[2,+∞)(D)[3,+∞)参考答案:C试题分析:作出可行域及目标函数如图:将变形可得.平移目标函数线使之经过可行域,当目标函数线过点时, 纵截距最小,此时也取最小值为;因为平移目标函数线时其纵截距,所以此时.所以.故C正确.考点:线性规划.8. 设函数的取值范围是()A.B.C. D.参考答案:D9. 设与是定义在同一区间[a,b]上的两个函数,若对任意∈[a,b],都有成立,则称和在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若与在[a,b]上是“密切函数”,则其“密切区间”可以是()(A)[1,4] (B)[2,4] (C)[3,4] (D)[2,3]参考答案:D10. 已知实数x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是()A.[4,+∞) B.(-∞,-4]∪[4,+∞) C.(-∞,0]∪[4,+∞) D.不能确定参考答案:答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 设实数x,y满足,则z=+的取值范围是.参考答案:[2,]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设k=,利用k的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:设k=,则k 的几何意义是区域内的点到原点的斜率,则z=k+,由图象知,OA的斜率最大,OB的斜率最小,由得,即A(1,2),此时k=2,由得,即A(3,1),此时k=,则≤k≤2,∵z=k+在[,1]上为减函数,则[1,2]上为增函数,∴当k=1时,函数取得最小值为z=1+1=2,当k=时,z==,当k=2时,z=2+=<,则z的最大值为,故2≤z≤,故答案为:[2,]12. 现有一根n节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm,最下面的三节长度之和为114 cm,第6节的长度是首节与末节长度的等比中项,则n=________.参考答案:16略13. 为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为2400m2的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为28 m2,月租费为x万元;每间肉食水产店面的建造面积为20 m2,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x的最大值为_________万元.参考答案:16;1【分析】(1)设蔬菜水果类和肉食水产类店分别为,根据条件建立不等关系和相等关系,求解,确定解的个数;(2)平均每间店的收入不低于每间蔬菜水果类店面月租费的90%建立不等式,根据不等式恒成立求的最大值即可.【详解】设蔬菜水果类和肉食水产类店分别为,(1)由题意知,,化简得:,又,所以,解得:,共种;(2)由题意知,,,,,即的最大值为1万元,故答案为:16;1【点睛】本题主要考查了不等式在实际问题中的应用,不等式的性质,属于难题.14. 观察下列等式:则第6个等式为______参考答案:15. 已知函数满足对任意的都有成立,则=.参考答案:7略16. 平面向量的夹角为,且满足的模为,的模为,则的模为_____参考答案:17. 若实数满足,则的最大值是__________参考答案:略三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 1 11 x1
2或z
y
x
1
11 1
2
故 z y 1 x 0 的取值范围是 ,2 2,
x
-2-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
故选:C 【点睛】本题主要考查了线性规划中斜率的几何意义的方法,属于基础题型.
5.若 x R ,则“ x3 1”是“ x 1 ”的( )
3.已知等差数列an 的公差为 2,若 a1 , a3 , a4 成等比数列,则 a2 (
A. -4
B. -6
C. -8
【答案】B
D. 4
) D. -10
-1-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
【解析】
【分析】
把 a3 , a4 用 a1 和公差 2 表示,根据 a1 , a3 , a4 成等比数列,得到 a32 a1a4
10
(1).
3
(2).
【分析】
(1)联立直线与椭圆的方程求解弦长公式的表达式再分析最小值即可.
(2)根据弦长公式求解参数即可.
x
2
【详解】联立 9
y2 5
1
x my 2
5m2 9
y2 20my 25 0 ,故
y1 y2
30 m2 1 . 5m2 9
故弦长 AB
1
m2
30 m2 1 5m2 9
11.某几何体的三视图如图所示(单位: cm ),则该几何体的体积为______ cm3 ,表面积为 ______ cm2 .
-8-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
【答案】 (1). 56 (2). 76 8 2
【解析】 【分析】 易得该图形为正方体截去一个三棱柱再计算体积与表面积即可.
a
,b
,c
所对的角分别为
A ,B
,C
.若 b2
3a2
c2
,则
即
2ab
2c2
1
,故
2ab
c
2c2
c
1
2
c
1 4
2
9 8
9 8
,
当且仅当 c 1 , a, b 分别取 7 时等号成立.
4
4
故选:B
【点睛】本题主要考查了基本不等式以及二次不等式的综合运用,需要注意分析 a, b, c 的正负
再利用基本不等式,属于中等题型.
10.在三棱锥 S ABC 中, ABC 为正三角形,设二面角 S AB C , S BC A ,
A. 充分不必要条件 C. 充要条件 【答案】A 【解析】 【分析】 分别求解两个不等式再判断即可.
B. 必要不充分条件 D. 既不充分也不必要条件
【 详 解 】 因 为 y x3 为 增 函 数 , 故 x3 1 解 得 x 1 , 又 x 1 解 得 x 1 或 x 1 , 故
“ x3 1”是“ x 1 ”的充分不必要条件.
C. 0, 2
)
D. 0, 2
【答案】B 【解析】 【分析】 根据指数不等式的求解方法求出 B 再求并集即可.
【 详 解 】 易 得 B x | 2 2x 4 x | 21 2x 22 x |1 x 2 . 故
A B x |1 x 2 .
故选:B
【点睛】本题主要考查了指数不等式的求解以及并集的运算,属于基础题型.
【解析】
【分析】
C. 21
D. 26
-3-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
根据双曲线的定义求解即可.
【详解】易得 PQF1 的周长为 PQ PF1 QF1 PQ PQ 4a 10 16 26 .
故选:D 【点睛】本题主要考查了双曲线的定义运用,属于基础题型.
———————欢迎下载,祝您学习进步,成绩提升———————
A. 3 4
【答案】B 【解析】 【分析】
B. 9 8
C. -1
D. 4 3
根据题意利用 a2 b2 与 2ab 的基本不等式,再转换为含 c 的二次不等式求解即可.
【详解】若 2ab c 取最小值,显然 a, b 异号且 c 0 .故1 2c2 a2 b2 2 ab 2ab ,
【详解】画出对应的直观图五棱柱 ABEE1A1 DCFF1D1 .
(1)易得体积为 4 4 4 1 2 2 4 56 cm3 . 2
(2)表面积
4
4
2
4
2
2
4
4
1 2
2
2
2
4
22 22 76 8
2 cm3
故答案为:56; 76 8 2
【点睛】本题主要考查了根据三视图求解原几何体的体积与表面积的问题,需要画出对应的图
的正切值再判断即可.
【详解】作 S 在底面 ABC 的投影 O ,再分别作 OM AB, ON BC, OP AC ,设 ABC 边
-6-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
长为 a . ①当 O 在 ABC 内时, 易得 , , 分别为 SMO, SNO, SPO .由 SABC SABO SBCO SACO 可得
判别式
1
4m
0
m
1 4
,故
m
1 4
,
0
②当直线 y x m 与抛物线部分相交于 1 个点,与 y 1 相交于两点,此时临界条件为直线 x
y x m 与 y 1 相切,此时 1 x m x2 mx 1 0
x
x
判别式 m2 4 0 m 2 ,由图得 y x m 中 m 0 ,故 m 2 为临界条件.
1x
0
的取值范围是(
)
y x 0
x
A. 2, 2
B. , 2 2,
C. , 2 2,
D. 2,2
【答案】C 【解析】 【分析】 画出可行域,再根据目标函数斜率的几何意义分析即可.
【详解】画出可行域,易得 z y 1 x 0 的几何意义为 x, y 到 0, 1 的斜率,
x
又 B(1,1),C(1, 1) .故 z
2
0,1 内增大时 D 先增大后减小.
故选:D
【点睛】本题主要考查了二项分布中方差的公式运用,属于基础题型.
8.已知函数
f
x
2x
1 x
,
x2, x x0
0
,若函数
g
x
f x x m 恰有三个零点,则实数 m
的取值范围是( )
A.
,
2
1 4
,
0
B.
2,
0,
1 4
C.
2,
1 4
0,
像进行分析求解,属于中等题型.
12.二项式
x
1 x
6
的展开式中常数项等于______,有理项共有______项.
【答案】 (1). 15 (2). 4
【解析】
【分析】
(1)根据二项式定理的通项公式求解即可.
(2)根据二项式定理的通项公式分析 x 的指数为整数的项的个数即可.
【详解】(1)根据二项式定理的通项公式 Tr1 C6r
1 tan
1 tan
1 tan
MO SO
NO PO SO SO
a SO
0.
当 S 无限接近 O 时易得 接近 0,故 C 错误.
②当 O 在 ABC 外时,不妨设 O 在 AC, BC 的延长线构成的角内.
易得 , , 分别为 SMO, SNO, SPO .由 SABC SABO SBCO SACO 可得
故选:A 【点睛】本题主要考查了幂函数与绝对值不等式的求解与充分不必要条件的判断,属于基础题 型.
6.已知双曲线 x2 16
y2 4
1的左、右焦点分别为 F1 , F2 ,过 F2 的直线 l 交双曲线于 P , Q 两
点.若 PQ 长为 5,则 PQF1 的周长是( )
A. 13
B. 18
【答案】D
1 tan
1 tan
1 tan
MO SO
NO PO SO SO
a SO
0.
且当 S 无限接近 O 时易得 ห้องสมุดไป่ตู้ 接近 2 ,故 B 错误.
-7-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
综上,A 也错误. 故选:D 【点睛】本题主要考查了二面角的分析,需要画图理解,表达出对应的二面角的平面角,再根据 平面内任一点到正三角形三边的距离关系求解分析,同时也要有极限的思想分析二面角的范 围问题.属于难题. 二、填空题
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
浙江省湖州市 2020 届高三数学上学期期末考试试题(含解析)
一、选择题
1.若集合 A x |1 x 2 ,集合 B x | 2 2x 4 ,则 A B (
A. 1, 2
B. 1, 2
6r
x
1 r x
C6r
63r
x 2
.
-9-
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
故取常数项时
6 3r 2
0
r