直流平衡电桥测电阻实验报告材料
实验十八直流电桥测电阻实验报告
Rx 的变化量 δRx 。电桥灵敏阈 δRx 反映了电桥平衡判断中可能包含的误差,故
∆n 0.2 S= =
∆Rx δRx
Rx
Rx
又有
δRx
=
0.2∆Rx ∆n
=
0.2R1∆R0 ∆nR2
由(18.3)和(18.6)可得到 Rx 的不确定度
1
( ) σ Rx
⎡ =⎢
⎢⎣
δRx
2
+
⎛ ⎜⎜ ⎝
R0 R2
(1)桥臂电阻的误差。
Rx 的测量误差可用下列不确定度公式估计:
1
σ Rx Rx
=
⎢⎢⎣⎡⎜⎜⎝⎛
σ R1 R1
2
⎞ ⎟⎟ ⎠
+
⎜⎜⎛ ⎝
σ R2 R2
2
⎞ ⎟⎟ ⎠
+
⎜⎜⎛ ⎝
σ R0 R0
2
⎞
⎤
2
⎟⎟ ⎠
⎥ ⎥⎦
(18.3)
式中σ R1 ,σ R2 ,σ R0 分别是 R1, R2 , R0 的不确定度。为消除 R1 / R2 的比值误差,可交换 R1, R2 的位置再测,取两次结果的 Rx1, Rx2 的平均值为 Rx ,有
三、实验原理
(一) 铂电阻温度特性
在 0 ~ 100� C 范围内可以近似为
RT = R0 (1+ A1T )
(19.1)
RT , R0 , A1,T 分别表示温度 T 时的阻值、0 摄氏度时的阻值、正温系数和温度。
图 19-1 非平衡电桥电路原理图
(二)用非平衡电桥测量铂电阻温度系数
如图 19-1 所示,I 为恒流电源; R1, R2 为固定电阻, Rp 为可调电阻,用作平衡电
实验十八直流电桥测电阻实验报告
实验十八直流电桥测电阻实验报告一、实验目的1.掌握直流电桥的基本结构、原理和使用方法;2.学习使用直流电桥测量电阻。
二、实验仪器与器材1.直流电桥主体:包括电源、电桥、电流计等组成;2.高精度套装电阻箱;3.电导线;4.多用表;5.尺子。
三、实验原理直流电桥的基本原理就是根据欧姆定律,利用电桥平衡条件来测电阻值。
在实验中,通过调整电桥的阻值,使得电流为零,即在两端读取到相同电压,此时被测电阻值等于设置的阻值。
四、实验步骤1.将直流电桥接通电源,并将高精度套装电阻箱接入电桥的两个相反支路上;2.调节电阻箱阻值,使得电桥两侧的电流为零;3.记录此时电阻箱上的阻值,即为被测电阻值;4.通过多用表检查测量结果的准确性。
五、实验数据记录与处理1.实验数据记录使用直流电桥对5个不同电阻进行测量,分别记录电桥两侧的电阻值和电阻箱上的设定阻值,并计算误差。
被测电阻(Ω)电桥两侧电阻(Ω)设定阻值(Ω)误差(Ω)R1 2.98 3 0.02R2 4.01 4 0.01R3 10.03 10 0.03R4 20.05 20 0.05R5 50.02 50 0.022.数据处理将每次测量得到的数据进行误差计算,如下所示:误差=电桥两侧电阻-设定阻值每次测量的误差都小于0.1Ω,符合实验的要求。
六、实验结果分析与讨论通过本实验,我们掌握了使用直流电桥测量电阻的方法,并且对测得的数据进行了处理分析。
由于实验所用的仪器与器材都是高精度的,所以测量结果的误差较小,符合要求。
在实际应用中,直流电桥是一种常用的测试电阻的工具,其精度可以达到0.1%以上,比其他测量方法更为准确和稳定。
因此,掌握直流电桥的原理和操作方法对于电阻的测量和实验研究非常重要。
七、实验总结通过本实验,我们学会了使用直流电桥测量电阻,并对测量结果进行了处理和分析。
实验过程中,注意到电阻的接触是否良好,避免一些干扰因素对测量结果的影响。
并且在实验结束后,对仪器进行了正确的关闭和清理。
直流电桥测电阻-实验报告
直流电桥测电阻实验报告一、实验目的(1)了解单电桥测量电阻的原理,利用此原理测量电阻以及铜丝电阻的温度系数。
(2)通过处理实验所得数据,学习作图法与直线拟合法。
(3)利用电阻与温度关系,构造非平衡互易桥组装数字温度计,并学习其应用分析设计方法。
二、实验原理(1)惠斯通电桥测量电阻(1-1)电桥原理:当桥路检流计中无电流通过时,表示电桥已经达到平衡,此时有Rx/R2 = R/R1,即Rx = (R2/R1)*R。
其中将(R2/R1)记为比率臂C,则被测电阻可表示为Rx=C*R。
(1-2)实际单电桥电路在实际操作中,通过调节开关c位置,改变比率臂C;通过调节R中的滑动变阻器,改变R。
调节二者至桥路检流计中无电流通过,已获得被测电阻阻值。
(2)双电桥测低电阻(2-1)当单电桥测量电阻阻值较低时,由于侧臂引线和接点处存在电阻,约为10^-2~10^-4Ω量级,故当被测电阻很小时,会产生较大误差。
故对单电桥电路进行改进,被测电阻与测量盘均使用四段接法:,同时增设两个臂R1'和R2'。
(2-2)电路分析:由电路图知:① I3*Rx + I2*R2’ = I1*R2 ② I3*R + I2*R1’ = I1*R1 ③ I2*(R2’+R1’) = (I3=I2)*r 综合上式可知:⎪⎭⎫ ⎝⎛-+++='1'212'2'1'*121R R R R R r R R r R R R R x 利用电桥结构设计,可满足⎪⎭⎫⎝⎛='1'212R R R R ,同时减小r ,可是Rx 仍满足Rx = (R2/R1)*R ,即Rx=C*R 。
(3)铜丝的电阻温度特性及数字温度计设计 (3-1)铜丝的电阻温度特性∵一般金属电阻均有:Rt = R0(1+αR*t),且纯铜αR 变化小 ∴αR = (Rt - R0)/(R0*t) (3-2)数字温度计设计 (3-2-1)非平衡电桥将检流计G 换为对其两端电压的测量,满足:⎪⎭⎫⎝⎛+-+=Rt R Rt R R R E t 21U 。
大学物理-直流平衡电桥测电阻 实验报告
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 直流平衡电桥测电阻教师评语实验目的与要求:1) 掌握用单臂电桥测电阻的原理, 学会测量方法。
2) 掌握用双臂电桥测电阻的原理, 学会测量方法。
主要仪器设备:1) 单臂电桥测电阻:QJ24型直流单臂电桥,自制惠更斯通电桥接线板,检流计,阻尼开关、四位标准电阻箱、滑线变阻器、电路开关、三个带测电阻、电源;2) 双臂电桥测电阻:QJ44型直流双臂电桥,待测铜线和铁线接线板、电源、米尺和千分尺。
实验原理和内容: 1直流单臂电桥(惠斯通电桥) 1.1 电桥原理单臂电桥结构如右图所示, 由四臂一桥组成; 电桥平衡条件是BD 两点电位相等, 桥上无电流通过, 此时有关系s s x R M R R R R ⋅==21成立, 其中M=R1/R2称为倍率, Rs 为四位标准电阻箱(比较臂), Rx 为待测电阻(测量臂)。
1.2 关于附加电阻的问题:附加电阻指附加在带测电阻两端的导线电阻与接触电阻, 如上图中的r1, r2, 认为它们与Rx 串联。
如果R x 远大于r ,则r 1+r 2可以忽略不计,成 绩教师签字但是当R x 较小时,r 1+r 2就不可以忽略不计了,因此单臂电桥不适合测量低值电阻, 在这种情况下应当改用双臂电桥。
2双臂电桥(开尔文电桥) 2.1 双臂电桥测量低值电阻的原理双臂电桥相比单臂电桥做了两点改进, 增加R3、R4两个高值电桥臂, 组成六臂电桥;将Rx 和Rs 两个低值电阻改用四端钮接法, 如右图所示。
在下面的计算推导中可以看到, 附加电阻通过等效和抵消, 可以消去其对最终测量值的影响。
2.2 双臂电桥的平衡条件双臂电桥的电路如右图所示。
在电桥达到平衡时,有1234\\R R R R =,由基尔霍夫第二定律及欧姆定律可得并推导得:31123314131224234243132342433112424()0x S x x x x x xI R I R I R R R R r R I R I R I R R R R R R r R R R R R R R M R I r I r R R R R R R R R R R R R ⎫=-⎫⎛⎫⎪⎪=-⇒=+-⎬ ⎪⎪++⎪⎝⎭⎪⇒===⋅=++⎬⎭⎪⎪=⇒-=⎪⎭ 可见测量式与单臂电桥是相同的, R1/R2=R3/R4=M 称为倍率(此等式即消去了r 的影响), Rs 为比较臂, Rx 为测量臂。
直流平衡电桥测电阻实验报告记录
直流平衡电桥测电阻实验报告记录实验目的:1. 了解直流平衡电桥的基本原理和测量电阻的方法3. 验证欧姆定律和串联与并联规律实验器材:电池、电阻箱、电流表、电压表、直流平衡电桥实验原理:直流平衡电桥是一种测量电阻的仪器,其原理基于基尔霍夫电路定律。
当桥路四个电阻相等时,桥路两端电压差为零,此时称为平衡状态。
在平衡状态下,另外一个待测电阻可以由电桥电路中其余电阻值的关系计算出来。
电桥误差主要来源于电桥的非线性和接触电阻,可以通过合理选择电桥和精确校准电桥来减小误差。
实验步骤:1. 搭建电桥电路,具体见图1。
2. 调节电阻箱,使得电桥两侧电压差为零。
3. 记录电桥电路中各个电阻箱的电阻值,计算出待测电阻值。
4. 重复以上步骤多次,计算出待测电阻的平均值。
5. 用电流表和电压表测量电桥电路中的电流和电压,验证欧姆定律和串联与并联规律。
6. 记录实验结果并进行分析。
实验结果:在电桥电路中,选取R1=R2=100Ω,R3=600Ω,R4为待测电阻,测得电桥两侧电压差为零时,R4的电阻值为:R4= ( R3 × R2 ) / R1 = 600 × 100 / 100 = 600Ω重复测量多次,得到待测电阻平均值为600Ω。
误差分析:电桥误差主要来自电桥本身非线性和接触电阻等因素。
在实验中,应该通过合理选择电桥和精确校准电桥来减小误差。
并且,在操作电阻箱时需要小心,尽量保证电阻箱内接触良好。
在测量电流和电压时,应该注意测量仪器的精度,以免误差。
本实验采用直流平衡电桥测量电阻的方法,实验结果表明该方法可行。
经过多次测量和计算,得出的待测电阻值与理论值相符。
在实验中,应该注意减小电桥误差,并且保证电阻箱内接触良好,测量仪器的精度,以免误差。
直流电桥测电阻实验报告
直流电桥测电阻实验报告实验目的本实验的目的是通过直流电桥方法测量给定电阻的阻值,并熟悉电桥的工作原理和使用方法。
实验原理直流电桥是一种广泛应用于测量电阻的仪器。
其基本原理是利用电桥平衡条件来测量待测电阻的阻值。
一个典型的直流电桥由四个电阻组成,分别是R1、R2、R3和Rx。
其中R1和R2称为标准电阻,R3称为电位器。
电桥的基本工作原理是通过改变电位器的电阻,使电桥两对端电压为零,即平衡状态。
根据直流电桥的平衡条件公式可得:R1 / R2 = Rx / R3通过这个公式,可以求解出待测电阻Rx的阻值。
为了提高测量的准确性,通常会取多个平衡点进行测量,并取平均值作为最终结果。
实验步骤1.按照实验要求,搭建直流电桥电路。
2.通过调整电位器,使得电桥两端电压为零,记录下此时电位器的阻值。
3.重复步骤2,至少取三组平衡点,记录下每次电位器的阻值。
4.计算每次测量得到的待测电阻Rx的平均值。
5.比较测量结果与标准值,计算误差并分析原因。
实验数据和结果下表是实验中测量得到的数据:测量次数电位器阻值(Ω)待测电阻Rx (Ω)1 100 1002 105 1053 98 98根据上表数据,计算得到待测电阻 Rx 的平均值为101.00 Ω。
计算误差和分析假设标准值为100 Ω,根据测量结果与标准值的差异计算出相对误差:误差 = | (测量值 - 标准值) / 标准值 | × 100%= | (101.00 - 100) / 100 | × 100%= 1%从计算结果可以看出,测量结果的误差为 1%。
这种误差可能来自于实验中存在的一些不确定因素,比如接线不良、电源波动等。
结论通过直流电桥方法测量得到的待测电阻 Rx 的阻值为101.00 Ω,相对误差为 1%。
这个结果与预期的标准值接近,说明实验的准确性较高。
但仍需注意实验中存在的不确定因素,以提高测量结果的可靠性。
实验总结本次实验中,我们通过搭建直流电桥电路并调整电位器,成功测量了给定电阻的阻值。
直流平衡电桥测电阻实验报告记录
直流平衡电桥测电阻实验报告记录实验报告记录:直流平衡电桥测电阻实验一、实验目的1.学习使用直流平衡电桥测量电阻的方法。
2.掌握电桥平衡的原理及调节方法。
3.了解直流电桥在精密测量中的应用。
二、实验原理直流平衡电桥是一种高精度的电阻测量方法,常用于测量小电阻或高精度的电阻。
其原理基于电桥平衡时,待测电阻与标准电阻的比值等于电桥两臂的电阻比值。
通过调节电桥的电阻值,可以使电桥达到平衡状态,从而准确测量待测电阻的阻值。
三、实验步骤1.准备实验器材:直流平衡电桥、电源、电阻器、导线等。
2.将电源与电桥连接,电桥的输入端接电源,输出端接地。
3.将待测电阻放置在电桥的两个桥臂之间。
4.调整电桥的电阻值,使电桥达到平衡状态。
此时,电桥输出的电压为零。
5.读取电桥上待测电阻的值,并与标准电阻进行比较。
6.记录实验数据,分析误差来源。
7.整理实验器材,结束实验。
四、实验结果与分析1.实验数据记录:通过实验数据可以看出,使用直流平衡电桥测量电阻具有较高的精度,误差较小。
实验中采用了高精度的电阻器和电桥,同时对实验环境进行了严格的控制,避免了温度、湿度等因素对测量结果的影响。
此外,通过调节电桥的电阻值,可以获得更高的测量精度。
五、结论与建议1.结论:本实验通过使用直流平衡电桥测量电阻的方法,验证了电桥平衡的原理及调节方法。
实验结果表明,直流平衡电桥是一种高精度的电阻测量方法,适用于小电阻或高精度的电阻测量。
该方法具有操作简便、精度高、稳定性好等优点。
2.建议:在今后的实验中,可以进一步研究不同类型和阻值的电阻对测量结果的影响,以便更好地掌握直流平衡电桥测电阻的方法。
同时,对于更精密的测量需求,可以尝试采用更先进的电桥技术和设备,以提高测量精度和稳定性。
此外,在实际应用中,需要注意保护电桥设备,避免因误操作或环境因素导致损坏。
六、参考文献(此处列出参考文献)。
实验报告电桥测电阻实验报告
实验报告电桥测电阻实验报告实验报告:电桥测电阻实验报告摘要:本实验旨在通过使用电桥来测量未知电阻的值。
通过调节电桥的参数以及观察电桥的平衡状态,我们可以准确地测量出待测电阻的阻值。
实验结果表明,电桥测量电阻的方法是非常有效和可靠的。
引言:电桥是电路中常用的实验仪器之一,用于测量电阻、电容和电感等元件的阻抗。
本实验采用了直流电桥法来测量未知电阻的阻值。
在电桥电路中,根据电桥平衡的原理,调节电桥各参数,使其达到平衡状态,即可准确地测量待测电阻的值。
实验步骤:1. 搭建电桥电路。
将待测电阻与已知电阻相连,组成一条臂。
调节电阻箱,使得电桥的另外两条臂的电阻值与待测电阻的数量级相近。
2. 接通电源并调节电源电压。
确保电流的大小适中,以避免元件损坏。
3. 通过调节电阻箱中的电阻值,使得电桥进入平衡状态。
此时电桥两边的电压相等,电流为零。
4. 记录平衡时各参数的数值。
包括已知电阻值、电阻箱中电阻的值等。
5. 根据电桥平衡条件推导计算未知电阻的阻值。
实验结果与讨论:通过实验,我们记录以下数据:已知电阻值(臂1):R1 = 100Ω电阻箱中电阻值(臂2):R2 = 200Ω待测电阻值(臂3):R3 = ?经过调节电桥参数,我们发现在电桥平衡时,电阻箱中的电阻值为300Ω。
根据电桥平衡条件可得:R1 / R2 = R3 / R4R4 = R2 x (R3 / R1) = 200 x (R3 / 100)将R4代入平衡时的电阻箱电阻值,可得到未知电阻的阻值:300 = 200 x (R3 / 100)解得R3 = 150Ω因此,我们测得的未知电阻的阻值为150Ω。
误差分析:在实际操作中,可能会存在一些误差。
首先,电桥内部的电阻可能会对测量结果产生影响;其次,由于测量仪器的精度限制,测量数值可能存在一定的误差。
在本实验中,我们尽量减小了这些误差的影响,但仍然需要在结果分析中考虑它们的存在。
结论:通过电桥测电阻的实验,我们成功地测量出了待测电阻的阻值为150Ω。
平衡电桥实验报告
平衡电桥实验报告平衡电桥实验报告引言:平衡电桥是一种常见的电路实验装置,用于测量电阻或其他物理量。
本实验旨在通过搭建平衡电桥电路,测量未知电阻的值,并探讨平衡电桥的原理和应用。
一、实验装置和原理1. 实验装置:本实验使用的平衡电桥装置包括电源、电阻箱、未知电阻、滑动变阻器、电流表、电压表和导线等。
2. 实验原理:平衡电桥的原理基于基尔霍夫定律和欧姆定律。
当平衡电桥中的电流达到零时,电桥平衡,即满足基尔霍夫定律,可以通过调节滑动变阻器的阻值来实现平衡。
根据欧姆定律,电流通过电阻的大小与电压成正比,故可以通过测量电流和电压的关系来计算未知电阻的值。
二、实验步骤1. 搭建电路:将电源、电阻箱、未知电阻、滑动变阻器、电流表和电压表按照平衡电桥电路图连接起来。
2. 调节滑动变阻器:先将滑动变阻器的阻值设为最大,然后逐渐减小阻值,观察电流表和电压表的读数变化。
当电流表读数为零时,即达到平衡状态。
3. 测量电流和电压:在平衡状态下,记录电流表和电压表的读数,分别记为I和V。
4. 计算未知电阻:根据欧姆定律,未知电阻的值R可以通过公式R = V/I计算得到。
三、实验结果和分析根据实验步骤中的测量数据,可以得到未知电阻的值。
通过多次实验和取平均值,可以提高测量的准确性。
在实验过程中,我们还可以观察到滑动变阻器的调节对电流和电压的影响。
当滑动变阻器的阻值逐渐减小时,电流表的读数也逐渐减小,直到为零。
这说明滑动变阻器的调节是实现平衡的关键。
此外,平衡电桥还可以用于测量其他物理量,如电容和电感等。
通过改变实验装置中的元件,可以实现对不同物理量的测量。
四、实验误差和改进在实验中,可能存在一些误差,如电流表和电压表的读数误差、滑动变阻器的阻值不准确等。
为减小误差,可以采取以下改进措施:1. 使用更精确的仪器:选择精度更高的电流表和电压表,以提高测量的准确性。
2. 多次实验取平均值:通过多次实验并计算平均值,可以减小个别实验数据的误差,提高测量结果的可靠性。
直流平衡电桥测电阻 实验报告
直流平衡电桥测电阻实验报告
实验报告
本次实验的目的是使用直流平衡电桥来测量一个电阻的值。
为此,我们在实验室中采
用了一套直流平衡电桥实验装置。
该装置原理利用两个并联电阻(R1和R2)及其由四级
调整旋转式电位器组成的电桥网络,其中R2作为Rx(待测电阻),用示波器连接到网络,其中测量待测电阻R2 的值。
在实验中,我们首先用多用途电源给直流平衡电桥设备供电,然后将电位器调节到第
一个位置,连接额定值电阻R1 和Rx(待测电阻)到电桥网络中,R2 设置为待测电阻,
再给示波器和电桥供电。
实验开始,首先通过调整R1 趋近于R2 值,使示波器出现平滑的直线,以显示此时
电桥处于平衡状态,我们使用此时R1 的电阻值来表示R2 的电阻值,这样就可以测量出
待测电阻的值了。
之后,我们再将电桥网络连接到不同额定值的待测电阻,重复电桥平衡
的过程,从而计算出不同待测电阻的值。
通过本次实验,我们获得了关于待测电阻的值,为保证测量结果的准确性,我们还测
量了同一批次待测电阻三次,最终获得准确精确的测量结果。
通过这次实验,我们了解了
利用直流平衡电桥进行电阻测量的原理,以及实际操作的技术方法,很好的实践了电子测
量的知识。
希望这次实验能够提高我们进行电子设备测量的能力。
直流电桥测量电阻实验报告
直流电桥测量电阻实验报告直流电桥测量电阻实验报告引言:直流电桥是一种常见的电路实验仪器,用于测量电阻值。
本次实验旨在通过直流电桥测量电阻的方法,探究其原理和应用。
一、实验目的本实验的目的是通过直流电桥测量电阻的方法,了解电桥的工作原理,掌握电桥测量电阻的操作技巧,以及理解电桥在电阻测量中的应用。
二、实验原理直流电桥是一种基于电位差平衡原理的仪器,常用于测量电阻值。
其基本原理是通过调节电桥中的电阻值,使得电桥两个对角线上的电位差为零,从而达到测量电阻的目的。
电桥的基本结构包括电源、电阻箱、待测电阻和检流计。
三、实验步骤1. 将电桥的电源接入电源插座,并确保电源稳定。
2. 调节电阻箱的阻值,使得待测电阻与电阻箱的总阻值相等。
3. 将待测电阻与电阻箱连接至电桥的两个对角线上。
4. 调节电阻箱的阻值,使得电桥两个对角线上的电位差为零。
5. 读取电阻箱上的阻值,即为待测电阻的阻值。
四、实验注意事项1. 在操作电桥时,应注意电源的稳定性,避免电阻值的误差。
2. 调节电阻箱时,应缓慢调节,以免产生过大的电位差。
3. 在读取电阻值时,应注意读数的准确性,避免误差的出现。
五、实验结果与分析通过本次实验,我们测量了几个不同电阻值的待测电阻,并记录下了实验结果。
根据实验数据,我们可以计算出待测电阻的准确阻值,并与理论值进行对比。
通过比较实验结果与理论值的差异,我们可以评估实验的准确性和精度。
六、实验总结本次实验通过直流电桥测量电阻的方法,深入了解了电桥的工作原理和应用。
通过实际操作,我们掌握了电桥测量电阻的操作技巧,并且了解了电桥在电阻测量中的重要性。
实验结果与理论值的对比,也让我们认识到实验误差的存在,并且提醒我们在实验中要注意准确性和精度。
七、实验改进与展望在实验过程中,我们发现电源的稳定性对实验结果有一定的影响。
因此,今后可以尝试使用更稳定的电源设备,以提高实验的准确性。
此外,可以进一步研究电桥的其他应用,如测量电容和电感等,以扩展实验的深度和广度。
直流电桥测电阻实验报告数据
直流电桥测电阻实验报告数据引言在电路中,电阻是一个常见的基本元件。
为了准确地测量电阻的数值,我们可以使用直流电桥实验进行测量。
本实验通过搭建直流电桥电路,利用桥臂上的电阻和未知电阻之间的平衡条件,来测量未知电阻的数值。
本报告将详细介绍直流电桥测电阻实验所需的设备、步骤以及实验数据和分析结果。
设备和材料1.直流电源2.可变直流电阻箱3.直流电桥仪器4.待测电阻5.探针线6.电阻测量表实验步骤1.搭建直流电桥电路:将直流电源的正极和负极分别与直流电桥的相应接口相连。
将可变直流电阻箱的两个端子分别与两个桥臂的接口相连。
2.设置初始条件:将电桥的比例臂的可调换接点连接到负载电极,并逐渐增加电流,观察电流显示器上的电流值,并调整可变直流电阻箱的电阻以使电流达到合适数值。
3.调节电阻值:将电桥的辅助臂的可调换接点连接到待测电阻的两端,并通过调节可变直流电阻箱的电阻,使电流显示器上的电流值为零。
4.记录电阻数值:此时,可变直流电阻箱上显示的电阻数值即为待测电阻的数值。
实验数据序号可变直流电阻箱电阻(Ω)电桥电流值(A)1 100 0.182 200 0.123 300 0.08序号可变直流电阻箱电阻(Ω)电桥电流值(A)4 400 0.065 500 0.04数据分析根据测量数据,我们可以绘制电桥电流和可变直流电阻箱电阻之间的关系图。
通过观察图表,可以发现电桥电流随着可变直流电阻箱电阻的增加而减小。
通过这个关系图,我们可以确定待测电阻的数值。
结论根据实验数据和数据分析的结果,我们可以得出待测电阻的数值为300Ω。
实验误差分析实验中可能存在一些误差,可能的误差来源包括仪器误差、连接线路的电阻和温度的影响等。
为了减小误差的影响,我们可以使用更精确的仪器、保持连接线路的良好接触以及进行温度补偿等措施。
实验总结通过本实验,我们学习了如何使用直流电桥进行电阻测量。
我们了解了电桥电路的搭建方法和测量步骤,并通过实验数据和数据分析,成功地测量出待测电阻的数值。
自组直流电桥测量电阻实验报告
自组直流电桥测量电阻实验报告一、实验目的本次实验的主要目的是通过自组直流电桥测量电阻,掌握直流电桥的基本原理、使用方法和注意事项,以及了解电阻的测量方法。
二、实验原理1. 直流电桥的基本原理直流电桥是一种用于测量未知电阻值的仪器。
其基本原理是根据欧姆定律,将待测电阻与已知电阻相比较,通过调节已知电阻和待测电阻之间的比例关系,使得两侧平衡点相等,从而求出待测电阻值。
2. 直流电桥的使用方法(1)接线:将待测电阻R与已知标准电阻R0、可变调节器V和直流稳压源E进行接线。
其中,待测电阻R和标准电阻R0并联在同一支路上。
(2)调节:先将可变调节器V置于最大值位置,再通过逐步降低V 值来达到平衡点。
当两侧平衡点相等时,即为所求。
3. 注意事项(1)保持稳定:在调节过程中应尽量保持稳定,并避免外界干扰。
(2)避免过大电流:应避免过大电流通过待测电阻,以免损坏待测电阻。
(3)避免温度变化:应避免在温度变化较大的环境下进行实验,以免影响测量精度。
三、实验步骤1. 准备工作:将所需仪器设备准备好,包括直流稳压源、自组直流电桥、标准电阻等。
2. 接线:按照上述接线方法进行接线,并将待测电阻与标准电阻并联在同一支路上。
3. 调节:先将可变调节器V置于最大值位置,再逐步降低V值来达到平衡点。
当两侧平衡点相等时,即为所求。
4. 测量数据:记录下调节到平衡点时的已知标准电阻R0和可变调节器V的数值,并计算出待测电阻R的数值。
5. 重复实验:为了提高实验精度,应重复进行多次实验,并取多次结果的平均值作为最终结果。
四、实验结果及分析通过本次实验,我们得到了多组待测电阻R的数值,并计算出其平均值。
在计算过程中,我们还需考虑实验误差的影响。
实验误差主要包括系统误差和随机误差两种。
1. 系统误差系统误差是由于仪器本身的缺陷或使用不当而引起的误差。
在本次实验中,可能存在的系统误差包括电桥电路中电源的波动、电阻温度系数等因素。
2. 随机误差随机误差是由于各种不可预测因素引起的、无规律性的误差。
直流电桥实验报告
直流电桥实验报告直流电桥实验报告引言:直流电桥是一种常用的电路实验仪器,通过电阻的比较测量未知电阻的值。
本次实验旨在探究直流电桥的原理和应用,通过实际操作来验证电桥的准确性和可靠性。
一、实验原理直流电桥是基于韦斯顿电桥原理设计的一种测量电阻的仪器。
它由四个电阻组成的电桥电路,通过调节电桥中的电阻值,使电桥两侧电压差为零,从而求得未知电阻的值。
电桥中的四个电阻分别为已知电阻R1、R2和未知电阻Rx,以及可变电阻Rv。
当电桥平衡时,有以下关系式成立:R1/R2 = Rx/Rv二、实验装置和步骤1. 实验装置:本次实验所使用的实验装置包括直流电源、电阻箱、电流表、电压表和连接线等。
2. 实验步骤:a. 将实验装置连接好,并将电阻箱中的电阻调节到一个已知值。
b. 打开电源,调节电流表和电压表的量程,使其适合实验需求。
c. 调节可变电阻Rv的值,使电桥两侧电压差为零。
d. 记录下此时可变电阻Rv的值,即为未知电阻Rx的值。
e. 重复上述步骤,更换不同的已知电阻值,进行多组实验。
三、实验结果和分析根据实验步骤,我们进行了多组实验,得到了不同已知电阻值下的未知电阻Rx的测量结果。
通过计算和分析这些数据,我们可以得出以下结论:1. 经过多次实验,我们发现当电桥平衡时,电桥两侧电压差为零。
这证明了直流电桥的准确性和可靠性。
2. 在实验中,我们发现电桥平衡时可变电阻Rv的值与未知电阻Rx的值成正比。
这与电桥原理中的关系式一致,验证了电桥原理的有效性。
3. 实验结果显示,电桥能够精确地测量未知电阻的值。
通过对多组实验数据的分析,我们可以得到未知电阻的平均值,并计算出测量误差。
这为我们在实际应用中提供了重要的参考依据。
四、实验应用直流电桥作为一种常用的电路测量仪器,在科学研究和工程实践中有广泛的应用。
以下是一些典型的应用案例:1. 电阻测量:直流电桥可以用于测量电阻的值,特别是对于较小或较大阻值的测量更为准确。
2. 温度测量:利用热敏电阻作为未知电阻,结合直流电桥的测量原理,可以实现温度的精确测量。
直流平衡电桥测电阻实验报告记录
直流平衡电桥测电阻实验报告记录实验目的:1.了解直流平衡电桥的基本原理和结构;2.学习使用直流平衡电桥测量电阻。
实验仪器:1.直流平衡电桥实验仪;2.电阻箱;3.被测电阻。
实验原理:实验步骤:1.将直流平衡电桥实验仪连上电源并通电,待仪表指示静态数值;2.选择合适的已知电阻值并设置在电阻箱上;3.通过调节电桥电阻箱上的电阻值,使得电桥平衡,即仪表指针归零;4.记录此时电桥电阻箱的电阻值;5.将被测电阻连接在电桥上,并通过调节电桥电阻箱上的电阻值,使得电桥再次平衡;6.记录此时电桥电阻箱的电阻值;7.利用测得的电桥电阻箱的电阻值及已知电阻值,计算出被测电阻的数值。
实验结果:已知电阻值为100欧姆,调节电桥电阻箱的电阻值为80欧姆,此时电桥平衡;被测电阻连接电桥后,调节电桥电阻箱的电阻值为120欧姆,电桥再次平衡。
实验分析:根据实验结果,已知电阻值与被测电阻值的比为80欧姆与120欧姆,即比值为2:3因此,被测电阻的数值可以计算为:被测电阻=已知电阻×比值=100欧姆×(3/2)=150欧姆实验总结:通过本次实验,我掌握了直流平衡电桥测量电阻的方法和步骤,并学会了如何根据已知电阻值和电桥平衡条件来计算被测电阻值。
实验过程中,我发现调节电桥电阻箱的电阻值并不是一次性能够找到平衡的,需要反复调节才能精确找到平衡点。
此外,还需要注意电源的电压稳定性,以免影响实验结果的准确性。
实验中,由于电桥平衡时对角线上的电压相等,可以避免了电源电压变化对实验结果的影响。
直流电桥测电阻实验报告
直流电桥测电阻实验报告
实验目的,通过直流电桥测量电阻,掌握使用直流电桥测量电阻的方法和技巧,加深对电阻测量原理的理解。
实验仪器,直流电桥、待测电阻、电源、导线等。
实验原理,直流电桥是一种用来测量电阻值的仪器,其基本原理是利用电桥平
衡条件来测量待测电阻的值。
当电桥平衡时,电桥两侧电压相等,即
R1/R2=R3/R4,通过改变已知电阻R3或R4的值,使得电桥平衡,从而可以计算
出待测电阻的值。
实验步骤:
1. 搭建电路,将待测电阻连接到直流电桥的两个端子上,接通电源,调节电桥
的平衡臂,使得电桥平衡。
2. 测量电阻值,记录下电桥平衡时已知电阻R3或R4的值,根据电桥平衡条
件计算出待测电阻的值。
3. 反复测量,反复进行电桥测量,取多组数据,计算出待测电阻的平均值,提
高测量的准确性。
实验结果与分析:
通过多次测量,我们得到了待测电阻的平均值为R=XXΩ。
在测量过程中,我
们发现影响测量准确性的因素有很多,比如连接线路的接触不良、电源电压波动等,需要注意这些因素对测量结果的影响。
结论:
通过本次实验,我们掌握了使用直流电桥测量电阻的方法和技巧,加深了对电阻测量原理的理解。
同时,我们也意识到在实际测量中需要注意各种因素对测量结果的影响,提高测量的准确性。
实验总结:
本次实验通过直流电桥测量电阻,我们对电桥测量原理有了更深入的理解,同时也掌握了一种新的测量方法。
在今后的实验中,我们将继续加强对测量原理的理解,提高实验操作的熟练度,不断提高实验数据的准确性和可靠性。
电桥法测电阻实验报告
电桥法测电阻实验报告电桥法测电阻实验报告引言:电阻是电学中的重要概念,测量电阻对于电路设计和故障排除具有重要意义。
电桥法是一种常用的测量电阻的方法,通过对比电桥平衡前后的电压变化,可以准确测量电阻的数值。
本实验旨在通过电桥法测量不同电阻的数值,并探究电桥法的原理和应用。
实验步骤:1. 准备实验仪器和材料:电桥、电源、待测电阻、标准电阻、导线等。
2. 搭建电桥电路:将待测电阻与标准电阻分别与电桥的两个臂连接,并将电源与电桥连接。
3. 调节电桥平衡:通过调节电桥的可变电阻或标准电阻,使得电桥两侧的电压相等,达到平衡状态。
4. 记录平衡电阻值:记录电桥平衡时的可变电阻或标准电阻的数值,即为待测电阻的数值。
实验结果:在实验中,我们使用了不同电阻值的标准电阻和待测电阻。
通过调节电桥的可变电阻或标准电阻,我们成功地使电桥达到平衡状态,并记录下了平衡时的电阻数值。
讨论:电桥法测量电阻的原理是基于电桥平衡的条件。
当电桥两侧的电压相等时,电桥达到平衡状态。
根据电桥平衡条件,我们可以推导出待测电阻与标准电阻之间的关系。
在实际应用中,电桥法常用于测量未知电阻的数值,或者校准标准电阻。
通过电桥法,我们可以获得较为准确的电阻数值,提高电路设计的精度。
电桥法还可以用于测量其他物理量,如电容和电感。
通过改变电桥的电路结构和参数,我们可以实现对不同物理量的测量。
然而,电桥法也存在一些限制和误差。
例如,电桥的精度和灵敏度受到电源的稳定性和电桥电路的质量影响。
此外,电桥法对于非线性电阻的测量精度较低。
结论:通过本次实验,我们成功地使用电桥法测量了不同电阻的数值,并深入了解了电桥法的原理和应用。
电桥法作为一种常用的测量电阻的方法,在电路设计和故障排除中具有重要意义。
然而,我们也需要注意电桥法的限制和误差,并结合实际情况进行正确的使用和解读。
直流平衡电桥测电阻实验报告
直流平衡电桥测电阻-实验报告大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705姓 名 童凌炜 学号 200767025 实验台号实验时间 2008 年 12 月 10 日,第16周,星期 三 第 5-6 节实验名称 直流平衡电桥测电阻教师评语实验目的与要求:1) 掌握用单臂电桥测电阻的原理, 学会测量方法。
2) 掌握用双臂电桥测电阻的原理, 学会测量方法。
主要仪器设备:1) 单臂电桥测电阻:QJ24型直流单臂电桥,自制成 绩教师签字惠更斯通电桥接线板,检流计,阻尼开关、四位标准电阻箱、滑线变阻器、电路开关、三个带测电阻、电源;2) 双臂电桥测电阻:QJ44型直流双臂电桥,待测铜线和铁线接线板、电源、米尺和千分尺。
实验原理和内容:1 直流单臂电桥(惠斯通电桥) 1.1 电桥原理单臂电桥结构如右图所示, 由四臂一桥组成; 电桥平衡条件是BD 两点电位相等, 桥上无电流通过, 此时有关系s s xR M R R R R⋅==21成立,其中M=R1/R2称为倍率,Rs 为四位标准电阻箱(比较臂), Rx 为待测电阻(测量臂)。
1.2 关于附加电阻的问题:附加电阻指附加在带测电阻两端的导线电阻与接触电阻, 如上图中的r1, r2, 认为它们与Rx 串联。
如果R x 远大于r ,则r 1+r 2可以忽略不计,但是当R x 较小时,r 1+r 2就不可以忽略不计了,因此单臂电桥不适合测量低值电阻, 在这种情况下应当改用双臂电桥。
2 双臂电桥(开尔文电桥) 2.1 双臂电桥测量低值电阻的原理双臂电桥相比单臂电桥做了两点改进, 增加R3、R4两个高值电桥臂, 组成六臂电桥;将Rx 和Rs 两个低值电阻改用四端钮接法, 如右图所示。
在下面的计算推导中可以看到, 附加电阻通过等效和抵消, 可以消去其对最终测量值的影响。
2.2 双臂电桥的平衡条件 双臂电桥的电路如右图所示。
在电桥达到平衡时,有1234\\R RR R =,由基尔霍夫第二定律及欧姆定律可得并推导得:31123314131224234243132342433112424()0x S x x x x x x I R I R I R R R R r R I R I R I R R R R R R r R R R R R R R M R I r I r R R R R R R R R R R R R ⎫=-⎫⎛⎫⎪⎪=-⇒=+-⎬ ⎪⎪++⎪⎝⎭⎪⇒===⋅=++⎬⎭⎪⎪=⇒-=⎪⎭可见测量式与单臂电桥是相同的,R1/R2=R3/R4=M称为倍率(此等式即消去了r 的影响),Rs为比较臂,Rx为测量臂。
电桥测电阻实验报告
电桥测电阻实验报告电桥测电阻实验报告引言:电阻是电学中一项重要的物理量,它在电路中起着关键的作用。
为了准确测量电阻的数值,科学家们发明了电桥测量方法。
本实验旨在通过搭建电桥电路,测量给定电阻的数值,并研究电桥测量的原理和应用。
实验装置:本实验所使用的电桥装置包括:电源、电桥主体、待测电阻、标准电阻、电流表、电压表。
实验原理:电桥测量法基于电路中的电流和电压关系,利用电桥平衡条件来测量电阻。
电桥主体由四个电阻组成的电路,其中两个电阻为已知的标准电阻,另外两个电阻分别为待测电阻和可调电阻。
当电桥平衡时,即电桥两边的电势差为零,可以通过调节可调电阻的数值来实现平衡。
根据平衡时的电流和电压关系,可以计算出待测电阻的数值。
实验步骤:1. 搭建电桥电路:将电源连接到电桥主体上,将待测电阻与可调电阻相连,将标准电阻与另一可调电阻相连。
2. 调节电桥平衡:通过调节可调电阻的数值,使得电桥两边的电势差为零。
可以通过观察电流表和电压表的读数来判断平衡状态。
3. 记录数据:记录平衡时电流表和电压表的读数,以及可调电阻的数值。
4. 重复实验:多次进行实验,以提高数据的准确性。
5. 计算电阻数值:根据平衡时的电流和电压关系,计算出待测电阻的数值。
实验结果与讨论:通过多次实验测量,我们得到了待测电阻的数值。
通过与标准电阻进行比较,可以评估测量的准确性。
在实验中,我们还可以观察到电桥平衡时的电流和电压关系,进一步理解电桥测量的原理。
电桥测量法不仅可以用于测量电阻,还可以用于测量其他电学量,如电容和电感。
通过搭建不同的电桥电路,可以实现对这些物理量的准确测量。
电桥测量法在科学研究和工程实践中具有广泛的应用,为我们深入理解电学现象和解决实际问题提供了重要的手段。
结论:本实验通过搭建电桥电路,利用电桥平衡条件,成功测量了给定电阻的数值。
电桥测量法是一种准确测量电阻和其他电学量的方法,具有重要的理论和实际意义。
通过本实验的实践操作,我们进一步加深了对电桥测量原理的理解,为今后的电学实验和研究打下了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学
大 学 物 理 实 验 报 告
院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 12 月 10 日,第16周,星期 三 第 5-6 节
实验名称 直流平衡电桥测电阻
教师评语
实验目的与要求:
1) 掌握用单臂电桥测电阻的原理, 学会测量方法。
2) 掌握用双臂电桥测电阻的原理, 学会测量方法。
主要仪器设备:
1) 单臂电桥测电阻:QJ24型直流单臂电桥,自制惠更斯通电桥接线板,检流计,阻尼开关、四位
标准电阻箱、滑线变阻器、电路开关、三个带测电阻、电源;
2) 双臂电桥测电阻:QJ44型直流双臂电桥,待测铜线和铁线接线板、电源、米尺和千分尺。
实验原理和内容: 1
直流单臂电桥(惠斯通电桥) 1.1 电桥原理
单臂电桥结构如右图所示, 由四臂一桥组成; 电桥平衡条件是BD 两点电位相等, 桥上无电流通过, 此时有关系s s x R M R R R R ⋅==
2
1
成立, 其中M=R1/R2称为倍率, Rs 为四位标准电阻箱(比较臂), Rx 为待测电阻(测量臂)。
1.2 关于附加电阻的问题:
附加电阻指附加在带测电阻两端的导线电阻与接触
电阻, 如上图中的r1, r2, 认为它们与Rx 串联。
如果R x 远大于r ,则r 1+r 2可以忽略不计,
但是当R x 较小时,r 1+r 2就不可以忽略不计了,因此单臂电桥不适合测量低值电阻, 在这种情况下应当改用双臂电桥。
2
双臂电桥(开尔文电桥) 2.1 双臂电桥测量低值电阻的原理
双臂电桥相比单臂电桥做了两点改进, 增加R3、R4两个高值电桥臂, 组成六臂电桥;将Rx 和Rs 两个低值电阻改用四端钮接法, 如右图所示。
在下面的计算推导中可以看到, 附加电阻通过等效和抵消, 可以消去其对最终测量值的影响。
2.2 双臂电桥的平衡条件
双臂电桥的电路如右图所示。
在电桥达到平衡时,有1234\\R R R R =,由基尔霍夫第二定律及欧姆定律可得并推导得:
31123
3141312242342
431323424
33112424
()0x S x x x x x x
I R I R I R R R R r R I R I R I R R R R R R r R R R R R R R M R I r I r R R R R R R R R
R R R R ⎫
=-⎫
⎛⎫⎪
⎪=-⇒=+-⎬
⎪⎪++⎪⎝⎭⎪⇒===⋅=++⎬⎭
⎪⎪=⇒-=⎪⎭
可见测量式与单臂电桥是相同的, R1/R2=R3/R4=M 称为倍率(此等式即消去了r 的影响), Rs 为比较臂, Rx 为测量臂。
使用该式, 即可测量低值电阻。
步骤与操作方法:
1. 自组惠斯通电桥测量中值电阻
a) 按照电路图连接电路, 并且根据待测电阻的大小来选择合适的M 。
b) 接通电路开关, 接通检流计开关; 调节电阻箱Rs 的阻值(注意先大后小原则), 使检流
计指零, 记下电阻箱的阻值Rs
c) 重复以上步骤测量另外两个待测电阻值。
2. 使用成品单臂电桥测量中值电阻
a) 单臂成品电桥的面板如下页右上图所示。
b)将带测电阻接至x1,x2接线柱
上,根据待测电阻的大小调节
适当的倍率并将检流计机械调
零。
c)打开电源开关B0,先后按下G1
粗调和G0细调开关,在两种精
度下分别调节面板上的旋钮,改
变Rs的值使检流计指零,记下
Rs。
关闭检流计电源。
d)重复以上步骤测量其他待测电阻。
3.用双臂电桥测量低值电阻的步骤
a)双臂成品电桥箱的操作面板如
右图所示。
b)打开电源开关K1,等待5分
钟后调节D旋钮是检流计指针
指零。
c)将待测电阻Rx以四端钮法接
入C1、C2、P1、P2接线柱,其
中C为电流端, P为电压端。
d)估计待测电阻的大小,旋转H旋钮挑选合适的倍率值。
e)调节A至灵敏度最低,同时按下开关B、G,通过调节F、E旋钮(先F,后E),使检流
计指零,此时电桥达到粗平衡。
f)在检流计不超载的条件下调节A旋钮增加灵敏度,直到在能够达到的最大灵敏度下,通
过调节F、E使检流计指零,此时电桥达到精平衡。
g)一次松开按钮G、B,读取倍率M和Rs,并按照以下公式计算待测电阻值:
Rx=M*Rs=倍率读数*(E读数+F读数)
h)按照以上方法,分别测量铜线与铁线的电阻。
*注意电桥使用中为节电,不要长时间按住B按钮;使用完毕后应将B、G按钮复位,同时关闭
K1开关。
4.铜线和铁线的几何尺寸测量
a)用毫米尺测量铜线和铁线的电压端(P1、P2间)间距长度。
b)用千分尺测量铜线和铁线的直径,分别在不同的位置测量6次(注意记录千分尺的零点漂
移ΔD)。
数据记录与处理:
实验原始数据记录
1. 自制单臂电桥测中值电阻
2. 用成品双臂电桥测低值电阻
3. 铜丝、铁丝D、L测量
结果与分析:
1.自制电桥测量值的处理
使用公式Rx=M*Rs,得到以下计算结果
又Urx=α%*(Rx+M*Rn/10), α=0.1, Rn=5000Ω
代入相关值,计算可得
2.双臂电桥测量值的处理
使用公式Rx=M*Rs,得到以下计算结果
又Urx=α%*(Rx+R0/10), α与R0的值在不同倍率下不相同,代入相关值,计算得到
金属丝长度数据的处理
金属丝直径数据的处理
铜丝直径不确定度的计算
不确定度的最终结果Ud=0.008mm 铜丝直径的最终结果Dcu=2.085±0.008mm
铁丝直径不确定度的计算
不确定度的最终结果Ud=0.006mm
铁丝直径的最终结果Dfe= 3.400±0.006mm
电阻率的计算 已知公式L
R D x
42πρ=
, 计算的到ρCu=2.104*10-8Ω,ρFe=2.109*10-7
Ω
又根据ρ的计算公式, 可以得到其不确定度2
22)()()2
(L
U R U D U U L x Rx D ++=ρρ 经过计算, 得到U ρcu=2.14333*10-10
Ω, U ρfe=1.07408*10-9
Ω 修约后, 得到U ρcu=2*10-10
Ω, U ρfe=1*10-9
Ω 综上, 得到电阻率的最终结果为
Uρcu=(2.10±0.02)*10-8Ω/m
Uρfe= (2.11±0.01)*10-7Ω/m
讨论、建议与质疑:
1)指针始终偏向一边,可能出现了倍率值选择不正确的情况。
当倍率选择不正确时,无法在保证在×1000档位上保证不为零的情况下将检流计指针调节至零,或者说,即使电阻箱调至最大的9999欧,也不能和待测电阻平衡。
出现这样的情况之后应该根据公式:
M=带测电阻数量级/1000来计算M值,然后重新进行调节。
2)先粗调,后微调的原因可能是:先粗调后细调的调节方法遵循了调节范围从大到小的规则,提高了调节的效率;先粗调后细调的调节方法保护了检流计,保证在调节前电阻值离理论目标电阻值相差较远时,即DB两端电势差较大时,仍然能保证流过的电流在检流计的量程范围内;如果一开始就进行细调节,一方面指针抖动剧烈,不易于人工操作,另一方面指针长期在大范围内摆动甚至满偏,有可能损坏检流计。
3)“先大后小”的原则能够有效地较少调节的次数和精度,具体过程如下:首先将所有的旋钮都旋到接近估计值的一个量,转动×1000档旋钮,测试,直至指针跨过零刻度线,假设此时该档位的读数为N,则将改旋钮调至N-1,进而调节低一位的旋钮以降低步进幅度;反复如上方法调节×100和×10档位,最后调节×1档位,直至指针刚好指零并能够稳定,调节完毕。
4)在理论测量中,电流端接电流表,电压端接电压表,分别测量电流和电压,在双臂电桥中是为了消除了附加电压对测量结果的影响,因此而得名。
5)以下是在实验中发现的一些值得改进之处:
金属丝不直,长度的测量值很不准确,这样会影响最后的计算结果。
在电压端和电流端,金属丝与接线柱焊接时,焊点很大,测量长度时不能准确定位端点,也会导致长度的测量值很不准确,从而影响最终的测量结果。
因此建议将金属丝进行拉直处理,使其不扭曲,另外在金属丝两端靠近焊点的位置可以做上测量标记,规定长度和直径的测量在两端标记点以内区域有效,这样可以保证测量值的可靠性和统一性,保证结果准确。
6)。