江苏省宿迁市2019-2020学年第二学期高二年级期末调研测试数学试题
江苏省淮安市2022-2023学年高二下学期期末数学试题(原卷版)
淮安市2022~2023学年度第二学期高二年级期末调研测试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}12M x x =+<,{}1N x a x =<<,若M N ⊆,则实数a 的取值范围是( )A. (],3−∞−B. (),3−∞−C. [)3,1−D. ()3,1−2. 已知直线l 的方向向量()1,1,2e −− ,平面α的法向量1,,12n λ=−,若l α⊥,则λ=( )A. 52−B. 12−C.12D.523. 从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是( ) A.15B.25C.35D.454. 若0x >,0y >,称a =是x ,y 的几何平均数,211b x y=+是x ,y 的调和平均数,则“3a >”是“3b >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有2个阳爻且2个阳爻不相邻的概率是( )A.172B.532C.516D.236. 已知四棱锥P ABCD −的底面为正方形,PA ⊥平面ABCD ,1==PA AB ,点E 是BC 的中点,则点E 到直线PD 的距离是( )A.B.C.D.7. 某中学举行夏季运动会,共有3类比赛9个项目:集体赛2项,田赛3项,径赛4项.要求参赛者每人至多报3项,且集体赛至少报1项,则每人有( )种报名方式 A. 49B. 64C. 66D. 738. 设A ,B 是一个随机试验中两个事件,且()13P B =,()56P B A =,()12P B A =,则( )A. ()13P A =B. ()16P AB =C. ()34P A B +=D. ()14P A B =二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若0a b c <<<,则下列不等式中正确的有( ) A. 0a b +>B.c c a b> C.b b ca a c+>+ D. 11a b b a+<+ 10. 如图是某小卖部5天卖出热茶的杯数(单位:杯)与当天气温(单位:℃)的散点图,若去掉()7,35B 后,下列说法正确的有( )A. 决定系数2R 变大B. 变量x 与y 的相关性变弱C. 相关系数r 的绝对值变大D. 当气温为11℃时,卖出热茶的杯数估计为35杯11. 有甲、乙、丙等5名同学聚会,下列说法正确的有( ) A. 5名同学每两人握手1次,共握手20次 B. 5名同学相互赠送祝福卡片,共需要卡片20张 C. 5名同学围成一圈做游戏,有120种排法D. 5名同学站成一排拍照,甲、乙相邻,且丙不站正中间,有40种排法12. 在正四棱锥P ABCD −中,AB =,PA =,点Q 满足PQ PA x AB y AD =++,其中[]0,1x ∈,[]0,1y ∈,则下列结论正确的有( )的A. PQB. 当1x =时,三棱锥P ADQ −的体积为定值C. 当x y =时,PB 与PQ 所成角可能为π6D. 当1x y +=时,AB 与平面PAQ三、填空题:本题共4小题,每小题5分,共20分.13. 随机变量()25,X N σ∼,()138P X <=,则()37P X ≤<=______. 14. 在三棱柱111ABC A B C 中,点M 在线段1CB 上,且12CM MB =,若以{}1,,AB AC AA为基底表示AM ,则AM =______.15. 已知1x ≠−,且0x ≠,则()()()()2391111x x x x ++++++++ 的展开式中2x 项的系数是______.(用数字作答)16. 已知随机变量ξ的概率分布列如下表所示,当()34E ξ=时,()21D ξ+=______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()2nx y −展开式中仅有第4项的二项式系数最大.(1)求展开式的第2项;(2)求展开式的奇数项系数之和.18. 某乡政府为提高当地农民收入,指导农民种植药材,取得较好的效果.以下是某农户近5年种植药材的平均收入的统计数据: 年份 2018 2019 2020 2021 2022 年份代码x1 2 3 4 5 平均收入y (千元) 5961646873的(1)根据表中数据,现有y a bx =+与2y c dx =+两种模型可以拟合y 与x 之间的关系,请分别求出两种模型的回归方程;(结果保留一位小数)(2)统计学中常通过比较残差的平方和来比较两个模型的拟合效果,请根据残差平方和说明上述两个方程哪一个拟合效果更好,并据此预测2023年该农户种植药材的平均收入.参考数据及公式:()()1217n iii t t y y =−−=∑,()21374nii t t =−=∑,其中2i i t x=.()()()121nii i nii xx y yb xx==−−=−∑∑ ,a y bx =− .19. 淮安西游乐园推出的西游主题毛绒公仔,具有造型逼真可爱、触感柔软等特点,深受学生喜爱.某调查机构在参观西游乐园的游客中随机抽取了200名学生,对是否有购买西游主题毛绒公仔的意愿进行调查,得到以下的22×列联表: 有购买意愿 没有购买意愿 合计 男 40 女 60 合计50(1)完成上述22×列联表,根据以上数据,判断是否有99%的把握认为购买西游主题毛绒公仔与学生的性别有关?(2)某文创商店为了宣传推广西游主题毛绒公仔产品,设计了一个游戏:在三个外观大小都一样袋子中,分别放大小相同的1个红球和3个蓝球,2个红球和2个蓝球,以及3个红球和1个蓝球.游客可以从三个袋子中任选一个,再从中任取2个球,若取出2个红球,则可以获赠一套西游主题毛绒公仔.现有3名同学参加该游戏,ξ表示3名同学中获赠一套毛绒公仔的人数,求随机变量ξ的概率分布及数学期望.附:()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.的()2P K k ≥00500.010 0.001 k3.8416.63510.82820. 如图,正方体1111ABCD A B C D −的棱长为1,点P 是对角线1BD 上异于B ,1D 的点,记1BPBD λ=.(1)当APC ∠为锐角时,求实数λ的取值范围; (2)当二面角P AC B −−的大小为4π时,求点1B 到平面PAC 的距离.21. 已知函数()22,24,22x mx x f x m x x x −+≤= −+> −,m ∈R . (1)当2x ≤时,求()0f x >的解集;(2)若()f x 的最大值为3,求的值.22. 投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏.晋代在广泛开展投壶活动中,对投壶的壶也有所改进,即在壶口两旁增添两耳,因此在投壶的花式上就多了许多名目,如“贯耳(投入壶耳)”等.现有甲、乙两人进行投壶游戏,规定投入壶口一次得1分,投入壶耳一次得2分,其余情况不得分.已知甲投入壶口的概率为13,投入壶耳的概率为16;乙投入壶口的概率为23,投入壶耳的概率为13.假设甲乙两人每次投壶是否投中相互独立.(1)求甲投壶3次得分为3分的概率; (2)求乙投壶多少次,得分为8分概率最大..的。
江苏省扬州市2018-2019学年高二下学期期末调研测试数学理试题及答案
江苏省扬州市2018-2019学年高二下学期期末调研测试数学理试题及答案一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.设集合{1,2,3}A =,集合{2,2}B =-,则A B = ▲ .2.i 为虚数单位,复数21i-= ▲ . 3.函数()lg(1)f x x =+的定义域为 ▲ . 4.“0ϕ=”是“函数()sin()f x x ϕ=+为奇函数”的▲ 条件.(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写) 5.函数xy e =在1x =处的切线的斜率为 ▲ . 6.若tan θ+1tan θ=4则sin2θ= ▲ . 7.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙 两名员工必须分配至同一车间,则不同的分配方法总数为 ▲ (用数字作答). 8.函数()sin cos f x x x =-的值域为 ▲ .9===⋅⋅⋅=, 则21n m += ▲ . 10.已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 ▲ .11.已知函数()f x 是定义在[4,)-+∞上的单调增函数,且对于一切实数x ,不等式 22(cos )(sin 3)f x b f x b -≥--恒成立,则实数b 的取值范围是 ▲ . 12.设T S ,是R 的两个非空子集,如果存在..一个从S 到T 的函数)(x f y =满足: (i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <.那么称这两个集合“保序同构”.现给出以下4对集合: ①,{1,1}S R T ==-; ②*,S N T N ==;③{|13},{|810}S x x T x x =-≤≤=-≤≤;④{|01},S x x T R =<<=其中,“保序同构”的集合对的对应的序号是 ▲ (写出所有“保序同构”的集合对的对应的序号).13.已知定义在R 上的奇函数()f x 在0x >时满足4()f x x =,且()4()f x t f x +≤在[1,16]x ∈恒成立,则实数t 的最大值是 ▲ .14.若关于x 的不等式2xax e ≥的解集中的正整数解有且只有3个,则实数a 的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知a R ∈,命题2:"[1,2],0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=. ⑴若命题p 为真命题,求实数a 的取值范围;⑵若命题""p q ∨为真命题,命题""p q ∧为假命题,求实数a 的取值范围. 16.(本小题满分14分)已知函数()2cos()(0,)6f x x x R πωω=+>∈的最小正周期为10π.⑴求函数()f x 的对称轴方程; ⑵设,[0,]2παβ∈,56516(5),(5)35617f f ππαβ+=--=,求cos()αβ+的值.17.(本小题满分14分)已知*(1)(,)nmx m R n N +∈∈的展开式的二项式系数之和为32,且展开式中含3x 项的系数为80. ⑴求,m n 的值;⑵求6(1)(1)nmx x +-展开式中含2x 项的系数.18.(本小题满分16分)如图,某市新体育公园的中心广场平面图如图所示,在y 轴左侧的观光道曲线段是函数sin()(0,0,0)y A x A ωϕωϕπ=+>><<,[4,0]x ∈-时的图象且最高点B (-1,4),在y 轴右侧的曲线段是以CO 为直径的半圆弧. ⑴试确定A ,ω和ϕ的值;⑵现要在右侧的半圆中修建一条步行道CDO (单位:米),在点C 与半圆弧上的一点D 之间设计为直线段(造价为2万元/米),从D 到点O 之间设计为沿半圆弧的弧形(造价为1万元/米).设DCO θ∠=(弧度),试用θ表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)19.(本小题满分16分)已知函数2()1f x ax bx =++(,a b 为实数,0,a x R ≠∈),(),0()(),0f x x F x f x x >⎧=⎨-<⎩.⑴若(1)0f -=,且函数()f x 的值域为[0,)+∞,求()F x 的表达式;⑵设0,0,0mn m n a <+>>,且函数()f x 为偶函数,判断()()0F m F n +>是否大0?⑶设ln 1()xx g x e +=,当1a b ==时,证明:对任意实数0x >,2[()1]'()1F x g x e --<+ (其中'()g x 是()g x 的导函数) .20.(本小题满分16分)已知函数2()(,)f x ax bx a b R =+∈,函数()ln g x x =.⑴当0=a 时,函数)(x f 的图象与函数)(x g 的图象有公共点,求实数b 的最大值; ⑵当0b =时,试判断函数)(x f 的图象与函数)(x g 的图象的公共点的个数;⑶函数)(x f 的图象能否恒在函数()y bg x =的上方?若能,求出,a b 的取值范围;若不能,请说明理由.参考答案数 学 (理科附加题)(全卷满分40分,考试时间30分钟)2018.621.(本小题满分10分)一个口袋中装有大小形状完全相同的红色球1个、黄色球2个、蓝色球*()n n N ∈个.现进行从口袋中摸球的游戏:摸到红球得1分、摸到黄球得2分、摸到蓝球得3分.若从这个口袋中随机地摸出2个球,恰有一个是黄色球的概率是158. ⑴求n 的值;⑵从口袋中随机摸出2个球,设ξ表示所摸2球的得分之和,求ξ的分布列和数学期望E ξ. 22.(本小题满分10分)已知函数ax x x f +-=3)(在(1,0)-上是增函数.⑴求实数a 的取值范围A ;⑵当a 为A 中最小值时,定义数列{}n a 满足:1(1,0)a ∈-,且)(21n n a f a =+, 用数学归纳法证明(1,0)n a ∈-,并判断1n a +与n a 的大小. 23.(本小题满分10分)如图,在三棱柱111ABC A B C -中,1A A ⊥平面ABC ,90BAC ︒∠=,F 为棱1AA 上的动点,14,2A A AB AC ===. ⑴当F 为1A A 的中点,求直线BC 与平面1BFC⑵当1AF FA 的值为多少时,二面角1B FC C --的大小是45︒.24.(本小题满分10分)已知数列{}n a 为0123,,,,,()n a a a a a n N ⋅⋅⋅∈,0nn i i b a ==∑表示0a.⑴若数列{}n a 为等比数列2()nn a n N =∈,求()niini b C =∑;⑵若数列{}n a 为等差数列2()n a n n N =∈,求1()ni ini b C =∑.参考答案理 科 数 学 试题 参 考 答 案一、填空题:1.{2} 2.1i + 3.(1,)-+∞ 4.充分不必要 5.e 6.127.6 8.[9.2014 10.(0,1)(1,4) 11.1[2- 12.②③④131 14.4[,)16e e二、解答题:15⑴因为命题2:"[1,2],0"p x x a ∀∈-≥,令2()f x x a =-,根据题意,只要[1,2]x ∈时,min ()0f x ≥即可, ……4分 也就是101a a -≥⇒≤; ……7分 ⑵由⑴可知,当命题p 为真命题时,1a ≤,命题q 为真命题时,244(2)0a a ∆=--≥,解得21a a ≤-≥或 ……11分 因为命题""p q ∨为真命题,命题""p q ∧为假命题,所以命题p 与命题q 一真一假, 当命题p 为真,命题q 为假时,12121a a a ≤⎧⇒-<<⎨-<<⎩,当命题p 为假,命题q 为真时,11-21a a a a >⎧⇒>⎨≤≥⎩或,综上:1a >或21a -<<. ……14分 16⑴由条件可知,21105T ππωω==⇔=, ……4分则由155()566x k x k k Z ππππ+=⇒=-+∈为所求对称轴方程; ……7分⑵56334(5)cos()sin ,cos352555f ππαααα+=-⇔+=-⇔==, 因为[0,]2πα∈,所以6334cos()sin ,cos 52555πααα⇔+=-⇔==,516815(5)cos ,sin 6171717f πβββ-=⇔==,因为[0,]2πβ∈,所以516815(5)cos ,sin 6171717f πβββ-=⇔== … …11分4831513cos()cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-. ……14分17⑴由题意,232n=,则5n =; ……3分由通项15(0,1,,5)r r r r T C m x r +==,则3r =,所以33580C m =,所以2m =;…7分⑵即求56(12)(1)x x +-展开式中含2x 项的系数,56011220122555666(12)(1)[(2)(2)]()x x C C x C x C C x C x +-=+++⋅⋅⋅-++⋅⋅⋅22(11040)(1615)x x x x =+++⋅⋅⋅-++⋅⋅⋅, ……11分所以展开式中含2x 项的系数为11510(6)4015⨯+⨯-+⨯=-. ……14分 18⑴因为最高点B (-1,4),所以A=4;又(4,0)E -,所以 1(4)3124TT =---=⇒=, 因为2126T ππωω==⇒= ……5分 代入点B (-1,4),44sin[(1)]sin()166ππϕϕ=⨯-+⇒-=,又203πϕπϕ<<⇒=; ……8分 ⑵由⑴可知:24sin(),[4,0]63y x x ππ=+∈-,得点C (0,即CO =取CO 中点F ,连结DF ,因为弧CD 为半圆弧,所以2,90DFO CDO θ∠=∠=︒,即2DO θ== ,则圆弧段DO造价预算为万元, Rt CDO ∆中,CD θ=,则直线段CD造价预算为θ万元,所以步行道造价预算()g θθ=+,(0,)2πθ∈. ……13分由'()sin )2sin )g x θθ=-+=-得当6πθ=时,'()0g θ=,当(0,)6πθ∈时,'()0g x >,即()g θ在(0,)6π上单调递增; 当(,)62ππθ∈时,'()0g x <,即()g θ在(,)62ππ上单调递减 所以()g θ在6πθ=时取极大值,也即造价预算最大值为(63+)万元.……16分 19⑴因为(1)0f -=,所以10a b -+=,因为()f x 的值域为[0,)+∞,所以20,40a b a >⎧⎨∆=-=⎩, ……3分 所以24(1)02,1b b b a --=⇒==,所以2()(1)f x x =+,所以22(1),0()(1),0x x F x x x ⎧+>⎪=⎨-+<⎪⎩; ……5分 ⑵因为()f x 是偶函数,所以20,()1b f x ax ==+即,又0a >,所以221,0()1,0ax x F x ax x ⎧+>⎪=⎨--<⎪⎩, ……8分 因为0mn <,不妨设0m >,则0n <,又0m n +>,所以0m n >->,此时2222()()11()0F m F n am an a m n +=+--=->,所以()()0F m F n +>; ……10分⑶因为0x >,所以2()()1F x f x ax bx ==++,又1a b ==,则2()1F x x x -=+,因为ln 1()x x g x e +=,所以'1ln 1()xx x g x e--= 则原不等式证明等价于证明“对任意实数0x >,221ln 1()1xx x x x e e---+⋅<+ ” , 即 21(1ln )1x x x x x e e-+⋅--<+. ……12分先研究 1ln x x x --,再研究1x xe+.① 记()1ln ,0i x x x x x =-->,'()ln 2i x x =--,令'()0i x =,得2x e -=,当(0x ∈,2)e -时'()0i x >,()i x 单增;当2(x e -∈,)+∞时'()0i x <,()i x 单减 .所以,22max ()()1i x i e e --==+,即21ln 1x x x e ---≤+.② 记1(),0x x j x x e +=>,'()0x x j x e=-<,所以()j x 在(0,)+∞单减,所以,()(0)1j x j <=,即11x x e+<.综上①、②知,2211()(1ln )(1)1x x x x g x x x x e e ee--++=--≤+<+.即原不等式得证,对任意实数0x >,2[()1]'()1F x g x e --<+ ……16分 20⑴bx x f a =∴=)(0 ,由一次函数与对数函数图象可知两图象相切时b 取最大值, ……1分设切点横坐标为0x ,1(),()f x b g x x''==,000011,,ln b x x e b e bx x⎧=⎪∴∴=∴=⎨⎪=⎩, 即实数b 的最大值为1b e =; ……4分⑵2ln 0,0,()()xb x f x g x a x =>∴=⇔=, 即原题等价于直线y a =与函数2ln ()xr x x=的图象的公共点的个数, ……5分'432ln 12ln ()x x x xr x x x --==, ()r x ∴在递增且1()(,)2r x e∈-∞,()r x 在)+∞递减且1()(0,)2r x e∈,1(,)2a e∴∈+∞时,无公共点,1(,0]{}2a e ∈-∞⋃时,有一个公共点,1(0,)2a e∈时,有两个公共点; ……9分⑶函数)(x f 的图象恒在函数()y bg x =的上方,即()()f x bg x >在0x >时恒成立, ……10分①0a <时()f x 图象开口向下,即()()f x bg x >在0x >时不可能恒成立, ②0a =时ln bx b x >,由⑴可得ln x x >,0b ∴>时()()f x bg x >恒成立,0b ≤时()()f x bg x >不成立, ③0a >时,若0b <则2ln a x x b x -<,由⑵可得2ln x xx -无最小值,故()()f x bg x >不可能恒成立, 若0b =则20ax >,故()()f x bg x >恒成立,若0b >则2(ln )0ax b x x +->,故()()f x bg x >恒成立, ……15分 综上,0,0a b =>或0,0a b >≥时函数)(x f 的图象恒在函数()y bg x =的图象的上方. ……16分21⑴由题设158231211=++n n C C C ,即03522=--n n ,解得3=n ; ……4分 ⑵ξ取值为3,4,5,6.则1112262(3)15C C P C ξ===, 11213222664(4)15C C C P C C ξ==+=,1123262(5)5C C P C ξ===,23261(6)5C P C ξ===, ……8分ξ的分布列为:故234561515553E ξ⨯+⨯+⨯+⨯==. ……10分22⑴'2()30f x x a =-+≥即23a x ≥在(1,0)x ∈-恒成立,[3,)A ∴=+∞; ……4分 ⑵用数学归纳法证明:(1,0)n a ∈-.(ⅰ)1=n 时,由题设1(1,0)a ∈-; (ⅱ)假设k n =时,(1,0)k a ∈-则当1+=k n 时,)3(21)(2131k k k k a a a f a +-==+ 由⑴知:x x x f 3)(3+-=在(1,0)-上是增函数,又(1,0)k a ∈-,所以331111((1)3(1))1()(3)0222k k k k a f a a a +--+⨯-=-<==-+<,综合(ⅰ)(ⅱ)得:对任意*N n ∈,(1,0)n a ∈-. ……8分3111(3)(1)(1)22n n n n n n n n a a a a a a a a +-=-+-=--+因为(1,0)n a ∈-,所以10n n a a +-<,即1n n a a +<. … …10分23.如图,以点A 为原点建立空间直角坐标系,依题意得11(0,0,0),(2,0,0),(0,2,0),(0,0,4),(0,2,4)A B C A C ,⑴因为F 为中点,则1(0,0,2),(2,0,2),(2,2,4),(2,2,0)F BF BC BC =-=-=-, 设(,,)n x y z =是平面1BFC 的一个法向量,则12202240n BF x zn BC x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,得x y z =-= 取1x =,则(1,1,1)n =-,设直线BC 与平面1BFC 的法向量(1,1,1)n =-的夹角为则cos 3||||22BC n BC n θ⋅===-⋅,所以直线BC 与平面1BFC……5分 ⑵设1(0,0,)(04),(2,0,),(2,2,4)F t t BF t BC ≤≤=-=-,设(,,)n x y z =是平面1BFC 的一个法向量,则1202240n BF x tz n BC x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,取2z =,则(,4,2)n t t =- (2,0,0)AB =是平面1FC C 的一个法向量,cos ,2||||2n AB n AB n AB t ⋅<>===⋅,得52t =,即153,22AF FA ==,所以当153AF FA =时,二面角1B FC C --的大小是45. ……10分24⑴0121222221n n n b +=+++⋅⋅⋅+=-,所以10213210()(21)(21)(21)(21)ni n ninn n n n i b C C C C C +==-+-+-+⋅⋅⋅+-∑100211322121212121n n nn n n n n n n n C C C C C C C C +=⋅-⋅+⋅-⋅+⋅-⋅+⋅⋅⋅+⋅-⋅ 011220122(222)()n n n n n n n n n n n C C C C C C C C =+⋅+⋅+⋅⋅⋅+⋅-+++⋅⋅⋅+2(12)2232n n n n =+-=⋅-. ……4分 ⑵0242(1)n b n n n =+++⋅⋅⋅+=+,1230()122334(1)ni ninn n n n i b C CC C n n C ==⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅++∑,因为012233(1)n n nn n n n n x C C x C x C x C x +=++++⋅⋅⋅+,两边同乘以x ,则有01223341(1)n n n n n n n n x x C x C x C x C x C x ++=++++⋅⋅⋅+,两边求导,左边1(1)(1)n n x nx x -=+++,右边012233234(1)n nn n n n n C C x C x C x n C x =++++⋅⋅⋅++,即1012233(1)(1)234(1)n n n nn n n n n x nx x C C x C x C x n C x -+++=++++⋅⋅⋅++(*),对(*)式两边再求导,得12123212(1)(1)(1)213243(1)n n n n n n n n n x n n x x C C x C x n nC x ---++-+=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅++ 取1x =,则有22123(3)2122334(1)n n n n n n n n C C C n n C -+⋅=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅++所以221()(3)2ni n ini b C nn -==+⋅∑. ……10分。
江苏省徐州市沛县2019_2020学年高二数学上学期学情调研试题一含解析
又|MF1|+|MF2|=2a,
∴2a=( +1)c,
∴该椭圆的离心率
故选B.
【点睛】本题考查椭圆的简单性质,着重考查直线与椭圆的位置关系,突出椭圆定义的考查,理解得到直线y= (x+c)经过椭圆的左焦点F1(-c,0)是关键,属于中档题.
第Ⅱ卷(非选择题)
二、填空题(本大题共4小题,共20.0分)
A。 B。
C。 D。
【答案】A
【解析】
以线段 为直径的圆的圆心为坐标原点 ,半径为 ,圆的方程为 ,
直线 与圆相切,所以圆心到直线的距离等于半径,即 ,
整理可得 ,即 即 ,
从而 ,则椭圆的离心率 ,
故选A.
【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于 的方程或不等式,再根据 的关系消掉 得到 的关系式,而建立关于 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等。
【详解】(1) 为椭圆的焦点,且椭圆经过 两点
根据椭圆的定义:
,
椭圆方程为:
(2) 为双曲线的焦点,且双曲线经过 两点,
根据双曲线的定义:
,
双曲线方程为:
【点睛】本题考查利用椭圆、双曲线的定义求解椭圆、双曲线的标准方程问题,属于基础题.
18.平面直角坐标系 中,椭圆C的中心是坐标原点,对称轴为坐标轴,一个焦点F的坐标为 ,离心率为 .
12。已知椭圆 (a>b〉0)的左、右焦点分别是F1,F2,焦距为2c,若直线y= (x+c)与椭圆交于M点,且满足∠MF1F2=2∠MF2F1,则椭圆的离心率是 ( )
A. B。 -1C. D.
【答案】B
【解析】
江苏省宿迁市2022-2023学年高二下学期期末考试化学试题及答案
高二年级调研测试化学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页。
满分为100分,考试时间为75分钟。
考试结束后,请将答题卡交回。
2.答题前,请您务必将自己的姓名、班级、考场等用书写黑色字迹的0.5毫米签字笔填写在答题卡上规定的位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人的是否相符。
4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案。
作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,必须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
可能用到的相对原子质量:H 1 C 12 O 16 Ag 108一、单项选择题:共13题,每题3分,共39分。
每题只有一个选项符合题意。
1.下列物质不能为人类生命活动提供能量的是( ) A .葡萄糖B .油脂C .蛋白质D .纤维素2.工业上利用22222MgCl 6H O 6SOCl MgCl 6SO 12HCl ⋅++↑+↑ 制备无水2MgCl 。
下列说法正确的是( )A .HCl 属于电解质B .2SO 为非极性分子C .2H O 的电子式为..22H [:O :]H ++D .基态O 原子的价电子排布式为2241s 2s 2p3.尿素()22CO NH 的合成打破了无机物和有机物的界限。
下列说法正确的是( ) A .半径大小:()()32 N O r r −−< B .电负性大小:(N)(C)χχ< C .电离能大小:11(O)(N)I I <D .稳定性:23H O NH <4.下列制取、除杂、检验并收集少县乙烯的实验装置和操作不能..达到目的是( )A .用装置甲制取乙烯B .用装置乙除去乙烯中2SOC .用装置丙检验乙烯D .用装置丁收集乙烯阅读下列材料,完成5~7题:氨气是人工固氮的产物,也是制备多种含氮化合物的原料。
江苏省无锡市2019-2020学年数学高二下期末综合测试试题含解析
江苏省无锡市2019-2020学年数学高二下期末综合测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知定义在R 上的函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2x f x e >的解集为( )A .(),0-∞B .()0,∞+C .(),2-∞D .()2,+∞2.已知双曲线方程为22221(0)x y a b a b-=>>,它的一条渐近线与圆()2222x y -+=相切,则双曲线的离心率为( )A .2B .2C .3D .223.已知空间向量(3,a =1,0),(),3,1b x =-,且a b ⊥,则(x = )A .3-B .1-C .1D .24.若{}{}1,21,2,3,4,5A ⊆⊆则满足条件的集合A 的个数是( )A .6B .7C .8D .95.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,则该几何体的表面积为( )A .1712π+B .2012π+C .1212π+D .1612π+6.曲线4sin y x x =+在43x π=处的切线的斜率为( ) A .2- B .1-C .0D .1 7.已知{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( )A .1B .C .2D .38.下列函数中,既是奇函数又在(0,)+∞内单调递增的函数是( )A .3y x =-B .cos y x =C .1y x x =+D .||y x x =9.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种10.2018年平昌冬奥会期间,5名运动员从左到右排成一排合影留念,最左端只能排甲或乙,最右端不能排甲,则不同的排法种数为( )A .21B .36C .42D .8411.已知某次数学考试的成绩服从正态分布2(102,4)N ,则114分以上的成绩所占的百分比为( ) (附()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤)A .0.3%B .0.23%C .0.13%D .1.3%12.已知一袋中有标有号码1、2、3的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取5次卡片时停止的概率为( )A .585B .1481C .2281D .2581二、填空题(本题包括4个小题,每小题5分,共20分)13.若1x =是函数()()25x x a e f x x =+-的极值点,则()f x 在[]22-,上的最小值为______. 14.假设每一架飞机的每一个引擎在飞行中出现故障概率均为1p -,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎飞机正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4引擎飞机比2引擎飞机更安全,则p 的取值范围是__________.15.在直角坐标系中,已知1,0A ,()4,0B ,若直线10x my +-=上存在点P ,使得2PA PB =,则实数m 的取值范围是______.16.已知幂函数()y f x =的图象过点(,则()9f =______.三、解答题(本题包括6个小题,共70分)17.在平面直角坐标系中,射线:(0)l y kx x =≥ 的倾斜角为α ,且斜率k ∈.曲线1C 的参数方程为1cos (sin x y ααα=+⎧⎨=⎩ 为参数);在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ= .(1)分别求出曲线1C 和射线l 的极坐标方程;(2)若l 与曲线1C ,2C 交点(不同于原点)分别为A,B ,求|OA||OB|的取值范围.18.已知函数32()2f x x ax =-+(1)讨论()f x 的极值;(2)当0<<3a 时,记()f x 在区间[0,2]的最大值为M ,最小值为m ,求M m -.19.(6分)在直角坐标系xOy 中,直线l 的参数方程为3423x t y t =+⎧⎨=-+⎩,(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22cos 80ρρθ+-=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若点p 是直线l 的一点,过点p 作曲线C 的切线,切点为Q ,求PQ 的最小值.20.(6分)某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取n 株作为样本进行研究.株高在35cm 及以下为不良,株高在35cm 到75cm 之间为正常,株高在75cm 及以上为优等.下面是这n 个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁.请根据可见部分,解答下面的问题:(1)求n 的值并在答题卡的附图中补全频率分布直方图;(2)通过频率分布直方图估计这n 株株高的中位数(结果保留整数);(3)从育种基地内这种品种的种株中随机抽取2株,记X 表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量X 的分布列(用最简分数表示).21.(6分)已知等比数列的前项和,满足,且成等差数列. (1)求数列的通项公式; (2)设数列满足,记数列的前项和,求的最大值.22.(8分)设命题:p 函数2()16a f x ax x =-+的值域为R ;命题:39x x q a -<对一切实数x 恒成立,若命题“p q ∧”为假命题,求实数a 的取值范围.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.A【解析】 分析:先构造函数()()xf xg x e =,再根据函数单调性解不等式. 详解:令()()x f x g x e =,因为()()()0x f x f x g x e '-'=<,(0)2g = 所以()2()(0)0x f x e g x g x >⇒>⇒<因此解集为(),0-∞ ,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()x f x g x e=,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 2.A【解析】 方法一:双曲线的渐近线方程为bx y a=±,则0bx ay ±=,圆的方程()2222x y -+=,圆心为()2,0,r ==a b =,则离心率e =方法二:因为焦点()2,0F c -到渐近线的0bx ay ±=距离为b ,2c =,即,c =则离心率为e =选A.3.C【解析】【分析】利用向量垂直的充要条件,利用向量的数量积公式列出关于x 的方程,即可求解x 的值.【详解】由题意知,空间向量a (3,=1,0),()b x,3,1=-,且a b ⊥,所以a b 0⋅=,所以31(3)010x +⨯-+⨯=,即3x 30-=,解得x 1=.故选C .【点睛】 本题主要考查了向量垂直的充要条件,以及向量的数量积的运算,其中解答中熟记向量垂直的条件和数量积的运算公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.C【解析】【分析】根据题意A 中必须有1,2这两个元素,因此A 的个数应为集合{3,4,5}的子集的个数.【详解】解:{}{}1,21,2,3,4,5A ⊆⊆,∴集合A 中必须含有1,2两个元素,因此满足条件的集合A 为{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5共8个.故选C .【点睛】本题考查了子集的概念,熟练掌握由集合间的关系得到元素关系是解题的关键.有n 个元素的集合其子集共有2n 个.5.B【解析】【分析】根据三视图可确定几何体为一个底面半径为3的半圆柱中间挖去一个底面半径为1的半圆柱;依次计算出上下底面面积、大圆柱和小圆柱侧面积的一半以及轴截面的两个矩形的面积,加和得到结果.【详解】由三视图可知,几何体为一个底面半径为3的半圆柱中间挖去一个底面半径为1的半圆柱∴几何体表面积:()221112312332132231220222S ππππ=⨯-+⨯⨯⨯+⨯⨯⨯+⨯⨯=+ 本题正确选项:B【点睛】本题考查几何体表面积的求解问题,关键是能够通过三视图确定几何体,从而明确表面积的具体构成情况. 6.B【解析】【分析】【详解】因为'14cos y x =+,所以434|14cos14133x y cos πππ=='=+-=-. 故选B.7.C【解析】试题分析:设出等差数列的首项和公差,由a 3=6,S 3=11,联立可求公差d .解:设等差数列{a n }的首项为a 1,公差为d ,由a 3=6,S 3=11,得:解得:a 1=1,d=1.故选C .考点:等差数列的前n 项和.8.D【解析】【分析】由基本初等函数的单调性和奇偶性,对A 、B 、C 、D 各项分别加以验证,不难得到正确答案.【详解】解:对于A ,因为幂函数y =x 3是R 上的增函数,所以y =﹣x 3是(0,+∞)上的减函数,故A 不正确; 对于B ,cos y x =为偶函数,且在(0,)+∞上没有单调性,所以B 不正确;对于C ,1y x x=+在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,故C 不正确; 对于D ,若f (x )=x|x|,则f (﹣x )=﹣x|x|=﹣f (x ),说明函数是奇函数,而当x ∈(0,+∞)时,f (x )=x 2,显然是(0,+∞)上的增函数,故D 正确;故选:D .【点睛】本题考查了函数奇偶性和单调性的判断与证明,属于基础题.9.A【解析】试题分析:分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法. 三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.点评:本解法从“最多”的一堆分情况考虑开始,分别计算不同分法,然后求和.用列举法也可以,形象、直观易懂.10.C【解析】分析:根据题意,分两种情况讨论:①最左边排甲;②最左边排乙,分别求出每一种情况的安排方法数目,由分类计数原理计算即可得到答案.详解:根据题意,最左端只能排甲或乙,则分两种情况讨论:①最左边排甲,则剩下4人进行全排列,有4424A =种安排方法;②最左边排乙,则先在剩下的除最右边的3个位置选一个安排甲,有3种情况,再将剩下的3人全排列,有336A =种情况,此时有1863=⨯种安排方法,则不同的排法种数为241842+=种.故选:C.点睛:解决排列类应用题的策略(1)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置.(2)分排问题直排法处理.(3)“小集团”排列问题中先集中后局部的处理方法.11.C【解析】分析:先求出u,σ,再根据(33)0.9974P X μσμσ-<≤+=和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,4,σ=3114.u σ∴+=因为(33)0.9974P X μσμσ-<≤+=, 所以10.9974(114=0.00130.13%2P X ->==). 故答案为:C. 点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.12.B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有53种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有()24322C -种;所以恰好第5次停止取卡片的概率为()24352214381C p -==. 本题选择B 选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.二、填空题(本题包括4个小题,每小题5分,共20分)13.3e -【解析】【分析】先对f(x)求导,根据()'10f =可解得a 的值,再根据函数的单调性求出区间[]22-,上的最小值. 【详解】()()()25'2x x x a e e f x x x a =+++-2(2)5x e x a x a ⎡⎤=+++-⎣⎦,则()()'1220f e a =-=,解得1a =,所以()()25x f x x x e =+-, 则()()2'34x e x f x x =+-()()41x e x x =+-.令()'0f x >,得4x <-或1x >;令()'0f x <,得41x -<<.所以()f x 在[)2,1-上单调递减;在(]1,2上单调递增.所以()()min 13f x f e ==-.【点睛】本题考查由导数求函数在某个区间内的最小值,解题关键是由()'10f =求出未知量a .14.1,13⎛⎫ ⎪⎝⎭【解析】分析:由题意知各引擎是否有故障是独立的,4引擎飞机中至少有3个引擎正常运行,4引擎飞机可以正常工作的概C 43p 3(1﹣p )+p 4,2引擎飞机可以正常工作的概率是p 2,根据题意列出不等式,解出p 的值. 详解:每一架飞机的引擎在飞行中出现故障率为1﹣p ,不出现故障的概率是p ,且各引擎是否有故障是独立的,4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;4引擎飞机可以正常工作的概率是C 43p 3(1﹣p )+p 4,2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行,2引擎飞机可以正常工作的概率是p 2要使4引擎飞机比2引擎飞机更安全,依题意得到C 43p 3(1﹣p )+p 4>p 2,化简得3p 2﹣4p+1<0, 解得13<p <1. 故选:B .点睛:本题考查相互独立事件同时发生的概率,考查互斥事件的概率,考查一元二次不等式的解法,是一个综合题,本题也是一个易错题,注意条件“4引擎飞机中至少有3个引擎正常运行”的应用.15.(),-∞⋃+∞【解析】【分析】设点P 的坐标为(),x y ,根据条件2PA PB =求出动点P 的轨迹方程,可得知动点P 的轨迹为圆,然后将问题转化为直线10x my +-=与动点P 的轨迹圆有公共点,转化为圆心到直线的距离不大于半径,从而列出关于实数m 的不等式,即可求出实数m 的值.【详解】设点P 的坐标为(),x y ,2PA PB == 化简得()2254x y -+=,则动点P 的轨迹是以()5,0为圆心,半径为2的圆,由题意可知,直线10x my +-=与圆()2254x y -+=有公共点,2≤,解得m ≤m ≥.因此,实数m 的取值范围是(),-∞⋃+∞.故答案为:(),-∞⋃+∞.【点睛】本题考查动点的轨迹方程,同时也考查了利用直线与圆的位置关系求参数,解题的关键就是利用距离公式求出动点的轨迹方程,考查化归与转化思想的应用,属于中等题.16.3【解析】【分析】先利用待定系数法代入点的坐标,求出幂函数()y f x =的解析式,再求()9f 的值.【详解】设()a y f x x ==,由于图象过点(,12,2a a ==, ()12y f x x ∴==,()12993f ∴==,故答案为3.【点睛】本题考査幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.三、解答题(本题包括6个小题,共70分)17.(1)1:2cos ;:,(,]43C l ππρθθαα==∈ (2)2,23]( 【解析】试题分析:(1)结合题中所给的方程的形式整理可得曲线1C 和射线l 的极坐标方程分别是:1:2cos ;:,,43C l ππρθθαα⎛⎤==∈ ⎥⎝⎦. (2)联立12,C C 的方程,结合题意可求得|OA||OB|的取值范围是(2,23]. 试题解析:(1)的极坐标方程为, 的极坐标方程为, (2)联立2cos ρθθα=⎧⎨=⎩,得联立2cos sin ρθθθα⎧=⎨=⎩, 得 ∴2tan 22,3]k α==∈(18.(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】【分析】(1)求导函数'()f x ,由导函数确定函数的单调性后可确定极值;(2)由(1)可知()f x 在区间(0,2]上的单调性,从而可求得极值和最值.【详解】(1)2()32(32)f x x ax x x a '=-=-当0a ≤时,()0f x '≥,()f x 在(-,)∞+∞上单增,无极值当0a >时,2()03a f x x '>⇒>, ()f x ∴单减区间是2-,3a ⎛⎫∞ ⎪⎝⎭,单增区间是2,3a ⎛⎫+∞ ⎪⎝⎭, 所以324()2327a a f x f ⎛⎫==-+ ⎪⎝⎭极小,无极大值.(2)203,023a a <<∴<< 由(1)知()f x 在20,3a ⎛⎫ ⎪⎝⎭单减,2,23a ⎛⎫ ⎪⎝⎭单增 3min 24()2327a a f x f m ⎛⎫∴==-= ⎪⎝⎭max ()max{(0),(2)}max{2,104}f x f f a ==-当02a <≤时,34104,104227a M a M m a =--=--+348427a a =-- 当23a <<时,33442,222727a a M M m =-=-+= 【点睛】本题考查用导数研究函数的极值与最值.解题时可求出导函数后确定出函数的单调性,然后可确定极值、最值.19.(1)34170x y --=,22(1)9x y ++=;(2)见解析【解析】【分析】(1)消去t,得直线l 的普通方程,利用极坐标与普通方程互化公式得曲线C 的直角坐标方程;(2)判断l 与圆A 相离,连接,AQ AP ,在Rt APQ ∆中,22222||||437PQ PA AQ =-≥-=,即可求解【详解】 (1)将l 的参数方程3423x t y t=+⎧⎨=-+⎩(t 为参数)消去参数,得34170x y --=. 因为x cos y sin ρθρθ=⎧⎨=⎩,22cos 80ρρθ+-=, 所以曲线C 的直角坐标方程为()2219x y ++=.(2)由(1)知曲线C 是以()1,0-为圆心,3为半径的圆,设圆心为A ,则圆心A 到直线l 的距离317435d --==>,所以l 与圆A 相离,且4PA ≥.连接,AQ AP ,在Rt APQ ∆中,22222||||437PQ PA AQ =-≥-=,所以,PQ ≥PQ .【点睛】本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题20.(1)20n =,补图见解析(2)估计这n 株株高的中位数为82(3)见解析【解析】【分析】根据茎叶图和频率直方图,求出中位数,得离散型随机变量的分布列.【详解】解:(1)由第一组知10.002520n=,得20n =, 补全后的频率分布直方图如图(2)设中位数为0x ,前三组的频率之和为0.050.10.20.350.5++=<,前四组的频率之和为0.050.10.20.450.80.5+++=>,∴[)075,95x ∈, ∴()0750.02250.15x -⨯=,得0245823x =≈, ∴估计这n 株株高的中位数为82. (3)由题设知132,20X B ⎛⎫ ⎪⎝⎭, 则()22749020400P X C ⎛⎫==⋅= ⎪⎝⎭ ()127139112020200P X C ==⋅⋅= ()22213169220400P X C ⎛⎫==⋅= ⎪⎝⎭X的分布列为X0 1 2P 4940091200169400【点睛】本题考查频率直方图及中位数,离散型随机变量的分布列,属于中档题.21.(1)(2)166【解析】【分析】(1)将题目中的条件转化为首项和公比的式子,于是可得到通项公式;(2)通过条件先求出数列的通项,要想的值最大,只需找出即可.【详解】解:(1)所以(2)当时,当时,将代入成立,所以,当时,,当时,所以【点睛】本题主要考查等比数列的通项公式,数列的最值问题,意在考查学生的基础知识,计算能力和分析能力,难度不大.22.1(,](2,)4a∈-∞+∞【解析】试题分析:分别求出命题p ,q 成立的等价条件,利用p 且q 为假.确定实数a 的取值范围.试题解析:p 真时,0a =合题意.0a >时,210024a a ∆=-≥⇒<≤. 02a ⇒≤≤时,P 为真命题.q 真时:令3(0,)x t =∈+∞,故2a t t >-在(0,)+∞恒成立14a ⇒>时,q 为真命题. p q ⇒∧为真时,124a <≤. p q ∴∧为假命题时,1(,](2,)4a ∈-∞+∞.考点:复合命题的真假.。
江苏省2019-2020学年八年级数学下学期期中测试卷二(含答案)
江苏省2019-2020学年八年级下学期期中测试卷数 学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意) 1.下列图形中,既是中心对称图形,又是轴对称图形的是( )A ..B ..C .D ..2.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( ) A .12B .13C .14D .16(第3题)(第4题)4.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件后仍不能判定四边形ABCD 是平行四边形的是( ) A .//AD BC ,AO CO = B .AD BC =,AO OC = C .AD BC =,CD AB =D .AOD COD BOC S S S ∆∆∆==5.如图,已知菱形ABCD 的对角线交于点O ,6DB =,5AD =,则菱形ABCD 的面积为()A.20 B.24 C.30 D.36(第5题)(第6题)6.如图是由三个边长分别是2,3和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或4 B.2或3 C.3或4 D.1或2二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.某校七年级为调查该年级400名学生一分钟跳绳次数成绩,打算从中随机抽取50人进行测试,则该问题中的样本容量为.8.3月12日是中国的植树节,如图是某种幼树在移植过程中成活率的统计图,估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).9.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为.成绩优良及格不及格频数10 22 15 310.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款元.11.为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值) 分组(分) 40~5050~6060~7070~8080~9090~100频数 12 18 180 频率0.160.04根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是 .12.如图,平行四边形ABCD 中,60B ∠=︒,12BC =,10AB =,点E 在AD 上,且4AE =,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120︒得到EG ,连接GD ,则线段GD 长度的最小值为 .(第12题)(第13题) (第14题)13.如图,为估计池塘岸边A ,B ,两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得40MN m =,则A ,B 两点间的距离是m .14.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,点E 、F 分别是BO 、BC 的中点,若6AB cm =,则BEF ∆的周长为 cm .15.如图,在平行四边形ABCD 中,8AD cm =,4AB cm =,AE 平分BAD ∠交BC 边于点E ,交DC 的延长线于点F ,则下列结论:①4CE cm =; ②线段AF 、BC 互相平分; ③AC DF ⊥.④DE AF ⊥;其中正确的结论是: (填序号).(第15题)(第16题)16.如图,矩形纸片ABCD ,4AD =,3AB =,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC ∆是直角三角形时,那么BE 的长为 . 三.解答题(本大题共11小题,共计88分)17.如图所示,已知ABC ∆的三个顶点的坐标分别为(2,3)A -,(6,0)B -,(1,0)C -. (1)请直接写出点A 关于x 轴、y 轴、原点对称的点的坐标分别是什么;(2)将ABC ∆绕坐标原点O 顺时针旋转90︒,不画出图形,直接写出点A 、B 、C 的对应点的坐标;(3)请直接写出:以A ,B ,C 为顶点的平行四边形 的第四个顶点D 的坐标.18.如图,E,F是四边形ABCD对角线AC上的两点,//=.AD BC,//DF BE,AE CF求证:(1)AFD CEB∆≅∆;(2)四边形ABCD是平行四边形.19.我区对七年级学生体育测试情况进行调查,从全区3600名学生中抽取了部分学生的成绩(成绩分为A,B,C三个层次)进行分析,绘制了频数分布表与频数分布直方图,请根据图表信息解答下列问题:分组频数频率C10 0.1B a0.5A40 b合计100 1(1)表中的a=,b=;(2)补全频数分布直方图;(3)如果成绩为A等级的同学属于优秀,请你估计全区七年级的有多少人达到优秀水平?20.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);(2)若从盒子里随机摸岀一只球,则摸到白球的概率的估计值为;(3)试估算盒子里白球有只;(4)某小组在“用频率估计概率”的试验中,符合这一结果的试验最有可能的是.A.从一副扑克牌中任意抽取一张,这张牌是“红色的”B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”C.掷一个质地均匀的正六面体骰子(面的点数标记分别为1到6),落地时面朝上的点数小于521.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.22.已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.23.定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD的对角线AC、BD相交于点O.且AC垂直平分BD.(1)请结合图形,写出筝形两种不同类型的性质:性质1:;性质2:.(2)若//AB CD,求证:四边形ABCD为菱形.24.已知如图平行四边形ABCD中,EF垂直平分对角线BD,交点为O,求证:四边形BFDE 是菱形.25.如图,ABC∆中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF BD=,连接BF.(1)求证:D是BC的中点.(2)当ABC∆满足什么条件时,四边形AFBD是正方形,并说明理由.26.如图,在平行四边形ABCD中,以点A为圆心AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若60C∠=︒,43AE=,求菱形ABEF的面积.27.已知:正方形ABCD,45∠=︒.EAF(1)如图1,当点E、F分别在边BC、CD上,连接EF,求证:EF BE DF=+;童威同学是这样思考的,请你和他一起完成如下解答:证明:将ADF∆绕点A顺时针旋转∆≅∆.∆,所以ADF ABG90︒,得ABG(2)如图2,点M、N分别在边AB、CD上,且BN DM=.当点E、F分别在BM、DN 上,连接EF,探究三条线段EF、BE、DF之间满足的数量关系,并证明你的结论.(3)如图3,当点E、F分别在对角线BD、边CD上.若2FC=,则BE的长为.期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A..B..C.D..【解答】A、不是轴对称图形,也不是中心对称图形.故不合题意.B、不是轴对称图形,是中心对称图形.故不合题意;C、既是轴对称图形,也是中心对称图形.故符合题意;D、是轴对称图形,不是中心对称图形.故不合题意.故选:C.2.以下调查方式比较合理的是()A.为了解一沓钞票中有没有假钞,采用抽样调查的方式B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式C.为了解某省中学生爱好足球的情况,采用普查的方式D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式【解答】A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B .3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .12B .13C .14D .16【解答】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份, 所以P (飞镖落在黑色区域)4182==. 故选:A .4.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件后仍不能判定四边形ABCD 是平行四边形的是( )A .//AD BC ,AO CO =B .AD BC =,AO OC = C .AD BC =,CD AB = D .AOD COD BOC S S S ∆∆∆==【解答】若//AD BC Q ,ADO CBO ∴∠=∠,且AO CO =,AOD BOC ∠=∠,()AOD COB AAS ∴∆≅∆ AD BC ∴=,∴四边形ABCD 是平行四边形,故A 选项不合题意;若AD BC =,CD AB =,∴四边形ABCD 是平行四边形,故C 选项不合题意;若AOD COD BOC S S S ∆∆∆==, AO CO ∴=,BO DO =,∴四边形ABCD 是平行四边形,故D 选项不合题意;故选:B .5.如图,已知菱形ABCD 的对角线交于点O ,6DB =,5AD =,则菱形ABCD 的面积为( )A .20B .24C .30D .36【解答】Q 四边形ABCD 是菱形, 12AO CO AC ∴==,132BO DO BD ===,AC BD ⊥, 222594AO AD DO ∴=-=-=, 8AC ∴=,∴菱形ABCD 的面积1242AC BD =⨯⨯=, 故选:B .6.如图是由三个边长分别是2,3和x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x 的值是( )A .1或4B .2或3C .3或4D .1或2【解答】如图,Q若直线AB将它分成面积相等的两部分,∴11(23)3(3)(23)321 22x x x x++⨯--=⨯++⨯-⨯g,解得1x=或2x=,故选:D.二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.某校七年级为调查该年级400名学生一分钟跳绳次数成绩,打算从中随机抽取50人进行测试,则该问题中的样本容量为50 .【解答】从中随机抽取50人进行测试,则该问题中的样本容量为,在这个问题中,样本容量是50,故答案为:50.8.3月12日是中国的植树节,如图是某种幼树在移植过程中成活率的统计图,估计该种幼树在此条件下移植成活的概率为0.88 (结果精确到0.01).【解答】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.9.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为0.44 .成绩优良及格不及格频数10 22 15 3【解答】成绩为“良”的频率为220.44 1022153=+++;故答案为:0.44.10.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款33 元.【解答】由统计图可得,捐款100元的学生有:5012%6⨯=(人),捐款10元的学生有:5041911610----=(人),该班同学平均每人捐款:5410102019501110063350⨯+⨯+⨯+⨯+⨯=(元),故答案为:33.11.为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)分组(分)40~5050~6060~7070~8080~9090~100频数12 18 180频率0.16 0.04根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是1620 .【解答】由题意可得,样本中成绩在70~80分的人数为:60012181806000.166000.04270----⨯-⨯=,27036001620600⨯=,故答案为:1620.12.如图,平行四边形ABCD中,60B∠=︒,12BC=,10AB=,点E在AD上,且4AE=,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120︒得到EG,连接GD,则线段GD 长度的最小值为 23 .【解答】将线段AE 绕点E 逆时针旋转120︒得到EH ,连接HG ,过点H 作HM AD ⊥, Q 四边形ABCD 是平行四边形,180A B ∴∠+∠=︒, 120A ∴∠=︒,Q 将线段AE 绕点E 逆时针旋转120︒得到EH ,将线段EF 绕点E 逆时针旋转120︒得到EG ,4EF EG ∴==,AE EH =,120AEH FEG ∠=∠=︒, 60DEH ∴∠=︒,AEF HEG ∠=∠,且EF EG =,AE EH =,()AEF HEG SAS ∴∆≅∆120A EHG AEH ∴∠=∠=︒=∠, //AD HG ∴,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG HG ⊥时,线段GD 长度有最小值,60HEM ∠=︒Q ,4EH =,HM AD ⊥,2EM ∴=,323MH EM ==,∴线段GD 长度的最小值为23,故答案为:23.13.如图,为估计池塘岸边A ,B ,两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得40MN m =,则A ,B 两点间的距离是 80m .【解答】Q 点M 、N 是OA 、OB 的中点,MN ∴是OAB ∆的中位线,224080()AB MN m ∴==⨯=,故答案为:80.14.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,点E 、F 分别是BO 、BC 的中点,若6AB cm =,则BEF ∆的周长为 633+ cm .【解答】Q 矩形ABCD ,OA OB = 又60AOB ∠=︒Q AOB ∴∆是等边三角形. 6OA AB cm ∴==,6OC OB cm ∴==,12AC cm =, 2212663()BC cm ∴=-=,Q 点E 、F 分别是BO 、BC 的中点,12EF CO ∴=,12BE BO =,12BF BC =,BEF ∴∆的周长为BOC ∆周长的一半为:1(6663)6332++=+.故答案是:633+.15.如图,在平行四边形ABCD 中,8AD cm =,4AB cm =,AE 平分BAD ∠交BC 边于点E ,交DC 的延长线于点F ,则下列结论:①4CE cm =; ②线段AF 、BC 互相平分; ③AC DF ⊥.④DE AF ⊥;其中正确的结论是: ①②④ (填序号).【解答】Q 四边形ABCD 是平行四边形,AB CD ∴=,8BC AD cm ==,//AB DF ,//AD BC ,BEA EAD ∴∠=∠, AE Q 平分BAD ∠,BAE EAD ∴∠=∠, BEA BAE ∴∠=∠,4AB BE cm ∴==,844CE BC BE cm cm cm ∴=-=-=,①正确; 4BE CE cm ∴==, //AB DF Q , ABE FCE ∴∠=∠,在BAE ∆和CFE ∆中,ABE FCE BE CE BEA CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BAE CFE ASA ∴∆≅∆,EFC BAE ∴∠=∠,AB CF =,AE EF =,∴线段AF 、BC 互相平分,②正确;AB CF =Q ,AB CD =, 4CF CD ∴==, CE CF ∴=,只有60B ∠=︒时,60F ADF ∠=∠=︒,才能AC DF ⊥,而B ∠没有给出60︒的条件, AC ∴不一定垂直DF ,③错误; EFC BAE ∠=∠Q ,BAE EAD ∠=∠, EFC EAD ∴∠=∠,AE EF =Q ,DE AF ∴⊥,④正确;故答案为:①②④.16.如图,矩形纸片ABCD ,4AD =,3AB =,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC ∆是直角三角形时,那么BE 的长为 1.5或3 .【解答】分两种情况: ①当90EFC ∠=︒时,如图1, 90AFE B ∠=∠=︒Q ,90EFC ∠=︒,∴点A 、F 、C 共线,Q 矩形ABCD 的边4AD =,4BC AD ∴==,在Rt ABC ∆中,2222345AC AB BC =+=+=, 设BE x =,则4CE BC BE x =-=-,由翻折的性质得,3AF AB ==,EF BE x ==, 532CF AC AF ∴=-=-=,在Rt CEF ∆中,222EF CF CE +=, 即2222(4)x x +=-, 解得 1.5x =, 即 1.5BE =;②当90CEF ∠=︒时,如图2,由翻折的性质得,190452AEB AEF ∠=∠=⨯︒=︒,∴四边形ABEF 是正方形,3BE AB ∴==,综上所述,BE 的长为1.5或3. 故答案为:1.5或3.三.解答题(本大题共11小题,共计88分)17.如图所示,已知ABC ∆的三个顶点的坐标分别为(2,3)A -,(6,0)B -,(1,0)C -. (1)请直接写出点A 关于x 轴、y 轴、原点对称的点的坐标分别是什么;(2)将ABC ∆绕坐标原点O 顺时针旋转90︒,不画出图形,直接写出点A 、B 、C 的对应点的坐标;(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.【解答】(1)点(2,3)--,A-关于x轴的对称点坐标为(2,3)点(2,3)A-关于y轴的对称点坐标为(2,3),点(2,3)-;A-关于原点的对称点坐标为(2,3)(2)点(2,3)-,A-的对应点的坐标为(3,2)点(6,0)B-的对应点坐标为(0,6),点(1,0)C-的对应点坐标为(0,1);(3)如图,点D的坐标为(7,3)--.-或(3,3)或(5,3)18.如图,E,F是四边形ABCD对角线AC上的两点,//=.DF BE,AE CFAD BC,//求证:(1)AFD CEB∆≅∆;(2)四边形ABCD是平行四边形.【解答】证明:(1)如图,//AD BC Q ,//DF BE ,12∴∠=∠,34∠=∠.又AE CF =,AE EF CF EF ∴+=+,即AF CE =.在AFD ∆与CEB ∆中, 1234AF CE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AFD CEB ASA ∴∆≅∆;(2)由(1)知,AFD CEB ∆≅∆,则AD CB =. 又//AD BC Q ,∴四边形ABCD 是平行四边形.19.我区对七年级学生体育测试情况进行调查,从全区3600名学生中抽取了部分学生的成绩(成绩分为A ,B ,C 三个层次)进行分析,绘制了频数分布表与频数分布直方图,请根据图表信息解答下列问题: 分组 频数 频率 C100.1 B a0.5 A40 b合计1001(1)表中的a = 50 ,b = ; (2)补全频数分布直方图;(3)如果成绩为A等级的同学属于优秀,请你估计全区七年级的有多少人达到优秀水平?【解答】(1)本次调查的人数是:100.1100÷=,1000.550a=⨯=,401000.4b=÷=,故答案为:50,0.4;(2)由(1)知,B组人数为50,补全的频数分布直方图如右图所示;(3)36000.41440⨯=(人),答:全区七年级的有1440人达到优秀水平.20.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n100 200 300 500 800 1000 3000摸到白球的次数m70 124 190 325 538 660 2004摸到白球的频率mn0.70 0.62 0.633 0.65 0.6725 0.660 0.668(1)请估计:当n很大时,摸到白球的频率将会接近0.67 (精确到0.01);(2)若从盒子里随机摸岀一只球,则摸到白球的概率的估计值为;(3)试估算盒子里白球有只;(4)某小组在“用频率估计概率”的试验中,符合这一结果的试验最有可能的是.A.从一副扑克牌中任意抽取一张,这张牌是“红色的”B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”C.掷一个质地均匀的正六面体骰子(面的点数标记分别为1到6),落地时面朝上的点数小于5【解答】(1)由表可知,当n很大时,摸到白球的频率将会接近0.67,故答案为:0.67;(2)若从盒子里随机摸岀一只球,则摸到白球的概率的估计值为0.67,故答案为:0.67;(3)试估算盒子里白球约有400.6726.827⨯=≈(只),故答案为:27;(4)A.从一副扑克牌中任意抽取一张,这张牌是“红色的”的概率为270.50.16 54==>,故此选项不符合题意;B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率为10.52=,不符合题意;C.掷一个质地均匀的正六面体骰子(面的点数标记分别为1到6),落地时面朝上的点数小于5的概率为40.676≈,符合题意;所以某小组在“用频率估计概率”的试验中,符合这一结果的试验最有可能的是C,故答案为:C.21.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100 ;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.【解答】(1)被调查的女生人数为1020%50÷=人,则女生舞蹈类人数为50(1016)24-+=人,补全图形如下:(2)样本容量为5030614100+++=,故答案为:100;(3)扇形图中舞蹈类所占的圆心角度数为16360115.250︒⨯=︒, 故答案为:115.2;(4)估计全校学生中喜欢剪纸的人数是14161200360100+⨯=,全校学生中喜欢武术的有401200480100⨯=,故全校喜欢武术的有的学生多. 22.已知:如图,平行四边形ABCD 各角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.【解答】证明:Q 四边形ABCD 是平行四边形,//AD BC ∴,180DAB ABC ∴∠+∠=︒,AH Q ,BH 分别平分DAB ∠与ABC ∠,12HAB DAB ∴∠=∠,12HBA ABC ∠=∠,11()1809022HAB HBA DAB ABC ∴∠+∠=∠+∠=⨯︒=︒,90H ∴∠=︒,同理90HEF F ∠=∠=︒,∴四边形EFGH 是矩形.23.定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD 的对角线AC 、BD 相交于点O .且AC 垂直平分BD . (1)请结合图形,写出筝形两种不同类型的性质: 性质1: 对角线互相垂直 ;性质2: . (2)若//AB CD ,求证:四边形ABCD 为菱形.【解答】(1)由筝形的定义得:对角线互相垂直,即AC BD⊥;是轴对称图形,对称轴为AC;故答案为:对角线互相垂直,是轴对称图形;(2)证明:ACQ垂直平分BD,AB AD∴=,BO DO=,同理:BC DC=,//AB CDQ,ABO ODC∴∠=∠,在ABO∆和CDO∆中,ABO ODCBO DOAOB DOC∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOB CDO ASA∴∆≅∆,AB CD∴=,AB CD BC AD∴===,∴四边形ABCD为菱形.24.已知如图平行四边形ABCD中,EF垂直平分对角线BD,交点为O,求证:四边形BFDE 是菱形.【解答】证明:Q在平行四边形ABCD中,O为对角线BD的中点,BO DO∴=,EDB FBO∠=∠,在DOE∆和BOF∆中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴∆≅∆; OE OF ∴=,又OB OD =Q ,∴四边形EBFD 是平行四边形,EF BD ⊥Q ,∴四边形BFDE 为菱形.25.如图,ABC ∆中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF . (1)求证:D 是BC 的中点.(2)当ABC ∆满足什么条件时,四边形AFBD 是正方形,并说明理由.【解答】(1)证明://AF BC Q , AFE DCE ∴∠=∠, Q 点E 为AD 的中点,AE DE ∴=,在AEF ∆和DEC ∆中,AFE DCEAEF DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEF DEC AAS ∴∆≅∆, AF CD ∴=,AF BD =Q ,CD BD ∴=,D ∴是BC 的中点;(2)若ABC ∆是等腰直角三角形时,四边形AFBD 是正方形,理由如下:AEF DEC ∆≅∆Q , AF CD ∴=,AF BD =Q ,CD BD ∴=;//AF BD Q ,AF BD =,∴四边形AFBD 是平行四边形,AB AC =Q ,BD CD =, 90ADB ∴∠=︒,AD BD =,∴平行四边形AFBD 是正方形.26.如图,在ABCD Y 中,以点A 为圆心AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长度为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)若60C ∠=︒,43AE =,求菱形ABEF 的面积.【解答】(1)EAB EAF ∠=∠Q , //AD BC Q ,EAF AEB EAB ∴∠=∠=∠, BE AB AF ∴==.//AF BE Q ,∴四边形ABEF 是平行四边形,AB BE =Q ,∴四边形ABEF 是菱形;(2)如图,连结BF ,交AE 于G . Q 四边形ABCD 是平行四边形,60BAD C ∴∠=∠=︒, Q 四边形ABEF 菱形,BF AE ∴⊥,23AG EG ==,30BAG FAG ∠=∠=︒,32BG FG AG ∴===, 4BF ∴=,∴菱形ABEF 的面积114348322AE BF =••=⨯⨯=. 27.已知:正方形ABCD ,45EAF ∠=︒.(1)如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF BE DF =+; 童威同学是这样思考的,请你和他一起完成如下解答:证明:将ADF ∆绕点A 顺时针旋转90︒,得ABG ∆,所以ADF ABG ∆≅∆.(2)如图2,点M 、N 分别在边AB 、CD 上,且BN DM =.当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论. (3)如图3,当点E 、F 分别在对角线BD 、边CD 上.若2FC =,则BE 的长为2 .【解答】(1)证明:将ADF ∆绕点A 顺时针旋转90︒,得ABG ∆, ADF ABG ∴∆≅∆AF AG ∴=,DF BG =,DAF BAG ∠=∠ Q 正方形ABCD90D BAD ABE ∴∠=∠=∠=︒,AB AD =90ABG D ∴∠=∠=︒,即G 、B 、C 在同一直线上 45EAF ∠=︒Q904545DAF BAE ∴∠+∠=︒-︒=︒45EAG BAG BAE DAF BAE ∴∠=∠+∠=∠+∠=︒即EAG EAF ∠=∠ 在EAG ∆与EAF ∆中,EA EA EAG EAF AG AF =⎧⎪∠=∠⎨⎪=⎩()EAG EAF SAS ∴∆≅∆ EG EF ∴=BE DF BE BG EG +=+=QEF BE DF ∴=+(2)222EF BE DF =+,证明如下:将ADF ∆绕点A 顺时针旋转90︒,得ABH ∆,(如图2)ADF ABH ∴∆≅∆AF AH ∴=,DF BH =,DAF BAH ∠=∠,ADF ABH ∠=∠45EAF ∠=︒Q904545DAF BAE ∴∠+∠=︒-︒=︒45EAH BAH BAE DAF BAE ∴∠=∠+∠=∠+∠=︒即EAH EAF ∠=∠ 在EAH ∆与EAF ∆中, EA EA EAH EAF AH AF =⎧⎪∠=∠⎨⎪=⎩()EAH EAF SAS ∴∆≅∆EH EF ∴=BN DM =Q ,//BN DM∴四边形BMDN 是平行四边形ABE MDN ∴∠=∠90EBH ABH ABE ADF MDN ADM ∴∠=∠+∠=∠+∠=∠=︒222EH BE BH ∴=+ 222EF BE DF ∴=+(3)作ADF ∆的外接圆⊙ O ,连接EF 、EC ,过点E 分别作EM CD ⊥于M ,EN BC ⊥于N (如图3) 90ADF ∠=︒QAF ∴为⊙O 直径BD Q 为正方形ABCD 对角线45EDF EAF ∴∠=∠=︒∴点E 在⊙ O 上90AEF ∴∠=︒AEF ∴∆为等腰直角三角形 AE EF ∴=在ABE ∆与CBE ∆中 AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩()ABE CBE SAS ∴∆≅∆ AE CE ∴= CE EF ∴=EM CF ⊥Q ,2CF = 112CM CF ∴==EN BC ⊥Q ,90NCM ∠=︒∴四边形CMEN 是矩形1EN CM ∴== 45EBN ∠=︒Q 22BE EN ∴==。
人教版五年级2019-2020学年度第二学期期期末数学试题及答案
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2019-2020学年度第二学期期末检测试卷五年级 数学(满分:100分 时间:60分钟)一、填空。
(第7、9题各3分,其余每空2分,共22分)1.一个带分数的分数单位是,它再添上7个这样的分数单位是最小的质数,这个带分数是( )。
2.一个两位数,十位上的数既是偶数又是质数,个位上的数既是奇数又是合数,这个数是( )。
3.如图是用8个完全相同的正方体摆成的,右边三个图形分别是从正面、上面和左面看到的。
从正面看从上面看从左面看如果在上面的几何体中再增加一个同样的正方体,并且保证从正面、上面和左面看到的图形不变,正确的摆法是( )。
(填序号)①②③④4.一个三位数是4和7的公倍数,这个数最小是( )。
5.如图,图形A 绕点0顺时针旋转( )度得到图形B ;图形D 绕点0( )时针旋转90度得到图形C 。
6.若分数是假分数,x最小是( )。
7.五(1)班有48人,五(2)班有54人。
如果把两个班的学生分别分成若干小组,要使两个班的每个小组的人数相同,每组最多有( )人。
8.一个正方体的棱长之和是120cm ,相交于一个顶点的三条棱的长度之和是( )。
9.一个长方体纸盒,从里面量,长6dm 、宽4dm 、高5dm ,若把棱长为2dm 的正方体积木装进盒内(不外露),最多能装( )块。
二、判断。
(对的在括号里画“√”,错的画“×”)(每题1分,共5分)1.n 是一个自然数,2n +1一定是奇数。
( )2.因为6÷0.2=30,所以6是0.2的倍数,0.2是6的因数。
( )9175-x密学校 班级 姓名 学号密 封 线 内 不 得 答 题3.用2个棱长为1cm 的正方体拼成一个长方体,长方体的表面积是10cm ²。
( )4.由6个面围成的立体图形不是长方体就是正方体。
( )5.一项工作,甲用了0.35小时完成,乙用了小时完成,甲做得慢些。
人教版二年级2019-2020学年度第二学期期期末数学试题及答案
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2019-2020学年度第二学期期末检测试卷二年级 数学(满分:100分 时间:60分钟)题号一 二 三 四 五 六 总分 得分一、填一填。
(第1题4分,第2、8题3分,其余每空1分,共30分)1.24个苹果平均分给5个小朋友,每人分( )个,还剩( )个。
=(个)……(个)2.填口诀,写算式。
六八三十五 3.一个数,除以7有余数,余数最大是( )。
4.看图写数、读数。
(算盘最右边的一档作为个位)写作:( ) 写作:( ) 写作:( ) 读作:( ) 读作:( ) 读作:( )5.希望小学一年级有196人,二年级有205人,两个年级大约有( )人。
6.10个一千是( );3个千、5个十合起来是( ),这个数的近似数是( )。
7.写出3个不同的除法算式。
÷=8÷=8÷=88.联系生活实际,在括号里填上合适的质量单位。
一箱牛奶重6( ),一条鱼重2000( ),一包瓜子重450( ),一盒牙膏重240( )。
9.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。
A 应该是( ),B 应该是( )。
10.用、、、四张卡片摆出的四位数中,最小的数是( ),最接近9000的数是( ),最接近7000的数是( )。
二、选择。
(把正确答案的序号填在括号里)(每题2分,共10分)1.27里面最多有( )个5。
①2 ②5密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题③62.一个四位数,中间有一个零或两个零时,( )。
①只读一个零 ②读两个零③一个零也不读 3.531<5129,里应填( )①0 ②1 ③24.丁丁、丽丽和园园三个小朋友分别出生在上海、北京和山东。
丁丁说:我从未到过上海。
丽丽说:在上海出生的不是我,我也不是出生在山东。
园园说:我不告诉你。
园园出生在( )。
部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案
最新部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案-CAL-FENGHAI.-(YICAI)-Company One12最新部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案(满分:100分 时间: 90分钟)题号 一 二 三 四 五 六 七 八 九 十 总分 得分一、选择题。
(共12分)1.下面加点字的读音全都正确的一项是( )。
A.提供.(ɡòn ɡ)—供.认(ɡōn ɡ) 晃.眼(hu ǎn ɡ)—摇头晃.脑(hu àn ɡ)B.停泊.(b ó)—血泊.(p ō) 监.牢(ji ān )—国子监.(ji àn )C.丈夫.(f ū)—逝者如斯夫.(f ū) 喧哗.(hu á)—哗.哗流水(hu á)2.下面加点的字书写全都正确的一项是( )。
A.师傅. 副.业 负.担 附.庸 B.俊.马 竣.工 严骏. 峻.杰 C.树稍. 船艄. 捎.话 梢.胜一筹3.下面句子中加点的字哪一项解释有误( ) A.其人弗能应.也。
应:应答。
B.果.有杨梅。
果:果然。
C.未闻.孔雀是夫子家禽。
闻:听说。
4.下列句子中没有语病的一项是( )。
A.此次家长会上,学校领导认真总结并听取了家委会成员的建议B.今天全班都来参加毕业典礼彩排,只有龙一鸣一人请假C.中国为了实现半导体国产化这一夙愿,展现出毫不松懈的态度5.下面三幅书法作品中,哪一幅是怀素草书《千字文》(局部)( )A. B. C.6.对这幅漫画的寓意理解正确的一项是( )。
A.有些医生自己生病了,却不愿意进行急救B.讽刺少数医生良心出了问题却不承认,不改正C.有些人总喜欢把没有生病的人送进抢救室二、用修改符号修改下面的一段话。
(共2分)马老师多么和蔼可亲呀!上课时,他教我们耐心地写字的方法;下课时,他常常和我们在一起。
昨天下午,他给淘淘补了一天的课,他非常感动马老师。
金考卷:苏科版江苏省2019-2020学年七年级数学上学期期末原创卷二(含解析版答案)
……………………:______江苏省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:苏科版七上全册。
第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.结果为正数的式子是 A .6(1)- B .25-C .|3|--D .31()3-2.下列各组中的两个单项式,属于同类项的一组是 A .23a b 与23ab B .2x 与2xC .23与2aD .4与12-3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C4.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是A .文B .明C .诚D .信5.如图所示,AC ⊥BC 于C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有A .1条B .2条C .3条D .5条6.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人 A .赚16元 B .赔16元C .不赚不赔D .无法确定第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分) 7.比较大小,4-__________3(用“>”“<”或“=”填空).8.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是__________℃. 9.多项式2526235x y x y --+的一次项系数、常数项分别是__________.10.已知2(3)30m m xm --+-=是关于x 的一元一次方程,则m =__________.11.如果21a -与()22b +互为相反数,那么ab 的值为__________. 12.已知3x =是方程()427k x k x +--=的解,则k 的值是__________.13.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =56°23′,则∠BOC 的度数为__________.……○………………内……………… 此……○………………外………………14.如图,长方形纸片的长为6cm ,宽为4cm ,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________.15.小颖按如图所示的程序输入一个正整数x ,最后输出的结果为656,请写出符合条件的所有正整数x 的值为__________.16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有__________个〇.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:(1)212(3(24)2-÷---; (2)﹣24+16÷(﹣2)3×|﹣3﹣1|. 18.(本小题满分7分)解方程:(1)98512x x -+-+=; (2)11(2)(3)32x x +=+. 19.(本小题满分7分)先化简,再求值:()22234232322⎛⎫--++- ⎪⎝⎭xy x xy y x xy ,其中x =3,y =–1. 20.(本小题满分8分)如图,已知线段a ,b ,用尺规作一条线段c ,使c =2b –a .21.(本小题满分8分)如图,已知∠AOB =90°,∠EOF =60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠COB 和∠AOC 的度数.22.(本小题满分7分)某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的路程为10千米,求A 、B 两地之间的路程.23.(本小题满分8分)有8袋大米,以每袋25kg 标准,超过的千克数记作正数,不足的千克数记作负数,称后记录如下:1.2+,0.1-, 1.0+,0.6-,0.5-,0.3+,0.4-,0.2+.(1)这8袋大米中,最轻和最重的这两袋分别是多少千克? (2)这8袋大米一共多少千克?24.(本小题满分82(10y -=).(1)求x y ,的值;(2)求()()()()()()1111112220192019xy x y x y x y +++⋯+++++++的值.25.(本小题满分8分)老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:()()421132x x -=-+⋯①,84136x x -=--⋯②, 83164x x +=-+⋯③, 111x =-⋯④,111x =-⋯⑤, 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在__________(填编号);然后,你自己细心地接下面的方程: (1)()()335221x x +=-;(2)2157146y y ---=.26.(本小题满分9分)网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一. 收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网); 同时,每一种收费方式均对上网时间加收0.02元/分的通信费. 某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x 小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x 的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.27.(本小题满分11分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和(10)a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若60a =,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析1.【答案】A【解析】A 、6(1)-=1,故A 正确;B 、25-=–25,–52表示5的2次幂的相反数,为负数,故B 错误;C 、|3|--=–3,故错误;D 、31(3-=–127,故错误.故选A . 2.【答案】D【解析】A .23a b 与23ab ,字母相同,但各字母次数不同,故错误; B .2x 与2x,字母相同,但各字母次数不同,故错误; C .23与2a ,一个为常数项,一个的次数是2,故错误; D .4与12-,均为常数项,故正确;所以答案为:D 3.【答案】C【解析】由A 表示–2,B 表示–1,C 表示0.75,D 表示2. 根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C . 4.【答案】A【解析】这是一个正方体的平面展开图,共有六个面,其中面“文"与“善"相对,面“明"与面“信"相对,“诚”与面“友"相对.故选A . 5.【答案】D【解析】表示点C 到直线AB 的距离的线段为CD ,表示点B 到直线AC 的距离的线段为BC ,表示点A 到直线BC 的距离的线段为AC ,表示点A 到直线DC 的距离的线段为AD ,表示点B 到直线DC 的距离的线段为BD ,共五条.故选D . 6.【答案】B【解析】设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =;设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元, 所以卖这两件衣服总共赔了4024=16-(元). 故选B . 7.【答案】<【解析】4 3.-<故答案为:.< 8.【答案】–1【解析】根据题意得:–5+4=–1(℃),∴调高4℃后的温度是–1℃.故答案为:–1. 9.【答案】3-,5【解析】多项式2526235x y x y --+的一次项的系数是–3,常数项是5.故答案为:–3,5. 10.【答案】–3【解析】根据一元一次方程满足的条件可得:21m -=且m –3≠0,解得:m =–3. 11.【答案】–1【解析】由题意可得:221(2)0a b -++=,∴210,20a b -=+=,解得1,22a b ==-, ∴1(2)12ab =⨯-=-.故答案为:–1. 12.【答案】2【解析】把x =3代入方程得:7k ﹣2k ﹣3=7,解得k =2.故答案为:2. 13.【答案】146°23′【解析】∵EO ⊥AB 于点O ,∴∠EOA =90°,又∵∠EOD =56°23′,∴∠COB =∠AOD =∠EOD +∠EOA =90°+56°23′=146°23′.故答案为:146°23′.14.【答案】16【解析】设剪去的长方形的长为a ,宽为b ,a +b =6, 则左下角长方形的长为a ,宽为4–b ,周长为8+2a –2b , 右上角长方形的长为b ,宽为4–a ,周长为8+2b –2a , 所以阴影部分周长和为:8+2a –2b +8+2b –2a =16, 故答案为:16. 15.【答案】5、26、131【解析】由题意得:运行一次程序5x +1=656,解得x =131;运行二次程序5x +1=131,解得x =26;运行三次程序5x +1=26,解得x =5;运行四次程序5x +1=5,解得x =0.8(不符合,即这次没有运行), ∴符合条件的所有正整数x 的值为131、26、5. 故答案为:131、26、5. 16.【答案】6061【解析】观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…, 第n 个图形共有:1+3n ,∴第2020个图形共有1+3×2020=6061,故答案为:6061. 17.【解析】(1)原式54(2)2=-÷-- 2425=-⨯+825=-+25=;(3分) (2)原式=–16+16÷(–8)×4 =–16+(–2)×4 =–16–8 =–24.(7分)18.【解析】(1)去分母得:–10x +2=–9x +8,移项合并得:–x =6, 解得x =–6;(3分) (2)去分母得:2x +4=3x +9, 解得x =–5.(7分)19.【解析】原式=4xy –3x 2+6xy –4y 2+3x 2–6xy =4xy –4y 2.(4分)当x =3,y =–1时,原式=4×3×(–1)–4×(﹣1)2 =–12–4 =–16.(7分)20.【解析】如图所示,线段AD 即为所求.……○………………○…………(8分)21.【解析】90AOB ∠=,OE 平分AOB ∠,45BOE ∴∠=,又60EOF ∠=,604515FOB ∴∠=-=,(4分)OF 平分BOC ∠,21530COB ∴∠=⨯=,3090120AOC BOC AOB ∴∠=∠+∠=+=.(8分)22.【解析】设A 、B 两码头之间的航程为x 千米,则B 、C 间的航程为(x –10)千米,由题意得,1078282x x -+=+-,(4分) 解得x =32.5.答:A 、B 两地之间的路程为32.5千米.(7分)23.【解析】(1)这8袋大米中,最轻和最重的这两袋分别是24.4千克,26.2千克;(4分)(2)258( 1.2)(0.1)( 1.0)(0.6)(0.5)(0.3)(0.4)(0.2)⨯+++-+++-+-+++-+201.1=(千克). 答:这8袋大米一共201.1千克.(8分)24.【解析】(1)根据题意得2010x y -=-=,,解得21x y ==,;(4分) (2)原式111121324320212020=+++⋯+⨯⨯⨯⨯ 111111112233420202021=-+-+-+⋯+-112021=-20202021=.(8分) 25.【解析】小明错在①;故答案为:①;(2分)(1)去括号得:91542x x +=-, 移项合并得:517x =-, 解得 3.4x =-;(5分)(2)去分母得:()()32125712y y ---=, 去括号得:63101412y y --+=, 移项合并得:41y -=,解得0.25y =-.(8分)26.【解析】(1)该用户一周内平均每天上网的时间:354033503474048++++++=40(分钟).答:该用户一周内平均每天上网的时间是40分钟;(3分)(2)采用收费方式一(计时制)的费用为:0.05×60x +0.02×60x =4.2x (元), 采用收费方式二(包月制)的费用为:50+0.02×60x =(50+1.2x )(元);(6分) (3)40分钟=23h . 若一个月内上网的时间为30x =20小时,则计时制应付的费用为4.2×20=84(元),包月制应付的费用为50+1.2×20=74(元). 由84>74,所以包月制合算.(9分)27.【解析】(1)设每个足球的定价是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x ,解得x =100,x +50=150.答:每套队服150元,每个足球100元;(4分) (2)到甲商场购买所花的费用为:150×100+100(a ﹣10010)=(100a +14000)元, 到乙商场购买所花的费用为:150×100+0.8×100•a =(80a +15000)元;(8分) (3)当60a =时,到甲商场购买所花的费用为:100×60+14000=20000(元), 到乙商场购买所花的费用为:80×60+15000=19800(元), 所以到乙商场购买合算.(11分)。
江苏省连云港市2019_2020学年高二数学上学期期末考试试题含解析
11.已知p,q都是r的充分条件,s是r的必要条件,q是s的必要条件,则( )
A。p是q的既不充分也不必要条件B。p是s的充分条件
C。r是q的必要不充分条件D.s是q的充要条件
【答案】BD
【解析】
【分析】
逐项列出每个条件,然后根据充分条件和必要条件的概念判断即可。
联立 和 消去 得 ,化简得
所以 , .故 .
故答案为:(1) ; (2)
【点睛】本题考查椭圆的基本概念还有直线和圆锥曲线的相交弦,属于中档题。
16.已知数列 的前n项和为 , , ( ),则 =_______.
【答案】2020
【解析】
【分析】
可以通过给出的递推公式做差来求出此数列相邻两项和,最后凑出前n项和的形式,
根据椭圆定义和向量的数量积运算,逐一推导,将每个选项验证一下.
【详解】椭圆长轴长为 ,根据椭圆定义 ,故选A; 设P是椭圆C的任意一点,则 ,所以 ,B错误;
,而 ,所以 ,C正确; ,又根据椭圆性质有 ,所以 ,D正确。故选:ACD.
【点睛】本题考查椭圆定义和向量的数量积运算,是一道不错的综合题。
【答案】112
【解析】
【分析】
由“毎天走的路程为前一天的一半"可知,这个人每天走的路程满足等比数列的特点,且 ,公比 ,由此可解出 ,根据 得出 。
【详解】设第 天走了 步,又因为毎天走的路程为前一天的一半,所以 ,根据题意 ,故 ,解得 ,所以 。
故答案为:112
【点睛】此题考查了等比数列的应用,根据实际问题建立数学模型,然后再用等比数列求和公式求解,属于中档题。
【解析】
【分析】
江苏省天一中学2020-2021学年高二下学期期末学情检测高二数学试题
天一中学2020~2021学年度第二学期期末学情检测高二年级数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4. 本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.设集合,,则A∩B=A. 0,1,B.C. 0,D.2.已知函数关于直线对称,且在上单调递增,,,,则a,b,c的大小关系是A. B. C. D.3.若且,则与的夹角是A. B. C. D.4.已知函数,在上有且仅有2个实根,则下面4个结论:在区间上有最小值点;在区间上有最大值点;的取值范围是;在区间上单调递减所有正确结论的编号为A. B. C. D.5.中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a升,b升,c升,1斗为10升,则下列判断正确的是A. a,b,c成公比为2的等比数列,且B. a,b,c成公比为2的等比数列,且C. a,b,c成公比为的等比数列,且D. a,b,c成公比为的等比数列,且6.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为个,则随着的增加,下列说法正确的是A. 增加,增加B. 增加,减小C. 减小,增加D. 减小,减小7.若直线l是曲线的切线,且l又与曲线相切,则a的取值范围是A. B. C. D.8.已知正方体的棱长为2,M,N分别是棱BC,的中点,动点P在正方形包括边界内运动,若面AMN,则线段的长度范围是A. B.C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,,,,是以OD为直径的圆上一段圆弧,是以BC为直径的圆上一段圆弧,是以OA为直径的圆上一段圆弧,三段弧构成曲线则下面说法正确的是A. 曲线与x轴围成的面积等于B. 与的公切线方程为:C. 所在圆与所在圆的交点弦方程为:D. 用直线截所在的圆,所得的弦长为10.在平面直角坐标系xOy中,已知双曲线C:的离心率为,且双曲线C的左焦点在直线上,A,B分别是双曲线C的左,右顶点,点P是双曲线C的右支上位于第一象限的动点,记PA,PB的斜率分别为,,则下列说法正确的是A. 双曲线C的渐近线方程为B. 双曲线C的方程为C. 为定值D. 存在点P,使得11.如图,在某城市中,M、N两地之间有整齐的方格形道路网,其中、、、是道路网中位于一条对角线上的4个交汇处今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N、M处为止则下列说法正确的是A. 甲从M到达N处的方法有120种B. 甲从M必须经过到达N处的方法有9种C. 甲、乙两人在处相遇的概率为D. 甲、乙两人相遇的概率为12.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复N次这样的操作,记甲口袋中黑球个数为,恰有2个黑球的概率为,恰有1个黑球的概率为,则下列结论正确的是A. ,B. 数列是等比数列C. 的数学期望ND. 数列的通项公式为N三、填空题:本题共4小题,每小题5分,共20分.13.设复数z满足条件,那么的最大值是▲ .14.已知F为抛物线的焦点,过F作斜率为的直线和抛物线交于A,B两点,延长AM,BM交抛物线于C,D两点,直线CD的斜率为若,则▲ .15.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关“作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的,若有的把握认为中学生追星与性别有关,则男生至少有▲ 人.参考数据及公式如下:,.16.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面组成的多面体。
2019-2020学年江苏省东海县高二下学期期中考试数学试题 Word版
江苏省东海县2019-2020学年度第二学期期中考试 高二数学试题用时:120分钟满分:150分一、单项选择题:共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上。1.已知i 为虚数单位,复数z=4-5i,则z 的虚部是A.5iB.5C.-5iD.-52.已知复数z 满足z(2-i)=5i,其中i 为虚数单位,则z=A.1+2iB.-1+2i 510.33C i + 510.33D i -+ 3.如图,点1122(,()),(,())A x f x B x f x 在函数f(x)的图象上,且21,()x x f x '<为f(x)的导函数,则1()f x '与2()f x '的大小关系是12.()()A f x f x ''> 12.()()B f x f x ''< 12.()()C f x f x ''= D.不能确定4.已知复数|z|=1,i 为虚数单位,则|z-3+4i|的最小值是A.2B.3C.4D.5 5.若直线y=x+m 是曲线x y e =的一条切线,则实数m 的值是A.-1B.0C.1D.26.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有A.495种B.288种C.252种D.126种7.《九章算术》中,将四个面都为直角三角形的四面体称之为鱉臑,如图,在鱉臑P-ABC 中,PA ⊥平面ABC,AB ⊥BC,且PA=AB=BC=1,则二面角A-PC-B 的大小是A.30°B.45°C.60°D.90°8.函数f(x)的定义域为R ,f(-1)=2e,对任意x ∈R ,()()0,f x f x '+>则不等式()20xe f x x +>的解集为A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1) 二、多项选择题:共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分,请将正确选项前的字母代号填涂在答题卡相应位置上.9.下列各式中,等于n!的是1.n n A A - 1.n n B A + 11.n n C nA -- .!m n D m C10.下列关于复数的说法,其中正确的是A.复数z=a+bi(a,b ∈R )是实数的充要条件是b=0B.复数z=a+bi(a,b ∈R )是纯虚数的充要条件是b ≠0C.若12,z z 互为共轭复数,则12z z 是实数D.若12,z z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称11.已知()f x '是定义域为R 的函数f(x)的导函数,上图是函数'()y xf x =的图象,则下列关于函数f(x)性质说法正确的是A.单调递增区间是(-∞,-3),(0,3)B.单调递减区间是(-∞,-3),(3,+∞)C.f(-3)是极小值D.f(3)是极小值12.已知函数2()ln ,f x x x=+则下列判断正确的是 A.存在x ∈(0,+∞),使得f(x)<0B.函数f(x)的递减区间是(0,2)C.任意x ∈(0,+∞),都有f(x)>0D.若f(m)=f(n),则m+n ≥4 三、填空题:共4小题,每小题5分,共20分。请把答案直接填写在答题卡相应位置上.13.计算2222223456C C C C C ++++=___.14.已知函数1()cos ,[0,]22f x x x x π=+∈,则f(x)的单调递增区间为__. 15.在杨辉三角中,每一个数值是它上面两个数值之和,这个三角形开头几行如右图,则第9行从左到右的第3个数是___;若第n 行从左到右第12个数与第13个数的比值为3,4则n=___.(第一空2分,第二空3分)16.若函数2()2(1)2ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是____.四、解答题:共6小题,共70分。请在答题卡指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤。17.(本小题满分10分)2名女生、4名男生排成一排,求:(1)2名女生不相邻的不同排法共有多少种?(2)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?18.(本小题满分12分)已知函数32()()f x x ax x a =--∈R .(1)当a=1时,求f(x)在区间(0,+∞)上的最小值;(2)若f(x)在区间[1,2]上是单调递减函数,求实数a 的取值范围。19.(本小题满分12分) 9290129(21)x a a x a x a x -=++++L ,求:1239(1)a a a a ++++L1239(2)239a a a a ++++L20.(本小题满分12分)已知函数()(1)(0)xf x kx k e k =--≠(1)求函数f(x)的极值;(2)求函数f(x)在区间[0,1]上的最大值g(k)。21.(本小题满分12分)如图,在底面边长为6m 、高为3m 的正六棱柱111111ABCDEF A B C D E F -展厅内,长为6m,宽为1m 的矩形油画MNOP 挂在厅内正前方中间。(1)求证:平面MNOP ⊥平面11BFF B ;(2)当游客Q 在AF 上看油画的纵向视角(即∠PQM)最大时,求MQ 与油画平面所成的角.22.(本小题满分12分)已知函数2()sin .x f x x e-=-求证: (1)f(x)在区间(0,)2π存在唯一极大值点;(2)f(x)在(0,+∞)上有且仅有2个零点.。
江苏省宿迁市2024届高三下学期调研测试数学试题
【详解】由题意得 A = {0,1, 2,3, 4} , B = {x x 被 3 除余数为 2 的整数} ,
\ A I B = {2} ,
故选:C. 2.D
【分析】根据复数的除法运算求得 z ,再求 z 在复平面内对应的点.
【详解】
z
=
5 3 + 4i
=
3 - 4i 5
,则对应点为
æ çè
3 5
,
所以原不等式的解集是 (-1,3) .
故选:A
解法二:特值当 x = 0 时, f (0) < f (3) ,排除 B,D,当 x = 1 时, f (1) < f (5) ,排除 C,
答案第21 页,共22 页
对 A:当 x Î(-1,3) 时, x2 < 2x + 3 ,因为函数 f (x) 是 R 上的增函数,所以
8.人工智能领域让贝叶斯公式:
P(
A
B)
=
P
(
B A) P
P(B)
(
A)
站在了世界中心位置,AI
换
脸是一项深度伪造技术,某视频网站利用该技术掺入了一些“AI”视频,“AI”视频占
有率为 0.001.某团队决定用 AI 对抗 AI,研究了深度鉴伪技术来甄别视频的真假.该
鉴伪技术的准确率是 0.98,即在该视频是伪造的情况下,它有 98% 的可能鉴定为
A.变量 X 的方差为 1,均值为 0
B. P ( X £ x) = 1- 2 f ( x)
C.函数 f ( x) 在 (0, +¥ ) 上是单调增函数 D. f (-x) = 1- f ( x)
10.在平面直角坐标系 xOy 中,已知抛物线 C : y2 = 4x,A, B 为抛物线 C 上两点下列说 法正确的是( )
2021-2022学年江苏省宿迁市宿城区实验学校苏教版二年级下测期末调研测试数学试卷
…○…………______…………内……○……绝密★启用前 2021-2022学年江苏省宿迁市宿城区实验学校苏教版二年级下测期末调研测试数学试卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题 1.三角尺上的直角和数学书封面上的直角相比,( )。
A .一样大 B .数学书封面上的直角大 C .三角尺上的直角大 2.分针走一大格,经过的时间是( )。
A .1分钟 B .5分钟 C .1小时 3.9470中4表示( )。
A .4个千 B .4个百 C .4个十 4.要在墙上钉一枚钉子挂书包,( )长度的钉子比较合适. A .4毫米 B .4厘米 C .4分米 5.4×□<30,“□”最大能填( )。
A .7 B .8 C .9 6.下面各数中,一个零也不读的是( )。
A .4006 B .1400 C .9090 7.公园在学校的西北面,学校在公园的( )面。
A .西南 B .东北 C .东南 8.有20个气球,平均分给6个小朋友,下面竖式中的18表示( )。
………外…内…………○……A .一共18个气球B .还剩18个气球C .已经分掉18个气球 9.( )时整,时针和分针在同一条直线上。
A .3时 B .6时 C .9时 10.10枚1元的硬币大约厚( )。
A .2毫米 B .2厘米 C .2分米 第II 卷(非选择题) 请点击修改第II 卷的文字说明二、填空题 11.3850读作( ),是由( )个千、( )个百和( )个十组成的。
12.33里面最多有( )个5;10个一千是( )。
13.△÷□=6……5,□最小是( ),这时△是( )。
14.用2、3、8、0组成一个四位数,最大是( ),最小是( ),最接近3000的是( )。
15.在( )里填上合适的单位。
2019-2020学年江苏省沭阳县高二下学期期中调研测试英语试题 含听力
2019~2020学年度第二学期期中调研测试高二英语试题(考试时间:120分钟总分:150分)注意事项:1、本试卷共分两部分,第Ⅰ卷为选择题,第Ⅱ卷为非选择题。
2、所有试题的答案均填写在答题纸或答题卡上,答案写在试卷上的无效。
第Ⅰ卷(选择题)第一部分听力(共20题;每小题分,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man think of John?A. Foolish.B. Greedy.C. Jealous.2. How can the woman get to the supermarket?A. Walking two blocks and getting to it.B. Walking to the second crossing and turning right.C. Walking two blocks and turning left.3. What does the woman ask the man to do?A. Leave a message.B. Go to a party.C. Write an invitation.4. What does the woman advise the boy to do?A. Not to drink coffee.B. Not to eat much sugar.C. Put some sugar into the coffee.5. What does the man suggest?A. Taking Tim to see the doctor.B. Buying some ripe tomatoes.C. Buying some medicine for Tim.第二节(共15小题;每小题分,满分分)听下面5段对话或独白。
人教版六年级2019-2020学年度第二学期期期末数学试题及答案
密线学校班级姓名学号密封线内不得答题人教版2019-2020学年度第二学期期末检测试卷六年级数学(满分:100分时间:60分钟)题号一二三四五总分得分一、填空。
(每空1分,共23分)1.某市地铁2号线一期工程,全长十九点零五千米,横线上的数写作:()。
2号线一期工程的成本为5.93亿元/千米,保留整数约是()亿元/千米,工程总投资26845000000元,改写成用“亿”作单位的数是()亿元。
2.()既不是质数也不是合数;()既不是正数也不是负数。
3.如图,以0为起点,向右移动1个单位长度是1.A点表示的数是-3,如果要从0到A点,那么运动方式是向()移动()个单位长度。
4.比值是6的比有许多,请你任意写出两个,并把它们组成比例。
()∶()=()∶()5.请你写出一个两种量成反比例关系的例子:()一定,()和()成反比例关系。
6.一个底面直径是6厘米,高是5厘米的圆柱,沿着它的上下底的对应直径切开,表面积增加了()平方厘米。
7.农谚“逢冬数九”讲的是从冬至日起,每九天分为一段,依次称为一九、二九……九九,冬至那天是一九的第一天。
2019年12月22日是冬至,那么2020年的春节1月25日是()九的第()天。
8.用一根长24厘米的铁丝围成一个长方形,长与宽的比是3:1,围成的长方形的长是()厘米,宽是()厘米9.仔细观察图中的圆柱和圆锥,回答问题。
(1)下面是小青观察图中的圆柱和圆锥得出的2个结论。
①圆柱的体积是圆锥体积的3倍。
②如果把圆锥的底面半径扩大到原来的3倍,那么它的底面积扩大到原来的6倍。
上面两个结论中错误的是()(填序号)。
请把你选出的错误结论改写正确()(2)如果把图中的圆柱变成图中的圆锥,那么它的体积要()密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(填“增加”或“减少”)二、选择。
(把正确答案的字母填在括号里)(每题2分,共10分)1.下面选项( )表示阴影部分占整个圆面积的可能性最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省宿迁市2019-2020学年第二学期高二年级期末调研测试
数学试题
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{0,1,2,3},{|13}A B x x ==<<,则A ∩B =(▲ )
A. {1,2}
B. {0,1,2}
C. {2}
D. {2,3}
2. 若复数1a i z i
+=+(i 为虚数单位)为纯虚数,则实数a 的值为(▲ ) 1
A. 1
B. 0
C.
D. 12-
- 3.设x ∈R 则“x 2>9”是“3x >81”的(▲)条件.
A .充分不必要
B . 必要不充分
C . 充分必
D .既不充分也不必要
4.函数
2()log f x x =
-的定义域为(▲) A .(0,2)
B .(0,2]
C .(2,+∞)
D . [2,+∞)
5.若实数m , n 满足m >n ,则下列选项正确的是(▲ 3311.lg()0 B. ()() C. 0 D. ||||22m n
A m n m n m n ->>->>
6.夏日炎炎,雪糕成为很多人的解暑甜品,一个盒子里装有10个雪糕,其中草莓味2个,巧克力味3个,芒果味5个,假设三种口味的雪糕外观完全相同,现从中任意取3个,则恰好有一个是芒果味的概率为(▲)
5
111. B. C. D. 123122
A 7.某种产品的广告费支出与销售额之间有如下对应数据:
销售额y (万元)与广告费用x (万元)之间有线性相关关系,回归方程为ˆ7y
x m =+ (m 为常数),现在要使销售额达到7.8万元,估计广告费用约为(▲ )万元.
A . 0.75
B . 0.9
C . 1.5
D . 2.5 8.函数ln(2)()1
x f x x +=-的图象大致是(▲ )
二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.
9. 在100件产品中,有98件合格品, 2件不合格品,从这100件产品中任意抽出3件,则下列结论正确的有(▲ )
A .抽出的3件产品中恰好有1件是不合格品的抽法有122
98C C 种 B .抽出的3件产品中恰好有1件是不合格品的抽法有122
99C C 种 C .抽出的3件中至少有1件是不合格品的抽法有12212
98298C C C C +种 D .抽出的3件中至少有1件是不合格品的抽法有3310098C C -种
10.已知函数y =f (x )的导函数的图象
如图所示,下列结论中正确的是(▲ )
A . -1是函数f (x )的极小值点
B . -3是函数f (x )的极小值点
C .函数f (x )在区间(-3,1)上单调递增
D . 函数f (x )在x =0处切线的斜率小于
零
11.若函数f (x )在定义域D 内的某个区
间I 上是单调增函数,且()()f x F x x
=在区间I 上也是单调增函数,则称y =f (x )是I 上的“一致递增函数”.已知
()x
e f x x x
=+,若函数f (x )是区间I 上的“一致递增函数", 则区间I 可能是(▲ )
A. (,2)
B. (,0)
C. (0,)
D. (2,)-∞--∞+∞+∞
12.已知函数23,0()(3),0x x x f x f x x ⎧--<=⎨-≥⎩
,以下结论正确的是(▲) A . f (x )在区间[4,6]上是增函数
B . f (-2)+f (2020)=4
C .若函数y =f (x )-b 在(-∞,6)上有6个零点(1,2,3,4,5,6)i x i =,则6
19i i x ==∑
D .若方程f (x )=kx + 1恰有3个实根,则1(1,){1}3
k ∈--⋃ 三、填空题:本题共4小题,每小题5分,共20分.
13.已知随机变量2~(2,),(6)0.9X N P X σ≤=,那么P ((2)X ≤-)的值为________
14,已知 3.2 2.20.20.2,log 0.3,log 0.3a b c -===,则 a , b , c 三个数按照从小到大的顺序是________
15.现有5位学生站成一排照相,要求A 和B 两位学生均在学生C 的同侧,则不同的排法共有________种(用数字作答)
16.已知函数2212,03()12,03
3x ax x f x x x x ⎧+≥⎪⎪=⎨⎪--<⎪⎩的图象关于原点对称,则a =
________:若关于x 的不等式(2)(1)f bx f ->在区间[1,2]上恒成立,则实数b 的取值范围为________
四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
已知(2n x 展开式中前三项的二项式系数和为22 (1)求n 的值;
(2)求展开式中的常数项.
18. (本小题满分12分)
已知函数32()232f x x ax =--,其中a R ∈
(1)若a =1,求f (x )在[0,2]上的最大值和最小值;
(2)若x =2是函数f (x )的一个极值点,求实数a 的值.
19.(本小题满分12分)
某位同学参加3门课程的考试,假设他第一门课程取得优秀的概率为35
,第二、第三门课程取得优秀的概率分别为1212,()P P P P >,且不同课程是否取得优秀相互独立.记ζ为该生取得优秀的课程数,其分布列为
(1)求该同学至少有1门课程取得优秀的概率;
(2)求12,P P 的值;
(3)求该同学取得优秀课程数的数学期望E (ζ).
20. (本小题满分12分)
已知函数2(),(1,1)2
x b g x x ax +=
∈-+, 从下面三个条件中任选一个条件,求出a ,b 的值,并解答后面的问题. ① 已知函数3()f x b x a
=+-,满足f (2-x )+f (x +2)=0; ② 已知函数()(0,1)x f x a b a a =+>≠在[1,2]上的值域为[2,4]
③已知函数2()4f x x ax =-+,若f (x +1)在定义域[b -1,b +1]上为偶函数.
(1)证明g (x )在(-1,1)上的单调性;
(2)解不等式(1)(2)0g t g t -+<.
21. (本小题满分12分)
某医疗机构,为了研究某种病毒在人群中的传播特征,需要检测血液是否为阳性.若现有*()n n N ∈份血液样本,每份样本被取到的可能性相同,检测方式有以下两种:
方式一:逐份检测,需检测n 次;
方式二:混合检测,将其中*(,2)k k N k ∈≥份血液样本分别取样混合在一起检测,若检测结果为阴性,说明这k 份样本全为阴性,则只需检测1次;若检测结果为阳性,则需要对这k 份样本逐份检测,因此检测总次数为k +1次,假设每份样本被检测为阳性或阴性是相互独立的,且每份样本为阳性的概率是(01)p p <<.
(1)在某地区,通过随机检测发现该地区人群血液为阳性的概率约为0.8%.为了调查某单位该病毒感染情况,随机选取50人进行检测,有两个分组方案:
方案一:将50人分成10组,每组5人;
方案二:将50人分成5组,每组10人.
试分析哪种方案的检测总次数更少?
(取510110.9920.961,0.9920.923,0.9920.915)===
(2)现取其中k 份血液样本,若采用逐份检验方式,需要检测的总次数为1ξ;采用混合检测方式,需要检测的总次数为2ξ.若12()()E E ξξ=,试解决以下问题:
①确定p 关于k 的函数关系;
②当k 为何值时, p 取最大值并求出最大值.
22. (本小题满分12分)
已知函数()(1),()ln x f x x e g x x =-=,其中e 是自然对数的底数.
(1)求曲线y =f (x )在x =1处的切线方程;
(2)当x ≥1时,关于x 不等式()22ag x x ≤+恒成立,求整数a 的最大值;
(3)设函数()()()h x bf x g x =-,若函数h (x )恰好有2个零点,求实数b 的取值范围.(取ln 3.5 1.25,ln 4 1.40==)。