解析几何 第三版 课后答案(吕林根 许子道 著) 高等教育出版社

合集下载

数学与应用数学专业(师范类)

数学与应用数学专业(师范类)

数学与应用数学专业(师范类)培养方案学科门类: 理学专业代码: 070101一、培养目标本专业培养适应社会主义现代化建设需要、德智体全面发展、掌握数学科学的基本理论、基础知识与基本方法, 能够运用数学知识和使用计算机解决若干实际数学问题, 具备在科技、经济部门从事研究以及在高等和中等学校进行数学教学的教师、教学研究人员及其他教育工作者。

二、培养要求本专业学生主要学习数学和应用数学的基本理论和方法, 受到严格的数学思维训练, 掌握计算机的基本原理和运用手段, 并通过教育理论课程和教学实践环节, 形成良好的教师素养, 培养从事数学教学的基本能力和数学教育研究、数学科学研究、数学实际应用等基本能力。

毕业生应获得以下几方面的知识和能力:1.具有扎实的数学基础, 初步掌握数学科学的基本思想方法, 其中包括数学建模、数学计算、解决实际问题等基本能力。

2.有良好的使用计算机的能力, 能够进行简单的程序编写, 掌握数学软件和计算机多媒体技术, 能够对教学软件进行简单的二次开发。

3.具备良好的教师职业素养和从事数学教学的基本能力。

熟悉教育法规, 掌握并初步运用教育学、心理学基本理论以及数学教学理论。

4.了解近代数学的发展概貌及其在社会发展中的作用, 了解数学科学的若干最新发展, 数学教学领域的一些最新研究成果和教学方法, 了解相近专业的一般原理和知识;学习文理渗透的课程, 获得广泛的人文和科学修养。

5.较强的语言表达能力和班级管理能力。

6.掌握资料查询、文献检索及运用现代信息技术获得相关信息的基本方法, 并有一定的科研能力。

7.具有一定的体育基本知识, 掌握科学锻炼身体的基本技能, 达到国家规定的大学生体育锻炼合格标准, 具有健康的体魄。

8.具有良好的心理素质,具有坚强的意志力,具有很好的心理自我调节能力。

9.能够比较熟练地掌握一门外语,初步具有听、说、读、写、译的能力。

三、学制和学分1.学制: 四年。

2.学分:166。

解析几何 第三版 课后答案(吕林根 许子道 著) 高等教育出版社

解析几何 第三版 课后答案(吕林根 许子道 著) 高等教育出版社

c =λ a + μ b , 从而
亦即{0, 5, 6}=λ{1, 2, 3}+μ{2, -1, 0}
⎧λ + 2 μ = 0, ⎪ ⎨2λ − μ = 0, ⎪ 3λ = 6. ⎩ λ=2,μ=-1, 解得 所以 c =2 a - b . 3.证明: 四面体每一个顶点与对面重心所连的线段共点, 且这点到顶点的距离是它到对面重 心距离的三倍. 用四面体的顶点坐标把交点坐标表示出来. [证明]:设四面体 A1A2A3A4,Ai 对面重心为 Gi, 欲证 AiGi 交于一点(i=1, 2, 3, 4).
其中 a 能否用 b , c 线性表示?如能表示,写出线性表示关系式. [证明]:由于矢量 e1 , e2 , e3 不共面,即它们线性无关. 考虑表达式
λ a +μ b & e2 +2 e3 )+μ (4 e1 -6 e2 +2 e3 )+v (-3 e1 +12 e2 +11 e3 )= 0 , 或 (-λ+4μ-3v) e1 +(3λ-6μ+12v) e2 +(2λ+2μ+11v) e3 = 0 . 由于 e1 , e2 , e3 线性无关,故有
所以
OP - OA =λ ( OB - OP ),
(1+λ) OP = OA +λ OB ,
图 1-7
从而
OP =
OA + λOB . 1+ λ
2. 在△ABC 中,设 AB = e1 , AC = e2 ,AT 是角 A 的平 分线(它与 BC 交于 T 点) ,试将 AT 分解为 e1 , e2 的线性 组合. [解]:因为 且
[证明]:因为
图 1-5

解析几何参考答案

解析几何参考答案

解析几何参考答案解析几何参考答案解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和变换。

通过解析几何,我们可以更加深入地理解几何图形的特征和规律,进而解决各种几何问题。

在学习解析几何的过程中,参考答案是一个非常重要的辅助工具,它可以帮助我们检验和巩固所学的知识。

下面,我们就来解析几何参考答案,探讨一些常见的几何问题。

一、直线与圆的交点在解析几何中,直线与圆的交点是一个常见的问题。

要确定直线与圆的交点,我们可以利用直线和圆的方程进行求解。

以直线的方程为Ax+By+C=0,圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

将直线的方程代入圆的方程,可以得到一个关于x和y的二次方程。

通过求解这个二次方程,我们可以得到直线与圆的交点坐标。

二、平面与直线的交点平面与直线的交点也是解析几何中的一个重要问题。

要确定平面与直线的交点,我们可以利用平面和直线的方程进行求解。

以平面的方程为Ax+By+Cz+D=0,直线的方程为x=x₀+mt,y=y₀+nt,z=z₀+pt,其中(x₀,y₀,z₀)为直线上的一点,m,n,p为方向比例。

将直线的方程代入平面的方程,可以得到一个关于t的一元线性方程。

通过求解这个方程,我们可以得到平面与直线的交点坐标。

三、直线的斜率和截距直线的斜率和截距是解析几何中的基本概念。

直线的斜率表示了直线的倾斜程度,截距表示了直线与坐标轴的交点位置。

要确定直线的斜率和截距,我们可以利用直线的方程进行求解。

以直线的方程为y=kx+b,其中k为斜率,b为截距。

通过观察直线方程的形式,我们可以直接读出直线的斜率和截距。

四、距离和中点公式距离和中点公式是解析几何中的两个重要公式,它们可以帮助我们计算几何图形的距离和中点坐标。

距离公式可以表示为d=√((x₂-x₁)²+(y₂-y₁)²),其中(x₁,y₁)和(x₂,y₂)为两点的坐标。

怎样理解OB_1_b_cos_的意义

怎样理解OB_1_b_cos_的意义

18
数学通讯 (2008 年第 19 期) ·同步参考·
x = AB , AB = ABe 这里 AB 不表示线段而是一个数 , 它的绝对值是 AB 的长 , AB 与 e 方向相同时 , AB 是正数 ; AB 与 e 方向相反时 , AB 是负数.
在代数量定义的基础上 , 把向量的射影叙述 为:
定存在一定数 x ,使
AB = xe x 叫做AB在 e 方向上的代数量 ,用 AB 表示 , 这时 有
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
什么 ? 许多教师 、参考书籍都采取回避的方式来
处理此问题 , 但回避终究不是办法 , 问题总得解
决 ,那么如何解决呢 ? 请看下面的探讨.
2 问题的探讨
(1) 吕林根 、许子道等编 高等学校教材《解 析几何》(第三版) ( 高等教育出版社) 1. 6 ( 矢量 在轴上的射影) 中写道 :
向量 AB在 l 上的投影A′B′仍然是一个向量 ,
不是一个实数. 这也可以从高中数学第二册 ( 下
B) 的定义中看出 “, A′B′叫做向量AB 在轴 l 上或
在 e 方向上的正射影 , 简称射影. ”高中数学第一
册的定义中课本图上 OB1 也是带箭头的 , 说明向
量 OB 在OA 方向上的投影OB1也是向量. 只是这一
式子 ①, ②的左边是向量 , 而右边是一个实数 ( 数
值) ,也有些不大合适. 若 OB1 , A′B′是线段 , 则式
子 ①, ②的右边的数值应是左边线段长度的值 , 长
度是非负的 , 但| b| cosθ, | AB | cosθ< a , e > 又可

解析几何版吕林根课后习题答案

解析几何版吕林根课后习题答案

x1 y1 z1
解:( 1)设 M 1( x1, y1 , z1) 是母线 1
1
2 上任一点,过 M 1 的纬圆为:
Байду номын сангаас
( x x1) ( y y1) 2(z z1) 0
(1)
x2 y2 (z 1)2 x12 y12 ( z1 1)2
(2)
又 M 1 在母线上。
x1 1 y1 1 z1 1
1
1
2
从( 1)——( 3)消去 x1, y1, z1 ,得到:
(2)
又 M 1 在母线上,所以
z1 x12
(1)
x12 y12 1
(2)
从( 1)——( 3)消去 x1, y1, z1 ,得到:
x2 y 2 1
z z1 x12 1 0 z 1
即旋转面的方程为: x2 y 2 1 ( 0 z 1 )
xy
2、将直线
0
z 绕 z 轴旋转,求这旋转面的方程,并就
1
么曲面?
3 / 24
将它们代入准线方程,并消去
X0 Y0 Z0
t 得:
3 ( x 3)t 1 (y !)t 2 ( z 2)t
3x2 5y2 7 z2 6xy 2 yz 10xz 4x 4 y 4 z 4 0
此为要求的锥面方程。 4、求以三坐标轴为母线的圆锥面的方程。 解:(这里仅求Ⅰ、Ⅶ卦限内的圆锥面,其余类推)
AM // AM ,且 AM 0 (顶点不在准线上)
AM vAM

0 v( (u) 0 )
亦即 v (u) (1 v) 0
5 / 24
此为锥面的矢量式参数方程。 若将矢量式参数方程用分量表示,即:
{ x, y, z} v{ x(u), y(u), z(u)} (1 v){ x0, y0, z0}

解析几何版吕林根课后习题答案

解析几何版吕林根课后习题答案

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。

2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z y y tx x tz z y y tx x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。

解析几何李养成答案

解析几何李养成答案

解析几何李养成答案【篇一:空间解析几何教学大纲】txt>一课程说明1.课程基本情况课程名称:空间解析几何英文名称:analytic geometry 课程编号:2411207 开课专业:数学与应用数学开课学期:第1学期学分/周学时:3/3 课程类型:专业基础课2.课程性质(本课程在该专业的地位作用)本课程是数学与应用数学及信息与计算机科学专业的一门专业基础课,是初等数学通向高等数学的桥梁,是高等数学的基石,线性代数,数学分析,微分方程,微分几何,高等几何等课程的学习都离不开空间解析几何的基本知识及研究方法。

空间解析几何是用代数的方法研究几何图形的一门学科,是从初等数学进入高等数学的转折点,是沟通几何形式与数学关系的一座桥梁。

3.本课程的教学目的和任务通过本课程的学习,学生在掌握解析几何的基本概念的基础上,树立起空间观念。

使学生受到几何直观及逻辑推理等方面的训练,扩大知识领域,培养空间想象能力以及运用向量法与坐标法计算几何问题和证明几何问题的能力,并且能用解析方法研究几何问题和对解析表达式给予几何解释,为进一步学习其它课程打下基础;另一方面加深对中学几何理论与方法的理解,从而获得在比较高的观点下处理几何问题的能力,借助解析几何所具有的较强的直观效果提高学生认识事物的能力。

4.本课程与相关课程的关系、教材体系特点及具体要求本课程的教学,要求学生熟练掌握用代数的方法在空间直角坐标系下,研究平面、空间直线、柱面、锥面、旋转曲面和二次曲面等几何图形的性质,能对坐标化方法运用自如,从而达到数与形的统一。

了解二次曲线的一般理论和二次曲面的一般理论。

以培养学生掌握解析几何的基础知识为主,着力培养学生运用解析几何的思想和方法解决实际问题的能力,以及娴熟的矢量代数的计算能力和推理、演绎的逻辑思维能力,为后续课程的学习打下良好的基础。

5.教学时数及课时分配二教材及主要参考书1.李养成,《空间解析几何》,科学出版社。

解析几何 参考答案

解析几何 参考答案

目录7.1.1直线的倾斜角和斜率 (2)7.1.2直线的倾斜角和斜率 (2)7.2.1直线的(点斜式与斜截式)方程 (3)7.2.2直线的(两点式与截距式)方程 (3)7.2.3直线的(一般式)方程 (4)7.3.1两条直线的位置关系(平行与垂直) (4)7.3.2两条直线的位置关系(夹角) (5)7.3.3两条直线的位置关系(交点) (5)7.3.4两条直线的位置关系(距离) (6)7.3.5两条直线的位置关系(习题课) (6)7.3.5两条直线的位置关系(对称) (7)7.4.1 简单的线型规划 (8)7.4.2 简单的线型规划 (9)7.4.3 简单的线型规划 (9)7.5曲线和方程 (13)7.6圆的方程习题(1) (14)7.6圆的方程习题(2) (14)7.6圆的方程习题(3) (14)8.1椭圆及其标准方程(1) (15)8.1椭圆及其标准方程(2) (16)8.1椭圆及其标准方程(3) (19)8.2椭圆的几何性质(1) (23)8.2椭圆的几何性质(2) (25)8.2椭圆的几何性质(3) (26)8.2椭圆的几何性质(4) (27)8.5抛物线及其标准方程(一) (30)8.5抛物线及其标准方程(二) (31)8.6抛物线的简单几何性质(一) (31)8.6抛物线的简单几何性质(二) (32)7.1.1直线的倾斜角和斜率例题:1、(1)0;(2)3;(3)不存在;(4)1-。

2、331=k ;32-=k 。

3、(1)1-=k ,43πα=;(2)0=k ,0=α;(3)23-=k ,23arctan -=πα。

练习:1—2、AA , 3、31-=k ; 4、2πα=;5、ab k =; 6、1212x x y y k --=,0=k ,0=α;7、略;8、(1)2=k ,2arctan =α;(2)3-=k ,32πα=;(3)1-=k ,43πα=。

9、(1)0=α;(2)2πα=;(3)4πα=。

空间解析几何第三版答案

空间解析几何第三版答案

空间解析几何第三版答案【篇一:空间解析几何复习资料含答案】1. 求点m(a,2. 设 a(?3,3. 证明 a(1,b,c)分别关于(1)xz坐标面(2)x轴(3)原点对称点的坐标. x,2)与b(1,?2,4)两点间的距离为29,试求x. 2,3)b(3,1,5) c(2,4,3)是一个直角三角形的三个顶点.4. 设?abc的三边?,?,?,三边的中点依次为d,e,f,试用向量表示,,,并证明:??? .5. 已知:a?i?j?2k,b?3i?j?k求2a?3b,2a?3b.6. 已知:向量与x轴,y轴间的夹角分别为??60,??1200求该向量与z轴间的夹角?.7. 设向量的模是5,它与x轴的夹角为0?,求向量在x轴上的投影.43,5),c(3,?1,?2)计算:2?3,8. 已知:空间中的三点a(0,?1,2),b(?1,?4.9. 设a??2,10. 设:??2,0,?1?,b??1,?2,?2?试求a?b,2a?5b,3a?b. ?2,1?,试求与a同方向的单位向量.11. 设:?3?5?2,?2?4?7,?5??4,?4?3?试求(1)在y轴上的投影;(2)在x轴和z轴上的分向量;(3.12. 证明:(?)?(?)??.13. 设:a??3,??220,?1?,b???2,?1,3?求?,(?). ?????????14. 设a?2i?xj?k,b?3i?j?2k且a?b求x15. 设??0,1,?2?,??2,?1,1?求与和都垂直的单位向量.0),b(?2,1,3),c(2,?1,2)求?abc的面积.16. 已知:空间中的三点a(1,1,17. (1)设∥求? (2??1求?18.?3?5,试确定常数k使?k,?k相互垂直.?19. 设向量与互相垂直,(a?c)??3?,(b?c)??6?1?2?3?.20. 设:??3?5,??2??3求a?b21. 设:a?3i?6j?k,b?i?4j?5k求(1)a?a;(2)(3?2)?(?3);(3)a与b的夹角.?22. 设:(?)?23. 设:a??1,?6?1?.?(1)a?b;(2)a?b;(3)cos(?). ?1,2?,???1,?2,1?,试求: 24.?3?26?72,求a?b.25. 设a与b相互垂直,?3?4,试求(1)(a?b)?(a?b);(2)(3a?b)?(a?2b).26. 设:a?b?c?0证明:a?b?b?c?c?a27. 已知:求(1)(2)(3)4) ?3?2?,???2,a?b;a?i?b.(?2)?(2?3);(?)?28. 求与a??2,2,1?b???8,?10,?6?都垂直的单位向量.29. 已知:a??3,?6,?1?,b??1,4,?5?,c??3,?4,12?求(a?c)b?(a?b)c在向量上的投影.30. 设:a?b?c?d,a?c?b?d且b?c,a?d证明a?d与b?c必共线.31. 设:a?3b与7a?5b垂直,a?4b与7a?2b垂直,求非零向量a与b的夹角.32. 设:??2,?3,6????1,2,?2?向量在向量与?342,求向量的坐标.?33.?4?3,(a?b)?34. 求过点p0(7,35. 过点p0(1,36. 过点m(1,37. 过点a(3,?6求以?2和?3为边的平行四边形面积. 2,?1),且以??2,?4,3?为法向量的平面方程. 0,?1)且平行于平面x?y?3z?5的平面方程.?3,2)且垂直于过点a(2,2,?1)与b(3,2,1)的平面方程. ?1,2),b(4,?1,?1),c(2,0,2)的平面方程.38. 过点p0(2,1,1)且平行于向量??2,1,1?和??3,?2,3?的平面方程.39. 过点mo(1,?1,1)且垂直于平面x?y?z?1?0及2x?y?z?1?0的平面方程.40. 将平面方程 2x?3y?z?18?0 化为截距式方程,并指出在各坐标轴上的截距.41. 建立下列平面方程(1)过点(?3,1,?2)及z 轴;(2)过点a(?3,1,?2)和b(3,0,5)且平行于x 轴;(3)平行于x y 面,且过点a(3,1,?5);(4)过点p1(1,?5,1)和p2(3,2,?2)且垂直于x z 面. 42. 求下列各对平面间的夹角(1)2x?y?z?6, x?y?2z?3;(2)3x?4y?5z?9?0,2x?6y?6z?7?0.43. 求下列直线方程(1)过点(2,?1,?3)且平行于向量???3,?2,1?;(2)过点mo(3,4,?2)且平行z 轴;(3)过点m1(1,2,3)和m2(1,0,4);(4)过原点,且与平面3x?y?2z?6?0垂直.44. 将下列直线方程化为标准方程?x?2y?3z?4?0?x?2y?2?3x?2z?1?0 (1)?;(2)?;(3)? 3x?2y?4z?8?0y?z?4y?z?0???45. 将下列直线方程化成参数式方程?x?6z?1??x?5y?2z?1?0? (1)?;(2)?25. 5y?z?2???y?2?046. 求过点(1,1,1)且同时平行于平面x?y?2z?1?0及x?2y?z?1?0 的直线方程.x?4y?3z??的平面方程. 521x?1y?1z?1x?1y?1z?1????48. 求通过两直线与的平面方程. 1?12?12147. 求过点(3,1,?2)且通过直线64.求下列各对直线的夹角(1)x?1yz?4x?6y?2z?3????,; 1?2751?1(2)??5x?3y?3z?9?0?2x?2y?z?23?0,?.?3x?2y?z?1?0?3x?8y?z?18?0?x?7y?z?0 相互平行. ?x?y?z?2?0?x?1yz?1??49. 证明直线与4?1350. 设直线 lx?1y?3z?4?? 求n为何值时,直线l 与平面2x?y?z?5?0 平行? 1?2n51. 作一平面,使它通过z 轴,且与平面2x?y?5z?7?0的夹角为52. 设直线l在平面?:x?y?z?1?0 内,通过直线l1:?与平面?的交点,且与直线l1垂直、求直线l的方程.53. 求过点(1,2,1)而且与直线 ?. 3?y?z?1?0 x?2z?0??x?2y?z?1?0 与 ??x?y?z?1?0?2x?y?z?0 平行的平面方程. ??x?y?z?054. 一动点到坐标原点的距离等于它到平面z?4?0的距离,求它的轨迹方程.55. 直线l:??2x?y?1?0 与平面?:x?2y?z?1?0 是否平行?若不平行,求直线l与平面??3x?z?2?0的交点,若平行,求直线l与平面?的距离.?x?3?4tx?1yz?5???56. 设直线l经过两直线l1:,l2:?y?21?5t 的交点,而且与直线l1与l2都?18?3?z??11?10t?垂直,求直线l的方程.57. 已知直线:l1:??x?y?z?1?0?1,2) 过点p作直线l与直线l1垂直相交,求直线l的方程.及点 p(3,?2x?y?z?4?058. 方程:x2?y2?z2?4x?2y?2z?19?0 是否为球面方程,若是球面方程,求其球心坐标及半径.59. 判断方程:x2?y2?z2?2x?6y?4z?11 是否为球面方程,若是球面方程,求其球心坐标及半径.?z2?5x60. 将曲线:? 绕x 轴旋转一周,求所成的旋转曲面方程. ?y?0?4x2?9y2?3661. 将曲线:?绕y 轴旋转一周,求所成的旋转曲面方程.?z?062. 说明下列旋转曲面是怎样形成的x2y2z2y22x??z2?2;(1???10;(2)(3)(4) x2?y2?z2?1;(z?a)2?x2?y2.434363. 指出下列方程在空间中表示什么样的几何图形x2y2z222?1.??1;(3)z?4x;(4)4y? (1)3x?4y?1;(2)32322自测题 (a)(一) 选择题1.点m(4,?1,5)到 x y 坐标面的距离为()a.5b.4 c.1d.422.点a(2,?1,3)关于y z 坐标面的对称点坐标()a.(2,?1,?3)b.(?2,?1,3)c.(2,1,?3) d.(?2,1,?3)3.已知向量a??3,5,?1?,b??2,2,2?,c??4,?1,?3?,则2a?3b?4c?()a.?20,0,16?b.?5,4,?20?c.?16,0,?20? d.??20,0,16?4.设向量?4?2?4,?6?3?2,则(3?2)(?3)=()a.20 b.?16c.32 d.?325.已知:a(1,2,3),b(5,?1,7),c(1,1,1),d(3,3,2),则prja.4 b.1 c.cd?ab= () ?1 d.2 26.设?2????2?,则(?)?(?)?()a.?i?3j?5k b.?2i?6j?10kc.2?6?10 d.3i?4j?5k7.设平面方程为x?y?0,则其位置()a.平行于x 轴 b.平行于y 轴 c.平行于z 轴 d.过z 轴.8.平面x?2y?7z?3?0与平面3x?5y?z?1?0 的位置关系()a.平行 b.垂直 c.相交 d.重合9.直线x?3y?4z??与平面4x?2y?2z?3?0的位置关系() ?2?73 a.平行 b.垂直c.斜交d.直线在平面内10.设点a(0,?1,0)到直线???y?1?0 的距离为() ?x?2z?7?0c.a.5 b.(二) 填空题 1611d. 58【篇二:空间解析几何及向量代数测试题及答案】=txt>一、填空题(共7题,2分/空,共20分)1.四点o(0,0,0),a(1,0,0),b(0,1,1),c(0,0,1)组成的四面体的体积是___??___. 2.已知向量a?(1,1,1),b?(1,2,3),c?(0,0,1),则(a?b)?c=__(-2,-1,0)____.?????????x?y3.点(1,0,1)到直线?的距离是3x?z?0?4.点(1,0,2)到平面3x?y?2z?1的距离是___________. ?x2?y2?z?05.曲线c:?对xoy坐标面的射影柱面是___x2?x?y2?1?0____,?z?x?1对yoz坐标面的射影柱面是__(z?1)2?y2?z?0_________,对xoz坐标面的射影柱面是____z?x?1?0__________.?x2?2y6.曲线c:?绕x轴旋转后产生的曲面方程是__x4?4(y2?z2)_____,曲线?z?0c绕y轴旋转后产生的曲面方程是___x2?z2?2y_______________. x2y2z27.椭球面???1的体积是_____??????____________.9425二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分)1. 过点p(a,b,c)作3个坐标平面的射影点,求过这3个射影点的平面方程.这里a,b,c是3个非零实数.解: 设点p(a,b,c)在平面z?0上的射影点为m1(a,b,0),在平面x?0上的射影???????点为m2(0,a,b),在平面y?0上的射影点为m3(a,0,c),则m1m2?(?a,0,c),???????m1m3?(0,?b,c)x?a??????????????于是m1,m1m2,m1m3所确定的平面方程是?ay?b0?bzc?0 c即 bc(x?a)?ac(y?b)?abz?0 .?x?y?0?x?y?02.已知空间两条直线l1:?,l2:?.z?1?0z?1?0??(1)证明l1和l2是异面直线;(2)求l1和l2间的距离;(3)求公垂线方程. 证明:(1) l1的标准方程是v1?{1,?1,0} l2的标准方程是xyz?2??,l2经过点m2(0,0,2),方向向量v2?{1,1,0},于110xyz?1??,l1经过点m1(0,0,?1),方向向量1?10是003???????(m1m2,v1,v2)?1?10?6?0,所以l1和l2是异面直线。

高等几何课后答案解析第三版

高等几何课后答案解析第三版

高等几何课后答案(第三版)第一章仿射坐标与仿射变换1.经过A(-32)和1)的直线AB与直线工+ 3,一6二0相交于P点、秦仃WP)=?U戌线AB的方程为x+9^- 15 = 0:F点的坐标为(yry);(ABP)= -L2.求一仿射更换,它使直线工+2』- 1 = D上妁每个点都不变J 且<A(b-l)< 为点(-L2).2 T在直线'工+ 2》一I =0上任取两点A Ui0)<B1 *1由于A(1 *D)fA C 10)I B_L l〉f E f - It1)* 又点(1・一1)f(-1 f 2)i仿輛变换式< . ' 可解得所求为ly =如严4 gy+如*2L y-b工_2y+ y -3.求仿射变换P = 7x -了十I ・'y - +r 十2y + 4的不变点和不变直线.3 r不变点为(一一2)・牛■变氏线为2r - 2_y _3 = 0与4⑦一_y = 0.4.问在仿射变换下,于列图形的对应图形为何?①菱形;②正方形;③梯形;④等腰三角形.4.(1)平行四边形;(2)平疔四边形:G)梯形;(4)三骨形.5.节述性质是否是仿射性质?①三角形的三高线共点;②三角形的三中线*点;③三角形内接于一國;④一角的平分线上的点到两边等距.5. 0)为仿射性质,其余皆不是.第二章射影平面习题一1.下列哪些图带具有射影性质?平行宣蝕;三点共线;三武錢共点;两点阿的陌离;两亶统的先角;两相聘找段L答:(2)>具有射影性质.2.求证:仟宦四边涉可以射齡虑甲行四边影. |2.捉示:将四边竝两对对也的交点连线収作燈消线,作•屮心射影即得.3・在平闻2上有一定直线宀以0対射右.投对封平面『上得到直线//•求证当Q变动时•”通过•定点.3.提灵平面(0-0)宀皆交于总线和它们与平而孑的交线为P;■如果p 口 J 交于点FS则嵐皿二…都通过点P. 如果P是无穷远点*则pjp.…彼此平行.4.设=xn P J P a.QiQ^fi|K I交于一点»Sl交二豈线2 于P M Q I.R.与齐求叫高找P.Q1与P1O|的交点・色&勻QR*的交氨点\Pi与殆兀的丸点启点共线,且就宜线与/i J3英点.4 ,捉力“如图2 —2 —2可卽选取射鏗中亡V与另呼面八将GT :点射影成平囱f上的无穷远直.如阍2-2-3,这时皆为平行网边形的对和线交点,容易证明它们扶线’且所共直线与I;平行’ 根抵站合性足射影性硕,所以夬线・11此J1线与石忆共点・5-试用稱脾格谟理证朗:任栽四边理各对时边中点的连线与二对角线中点的连线相理于一点.匚捉缺如图2-27段四边形AT3CD四边中点依次为E, F. ◎ H,对用线AQ.ED 的中点足P,Q,砂究三点形PER和QGF t利用捌萨格定理咐逆定理,可以证明其对应顶点连纯EG.FH.PQ 共点.6,ABCD Iffil面体』XftBC±,-直銭iS过X井別交AB.AC干巴。

华南师范大学数学与应用数学介绍

华南师范大学数学与应用数学介绍

数学科学学院数学与应用数学(师范)专业课程方案一.培养目标培养德智体美全面发展,具有扎实的数学基本理论、基础知识、基本方法,以及良好的数学思维素质,并掌握现代数学教育基本理论和基本技能,具有创新精神的中等学校骨干教师、学科带头人和教育管理人才,并为更高层次的研究生教育输送优秀人才。

二.培养规格1.掌握马列主义、毛泽东思想和邓小平理论的基本原理以及“三个代表”的重要思想,树立科学的世界观、正确的人生观和价值观,热爱教育事业,具有教书育人、为人师表的思想道德素质。

2.具有扎实的数学基础和较宽的数学知识面,了解数学科学发展的趋势,具有良好的数学思维素质:空间想象力、逻辑推理力、抽象思维力及思维的敏感性和发散性等,以增强进一步学习的潜在能力。

3.具有宽厚的文化修养、良好的心理素质、科学的思维方式,以及准确的数学语言表达能力,在能够胜任中等学校数学学科必修课程教学的同时,尽可能地掌握数学学科选修系列中3门以上课程的教学工作。

4.初步掌握现代教学技术(包括计算机多媒体技术的运用,课件的制作等),以及数学建模、数学计算、解决实际问题的基本能力。

5.掌握教育学、心理学的基本原理,具有独立从事教育、教学研究的基本能力,有一定的心理辅导能力及班级的组织管理能力。

6.具有运用计算机网络获取信息、整理和分析信息的能力,能阅读、翻译初等数学文献,具有初步的撰写数学论文、数学教育教学论文的能力。

7.具有终身体育锻炼的意识,养成良好的体育锻炼和卫生习惯。

三. 计划学制、最低毕业学分、授予学位计划学制:本专业实行学分制,学制为四年,允许3-6年完成学业,具体按学校有关学分制管理条例执行。

鼓励学生攻读辅修专业、双专业、双学位。

最低毕业学分:157.5学分授予学位:理学学士四. 课程修读要求说明:1、“方向1”是“数学综合人才培养模块”;“方向2”是“中学数学教师培养模块”。

2、全校综合教育必修课为全体学生必修课程,计33.5学分,其中军事理论为通过性考试;3、全校综合教育选修课设置9学分,可在外学院开设的专业课、全校公选课、外校选修课中选修。

解析几何答案尤承业

解析几何答案尤承业

解析几何答案尤承业解析几何答案尤承业【篇一:数学专业参考书整理推荐】>从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。

也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。

当大四考研复习再看时会感觉轻松许多。

数学系的数学分析讲三个学期共计15学分270学时。

将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分数学分析书:初学从中选一本教材,一本参考书就基本够了。

我强烈推荐11,推荐1,2,7,8。

另外建议看一下当不了教材的16,20。

中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。

我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。

网络上可以找到课后习题的参考答案,不过建议自己做。

不少经济类工科类学校也用这一本书。

里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。

不过仍然不失为一本好书。

能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。

课本最后讲了一些流形上的微积分。

虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。

3《数学分析》陈纪修等著以上三本是考研用的最多的三本书。

4《数学分析》李成章,黄玉民是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。

5《数学分析讲义》刘玉链我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 章 矢量与坐标
§1.1 矢量的概念
1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]: (1)单位球面; (2)单位圆 (3)直线; (4)相距为 2 的两点 A 2. 设点 O 是正六边形 ABCDEF 的中心, 在矢量 OA 、 OB 、 OC 、 OD 、 OE 、
[证明]: 如图 1-2, 连结 AC, 则在ΔBAC 中, 中,NM KL
1 AC. KL 与 AC 方向相同; 在ΔDAC 2
1 AC. NM 与 AC 方向相同,从而 2
KL = NM 且 KL 与 NM 方向相同,所以 KL =
NM .
4. 如图 1-3,设 ABCD-EFGH 是一个平行六面 体,在下列各对矢量中,找出相等的矢量和互 为相反矢量的矢量: (1) AB 、 CD ; (2)
AC // CB ,
且有 m≠-1, 使 AC =m CB ,
OC - OA =m ( OB - OC ),
(1+m) OC = OA +m OB ,
OC =
1 m OA + OB . 1+ m 1+ m
图 1-10
但已知 OC = λ OA + μ OB . 由 OC 对 OA , OB 分解的唯一性可得
F
OF 、 AB 、 BC 、 CD 、
DE 、 EF
和 FA 中,哪些矢量是相等的? [解]:如图 1-1,在正六边形 ABCDEF 中, 相等的矢量对是:
B E C
O
图 1-1
OA和EF; OB和FA; OC和 AB; OE和CD; OF和DE.
B 、 B C 、 C D 、 3. 设在平面上给了一个四边形 ABCD,点 K、L、M、N 分别是边A D A的中点,求证: KL = NM . 当 ABCD 是空间四边形时,这等式是否也成立?
[证明]:因为 OM =
1 ( OA + OC ), OM = 2 1 ( OB + OD ), 2
所以 2 OM =
1 ( OA + OB + OC + OD ) 2
所以
OA + OB + OC + OD =4 OM . 6. 设点 O 是平面上正多边形 A1A2…An 的中心,证明:
OA1 + OA2 +…+ OAn = 0 .
PE =
从而
1 ( PA + PB ). 2
CP =2 PE .
BP =2 PG , AP =2 PF .故 P 为△ABC 的重心. b =4 e1 -6 e2 +2 e3 , c =-3 e1 +12 e2 +11 e3 共面,
同理可证
4. 证明三个矢量 a =- e1 +3 e2 +2 e3 ,
⎧ − λ + 4 μ − 3v = 0, ⎪ 12v = 0, ⎨ 3λ-6 μ+ ⎪2λ + 2 μ + 11v = 0. ⎩
λ=-10,μ=-1,v=2. 由于 λ=-10≠0,所以 a 能用 b , c 线性表示
解得
a =-
1 1 b+ c. 5 10
5. 如图 1-10, OA, OB , OC 是三个两两不共线的矢量,且 OC =λ OA +μ OB ,试证 A, B, C 三点共线的充要条件是 λ+μ=1. [证明]: “ ⇒ ”因为 A,B,C 共线,从而有
1 m , μ= 1+ m 1+ m 1 m + =1. 从而 λ+μ= 1+ m 1+ m
λ=
“ ⇐ ” 设 λ+μ=1. 则有 OC =λ OA +μ OB =λ OA +(1-λ) OB = OB +λ( OA - OB ),
OC - OB =λ( OA - OB ),
所以
BC =λ BA ,
| BT | | e1 | = , | TC | | e1 |
BT 与 TC 方向相同, |e | 所以 BT = 1 TC . | e2 |
由上题结论有
图 1-8
| e1 | e2 | e | e + | e1 | e2 | e2 | AT = = 2 1 . | e1 | | e1 | + | e2 | 1+ | e2 | 3. 用矢量法证明: P 是 △ ABC 重心的 充要条件是 e1 +
1
2 2
− 4 =0,所以 −1
a , b , c 三矢量共面, a,
又因为 a , b 的对应坐标成比例,即 a // b ,但 c
故不能将 c 表成 a , b 的线性组合. 1 2 3 (2) 因为 2 − 1 0 =0,所以
a , b , c 三矢量共面. b,
0
5
6
又因为 a , b 的对应坐标不成比例,即 a 故可以将 c 表成 a , b 的线性组合. 设
所以
OP - OA =λ ( OB - OP ),
(1+λ) OP = OA +λ OB ,
图 1-7
从而
OP =
OA + λOB . 1+ λ
2. 在△ABC 中,设 AB = e1 , AC = e2 ,AT 是角 A 的平 分线(它与 BC 交于 T 点) ,试将 AT 分解为 e1 , e2 的线性 组合. [解]:因为 且
AE 、 CG ;
(3) AC 、 EG ; (4) AD 、 GF ; (5) BE 、 CH . 图 1—3 [解]:相等的矢量对是 (2) 、 (3)和(5) ; 互为反矢量的矢量对是(1)和(4) 。
§1.3
数量乘矢量
1.要使下列各式成立,矢量 a, b 应满足什么条件? (1) a + b = a − b ; (3) a + b = a − b ; (5) a − b = a − b . [解]: (1) a, b 所在的直线垂直时有 a + b = a − b ; (2) a, b 同向时有 a + b = a + b ; (3) a ≥ b , 且 a, b 反向时有 a + b = a − b ; (4) a, b 反向时有 a − b = a + b ; (5) a, b 同向,且 a ≥ b 时有 a − b = a − b . 2. 设 L、 M、 N 分别是ΔABC 的三边 BC、 CA、 AB 的中点, 证明: 三中线矢量 AL , BM , CN 可 以构成一个三角形. [证明]: (2) a + b = a + b ; (4) a − b = a + b ;
图 1-4
由于 (OA + OC ) ∥ AC , (OB + OD) ∥ BD, 而 AC 不平行于 BD ,
∴ OA + OC = OD + OB = 0 ,
从而 OA=OC,OB=OD。 5. 如图 1-5,设 M 是平行四边形 ABCD 的中心,O 是任意一点,证明
OA + OB + OC + OD =4 OM .
c =λ a + μ b , 从而
亦即{0, 5, 6}=λ{1, 2, 3}+μ{2, -1, 0}
⎧λ + 2 μ = 0, ⎪ ⎨2λ − μ = 0, ⎪ 3λ = 6. ⎩ λ=2,μ=-1, 解得 所以 c =2 a - b . 3.证明: 四面体每一个顶点与对面重心所连的线段共点, 且这点到顶点的距离是它到对面重 心距离的三倍. 用四面体的顶点坐标把交点坐标表示出来. [证明]:设四面体 A1A2A3A4,Ai 对面重心为 Gi, 欲证 AiGi 交于一点(i=1, 2, 3, 4).
1 ∵ AL = ( AB + AC ) 2 1 BM = ( BA + BC ) 2 1 CN = (CA + CB) 2 1 ∴ AL + BM + CN = ( AB + AC + BA + BC + CA + CB ) = 0 2 从而三中线矢量 AL, BM , CN 构成一个三角形。
OA + OB + OC = OL + OM + ON .
OA1 + OA2 +…+ OAn = 0 .
§1.4 矢量的线性关系与矢量的分解
1. 设一直线上三点 A, B, P 满足 AP =λ PB (λ≠-1),O 是空间任意一点,求证:
OA + λ OB 1+ λ [证明]:如图 1-7,因为
OP =
AP = OP - OA , PB = OB - OP ,
其中 a 能否用 b , c 线性表示?如能表示,写出线性表示关系式. [证明]:由于矢量 e1 , e2 , e3 不共面,即它们线性无关. 考虑表达式
λ a +μ b +v c = 0 ,即
λ (- e1 +3 e2 +2 e3 )+μ (4 e1 -6 e2 +2 e3 )+v (-3 e1 +12 e2 +11 e3 )= 0 , 或 (-λ+4μ-3v) e1 +(3λ-6μ+12v) e2 +(2λ+2μ+11v) e3 = 0 . 由于 e1 , e2 , e3 线性无关,故有
从而 BC // BA . 故 A,B,C 三点共线. §1.5 标架与坐标
相关文档
最新文档