一元函数微分学测验答案(09上)
一元函数微分学模拟试卷2(题后含答案及解析)
一元函数微分学模拟试卷2(题后含答案及解析)全部题型 2. 数学(选择题) 3. 数学(填空题) 4. 数学(解答题) 数学部分单项选择题1.设函数f(x)=x.tanx.esinx,则f(x)是( ).A.偶函数B.无界函数C.周期函数D.单调函数正确答案:B 涉及知识点:一元函数微分学2.设A,B皆为n阶矩阵,则下列结论正确的是( ).A.AB=0的充分必要条件是A=0或B=0B.AB≠0的充分必要条件是A≠0或B≠0C.AB=0且r(A)=n,则B=0D.若AB≠0,则|A|≠0或|B|≠0正确答案:C 涉及知识点:一元函数微分学3.设cosx-1=xsina(x),其中|a(x)|<π/2,则当x→0时,a(x)是A.比x高阶的无穷小B.比x低阶的无穷小C.比x同阶但不等价的无穷小D.与x等价的无穷小正确答案:C 涉及知识点:一元函数微分学4.设A,B,C均为n阶矩阵,若AB=C,且曰可逆,则A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B 涉及知识点:一元函数微分学5.函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( ).A.f(a)=0且fˊ(a)=0B.f(a)=0且fˊ(a)≠0C.f(a)>0且fˊ(a)>0D.f(a)<0且fˊ(a)<0正确答案:B 涉及知识点:一元函数微分学6.设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则( ).A.λE-A=λE-BB.A与B有相同的特征值和特征向量C.A与B都相似于一个对角矩阵D.对任意常数t,tE-A与tE-B相似正确答案:D 涉及知识点:一元函数微分学7.向量组α1,α2,…,αm线性无关的充分必要条件是( ).A.向量组α1,α2,…,αm,β线性无关B.存在一组不全为零的常数k1,k2,…,km,使得k1α1+k2α2+…+kmαm≠0C.向量组α1,α2,…,αm的维数大于其个数D.向量组α1,α2,…,αm的任意一个部分向量组线性无关正确答案:D 涉及知识点:一元函数微分学8.设A是n阶矩阵,且A的行列式|A|=0,则A( ).A.必有一列元素全为0B.必有两列元素对应成比例C.任一列向量是其余列向量的线性组合D.必有一列向量是其余列向量的线性组合正确答案:D 涉及知识点:一元函数微分学9.设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…γn,如果向量组(Ⅲ)线性相关,则( ).A.向量组(I)与(Ⅱ)都线性相关B.向量组(I)线性相关C.向量组(Ⅱ)线性相关D.向量组(I)与(Ⅱ)中至少有一个线性相关正确答案:D 涉及知识点:一元函数微分学10.设函数f(x)在(-∞,+∞)内有定义,x0≠0是函数f(x)的极大值点,则( ).A.x0必是函数f(x)的驻点B.﹣x0必是函数﹣f(﹣x)的最小值点C.对一切x0都有f(x)≤f(x0)D.﹣x0必是函数﹣f(﹣x)的极小值点正确答案:D 涉及知识点:一元函数微分学11.函数y=C1ex+C2e﹣2x+xex满足的一个微分方程是( ).A.y〞-yˊ-2y=3xexB.y〞-yˊ-2y=3exC.y〞+yˊ-2y=3exD.y〞+yˊ-2y=3xex正确答案:C 涉及知识点:一元函数微分学12.设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是( ).A.A的列向量线性相关B.A的行向量线性相关C.A的行向量线性无关D.A的列向量线性无关正确答案:D 涉及知识点:一元函数微分学13.设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有( ).A.(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解B.(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解C.(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解D.(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解正确答案:A 涉及知识点:一元函数微分学14.设λ=2是非奇异矩阵A的一个特征值,则矩阵(1/3 A2 )-1 有一个特征值等于A.4/3B.3/4C.1/2D.1/4正确答案:B 涉及知识点:一元函数微分学15.设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A 的属于特征值A的特征向量,则矩阵(P-1 AP)T 属于特征值A的特征向量是A.P-1α.B.PT α.C.Pα.D.(P-1 )Tα.正确答案:B 涉及知识点:一元函数微分学填空题16.微分方程xy’+y=0满足初始条件y(1)=2的特解为__________.正确答案:2/x 涉及知识点:一元函数微分学17.微分方程xy’+y=0满足条件y(1)=1的解是y=________.正确答案:1/x 涉及知识点:一元函数微分学18.微分方程y”-2y’+2y=ex的通解为________.正确答案:ex(C1cosx+C2sinx+1) 涉及知识点:一元函数微分学19.若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=________.正确答案:-4 涉及知识点:一元函数微分学20.已知fˊ(lnx)=1+x,则f(x)=_________.正确答案:x+ex+C 涉及知识点:一元函数微分学21.若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.正确答案:24 涉及知识点:一元函数微分学22.设A,B为3阶矩阵,且|A |=3,|B |=2,|A-1+B|=2,则|A+B-1 |=_____________.正确答案:3 涉及知识点:一元函数微分学23.设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.正确答案:-27 涉及知识点:一元函数微分学24.若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=正确答案:n-m 涉及知识点:一元函数微分学25.设A,B均为n阶矩阵,|A |=2,|B|=-3,则|2A*B-1|=_______.正确答案:-22n-1/3 涉及知识点:一元函数微分学26.若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E |=_________.正确答案:24 涉及知识点:一元函数微分学解答题27.求微分方程y”-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.正确答案:齐次方程y”-2y’=0的特征方程为λ2-2λ=0.由此求得特征根λ1=0,λ2=2.对应齐次方程的通解为y=C1+C2e2x.设非齐次方程的特解为y”=Axe2x,则(y*)’=(A+2Ax)e2x,(y*)”=4A(1+x)e2x代入原方程,可得A=1/2,从涉及知识点:一元函数微分学28.求:微分方程y〞+y=-2x的通解.正确答案:方程y〞+y=-2x对应的齐次方程的特征方程为λ2+1=0,特征根为λ1,2=±i,故对应的齐次方程通解为C1cosx+C2sinx.因为a=0不是特征根,因此原方程的特解可设为y*=Ax+B,代入原方程得A=-2,B=0.所以原方程的通解为y=C1cosx+C22sinx-2x.涉及知识点:一元函数微分学。
一元函数微分学练习题
第一部分、一元函数微分学习题集1一、选择题1.下列命题正确的是( )0(A)()lim ().x x f x x f x →=∞若在的任意空心邻域内无界,则0(B)lim (),().x x f x f x x →=∞若则在的任意空心邻域内无界(C)lim (),lim ().x x x x f x f x →→=∞若不存在则1(D)lim (),lim.()x x x x f x f x →→=∞若=0则 2.{}n x 关于数列下列命题正确的个数是( ){}(1)lim .n n n x A x →∞⇒若=存在有界(2)lim lim .n n k n n x A k x A +→∞→∞=⇔=存在对任意确定正整数有221(3)lim lim lim .n n n n n n x A x x A -→∞→∞→∞=⇔==存在1(4)lim lim1.n n n n nx x A x +→∞→∞=⇒=存在(A)1 (B)2 (C)3 (D)43. 下列命题正确的是( )00,0()()lim (),lim ()x x x x x x f x g x f x A g x B A B δδ→→∃><-<>==>(A)若当时, 且均存在,则0lim ()lim ()00()()x x x x f x g x x x f x g x δδ→→≥∃><-<>(B)若,则,当时 00lim ()lim ()00()()x x x x f x g x x x f x g x δδ→→≥∃><-<≥(C)若,则,当时0lim ()lim ()00()()x x x x f x g x x x f x g x δδ→→>∃><-<>(D)若,则,当时4 ()()()cos 1sin ,02x x x x x x πααα-=<→设,当时( )x (A)比高阶的无穷小 x (B)比低阶的无穷小 x (C)与同阶但不等价的无穷小 x (D)与是等价的无穷小5. 已知当0x →时,函数()3sin sin 3f x x x =-与k cx 是等价无穷小,则( )(A) 1,4k c == (B )1,4k c ==- (C )1,4k c == (D )3,4k c ==- 6.20()sin ()ln(1)x f x x ax g x x bx →=-=-当时,与是等价无 a 穷小,则=( )b=( )1111(A)1,(B)1,(C)1,(D)1,6666a b a b a b a b ==-===-=-=-=-7.设()(1231,1,1a x a a =-=+=.当0x +→时,以上3个无穷小量按照从低阶到高阶的排序是 ( ) (A )123,,a a a (B )231,,a a a (C )213,,a a a (D )321,,a a a8.(](](),lim (),(),x f x b f x A f x b →-∞-∞=-∞设在上连续,则存在是在上有界的( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 9.[]11()tan (),( ) ()xxe e xf x x x e e ππ+=-=-设在上的第一类间断点是0 1 22ππ(A) (B)(C)- (D)10. 1()( )(1)ln xx f x x x x-=+函数的可去间断点的个数为0 1 2(A) (B)(C) (D)311.()20sin ()lim 1,( ) x tt t f x x →⎛⎫+-∞+∞ ⎪⎝⎭函数=在内(A)连续 (B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点12.曲线y= 1ln(1)x e x++, 渐近线的条数为 ( )A.0B.1C.2D.313. 已知()f x 在0x =附近有定义,且()00f =,则f(x)在0x =处可导的充要条件为 ( )(A )()22limx f x x →存在. (B )()1lim xx f ex→-存在.(C) ()201cos limx f x x →-存在. (D)()02()lim x f x f x x→-存在.14. 已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导15. 已知函数()2321cos ,0()arcsin ,0x x f x xg x x x ⎧->⎪=⎨⎪≤⎩,其中g (x )是有界函数,则f (x )在x =0处( ) (A )极限不存在 (B )极限存在但不连续 (C )连续但不可导 (D )可导16.[]0(),(0)1y f x f δδδ∃>=-=若使得在上有定义,且满足20ln(12)2()lim 0()x x xf x x →-+=,则 ''(A)()0 (B)()0(C)()0(0)0 (D)()0(0)1f x x f x x f x x f f x x f ======在处不连续在处连续但不可导在处可导,且在处可导,且17.'1cos ,0()()00, 0x x f x f x x x x αβαβ⎧>⎪==⎨⎪≤⎩设,(>0,>0),若在处连续,则( )(A) 1 (B)0 1 (C) 2 (D)0 2 αβαβαβαβ-><-≤-><-≤18.()2()cos ln 1lim 1?n y f x xy y x f n →∞⎡⎤⎛⎫=+-=-= ⎪⎢⎥⎝⎭⎣⎦设是由所确定,则n ( )(A) 2 (B) 1 (C) 1 (D) 2--19.()()''0,()0 , f x f x +∞>设函数在上具有二阶导数,且 令(),1,2,3,,n u f n n ==则下列结论正确的是( ).{}{}{}{}12121212(A), (B),(C), (D),n n n n u u u u u u u u u u u u >><<若则必收敛若则必发散若则必收敛若则必发散20.()()()2'2arctan limx f x x f x xfx ξξ→==设,若则=( )211(A)1 (B) (C) (D)32321.21,y ax b y x a b x=+=设直线同时与曲线及y=相切,则为( )(A)4, 4 (B)3, 4(C)4, 3 (D)3, 3a b a b a b a b =-=-=-=-=-=-=-=-22.()()()0,()0,()gf xg x g x g x a x ''<=设函数具有二阶导数,且若是()()0f g x x 的极值,则在取极大值的一个充分条件是( )(A) ()0f a '< (B)()0f a '> (C)()0f a ''< (D)0)(>''a f 23.设函数0()y f x x =在的某邻域内具有二阶导数,且0''0()lim 0x x f x A x x →=<-,则( ) ()()0000(A)0,(),()x x x y f x x x x y f x δδδ∃>∈-=∈+=当时是凹的,当时是凸的()()0000(B)0,(),()x x x y f x x x x y f x δδδ∃>∈-=∈+=当时是凸的,当时是凹的()00(C)0,()x x x y f x δδδ∃>∈-+=当时是凹的()00(D)0,()x x x y f x δδδ∃>∈-+=当时是凸的 24. 设函数()f x 在(),-∞+∞内连续,其导函数的图形如图所示,则 ( ) (A )函数()f x 有2个极值点,曲线()y f x =有2个拐点 (B )函数()f x 有2个极值点,曲线()y f x =有3个拐点 (C )函数()f x 有3个极值点,曲线()y f x =有1个拐点 (D )函数()f x 有3个极值点,曲线()y f x =有2个拐点25.''22()()(1,1)2()f x y f x x y f x =+=设 不变号,且曲线在点上的曲率圆为,则函数在区间(1,2)内( ).(A), (B),(C), (D),有极值点无零点无极值点有零点有极值点有零点无极值点无零点26.设函数()(1,2)i f x i =具有二阶连续导数,且''0()0(1,2)i f x i <=,若两条曲线()(1,2)i y f x i ==在点00(,)x y 处具有公切线()y g x =,且在该点处曲线1()y f x =的曲率大于曲率2()y f x =的曲率,则在0x 的某个邻域内,有 ( )(数一、二做)12(A)()()()f x f x g x ≤≤ 21(B)()()()f x f x g x ≤≤ 12(C)()()()f x g x f x ≤≤ 21(D)()()()f x g x f x ≤≤ 27.设商品的需求函数为()215()150082Q p p p p =--<<其中Q , p 分别为需求量和价格,ε为商品需求弹性,若1ε<,则p 的取值范围 ( )(数三做)(A)03p << (B)58p << (C)35p << (D)05p <<二、填空题 1. 212lim tan1x xx x →∞-=+ . 2. 0ln(1sin )lim cos 1x x x x →+-= .3.cos 0x x →= .4. tan sin 0limx xx e e →=- .5.limx →∞= .6.(lim sin x →∞-= .7.设0()ln 1lim 3x f x x x x→⎛⎫++ ⎪⎝⎭=,则20()lim x f x x →= .8. []()21cos ()()lim 1(0) 1()xx xf x f x f ef x →-==-已知函数连续且,则 . 9. 已知函数()f x满足x →=02,则lim ()____x f x →=0.10.20()()x x kx x αβ→==当时,与 k 是等价无穷小则= .11.3231lim (sin cos )2x x x x x x x →∞+++=+求 .12.20ln cos lim _________.x xx →=13. 30arctan sin lim x x x x →-⎛⎫=⎪⎝⎭求 .14.()11lim _________nn n n -→∞+⎛⎫= ⎪⎝⎭.15.101+2lim 2xxx →⎛⎫= ⎪⎝⎭求 . 16.10ln(1)lim 2xx x x →+⎛⎫-= ⎪⎝⎭.17.20lim x x →-= .18.21lim tan 4n n n π→∞⎛⎫-= ⎪⎝⎭.19.21000lim xx e x--→= .20.()2224cos limx x e x x xe ex-→-= .21.若2260sin 3()lim 0x x x f x x→+=,则403()lim →+=x f x x . 22.()21,()=, .2, x x cf x c x c x ⎧+≤⎪-∞+∞=⎨>⎪⎩设函数在内连续则23. x =0是1()1arctanf x x x=-的 间断点.24. x =1是221()lim 1n nn x f x x →∞-=+的 间断点. 25. 曲线()322arctan 11x y x x=+++的斜渐近线方程为 . 26. 曲线1y x =-+的水平渐近线方程为 ,垂直渐近线方程为 ,斜渐近线方程为 .27.1()(()) .21,1x edyx f x y f f x dx x x =⎧≥===⎨-<⎩设,,则28.'()y f x f =设是以3为周期的周期函数,且(7)=1,则(1)(13tanh)lim.h f h f h→+--=29.'f 设(1)=1,则0(1)(12sin )lim .2sin x f x f x x x→+--+=30. ()2()1,0lim . 2n n y f x y x x nf n →∞⎛⎫==-=⎪+⎝⎭曲线和在点处有切线,则31.111cos '1(0)1(0)3lim . nn n f f f n -→∞⎛⎫=== ⎪⎝⎭设,,则32. 2cos cos .41sin x t t t y tπ⎧=+=⎨=+⎩曲线上对应于点的法线斜率为33.()21ln(1),()2arctan x t t y f x y t ⎧=+⎪=⎨⎪=⎩设为参数则在任意点处的曲率22 ,() .()d yK dx==数一、二做数三做34.曲线arctan y x=在(1,0)点的切线方程为 .35. 曲线tan()4y x y e π++=在点(0,0)处的切线方程为 .36.()12 ln 0(0)13n x y x n y x -===+函数在处的阶导数 . 37.()2()sin cos (0).n f x x x x f=设 ,则 =38.()23 ()3+ 0, f x x Ax x A A -=>设为正常书,则至少取时f(x)20.≥有39. 若曲线y x ax bx =+++3214有拐点(1,3),则b=_____________.40. 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加,则当l=12cm,w=5cm 时,它的对角线增加的速率为_________. (数学一、二做) 41.已知动点P 在曲线3x y =上运动,记坐标原点与点P 间的距离为l 。
第二章 一元函数微分学测试卷
第二章 一元函数微分学测试题(A )一、选择题:(每小题3分,共计15分)1.设()f x 在0x x =可导,则下列各式中结果等于0()f x '的是 () A .000()()lim x f x f x x x∆→-+∆∆;B .000()()limx f x x f x x∆→-∆-∆C .000(2)()lim x f x x f x x∆→+∆-∆; D .000(2)()lim x f x x f x x x∆→+∆-+∆∆. 2.函数()1f x x =-()A .在1x =处连续可导B .在1x =处不连续C .在0x =处连续可导D .在0x =处不连续 3.设x x y =,则='y( )A .)1(ln +x x xB .)1ln (+x x x xC .x x x lnD .x x4.若函数()f x 在[],a b 上连续,在),(b a 内可导,且( )时,则在(),a b 内至少存在一点ξ,使0)(='ξf 成立.A .()()f a f b =;B .()()f a f b ≠;C .0)()(>b f a f ;D .0)()(<b f a f . 5.若()f u 可导,且()x y f e =,则有dy( )A .()x f e dx ';B .()x x f e de ;C .[()]x x f e de ';D .[()]x x f e e dx '.二、填空题(每小题3分,共计15分)1.已知 2ln sin y x =,则y '= ; 2.求极限:1lim1ln xx x xx x→--+= ;3.已知曲线方程为2323x t t y t t ⎧=-⎨=-⎩,则()y x ''= ; 4.已知函数410()3f x x e =,则(10)y = ; 5.曲线ln sec y x =在点(,)x y 处的曲率半径为 ; 三、计算题(每题5分,共30分)1.1ln(1)lim cot x x arc x→+∞+2.tan 0lim x x x +→3.0limln(1)x x x x→+-4.已知ln(y x =-,求()y x ¢5.已知 y x x y =,求d y d x四、解答题(每题8分,共40分)1、设曲线)(x f y =与x y sin =在原点处相切,求极限)2(lim nnf n ∞→ 2、当20π<<x 时,证明xx x <<sin 2π.3.若曲线32y ax bx cx d =+++在点0x =处有极值0y =,点(1,1)为拐点,求,,,a b c d 的值.4.已知221sin ,0()0,01sin ,0x x x f x x x x x ìïï<ïïïï==íïïïï>ïïïî,讨论()f x 的连续性与可导性. 5.用汽船拖载重相等的小船若干只,在两港之间来回运送货物,已知每次拖4只小船,一日能来回16次,每次拖7只,则一日能来回10次,如果小船增多的只数与来回减少的次数成正比,问每日来回多少次,每次拖多少只小船能使运货总量达到最大?参考答案:一、选择题:(每小题3分,共计15分)1-5. DCAAC二、填空题(每小题3分,共计15分)1.22cot x x ;2. 2;3.34(1)t -;4.0;5.232sec (1tan )xx +三、计算题(每题5分,共30分)1.1ln(1)lim cot x x arc x→+∞+222211()11ln(1)11:limlim lim1cot 122limlim1212x x x x x xxx xarc x x x xx x →+∞→+∞→+∞→+∞→+∞⋅-+++==+-+===+解2.tan 0lim xx x+→tan 221ln :lim lim exp tan ln exp lim exp lim cot csc sin exp lim 1xx x x x x x x xx x xx x e x+++++→→→→→===--===解3.0limln(1)x x x x→+-:limtan 1cos lim ln(1)11cos 1sin limlim12ln(1)2111sin (1)1lim22x x x x x x x xx xx x x x xx x x→→→→→=-=⋅+--==+--++==--解原极限4.已知ln(y x =-,求()y x ¢12211(1)2:x xy---⋅'===-解5.已知y xx y=,求d yd x: :ln lnln lnlnlnlnlny x x yy yy x y xx yyyx y yxyx y x xxy=''+=+⋅--'==--解两边取对数得四、解答题(每题8分,共40分)1、解:因为曲线)(xfy=与xy sin=在原点处相切,000,sin0(0)0,cos1,(0)1x xx y fy x f======''===当时且则00lim lim2()()()(0)lim lim lim(0)120limn nn x xnff x f x fn fx xn→∞→∞→∞→∞→→→∞→∞∴==-'====-∴==2、sin,(0,]:()21,0xxf x xxπ⎧∈⎪=⎨⎪=⎩证明构造函数2cos sin ()[0,](0,),(0,),()<0 222x x xf x x f xx πππ-'∴∀∈=在上连续.在内可导且对于总有2sin ()[0,],(0,),()<()<(0)1,2222s 2s in n <1,i #<x f x x f f x f xx xx x x ππππππ<<∴∀∈===在上单调递减所以有即所以3.32:00,y ax bx cx d x y =+++==解在处有极值232,(0)0,(0)=0(1,1)62(1)=620(1)113,2213,,0,022y ax bx c y c y d y ax b y a b y a b c d a b a b c d '=++'∴===''=+''∴+==+++==-=∴=-===为拐点,解得4.已知221sin ,0()0,01sin ,0x x x f x x x x x ìïï<ïïïï==íïïïï>ïïïî,讨论()f x 的连续性与可导性.22222:(00)lim (00)lim (00)(00)(0)0()0,R (0)lim 1sin1sin1sin1sin1sinlim 0(0)lim 1sinlim 0()0x x x x x x f f f f f f x x f x x xx xx xxx f x x x xf x x -+--++→→-→→+→→-=+=-=+==='==-'====-=--=解所以在处连续从而在上处处连不存在在所以续处不可导5.用汽船拖载重相等的小船若干只,在两港之间来回运送货物,已知每次拖4只小船,一日能来回16次,每次拖7只,则一日能来回10次,如果小船增多的只数与来回减少的次数成正比,问每日来回多少次,每次拖多少只小船能使运货总量达到最大?:,.744121610162(12)2(12)012,0,12,n x z y nxz x n x nn y n zy n zy n y z n y =--=⇒=---∴=-'=-'''===-<=解设每日来回次每次拖只小船每只小船的运货量为 则一天的运货总量为令得故时最大所以每日来回12次,每次拖6只小船能使运货总量达到最大.一元函数微分学测试卷(B )一、单项选择题:(每小题3分,共计15分) 1.设()f x 在x a =可导,则0()()limx f a x f a x x®+--=( )A .()f a ¢B .2()f a ¢C .()f x ¢D .(2)f a ¢ 2.下列结论错误的是( ) A .如果函数()f x 在x a =处连续,则()f x 在x a =处可导B .如果函数()f x 在x a =处不连续,则()f x 在x a =处不可导C .如果函数()f x 在x a =处可导,则()f x 在x a =处连续D .如果函数()f x 在x a =处不可导,则()f x 在x a =处也可能连续 3.在曲线ln y x =与直线x e =的交点处,曲线ln y x =的切线方程是 ( )A .0x ey -=B .20x ey --=C .0ex y -=D .0ex y e --=4. 若函数()f x 在[],a b 上连续,在),(b a 内可导,则()f x '在(),a b 内 ( )A .只有一实根B .至少有一个实根C .至少有两个实根D .没有实根 5.2cos 2y x =,则dy =( )A .2(cos 2)(2)x x dx ''B .2(cos 2)cos 2x d x 'C. 2cos 2sin 2x xdx -D. 2cos 2cos 2xd x二、填空题(每小题3分,共计15分) 1.已知 1arctan 1x y x+=-,则y '= ;2.求极限: 21sin(1)lim1x x x →--= ;3.已知曲线方程为cos sin x a t y b t=⎧⎨=⎩,则()y x '= ;4.已知函数ln y x x =,则(10)y = ;5.椭圆2244x y +=在点(0,2)处的曲率为 ; 三、计算题(每题5分,共30分) 1.求011lim ()1xx xe ®--2.求()1lim 1sin x x x ®+3.0limx ®4. 已知xx xxe e y e e---=+,求()y x ¢5. 已知 ln y x y =+,求d y d x四、解答题(每题8分,共40分) 1、设22ln(1)lim2x x ax bxx®+--=,求,a b 的值.2. 已知4321y x x =-+,求其单调区间,极值点,凸凹区间及拐点.3、已知221sin ,0()0,0x x f x x x ìïï¹ï=íïï=ïî,讨论()f x 的连续性与可导性.4. 设()f x 在[]0,a 上连续,()0,a 内可导,且()0f a =,证明:存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=5.一张 1.4 m 高的图片挂在墙上 , 它的底边高于观察者的眼睛1.8 m ,问观察者在距墙多远处看图才最清楚(视角θ 最大) ?参考答案:一、单项选择题:(每小题3分,共计15分)1-5 BAABD二、填空题(每小题3分,共计15分)1.211x+;2.2;3.cot b t a-;4.98!x;5.2三、计算题(每题5分,共30分)1.求011lim ()1xx xe ®--1111lim ()limlim1(1)(1)11limlim112xxxxx xx xx xxxxx xe x e xe x e e xeee e xex解: ----==---+===++++2.求()1lim 1sin x x x ®+()()111ln(1sin )lim 1sin lim exp[ln 1sin ]exp lim sin exp limx x xx x x x x x xxe ex解: ®++=+====3.0limx ®1.41.8θ332212limlimlim1sin 236limlim61cos sin x xx x xxxx xxx xx解: ==-===-4. 已知x x xxe e y e e---=+,求()y x ¢22()()()()4()()()x xxx xxxxxxxxe ee e e ee e y x e ee e解:------++---¢==++5. 已知 ln y x y =+,求d y d xln 111y x y dy dy dx y dxdy y dx y 解:=+=+=-四、解答题(每题8分,共40分)1、设22ln(1)lim2x x ax bxx®+--=,求,a b22222212ln(1)1limlim22120lim[2]011lim[2]1111212ln(1)(1)1limlimlim22215lim22(1)2x xx x x xx x a bx x ax bxxxxx x a bx xa bx xbbx x ax bxx xxxb x 解:且当为无穷小,即 ®® ®--+--+==甛--=+=-=+----+--++\===-\=-=-+2. 已知4321y x x =-+,求其单调区间,极值点,凸凹区间及拐点.43322122:21462(23)300,2121212(1)0,01y x x y x x x x y x x y x x x x y x =-+'=-=-'===''=-=-''==解令得驻点为时或33311(,),(-,),(,)22216(-,0)(1,),(0,1),(0,1)(1,0).∞∞-∞∞单调增区间为单调减区间为极小值点为凹区间为及凸区间为拐点为及3、已知221sin ,0()0,0x x f x x x ìïï¹ï=íïï=ïî,讨论()f x 的连续性与可导性. 222221:lim ()lim sin(0)0()0,()R 1sin 0()(0)1(0)limlimlim sin()0,()R .x x x x x f x x xf f x x f x x f x f xf x x xxf x x f x →→→→→===∴=--'====-∴=解在处连续则在上处处连续在处可导则在上处处可导4. 设()f x 在[]0,a 上连续,()0,a 内可导,且()0f a =,证明:存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=[]():()=(),()0,,0,,F(0)=F()=0,,(0,),F ()=0.()()0#x xf x x a a a a f f ξξξξξ''∃∈+=证明令F 则F 在上连续在内可导且从而满足罗尔中值定理条件所以使得即5.一张 1.4 m 高的图片挂在墙上 , 它的底边高于观察者的眼睛1.8 m ,问观察者在距墙多远处看图才最清楚(视角θ 最大) ?2222222221.4 1.8 1.8arctanarctan ,(0,)3.2 1.8 1.4( 5.76)3.2 1.8( 3.2)( 1.8)0, 2.4(0m,,,, 2.4 ,)m .x x x x x x x x x x 则令得驻点根据问题的实际意义观察者最佳站位存在驻点又唯一因此观察者站在距离墙处看图最解:设观察者清楚与墙的距离为q q q +=-? ---¢=+=++++¢==?1.4 1.8。
一元函数微分学练习题
一元函数微分学练习题19高等数学(Ⅰ)练习 第二章 一元函数微分学系 专业班 姓名 学号习题一 导数概念一.填空题1.若)(0x f '存在,则x x f x x f x ∆-∆-→∆)()(lim000= ,2.若)(0x f '存在,hh x f h x f h )()(lim000--+→= .000(3)()limx f x x f x x∆→+∆-∆=.3.设0()2f x '=-, 则=--→)()2(lim )000x f x x f xx4.已知物体的运动规律为2t t s +=(米),则物体在2=t 秒时的瞬时速度为 5.曲线xy cos =在3x π=处的切线方程为 ,法线方程为 6.用箭头⇒或⇏表示在某一点处函数极限存在、连续、可导之间的关系,0()f x '-02()f x '03()f x '145/m s13)223y x π-=--123()233y x π-=-1919[ B ](A )不连续。
(B )连续,但不可导。
(C)可导,但不连续。
(D )可导,且导数也连续。
三、设函数⎩⎨⎧>+≤=11)(2x b ax x x x f 为了使函数)(x f 在1=x 处连续且可导,a ,b 应取什么值。
四、如果)(x f 为偶函数,且)0(f '存在,证明)0(f '=0。
000:(),()(),()(0)()(0)()(0)(0)lim lim lim (0)x x x f x f x f x f x f f x f f x f f f x x x -++-+∆→∆→∆→=-∆--∆-∆-''===-=-∆-∆∆证因为为偶函数所以又因为21111()1(1)(1)(1),(1)lim 1(1),(1)lim(),1()1(1)(1)(1)lim 22,(1)lim ,2,1x x x x f x x f f f f x f f ax b a b a b f x x f f f x f a a a b -+-+-+-+→→-+-+→→=======+=++=''==''======-解:因为在处连续,所以所以因为在处可导,所以所以20而因为)0(f '存在,故(0)(0)(0)f f f -+'''==,所以)0(f '=0.五、 证明:双曲线2a xy =上任一点处的切线与两坐标轴构成三角形的面积为定值。
微分学测试题答案
微分学测试题答案1-3 C A B4.[4.16];5.奇函数;6.2941;44+-=-=x y x y ; 7.2;0==x y ;因为111sin 2lim 1sin 2lim 2=⋅-=-∞→∞→x x x x x x x x x ,故是曲线的水平渐近线。
1=y因为∞=-=-→→21sin 2lim 1sin 2lim 2222x x x x x x x ,故是曲线的铅直渐近线。
2=x 8.dx x x dy )212(+=; 9.222++x x10. (消去零因子)011lim )1)(1()1(lim 112lim ).1(121221=+-=+--=-+-→→→x x x x x x x x x x xe x x x x x x x x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=+++∞→++∞→+∞→21212121121112111lim 2111lim )1232(lim ).2()(cos 1cos lim sin sin lim ).3(洛比达法则a x a x a x a x a x ==--→→ 11. )tan().1(y x y +=解:方程两边同时对x 求导: )1)((sec ))((sec 22y y x y x y x y '++='++=' .)(,)(lim )(lim 5.)(,)(lim :4-00的图形的水平渐近线是函数则直线或:如果定义的图形的铅直渐近线是函数则直线如果定义x f y A y A x f A x f x f y x x x f x x x x ======∞=∞→+∞→→整理得:)(sec 1)(sec 22y x y x y +-+='0).2(=-+e xy e x解:方程两边同时对x 求导:0='++y x y e x 整理得:xy e y x +-=' xx e y x2).3(2-= 解:222222)2()24()2()22()2(x x x x e x x x e x x e y x x x ---=----=' 12. 求由参数方程⎩⎨⎧==t y t x sin 3cos 4确定的函数y 的二阶导数。
高数一元函数积分学习题及答案
第四章 不定积分一、是非题:1.已知()211arcsin x x -='π+,则⎰π+=-x dx x arcsin 112. 错2. 连续函数的原函数一定存在. 对3. ()()⎰⎰=dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()⎰⎰=dx x f k dx x kf (k 是常数) 错二、填空题: 1.()()⎰='dx x f x f (C x f +)(ln ). 2.()⎰=''dx x f x (()C x f x f x x f xd +-'='⎰)()( ). 3.知()()⎰+=C x F dx x f ,则()⎰=+dx b ax f (C b ax F a++)(1),b a ,为常数. 4.已知()⎰+=C e dx x f x ,则()=⋅⎰dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='⎰,则()=x f (x sin ).6. 设()x f 、()x f '连续,则()()[]=+'⎰dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =⎰( 1C x+ ). 8. 函数(21ln(1)2x C ++)是21x x +的原函数. 9. 设()x f x e =,则()ln f x dx x'=⎰(x C +). 三、选择填空:1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()⎰+=C x F x dF b .()()⎰='x F dx x Fc .()[]()C x f dx x f +='⎰ d .()[]()C x f dx x f d +=⎰ 2.下列等式能成立的是( d )a .⎰+=--C e dx e x xb .⎰+=C xxdx 1ln c .⎰+=C x xdx 32cos 31cos d .⎰+=C x xdx 2sin 2sin 3.若()C x dx x f +=⎰2sin 2 ,则()=x f ( b ) a .C x +2cos b .2cos x c .C x +2cos 2 d .2sin 2x 4.函数xx ln 的不定积分是( b ) a .C x x +ln 21 b .C x +2ln 21 c .C x x +ln d .C x +2ln 四、计算题: 1.⎰⎪⎭⎫ ⎝⎛π+-dx xx 3cos 521C x x x ++-=3cos 52ln 2ln π 2.⎰⎪⎪⎭⎫ ⎝⎛+--dx e x e x x 121 C e e x x ++-=--1 3.⎰+dx x x 2sin 1cos ⎰+=+=C x x d x )arctan(sin sin sin 112 4.dx x x x ⎰++-3442C x x dx x x dx x x x +⋅-=+=+=⎰⎰-453222141ln )11()( 5.⎰⎪⎭⎫ ⎝⎛+dx x x 2tan 1sec ⎰+=dx x x 22)tan 1(sec C x x d x ++-=+=⎰tan 11tan )tan 1(12 6.dx x x x ⎰+221arctan dx x x x ⎰+-+=221arctan )11(dx xx xdx ⎰⎰+-=21arctan arctan ⎰-+-=22)(arctan 211arctan x dx xx x x C x x x x +-+-=22)(arctan 211ln 21arctan 7.⎰-⋅dx x x x x 4932⎰-=dx x x x 496⎰-=dx xx )32()23(1 令x u )23(=C u u du u du u u u ++--=--=⋅-⋅-=⎰⎰11ln )2ln 3(ln 21112ln 3ln 112ln 3ln 1112 8.⎰⎰⎰+-+==-=C x x x x x xd dx x x xdx x 22221cos ln tan tan )1(sec tan 9.⎰⋅xdx x 23cos sin ⎰⎰-=--=x d x x x xd x cos )cos (cos cos cos )cos 1(2422 C x x +-=35cos 31cos 51 10.⎰⋅xdx x 4sin 2cos 5x xd x xdx x x 2cos 2cos 2cos 2cos 2sin 22cos 55⋅-=⋅⋅=⎰⎰ C x +-=2cos 717 11.()⎰+dx x x 11 令t x 2tan =C t t tdt tdt t tt ++==⋅⋅⋅=⎰⎰tan sec ln 2sec 2sec tan 2sec tan 12 C x x +++=1ln 212.⎰+dx x11令t x = ()()⎰⎰++-+=+-+=⋅+=C t t dt tt tdt t 2123141341112211 C x x ++-+=2123)1(4)1(34 13. ()⎰+dx x xe x21C e x xe dx e x xe x d xe x x x x x+++-=++-=+-=⎰⎰1111 14.dx x x ⎰⋅cos sin 12⎰⎰+-+=+=⋅+=C x x x dx x x x dx xx x x sin 1tan sec ln )sin cos cos 1(cos sin cos sin 2222 15.⎰-+dx x x x 2212⎰⎰+=⋅⋅+=dt t t tdt tt t t x )sin 2sin 1(cos cos sin 2sin sin 22C xx x x x C t t t +----=+--=221211ln cot 2cot csc ln 16.⎰xdx x ln C x x x dx x x x x xdx +-⋅=⋅-⋅==⎰⎰232323232394ln 32132ln 32ln 32 17.⎰+dx x )1ln(C x x x x dx x x x x +-+++=+⋅-+=⎰)1ln()1ln(11)1ln( 18.⎰-+dx x x 211C x x x x d x ++--=+---=⎰arcsin 1arcsin )1(112122219.()⎰-+dx e e e x x x 211C e e dx e e dx e e x x x x x x +-⋅-=-+-=⎰⎰22221221arcsin 11 20.()⎰+⋅dx x x 323513223333111(1)(11)(1)333u x x u u du u u du =====+=+-+⎰⎰⎰ 52853333331111(1)(1)(1)(1)3385u du u du x x C =+-+=+-++⎰⎰ 21.⎰dx x x x 2sin cos 2cos 22233cos sin 1sin 2cos sin 2cos sin 2cos x x x dx dx dx x x x x x-==-⎰⎰⎰ ⎰⎰+=x d xxdx cos cos 1212csc 3 C x x x +--=2cos 1412cot 2csc ln 21。
一元函数微积分综合练习参考解答
§4、一元函数微积分综合练习【例1】已知数列}{n x 满足).,2,1(sin ,011Λ==<<+n x x x n n π(Ⅰ)证明n n x ∞→lim 存在,并求其极限值;(Ⅱ)求极限211)(lim n x nn n x x +∞→.〖解〗(Ⅰ)∵1|sin |||1≤=+n n x x ,),2,1(sin 1Λ=<=+n x x x n n n ,∴n x 单调有界,由单调有界准则可得:n x 收敛。
设a x n n =∞→lim ,在n n x x sin 1=+两边同时取极限可得a a sin =,0=a ,故0lim =∞→n n x 。
(Ⅱ)}1lim exp{}lnlimexp{)(lim 2121112nnn n n n n n x nn n x x x x x x x x n −==+∞→+∞→+∞→}sin lim exp{}sin lim exp{}lim exp{30331t tt x x x x x x t x t n n n n n n n n n −=−=−=→=∞→+∞→6120}61exp{}31cos lim exp{−→=−=−=e t t t 。
■【例2】试确定常数c b a ,,,使得30sin lim0ln(1)x x b ax xc t dtt →−=≠+∫.〖解〗∵0)1ln(sin lim30≠=+−∫→c dtt t xax x b x ,且0)sin (lim 0=−→x ax x ,∴0)1ln(lim 30=+∫→xbx dt t t ,从而,0=b 。
原式)1ln()cos (lim)1ln(cos lim )1ln(sin lim 303030x x a x x x x a dt t t x ax x x rule L x b x +−=+−=+−=→→−→∫c x x a x x a x a x x ==−=−==→→21cos lim )cos (lim 12030,即21,0,1===c b a 。
考研数学二一元函数微分学-试卷9_真题(含答案与解析)-交互
考研数学二(一元函数微分学)-试卷9(总分70, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设函数f(x)是定义在(一1,1)内的奇函数,且=a≠0,则f(x)在x=0处的导数为 ( )SSS_SINGLE_SELA aB 一aC 0D 不存在该题您未回答:х该问题分值: 2答案:A解析:由于f(x)为(一1,1)内的奇函数,则f(x)=0.于是故f"一(0)=f"+(0)=a,得f"(0)=a,应选(A).2.设f(x)=其中g(x)是有界函数,则f(x)在x=0处 ( )SSS_SINGLE_SELA 极限不存在B 极限存在,但不连续C 连续,但不可导D 可导该题您未回答:х该问题分值: 2答案:D解析:故f"+(0)=0,从而f"(0)存在,且f"(0)=0,应选(D).3.设函数f(x)可导,且曲线y=f(x)在点(x0,f(x))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x处的微分dy是 ( )SSS_SINGLE_SELA 与△x同阶但非等价的无穷小B 与△x等价的无穷小C 比△x高阶的无穷小D 比△x低阶的无穷小该题您未回答:х该问题分值: 2答案:B解析:由题设可知f"(x)=1,而=1,即dy与△x是等价无穷小,故选(B).4.已知函数f(x)=ln|x一1|,则 ( )SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:B解析:应当把绝对值函数写成分段函数,f(x)=.即得(B).5.函数y= x 2 +6x+1的图形在点(0,1)处的切线与x轴交点的坐标是( ) SSS_SINGLE_SELA (一1,0)B (一,0)C (1,0)D (,0)该题您未回答:х该问题分值: 2答案:B解析:因为f"(x)=x 2 +x+6,所以f"(0)=6.故过(0,1)的切线方程为y一1=6x,因此与x轴的交点为(一,0).6.函数f(x)=在x=π处的 ( )SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:D解析:f(x)在x=π处的左、右导数为:7.设函数f(x)具有任意阶导数,且f"(x)=[f(x)] 2,则f (n) (x)= ( )SSS_SINGLE_SELAn[f(x)] n+1Bn![f(x)] n+1C(n+1)[f(x)] n+1D(n+1)![f(x)] n+1该题您未回答:х该问题分值: 2答案:B解析:由f"(x)=[f(x)] 2得 f"(x)=[f"(x)]"=[(f(x))2 ]"=2f(x)f"(x)=2[f(x)] 3,这样n=1,2时f (n) (x)=n![f(x)] n+1成立.假设n=k时,f (k) (x)=k![f(x)] k+1.则当n=k+1时,有 f k+1(x)=[k!(f(x)) k+1 ]"=(k+1)![f(x)] k f"(x)=(k+1)![f(x)] k+2,由数学归纳法可知,结论成立,故选(B).8.函数y=f(x)满足条件f(0)=1,f"(0)=0,当x≠0时,f"(x)>0,则它的图形是 ( )SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:B解析:因函数单调增加,且在x=0处有水平切线,选(B).2. 填空题1.曲线在t=1处的曲率k=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:2.如果f(x)在[a,b]上连续,无零点,但有使f(x)取正值的点,则f(x)在[a,b]上的符号为___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:正解析:利用反证法,假设存在点x1∈[a,b],使得f(x1)<0.又由题意知存在点x2∈[a,b],x2≠x1,使得f(x2)>0.由闭区间连续函数介值定理可知,至少存在一点ξ介于x1和x2之间,使得f(ξ)=0,显然ξ∈[a,b],这与已知条件矛盾.3.设函数f(x)=且1+bx>0,则当f(x)在x=0处可导时,f"(0)=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:一解析:利用洛必达法则,=b,由于f(x)在x=0处可导,则在该点处连续,就有b=f(0)=一1,再由导数的定义及洛必达法则,有4.曲线y=x+的凹区间是___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:(0,+∞)解析:y"=1+.当x>0时,y">0,曲线是凹的;当x<0时,y"<0,曲线是凸的.5.设曲线y=ax 3 +bx 2 +cx+d经过(一2,44),x=一2为驻点,(1,一10)为拐点,则a,b,c,d分别为___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:1,一3,一24,16解析:由条件有解方程可得a=1,b=一3,c=一24,d=16.3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
一元函数微积分复习题1_1到1_9答案
《一元函数微积分》习题1—11.确定下列函数的定义域:(1)912-=x y ;解:要使函数有意义,则:092>-x 即 3>x 或3-<x .所以函数定义域:),3()3,(+∞⋃--∞.(2)x y a arcsin log =;解:要使函数有意义,则0arcsin >x ,即10≤<x .所以函数定义域:(0,1].(3)2111x x y --+=; 解:01012≠+≥-x x 且,即111-≠≤≤-x x 且.所以函数定义域:(-1,1].(4))32(log 213-+-=x x y a ; 解:03202>-≠-x x 且,即232>≠x x 且.所以函数定义域:),2()2,23(+∞⋃. (5))4(log 21arccos2x x y a -+-=; 解:0412112>-≤-≤-x x 且,则2231<<-≤≤-x x 且。
所以函数定义域:)2,1[- (6)xy πsin 1=. 解:0sin ≠x π,则Z k k x ∈≠,.(其中是Z 整数集),函数定义域:_Z 或}{Z k k x x ∈≠,. 2.求函数⎪⎩⎪⎨⎧=≠=000,1sin x x x y 的定义域和值域,并求⎪⎭⎫ ⎝⎛π2f 和)0(f . 解:定义域:),(+∞-∞.当0≠x 时,01≠x ,故11sin 1≤≤-x. 所以值域:[-1,1]. 12sin )2(==ππf ,0)0(=f .3.下列各题中,函数)(x f 和)(x g 是否相同,为什么? (1) 2)(,)(x x g x x f ==;解: 不同 因为||)(2x x x g ==,即)(x g 的值域是全体非负实数,而)(x f 的值域是全体实数. (2) 2sin21)(,cos )(2x x g x x f -==; 解: 相同因为)(x f 和)(x g 的定义域均为实数R,值域为[-1,1],且)(cos 2sin 21)(2x f x x x g ==-= (3)1)(,11)(2-=+-=x x g x x x f ; 解: 不同 因为)1(111)(2≠-=+-=x x x x x f .两函数的定义域不同. (4)0)(,)(x x g x x x f ==. 解: 相同 因为)0(1)(),0(1)(0≠==≠==x x x g x xx x f 定义域均为非零实数,在定义域内函数值恒等于1.4.设x x f sin )(=, 证明:)2cos(2sin2)()(x x x x f x x f ∆+∆=-∆+. 证明: 由三角函数知:)2cos(2sin 2sin )sin()()(x x x x x x x f x x f ∆+∆=-∆+=-∆+.5.设5)(2++=bx ax x f 且38)()1(+=-+x x f x f ,试确定a , b 的值.解: 因为 5)(2++=bx ax x f故)5()2(5)1()1()1(22+++++=++++=+b a x b a ax x b x a x f由题设3852)()1(+=++=-+x a ax x f x f所以有:82=a 且3=+b a得:1,4-==b a .6.下列函数哪些是偶函数? 哪些是奇函数?哪些既非奇函数又非偶函数?(1) )1(22x x y -=;解: 定义域:),(+∞-∞)()1(])(1[)()(2222x f x x x x x f =-=---=-所以函数是偶函数.(2)323x x y -=;解: 定义域:),(+∞-∞ 32323)()(3)(x x x x x f +=---=-,)()(x f x f ≠-且)()(x f x f -≠-.所以函数既非奇函数又非偶函数. (3)2211xx y +-=; 解: 定义域:),(+∞-∞)(11)(1)(1)(2222x f xx x x x f =+-=-+--=- 所以函数是偶函数.(4))1)(1(+-=x x x y解: 定义域:),(+∞-∞x x x x x x f -=+-=3)1)(1()(,)()()()(33x f x x x x x f -=+-=---=-.所以函数是奇函数.(5)1cos sin +-=x x y ;解: 定义域:),(+∞-∞1cos sin 1)cos()sin()(+--=+---=-x x x x x f ,则)()(x f x f ≠-且)()(x f x f -≠- 所以函数既非奇函数又非偶函数. (6)2xx a a y -+=. 解: 定义域:),(+∞-∞)(2)(x f a a x f xx =+=-- 所以函数是偶函数.7.设)(x f 为定义在),(+∞-∞上的任意函数,证明:(1))()()(1x f x f x F -+=为偶函数; (2) )()()(2x f x f x F --=为奇函数.证明: 由题设)(x f 为定义在),(+∞-∞的函数, 则)(),(21x F x F 的定义域也为),(+∞-∞(1) )()()()()()()(111x F x f x f x F x f x f x F =+-=-⇒-+=Θ,. 故)(1x F 是偶函数.(2) )()()()()()()(222x F x f x f x F x f x f x F -=--=-⇒--=Θ,.故)(2x F 为奇函数.8. 证明: 定义在),(+∞-∞上的任意函数可以表示为一个奇函数与一个偶函数和.证明: 设)(x f 是定义在),(+∞-∞上的任意函数.由7题知 )()()(1x f x f x F -+=为偶函数,)()()(2x f x f x F --=为奇函数.且 )(21)(21)(21x F x F x f +=. 故命题成立.9. 设)(x f 为定义在),(L L -上的奇函数,若)(x f 在),0(L 上单增, 证明: )(x f 在)0,(L -上也单增.证明: 由题设知对于任意),(L L x -∈有:)()(x f x f -=-不妨设任意的1x ,2x 满足021<<<-x x L , 则012>-<->x x L . )(x f 在),0(L 上单增, 则)()(21x f x f ->- ,)(x f Θ奇函数)()(),()(2211x f x f x f x f -=--=-∴ 即 )()(21x f x f ->-)()(21x f x f <所以)(x f 在)0,(L -上也单增.10. 下列各函数中哪些是周期函数? 对于周期函数,指出其周期:(1) )2cos(-=x y ;解:)2cos()22cos(-=+-x x π, 函数是周期函数且周期π2=T .(2) x y 4cos =;解: x x x 4cos )24cos()2(4cos =+=+ππ, 函数是周期函数且周期2π=T .(3) x y πsin 1+=;解: )2(sin 1)2sin(1sin 1++=++=+x x x ππππ,函数是周期函数且周期2=T .(4) x x y cos =;解: 非周期函数(5) x y 2sin =;解: )](2cos 1[21)]22cos(1[21)2cos 1(21sin 2ππ+-=+-=-=x x x x , 函数是周期函数且周期π=T .(6) x x y tan 3sin +=解: )32(3sin )23sin(3sin ππ+=+=x x x , )tan(tan π+=x x ,故原函数的周期为两函数x x tan ,3sin 的周期π32和π最小公倍数. 所以周期为π2=T .11. 下列各组函数中哪些不构成复合函数? 把能构成复合函数的写,成复合函数,并指出定义域.(1) 3x y =,t x sin =;解: 构成复合函数t y 3sin =, 定义域: ),(+∞-∞.(2) u a y =,2x u =;解: 构成复合函数2x a y =, 定义域: ),(+∞-∞.(3) u y a log =,232+=x u ;解: 构成复合函数)22(log 2+=x y a , 定义域: ),(+∞-∞. (4) u y =,2sin -=x u ;解: 不构成复合函数u y =要求0≥u , 但是2sin -=x u 的值域:]1,3[--. (5) u y =,3x u =;解: 构成复合函数3x y =, 定义域: ),0[+∞.(6) u y a log =, 22-=x u .解: 构成复合函数)2(log 2-=x y a , 定义域: ),2()2,(+∞⋃--∞.12. 下列函数是由哪些简单函数复合而成的? (1) 321)1(++=x y ;解: 3u y =,1)1(2++=x u .(2) 2)1(ln 3+=x y ;解: u y 3=, 2v u =, 1ln +=x v .(3) )13(sin 3+=x y ;解: 3u y =, v u sin =, 13+=x v . (4) 32cos log x y a =.解: 3u y =, v u a log =, 2w v =, x w cos =.13. 求下列函数的反函数:(1) x y sin 2=;]2,2[ππ-∈x 解: 原函数的定义域:]2,2[ππ-∈x , 值域:]2,2[-. 反解: 2arcsin y x =. 得反函数: 2arcsin x y =. (2) )2(log 1++=x y a ;解: 原函数的定义域: ),2(+∞-, 值域:),(+∞-∞. 反解: 21-=-y ax . 得反函数: 21-=-x a y反函数的定义域),(+∞-∞:, 值域: ),2(+∞-. (3) 122+=x xy . 解: 121112112122+-=+-+=+=x x x x x y 由于112>+x , 则11210<+<x . 原函数的定义域: ),(+∞-∞, 值域:.)1,0( 反解: yy x -=12, y y x -=1log 2.得反函数: xx y -=1log 2 反函数的定义域: )1,0(, 值域: ),(+∞-∞.14. 某批发商店按照下列价格表整盒在批发销售某种盒装饮料:当购货量小于或等于20盒时,每盒2.50元;当购货量小于或等于50盒时,其超过20盒的饮料每盒2.30元;当购货量小于或等于100盒时,其超过50盒的饮料每盒2.00元;当购货量大于100时,其超过100盒的饮料每盒1.80元;设x 是销售量, y 是总价, 试建立总价y 和销售量x 之间的函数关系式,并作出它的图形. 解: 由题知: 当200≤≤x 时, x y 5.2=;当5020≤<x 时, 43.2)20(3.2205.2+=-+⨯=x x y ;当10050≤<x 时, 192)50(2)2050(3.2205.2+=-+-⨯+⨯=x x y ;当100>x 时, 398.1)100(8.1219+=-+=x x y⎪⎪⎩⎪⎪⎨⎧>+≤<+≤<+≤≤=100398.110050192502043.22005.2x x x x x x x x y 图形(略)15. 设某商品的市场供应函数p p S Q 480)(+-==, 其中Q 为供应量, p 为市场价格. 商品的单位生产成本是1.5元, 试建立总利润L 与市场价格p 的函数关系式.解: 供应函数p p S Q 480)(+-==则总利润120864)480)(5.1()5.1(2+-=+--=-=p p p p Q p L .16. 用p 代表单价, 某商品的需求函数为p p D Q 500007)(-==, 当Q 超过1 000时成本函数为Q C 2500020+=, 试确定能达到损益平衡的价格 (提示: 当总收入=总成本时,便达到损益平衡).解: 当1000>Q 时 1000500007)(>-==p p D Q 则价格120<p .达到损益平衡, 则 C pQ =即: )500007(25000202500020)500007(p Q p p -+=+=-039001652=+-p p 得282.107165±=p 又因为价格120<p , 故59.28=p答: 当需求量超过1000时,达到损益平衡的价格是28.59.17. 在半径为r 的球内嵌入一个内接圆柱, 试将圆柱的体积V 表示为圆柱的高h 的函数, 并求此函数的定义域.解: 设圆柱的半径为R, 则满足4)2(22222h r h r R -=-= 圆柱的体积: 3222241)4(h h r h h r h R V ππππ-=-==. 定义域: )2,0(r18. 已知华氏温度F 与摄氏温度℃的线性关系, 在101325帕(一个标准大气压)下, 水的冰点温度不32F 或0℃, 水的沸点温度为212F 或100℃.(1) 写出华氏温度F 与摄氏温度℃的函数关系;(2) 画出该函数的图形;(3) 摄氏20℃相当于华氏几度?解: (1)由华氏温度F 与摄氏温度℃的线性关系, 设当摄氏温度为x ℃时, 华氏温度为y F , 则有关系式 b ax y += 其中a , b 为常数.由题知:⎩⎨⎧==⇒⎩⎨⎧+=+⋅=328.1100212032b a b a b a 函数关系: 328.1+=x y (其中x 的度量单位是℃, y 的度量单位是F)(2) 函数图形(略)(3) 摄氏20℃时, y =1.8⨯20℃+32=68(F)习题1-21.(1)0;(2)1;(3)-1;(4)发散2.(1)证明:0>∀ε,要使ε<=-+n n 1111,即ε1>n 。
一元函数微分历年试题
第二章一元函数微分学 历年试题1. 利用导数的定义求函数在某点的导数值1994——2012年共考了8次,考到的概率P=42.1%(1)(0119)设函数f(x)在x=0处可导,且.x)0(f )x 3(f lim,1)0(f 0x -='→求(2)(0222)设函数f(x)在x=1处可导,且.x)1(f )x 21(f lim,1)1(f 0x -+='→求(3)(0303)函数f(x)在x 0处可导,且h)x (f )h 2x (f lim,2)x (f 000h 0-+='→则= ( )A.0B.1C.2D. 4(4)(0702)已知.x)1(f )x 21(f lim,2)1(f 0x )(则=∆-∆+='→∆A.-2B.0C.2D. 4 (5)(0802)已知f(x)在x=1处可导,且).(h)1(f )h 1(f lim,3)1(f 0h =-+='→则A.0B.1C.3D. 62. 利用四则运算法则求函数的导数或在某点的导数值和微分1994——2012年共考了19次,考到的概率P=100%(1)(0122)设函数.y ,1x xcos y 2'-=则 (2)(0210)设函数.y ,x cos 11y ='+=则(3)(0310)设函数.)0(f ,ex)x (f x ='=则(4)(0419)设函数.y ,x ln x y '=求 (5)(0522)设函数.dy ,x cos x y 3求= (6)(0622)设函数.dy ,x sin x y 4求=(7)(0705)设函数).(d y ),1x sin(y 2=-=求A. dx )1x cos(2-B. dx )1x cos(2--C. dx )1x cos(x 22-D. dx )1x cos(x 22-- (8)(0822)设函数.y ,3x sin x y 3'++=求 (9)(0903)设函数).()1(f ,3x ln e )x (f x ='+=则A.0B.1C. eD. 2e(10)(1022)设函数.dy ,xcos x y 3则=(11)(1122)设函数.y ,xsin 1x y '+=求 (12)(1222)设函数.,cos )(⎪⎭⎫⎝⎛'=2πf x x f 则=( )A.-1B. 21- C.0 D. 13. 复合函数的导数1994——2012年共考了16次,考到的概率P=84.2%(1)(0107)设函数.dy ,x 1y 2=+=则(2)(0109)设函数.)x (f ,x sin )x (f ='=则(3)(0217)设函数.y x1x y 2'+=求(4)(0211)设函数.)x (f ,x ln )x 2(f ='=则(5)(0223)设函数.dxdy,(x)]g f[y .x sin )x (g ,e )x (f x 求且'=== (6)(0318)设函数.y ,x x y '+=求(7)(0418)设函数).0(f ,x 2sin 1)x (f '+=求(8)(0420)设函数).x (f ,x cos 1)x (cos f 3'+=求(9)(0503)设函数.)0(f ,x 2cos )x (f )(则='= A.-2 B.-1 C.0 D. 2(10)(0602)设函数.,52)(则='+=y e y x A. x e 2 B. x e 22 C. 522+x e D. 52+x e (11)(0722)设函数y x x y '++=求),1ln( (12)(0922)设函数.d ,sin y e y x 求=(13)(1003)设函数.)(,2cos )()(则='=x f x x fA. x 2sin 2B. x 2sin 2-C. x 2sinD. x 2sin - (14)(1222)设函数dy x y 求),ln(12+=4. 二阶导数和高阶导数1994——2012年共考了18次,考到的概率P=94.7%(1)(0108)设函数.)1(,ln )(3=''=f x x x f 则 (2)(0212)设函数.)0(,)(=''=f xe x f x 则(3)(0311)设函数.50,5022=+=)(阶导数的则y y e x y x(4)(0421)设函数.,11y xy ''+=求 (5)(0514)设函数.)0(,2=''=y e y x 则(6)(0615)设函数.,2sin =''=y x y 则(7)(0714)设函数.,='''=-y e y x 则 (8)(0814)设函数.,5=''=y x y 则(9)(0915)设函数.,sin =''=y x x y 则 (10)(1015)设函数.),1ln(=''+=y x y 则(11)(1114)设函数.,sin ='''=y x y 则(12)(1215)设函数.)(,cos )(=''=x f x x f 则5. 不定式极限的求法1994——2012年共考了12次,考到的概率P=63.2%(1)(0217)求.xe e limxx 0x -→- (2)(0317)求.xsin x xcos 1lim0x +-→(3)(0417)求.x e x 1lim2x0x -+→ (4)(0721)求.1x xln lim1x -→ (5)(0801)求).(4x 31x 2limx =-+∞→A. 41-B.0C. 32D. 1(6)(0921)求.1x xln x 1lim31x -+-→(6)(1221)求.limxe x x 10-→ 6.曲线在某点处的切线方程和法线方程1994——2012年共考了10次,考到的概率P=52.6%(1)(0320)求曲线x 2e y -=在点M (0,1)处的曲线方程 (2)(0411)求曲线x e y -=在点(0,1)处的切线斜率=k . (3)(0515)求曲线x e x y +=在点(0,1)处的切线斜率=k .(4)(0616)求曲线x x y 3-=在点(0,1)处的切线方程 =y .(5)(0914)已知3ax y =在x=1处的切线平行于直线1x 2y -=,则=a .(6)(1016)设曲线x axe y =在x=0处的切线斜率为2,则=a . (7)(1113)曲线2x 2y =在点(1,2)处的切线方程 =y .(8)(1216)曲线)sin(1+=x y 在点(-1,0)处的切线斜率为7.函数特性的研究11994——2012年共考了22次,考到的概率P=100%,为必考题.(1)(0110)设函数2x e y =,则其单调递增区间为.(2)(0321)求曲线x 6x x y 23+-=的拐点。
1数学分析一元函数微分学试题答案
一、选择题:: 1.集合4|{2<=x x s的上确界为______B_______.A.-2B.2C.-4D. 4 答:22<<-x2.xxx 2sin lim0→=______C_______.A.1B.0C.21D. 2 答:()等价无穷小替换212lim 2sin lim00==→→x x x x x x3. 若2/53254lim x x x ox -→与αx 当0→x 时为等价无穷小量,则α=_____B________.A.25 B.52C.2D. 1 答:5/23254lim xx x ox -→=14、点0=x 为函数||sin )(x xx f =____B_____间断点.(选填:可去,跳跃,第二类) A. 可去 B. 跳跃 C.第二类 D. 非 答:因1||sin lim ,1||sin lim 00-==-+→→x x x x x x5.22)(cos lim x x x →=____D______.A. eB.1C.0D. 1-e答:1/2).1(cos lim 22222)1cos 1(lim )(cos lim --→→==-+=→e ex x x x x x x x x6.xx xx x sin tan lim0--→ _____B________.A. 1B.2C.0D. 不存在答:22/lim cos 11tan sec lim sin tan lim 22000==--=--→→→x x x x x x x x x x x x7.函数x x x f ln )(-=的稳定点为__B____.A. 0B.1C.2D. 3答:令011)('=-=xx f 可得,1=x 8.函数x x x f -=3)(的的单调递减区间为_______A__________.A. ⎥⎦⎤⎢⎣⎡-33,33B.⎥⎦⎤⎢⎣⎡33,0C.⎥⎦⎤⎢⎣⎡-0,33D. ⎥⎦⎤⎢⎣⎡-33,33解:根据13)('2-=x x f ,可得答案为A 。
2成考高数之一元函数微分复习题与解析
方舟数学
)
A.单调增加
B.单调减少
C.先单调增加,后单调减少
D.先单调减少,后单调增加
14.设函数()在区间[, ]连续,在(, )可导,′() > 0.若() ∙ () < 0,则
y = ()在(, )(
A.不存在零点
)
B.存在唯一零点
15.( 2) =(
.
解析:考查导数的几何意义:y′ = 1 − sin ,切线斜率 = y ′ |=0 = 1
8. 曲线y = + 2 在点(0,1)处的切线方程为
.
解析:考查导数的几何意义:先求出y ′ = + 2
即切线斜率 = y ′ |=0 = 0 + 0 = 1
y − 1 = 1 ∙ ( − 0)得:y = + 1
10.设函数() = ln(3),则′(2) =(
A.6
)
1
B. ln 6
1
C.2
D. 6
1
1
解析:′() = ,所以 = 2代入′()得′(2) = 2,答案为 C
11.设函数() = ln ,则′′() =(
1
1
A.
)
1
B. 2
2
C.− 2
1
D.−
14.设函数()在区间[, ]连续,在(, )可导,′() > 0.若() ∙ () < 0,则
y = ()在(, )(
A.不存在零点
)
B.存在唯一零点
C.存在极大值点
D.存在极小值点
解析:考查零点定理:′() > 0单调递增,() ∙ () < 0所以连续函数y = ()
一元函数微分学练习题(答案)
一元函数微分学练习题答案一、计算下列极限:1.9325235lim222-=-+=-+→x x x 2.01)3(3)3(13lim 22223=+-=+-→x x x 3.x x x 11lim--→)11(lim)11()11)(11(lim 00+--=+-+---=→→x x xx x x x x x 211011111l i m-=+--=+--=→x x4.0111111lim )1)(1()1(lim 112lim 121221=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21)23()124(lim 2324lim 202230=++-=++-→→x x x x x xx x x x x x6.x t x tx t x x t x t x t x t t t 2)2(lim ))((lim )(lim00220-=--=--+-=--→→→ 7.00010013111lim 13lim 4232242=+-+=+-+=+-+∞→∞→xx x x x x x x x x 8.943)3(2)13()31()12(lim )13()31()12(lim1082108210108822=-⋅=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 2211)211(1lim )21...41211(lim =-=--=++++∞→∞→∞→n n n n n n 10.212lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+→→→→x x x x x x x x x x x x x x11.01sin lim 20=→xx x (无穷小的性质)12.0arctan 1lim arctan lim ==∞→∞→x x xx x x (无穷小的性质)13.51231121lim3)3sin(lim )2)(3()3sin(lim 6)3sin(lim33323=+⋅=+⋅--=+--=---→→→→x x x x x x x x x x x x x 14.xx x x x x x xx x x x )11)(sin(lim)11)(11()11)(sin(lim11)sin(lim00-+-=-+---+-=---→→→2)011(1)11(lim )sin(lim00-=-+⋅-=-+⋅-=→→x xx x x15.2323lim 23tan lim 00==→→x x x x x x16.mn x x x )(sin )sin(lim 0→(n 、m 为正整数) ⎪⎩⎪⎨⎧<∞=>==→→mn m n mn x x x x mnx m nx , ,1 ,0lim )(sin )sin(lim 00 17.32)2(231lim 2sin 21)1(lim 1cos 1)1(lim 220231203120-=⋅-=--+=--+→→→x xx x x x x x x (等价替换)18.31301)3(lim )3(sin lim 3sin lim2202030=+=+=+=+→→→x x x x x x x x x x x x 19.413)1()(33)11(lim )31(lim )11()31(lim )1()3(lim )13(lim e ee xx x x x x x x x x x x xx x x x x x x x x ==-+=-+=-+=-+--⋅-∞→⋅∞→∞→∞→∞→ 20.2121)2()21()2(])211(lim [)211(lim )211(lim ---∞→-⋅-∞→∞→=-=-=-e xx x x x x x x x 21.1lim )1ln(lim 00==+→→x xx x x x (等价替换)注:也可用洛必达法则22.535sec 53cos 3lim 5tan 3sin lim2-==→→x x x x x x ππ23.)2(sin cos lim 41)2)(4(sin cos lim )2(sin ln lim2222ππππππ-⋅=--⋅=-→→→x x xx x x x x x x x 812141sin 2)2(cos sin lim412-=-⋅=+-⋅-=→x x x x x ππ 24.nm n m a x nnm m a x a nm nx mx a a x a x ---→→==≠--11lim )0(lim 25.xx x x xx x xx x x x x 2sec 22tan 7tan 7sec 7lim 2tan 2sec 27tan 7sec 7lim 2tan ln 7tan ln lim 2202200⋅==+++→→→ 17cos 2cos lim 2sec 7sec lim 2sec 2277sec 7lim 220220220===⋅=+++→→→xx x x x x x x x x x 26.1cos lim sin cos )1ln(lim cos 1cos )1ln(lim cos sec )1ln(lim 22022022020==+=-+=-+→→→→xx x x x x x x x x x x x x x x 27.a aa xx x x e xa x a =+=+⋅∞→∞→)1(lim )1(lim28.2111lim 11lim )1112(lim )1112(lim 12122121-=+-=--=-+--=---→→→→x x x x x x x x x x x x二、计算下列函数的导数: 1.531-=x y 2.x x e y x+=13.1004)13(-=x y 4.122-+-=x xe y5.bx e y ax sin =(b a ,为常数) 6.3cos 12e ey x x ++= 7.xxy --+=1111 8.x x x x y 3cot sin )32(252-+-+=9.)1lg()1(22x e x y x -++=- 10.)1ln(2x x y ++= 11.xy 1tan 2= 12. 322)13(+=x y13.4)sin(=++xy e y x (求y ') 14.4)sin(=++xy e y x (求y ')答案:1.2312121)53(23)53()53(21])53[(------='-⋅--='-='x x x x y2.x e x x x x x e x x e y x xx 23121)1()()(12211+-=⋅++-⋅='+'='3.99434994)13(1200)13()13(100-='-⋅-='x x x x y 4.1221222)22()12(-+--+-+-='-+-⋅='x xx xe x x x e y5.)cos sin ()(sin sin )()sin (bx b bx a e bx e bx e bx e y ax ax ax ax +='+'='='6.x x x x x x e x e x e e y -----=+-'='+'+'='sin )2(ln 20)(cos 2ln 2)()()2(cos cos 3cos 7.x xx x x x xxy --=-+---=--+=1211111111 22)1(1)1()1()1(212)1(2x x x x x x x x xx y -+-=-'----='--='8.)3(cot )(sin ])32[(252'-'+'-+='x x x x yx x x x x x x x x x x x x 3csc 3cos sin 2)32)(22(533csc cos sin 2)32()32(52422242++-++=⋅++'-+⋅-+=9.])1[lg(])1[(22'-+'+='-x e x y x10ln )1(2)1(2)1(10ln )1(1))(1()1(222222x x e x xe x x e x e x xx x x --+-='--+'++'+=----10.])1[ln(2'++='x x y2222222211])1(1211[11])1(1[11)1(11x x xx x x x x x x x x +='+⋅++++='++++='++++=11.)1(1sec 2ln 2)1(1sec 2ln 2)1(tan 2ln 2)2(221tan 21tan 1tan1tanxx x x x y x x xx-⋅⋅='='⋅='='12.3122312322)13(4)13()13(32])13[(--+='+⋅+='+='x x x x x y13.4)sin(=++xy e y x解:方程两边同时对x 求导xyxy xy xy xy xy xe y x ye y x y ye y x xe y x y y x y e y y x xy e y x y x ++++-='∴++-=++'='+⋅+'+⋅+='⋅+'+⋅+)cos()cos( ])[cos(])[cos( 0)()1()cos( 0)()()cos(14.(与13同)三、确定下列函数的单调区间: 1.7186223---=x x x y函数在]1,(--∞、),3[+∞内单调递增,在]3,1[-内单调递减。
一元函数微分学练习题(答案)
一元函数微分学练习题答案一、计算下列极限:1.9325235lim222-=-+=-+→x x x 2.01)3(3)3(13lim 22223=+-=+-→x x x 3.x x x 11lim--→)11(lim)11()11)(11(lim 00+--=+-+---=→→x x xx x x x x x 211011111l i m-=+--=+--=→x x4.0111111lim )1)(1()1(lim 112lim 121221=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21)23()124(lim 2324lim 202230=++-=++-→→x x x x x xx x x x x x6.x t x tx t x x t x t x t x t t t 2)2(lim ))((lim )(lim00220-=--=--+-=--→→→ 7.00010013111lim 13lim 4232242=+-+=+-+=+-+∞→∞→xx x x x x x x x x 8.943)3(2)13()31()12(lim )13()31()12(lim1082108210108822=-⋅=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 2211)211(1lim )21...41211(lim =-=--=++++∞→∞→∞→n n n n n n 10.212lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+→→→→x x x x x x x x x x x x x x11.01sin lim 20=→xx x (无穷小的性质)12.0arctan 1lim arctan lim ==∞→∞→x x xx x x (无穷小的性质)13.51231121lim3)3sin(lim )2)(3()3sin(lim 6)3sin(lim33323=+⋅=+⋅--=+--=---→→→→x x x x x x x x x x x x x 14.xx x x x x x xx x x x )11)(sin(lim)11)(11()11)(sin(lim11)sin(lim00-+-=-+---+-=---→→→2)011(1)11(lim )sin(lim00-=-+⋅-=-+⋅-=→→x xx x x15.2323lim 23tan lim 00==→→x x x x x x16.mn x x x )(sin )sin(lim 0→(n 、m 为正整数) ⎪⎩⎪⎨⎧<∞=>==→→mn m n mn x x x x mnx m nx , ,1 ,0lim )(sin )sin(lim 00 17.32)2(231lim 2sin 21)1(lim 1cos 1)1(lim 220231203120-=⋅-=--+=--+→→→x xx x x x x x x (等价替换)18.31301)3(lim )3(sin lim 3sin lim2202030=+=+=+=+→→→x x x x x x x x x x x x 19.413)1()(33)11(lim )31(lim )11()31(lim )1()3(lim )13(lim e ee xx x x x x x x x x x x xx x x x x x x x x ==-+=-+=-+=-+--⋅-∞→⋅∞→∞→∞→∞→ 20.2121)2()21()2(])211(lim [)211(lim )211(lim ---∞→-⋅-∞→∞→=-=-=-e xx x x x x x x x 21.1lim )1ln(lim 00==+→→x xx x x x (等价替换)注:也可用洛必达法则22.535sec 53cos 3lim 5tan 3sin lim2-==→→x x x x x x ππ23.)2(sin cos lim 41)2)(4(sin cos lim )2(sin ln lim2222ππππππ-⋅=--⋅=-→→→x x xx x x x x x x x 812141sin 2)2(cos sin lim412-=-⋅=+-⋅-=→x x x x x ππ 24.nm n m a x nnm m a x a nm nx mx a a x a x ---→→==≠--11lim )0(lim 25.xx x x xx x xx x x x x 2sec 22tan 7tan 7sec 7lim 2tan 2sec 27tan 7sec 7lim 2tan ln 7tan ln lim 2202200⋅==+++→→→ 17cos 2cos lim 2sec 7sec lim 2sec 2277sec 7lim 220220220===⋅=+++→→→xx x x x x x x x x x 26.1cos lim sin cos )1ln(lim cos 1cos )1ln(lim cos sec )1ln(lim 22022022020==+=-+=-+→→→→xx x x x x x x x x x x x x x x 27.a aa xx x x e xa x a =+=+⋅∞→∞→)1(lim )1(lim28.2111lim 11lim )1112(lim )1112(lim 12122121-=+-=--=-+--=---→→→→x x x x x x x x x x x x二、计算下列函数的导数: 1.531-=x y 2.x x e y x+=13.1004)13(-=x y 4.122-+-=x xe y5.bx e y ax sin =(b a ,为常数) 6.3cos 12e ey x x ++= 7.xxy --+=1111 8.x x x x y 3cot sin )32(252-+-+=9.)1lg()1(22x e x y x -++=- 10.)1ln(2x x y ++= 11.xy 1tan 2= 12. 322)13(+=x y13.4)sin(=++xy e y x (求y ') 14.4)sin(=++xy e y x (求y ')答案:1.2312121)53(23)53()53(21])53[(------='-⋅--='-='x x x x y2.x e x x x x x e x x e y x xx 23121)1()()(12211+-=⋅++-⋅='+'='3.99434994)13(1200)13()13(100-='-⋅-='x x x x y 4.1221222)22()12(-+--+-+-='-+-⋅='x xx xe x x x e y5.)cos sin ()(sin sin )()sin (bx b bx a e bx e bx e bx e y ax ax ax ax +='+'='='6.x x x x x x e x e x e e y -----=+-'='+'+'='sin )2(ln 20)(cos 2ln 2)()()2(cos cos 3cos 7.x xx x x x xxy --=-+---=--+=1211111111 22)1(1)1()1()1(212)1(2x x x x x x x x xx y -+-=-'----='--='8.)3(cot )(sin ])32[(252'-'+'-+='x x x x yx x x x x x x x x x x x x 3csc 3cos sin 2)32)(22(533csc cos sin 2)32()32(52422242++-++=⋅++'-+⋅-+=9.])1[lg(])1[(22'-+'+='-x e x y x10ln )1(2)1(2)1(10ln )1(1))(1()1(222222x x e x xe x x e x e x xx x x --+-='--+'++'+=----10.])1[ln(2'++='x x y2222222211])1(1211[11])1(1[11)1(11x x xx x x x x x x x x +='+⋅++++='++++='++++=11.)1(1sec 2ln 2)1(1sec 2ln 2)1(tan 2ln 2)2(221tan 21tan 1tan1tanxx x x x y x x xx-⋅⋅='='⋅='='12.3122312322)13(4)13()13(32])13[(--+='+⋅+='+='x x x x x y13.4)sin(=++xy e y x解:方程两边同时对x 求导xyxy xy xy xy xy xe y x ye y x y ye y x xe y x y y x y e y y x xy e y x y x ++++-='∴++-=++'='+⋅+'+⋅+='⋅+'+⋅+)cos()cos( ])[cos(])[cos( 0)()1()cos( 0)()()cos(14.(与13同)三、确定下列函数的单调区间: 1.7186223---=x x x y函数在]1,(--∞、),3[+∞内单调递增,在]3,1[-内单调递减。
高等数学一元函数微积分学题目与答案A
三、一元函数积分学练习题(A)一.选择题1. =+òdx x )1(cos ()Cx x A ++sin .Cx x B ++-s i n .Cx x C ++c o s .Cx xx D ++-cos .2. =òdx x 41()CxA +-331.CxB +331.CxC +31.CxD +-31.3. 已知函数2(1)x +为()f x 的一个原函数,则下列函数中()f x 的原函数是()A 21x -B 21x +C 22x x -D 22x x+4. 已知函数()f x 在(,)-¥+¥内可导,且恒有()f x ¢=0,又有(1)1f -=,则函数()f x = ()A 1 B -1 C 0 D x5. 若函数()f x 的一个原函数为ln x ,则一阶导数()f x ¢=()A 1xB 21x-C ln xD ln x x6.定积分ò1221ln xdx x 值的符号为().A 大于零.B 小于零.C 等于零.D 不能确定7.曲线)2)(1(--=x x x y ,x 轴所围成的图形的面积可表示为().A ò--10)2)(1(dx x x x ;.B ò--20)2)(1(dx x x x ;.C òò-----2110)2)(1()2)(1(dx x x x dx x x x ;.D òò--+--2110)2)(1()2)(1(dxx x x dx x x x 8. 已知dt t x F xò+=21)(,则=)('x F ()212.x x A + 11.2++x B 21.x C + 11.2-+x D 9. =ò-dx x 115( ) 2.-A 1.-B 0.C D .1 10.若()211xx F -=¢,()231p=F ,则()=x F ( ) A.x arcsin B. c x +arcsin C.p +x arccos D. p +x arcsin二.填空题二.填空题1. 1. 写出下列函数的一个原函数写出下列函数的一个原函数写出下列函数的一个原函数 (1) 52x 的原函数为的原函数为 (2) cos x -的原函数为的原函数为(3) 12t 的原函数为的原函数为 (4) 221x--的原函数为的原函数为2. 在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立 (1)dx = (51)d x -;(2)xdx = 2(2)d x -;(3)3x dx = 4(32)d x +; (4)2xe dx -= 2()xd e-;(5)219dx x=+ (a r c t a n 3d x ;(6)212dx x=+ (a r c t a n 2)d x ; (7)2(32)x dx -= 3(2)d x x -; (8)dx x= (3l n )d x ;(9)21dx x=- (2a r c si n d x -; (10)21xdx x=- 21d x -. 3. 若()1xf e x ¢=+,则()f x = 4. 根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小(1)120x dx ò13x d x ò(2)10xe dx ò1(1)x dx +ò5. _________3=òdx e x 6. __________1=òdx ex 7. ò+dx x xln 1=_____________ 8. 已知一阶导数已知一阶导数2(())1f x dx x ¢=+ò,则(1)f ¢= 9. 当x = 时,函数()ò-=xt dt te xI 02有极值. 10. 设()ïîïíì>£+=1,211,12x x x x xf ,()ò20dx x f = 11. 已知ò=xdt t xf y0)(,则=dx dy 12. dt t t x x x )1sin (1lim 030-ò®=三.计算题三.计算题 1.不定积分的计算不定积分的计算(1)1x x e dx e +ò (2)12x e dx x ò(3)ln dx x x ò(4)211x dx x --ò (5)3431xdx x -ò(6)12dx x -ò(7)223xdx x-ò(8)3xa dx ò(9)sin tdt tò (10)2cos ()x dx w j +ò(11)2cos ()sin()x x dx w j w j ++ò(12)22(arcsin )1dx x x-ò(13)3tan secx xdxò(14)sec(sec tan)x x x dx-ò(15)11cos2dxx+ò(16)2(4)x x dx-ò(17)32(32)x dx-ò(18)221dxx x-ò(19)1231dxx-+ò(20)sinx xdxò(21)xxe dx-ò(22)arcsin xdxò(23)2tte dt -ò(24)2arcsin 1xdx x-ò(25)sin cos xxe dx ò(26)1cos sin x dx x x++ò(27)dxx 43-ò (28)dx x 122-ò(29)dx xxe e --ò (30)e32x dx +ò(31)()232xx dx+ò (32)1252+òx dx(33)sin5xdxò(34)cos25xdxò(35)()()244522x dxx x+++ò(36)x dxx23412-ò(37)sin cossin cosx xx xdx+-ò3(38)dxx x(arcsin)221-ò(39)dxx x222-+ò(40)sin cossinx xxdx14+ò(41)2x xe dxò(42)23523x xx dx ×-×ò2.定积分的计算定积分的计算(1)1e xx dx-ò(2)e1lnx xdxò(3)41ln xdxxò(4)324sinxdxxppò(5)220e cosxxdxpò(6)221logx xdxò(7)π2(sin)x x dxò(8)e1sin(ln)x dxò(9)121ln(1)x x dx-++ò(10)41xdxò(11)dx xx x )1(241+ò(12)dx xxò+1241 (13)dx x ò+2241 (14)dx x x ò40tansec p(15)xdxò242cotpp(16)ò--112d x x x(17)dx ò2121)-(3x 1 (18)dx ò+3ln 0x xe 1 e(19)dxx xò-123 (20)ò1arctan xdx x3.反常积分的计算反常积分的计算(1)2048dx x x +¥++ò(2)21arctan xdx x +¥ò(3)101(1)dx x x -ò(4)1ln edx x x ò4. 4. 比较下列各对积分的大小:比较下列各对积分的大小:比较下列各对积分的大小:(1)ò4arctan pxdx 与ò402)(arctan pdx x(2)ò43ln xdx 与ò432)(ln dx x(3)dx x ò-+1141与dxx ò-+112)1((4)ò-2)cos 1(pdx x 与ò2221pdx x四.综合题四.综合题 1.求导数求导数(1)201xdt dt dx +ò (2)5ln 2xtdt e dt dx -ò(3)cos 2cos()xd t dt dx p ò (4)sin xd tdt dx tpò (0x >). 2. 验证下列等式验证下列等式(1)2311d 2-=-+òx x C x ; (2)(sin cos )cos sin x x dx x x C+=-++ò. 3. 求被积函数()f x . (1) 2()ln(1)f x dx x x C =+++ò;(2)21()1f x dx C x=++ò. 4 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =- (2) xy e =与0x =及y e =(3) 24y x =-与0y =(4) 2y x =与y x =及2y x =5.5. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积: (1) ,1,4,0y x x x y ====,绕x 轴;轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴; (3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴.(5). 32y x =,x=4 ,绕y 轴.轴.6. 当k 为何值时,反常积分+2(ln )k dxx x ¥ò收敛?当k 为何值时,这反常积分发散? 7. 设1321()()1f x x f x dx x=++ò,求1()f x dx ò.8. 求函数2()(1)xtf x t e dt -=-ò的极值.的极值.9. 设()f x 在[],a b 上连续,且()1b af x dx =ò,求()baf a b x dx +-ò.10. 设曲线通过点(0,1),且其上任一点(,)x y 处的切线斜率为xe -,求此曲线方程.11. 设3()1xxf e e ¢=+,且(0)1f =,求()f x . 12. 设()ïîïí죣=其它,00,sin 21p x x xf ,求()()ò=x dt t f x 0j . 13. 设()ïïîïïíì<+³+=时当时当0,110,11x ex x x f x ,求()ò-21dxx f . 14. 已知222(sin )cos tan 01f x x x x ¢=+<< ,求()f x . 三、一元函数积分学 练习题( A ) 参考答案 一.选择题一.选择题1. A2. A3. D4. A5. B6. B7. C8. C9. C 9. C 因为因为5x 为奇函数为奇函数 10. D 10. D二.填空题二.填空题1. 1. 写出下列函数的一个原函数写出下列函数的一个原函数写出下列函数的一个原函数(1) 613x (2) sin x - (3) t (4) 2arcsin x -2. 2. 在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立 (1)51;(2)21-;(3)121;(4)21-;(5)31;(6)21;(7)1- (8)31;(9)1-;(1010))1- 3. ()(1ln )ln f x x dx x x C=+=+ò4. 4. 根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小 (1)112300x dx x dx>òò;∵ 当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³,又2x3x ,所以112300x dx x dx >òò(2)110(1)xe dx x dx >+òò;令()1,()1xxf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>,从而()(0)0f x f ³=,说明1xe x ³+,所以1100(1)xe dx x dx >+òò5. C e x+33 6. C ex+-- 7. c x x ++2ln 21ln 8.229. 0. 10.38 11. )()(0x xf dt t f x +ò 12. 181- 三.计算题三.计算题1.1.不定积分的计算不定积分的计算不定积分的计算(1)1(1)ln(1)11xx xx x e dx d e e C e e =+=++++òò (2)11121xx xedx e d e C x x=-=-+òò (3)ln ln ln ln ln dx d x x C x x x ==+òò (4)211(1)ln 11(1)(1)1x x d x dx dx x C x x x x --+===++-+-+òòò(5)3444444333(1)3ln 1141414x dx d x dx x C x x x -==-=--+---òòò(6)1(12)1ln 12122122dx d x x C x x -=-=--+--òò (7)22222211(23)123263232323x dx d x dx x C xx x -==-=--+---òòò (8)33311(3)33ln x x xa dx a d x a C a ==+òò(9)sin 2sin 2cos t dt td t t C t ==-+òò(1010))21cos(22)cos ()2x x dxdx w j w j +++=òò 11 cos(22)(22)24x x d x w j w j w =+++ò11sin(22)24x x C w j w=+++ (1111))221cos ()sin()cos ()cos()x x dx x d x w j w j w j w j w ++=-++òò 31cos ()3x C w j w=-++(1212))222arcsin 1(arcsin )arcsin (arcsin )1dxd xC x xx x==-+-òò(1313))32231tan sectan sec (sec 1)sec sec sec 3x xdx xd x x d x x x C ==-=-+òòò (1414))2sec (sec tan )(sec sec tan )tan sec x x x dx x x x dx x x C-=-=-+òò(1515))221111sec tan 1cos 22cos 22dx dx xdx x C x x ===++òòò (1616))515173222222228(4)(4)473x x dx x x dx x dx x dx x x C -=-=-=-+òòòò(1717))33522211(32)(32)(32)(32)25x dx x d x x C -=---=--+òò (1818)令)令sin ()22x t t p p=-<<,则cos dx tdt =,所以,所以22222cos 1csc cot sincos 1dxtdtx tdt t C C t txxx-===-+=-+×-òòò(1919)令)令23x t -=,则23,2t x dx tdt +==,所以所以11(1)ln(1)11231tdt dxdt t t C t t x ==-=-++++-+òòò23ln(231)x x C =---++(2020))sin cos cos cos cos sin x xdx xd x x x xdx x x x C=-=-+=-++òòò(2121))xxxxxxxe dxxdexee dxxeeC ------=-=-+=--+òòò(2222))222111arcsin arcsin arcsin (1)211xdx x x x dx x x d x xx=-×=+---òòò2arcsin 1x x x C =+-+ (2323))2222221111122224ttttttte dt tdetee dt tee C ------=-=-+=--+òòò(2424))22arcsin 1arcsin arcsin arcsin21x dx xd x x C x ==+-òò(2525))sin sin sin cossinx x x xe dx e dx e C==+òò(2626))1cos (sin )ln sin sin sin x d x x dx x x C x x x x++==++++òò(2727))dx x 43-ò=1(43)1ln 434434d x x C x -=-+-ò。
一元函数微分微分学练习题
x 4 3 ( A B( x 1)) C ,求常数 A, B, C 。 ( x 1) 2
6.利用 1 x 的 2 阶 Maclaurin 公式,计算 62 的近似值,并估计这一近似的误 差。 1 x2 x3 7.估计 e x 1 x , | x | 的绝对误差。 4 2 6 8.利用 Taylor 公式计算极限:
一元函数微分学练习题
§1 微分与导数的概念
1.半径为 5cm 的圆面,如果半径增加 0.1cm,试用求微分的方法计算圆面积会 增加多少?如果半径再增加 0.1cm,圆面积会比原来增加多少? 2.求微分 dy : (1) y ln( x 1) ; (2) y sin x 。 3.设函数 f 在 x a 处可导,且 f (a) 0 ,计算下列极限
d2y : dx 2 (2) y ln( x y) ; (4) x y e xy 0 。
x t 2 2t , 5.求曲线 在 (1, 2) 处的切线方程。 3 y t 3t dy x 2t t , 6.求由参数方程 所确定的函数 y f ( x) 在 t 0 时的导数 。 2 dx y 5t 4t t
(10) lim
(13) lim
x ln( x 2e x ) ln( x e x )
1 x
2
x
x (14) lim x arcsin x 2 1 x2
(16) lim
h0
;
(1 x) e ; x 1 (17) lim 2 cot 2 x ; x0 x
n n
5.设 f ( x) 2 ,试计算 f (1) , f (1) ,由此说明 f 在点 x 1 处的可导性。 6.求曲线 y e x 上的点 1, e 处的切线方程和法线方程。
一元函数微分学典型例题
一元函数微分学典型例题1. 有关左右极限题求极限⎥⎥⎦⎤⎢⎢⎣⎡+++→x x sin e e lim x x x 41012 ● 根据左右极限求极限,● 极限xx e lim 1→,x x sin lim x 0→,x tan lim x 2π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 10→都不存在, ●A )x (f lim A )x (f lim )x (f lim x x x =⇔==∞→-∞→+∞→● 【 1 】2. 利用两个重要极限公式求1∞型极限xsin x )x (lim 2031+→● 0→)x (ϕ,e ))x (lim()x (=+ϕϕ11●A )x (f lim =0→)x (ϕ,A )x (f )x (e ]))x (lim[(=+ϕϕ11● 【6e 】3. 等价无穷小量及利用等价代换求极限 当0x +→(A)1-(B) ln(C) 1.(D) 1-.● 等价无穷小定义:如果1=αβlim,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)nx x ax a xx x x x x x xx e x x x x x nx x ≈-+≈-≈-+≈-≈---+≈-≈+≈≈≈≈1111121161111123ln )(cos sin )ln(arctan tan sin αα● 当0→)x (ϕ时,)x (sin ϕ∽)x (ϕ,11-+n)x (ϕ∽n)x (ϕ∽∽● 【 B 】4. 利用单调有界准则求极限设数列{}n x 满足n n x sin x ,x =<<+110π。
证明:极限n n x lim ∞→存在,计算11nxn n n x x lim ⎪⎪⎭⎫⎝⎛+∞→● 利用单调有界准则球数列或者函数极限的步骤:1。
证明数列或函数单调;2。
证明数列或函数是有界;3。
等式取极限求出极限。
● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递增有上界数列必有极限。
《高等数学(一元函数微分学)》例题解析【参考答案】
《高等数学(一元函数微分学)》例题解析【参考答案】1. ⑴连续; ⑵ dxx f x )1(1'2-; ⑶ 41π+; ⑷ 1>a ; ⑸ 2-e ; ⑹ ()t t t t sin cos -; ⑺()!1--n 。
2. ⑴ 解:因为0(0)=f ,2(0)='f所以202020tan cos -1lim (0))tan cos -1()cos -(0)](1-)cos -1([lim tan )cos -1(limx xf x x x f x f x x f x x x →→→'==1212=⋅= ⑵ dx xxexx x x ]11)2([21222+++++;⑶ ]ln cot -)ln 2-sin ln (1[)sin (ln x x x x xx x x ⋅; ⑷ 解:tt dt dx sin cos =,t e t e dt dy y ysin -1cos =,t e t e dt dx dt dy dx dy y y sin -1sin == ⑸ 解:方程1=-y xe y 两边同时对x 求导,得 0--=''y y e y x e y当0=x 时,1=y ,所以e y ='(0);在方程0--=''y ye y x ey 两边继续对x 求导,得0)(-2-2=''+'''''y y y e y x e y x y e y ,所以22(0)e y =''⑹ 解:1-1-2-12312x x x x y =+-=,1n n(n))2-(!)1(-)2-1(+=x n x ,1n n(n))1-(!)1(-)1-1(+=x n x , 所以])1(1-)2(1[!(-1)11n )(++=n n n x-x-n y。
3. 解:2112t dt dx ++=,2123-t tdt dy ++=,3223-3-22++==t t t dt dx dt dy dx dy , 当3=x 时,0=t ,2=y ,故1-|3==x dxdy,因此曲线在3=x 处的切线方程为 )3--(2-x y =,即05=-+y x 。
考研数学一(一元函数积分学)模拟试卷9(题后含答案及解析)
考研数学一(一元函数积分学)模拟试卷9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设F(x)=等于( )A.a2.B.a2f(a).C.0.D.不存在.正确答案:B解析:利用洛必达法则.因故选B.知识模块:一元函数积分学2.若连续函数f(x)满足关系式f(x)=+ln2,则f(x)等于( )A.exln2.B.e2xxln2.C.ex+ln2.D.e2x+ln2.正确答案:B解析:在等式f(x)=∫02xf()dt+ln2两端对x求导,得f’(x)=2f(x),则=2dx,lnx=2x+C1,即f(x)=Ce2x.由题设知f(0)=ln2,得C=ln2,因此f(x)=e2xln2.选B.知识模块:一元函数积分学3.I=∫01ln2xdx是( )A.定积分且值为.B.定积分且值为.C.反常积分且发散.D.反常积分且值为.正确答案:B解析:被积函数f(x)=xln2x虽在x=0无定义,但=0,若补充定义f(0)=0,则f(x)在[0,1]连续,因而∫01xln2xdx是定积分.故选B.知识模块:一元函数积分学4.数列极限=( )A.B.C.D.正确答案:B解析:由已知知识模块:一元函数积分学5.设f(x)连续,且∫01f(xt)dt=f(x)+1,则f(x)等于( )A.1+.B.2+Cxsinx.C.2+Cx.D.2+x.正确答案:C解析:令xt=u,则du=x.dt,那么代入通解公式,解得y=2+Cx.知识模块:一元函数积分学6.若连续函数满足关系式f(x)=+e,则f(x)=( )A.B.C.D.正确答案:C解析:由题意f(1)=∫11f(t2)dt+e,所以f(1)=e.知识模块:一元函数积分学7.设I1=,则( )A.I1>I2>1.B.1>I1>I2.C.I2>I1>1.D.1>I2>I1正确答案:B解析:知识模块:一元函数积分学8.积分I=( )A.B.C.D.正确答案:B解析:这是无界函数反常积分,x=±1为瑕点,与求定积分一样,作变量替换x=sint,其中t<,故选B.知识模块:一元函数积分学填空题9.=_________.正确答案:一4π解析:知识模块:一元函数积分学10.已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=_________正确答案:+C,C为任意常数解析:对等式∫f’(x3)dx=x3+C两边求导,得f’(x3)=3x2.令t=x3,C 为任意常数.知识模块:一元函数积分学11.=_________.正确答案:解析:知识模块:一元函数积分学12.=_________.正确答案:解析:令x一1=sint,则知识模块:一元函数积分学13.=_________.正确答案:解析:令t=x一1得知识模块:一元函数积分学14.设a>0,则I==_________。
一元函数微分学练习题(答案)
一元函数微分学练习题答案一、计算下列极限:1.9325235lim222-=-+=-+→x x x 2.01)3(3)3(13lim 22223=+-=+-→x x x 3.x x x 11lim--→)11(lim)11()11)(11(lim 00+--=+-+---=→→x x xx x x x x x 211011111l i m-=+--=+--=→x x4.0111111lim )1)(1()1(lim 112lim 121221=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21)23()124(lim 2324lim 202230=++-=++-→→x x x x x xx x x x x x6.x t x tx t x x t x t x t x t t t 2)2(lim ))((lim )(lim00220-=--=--+-=--→→→ 7.00010013111lim 13lim 4232242=+-+=+-+=+-+∞→∞→xx x x x x x x x x 8.943)3(2)13()31()12(lim )13()31()12(lim1082108210108822=-⋅=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 2211)211(1lim )21...41211(lim =-=--=++++∞→∞→∞→n n n n n n 10.212lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+→→→→x x x x x x x x x x x x x x11.01sin lim 20=→xx x (无穷小的性质)12.0arctan 1lim arctan lim ==∞→∞→x x xx x x (无穷小的性质)13.51231121lim3)3sin(lim )2)(3()3sin(lim 6)3sin(lim33323=+⋅=+⋅--=+--=---→→→→x x x x x x x x x x x x x 14.xx x x x x x xx x x x )11)(sin(lim)11)(11()11)(sin(lim11)sin(lim00-+-=-+---+-=---→→→2)011(1)11(lim )sin(lim00-=-+⋅-=-+⋅-=→→x xx x x15.2323lim 23tan lim 00==→→x x x x x x16.mn x x x )(sin )sin(lim 0→(n 、m 为正整数) ⎪⎩⎪⎨⎧<∞=>==→→mn m n mn x x x x mnx m nx , ,1 ,0lim )(sin )sin(lim 00 17.32)2(231lim 2sin 21)1(lim 1cos 1)1(lim 220231203120-=⋅-=--+=--+→→→x xx x x x x x x (等价替换)18.31301)3(lim )3(sin lim 3sin lim2202030=+=+=+=+→→→x x x x x x x x x x x x 19.413)1()(33)11(lim )31(lim )11()31(lim )1()3(lim )13(lim e ee xx x x x x x x x x x x xx x x x x x x x x ==-+=-+=-+=-+--⋅-∞→⋅∞→∞→∞→∞→ 20.2121)2()21()2(])211(lim [)211(lim )211(lim ---∞→-⋅-∞→∞→=-=-=-e xx x x x x x x x 21.1lim )1ln(lim 00==+→→x xx x x x (等价替换)注:也可用洛必达法则22.535sec 53cos 3lim 5tan 3sin lim2-==→→x x x x x x ππ23.)2(sin cos lim 41)2)(4(sin cos lim )2(sin ln lim2222ππππππ-⋅=--⋅=-→→→x x xx x x x x x x x 812141sin 2)2(cos sin lim412-=-⋅=+-⋅-=→x x x x x ππ 24.nm n m a x nnm m a x a nm nx mx a a x a x ---→→==≠--11lim )0(lim 25.xx x x xx x xx x x x x 2sec 22tan 7tan 7sec 7lim 2tan 2sec 27tan 7sec 7lim 2tan ln 7tan ln lim 2202200⋅==+++→→→ 17cos 2cos lim 2sec 7sec lim 2sec 2277sec 7lim 220220220===⋅=+++→→→xx x x x x x x x x x 26.1cos lim sin cos )1ln(lim cos 1cos )1ln(lim cos sec )1ln(lim 22022022020==+=-+=-+→→→→xx x x x x x x x x x x x x x x 27.a aa xx x x e xa x a =+=+⋅∞→∞→)1(lim )1(lim28.2111lim 11lim )1112(lim )1112(lim 12122121-=+-=--=-+--=---→→→→x x x x x x x x x x x x二、计算下列函数的导数: 1.531-=x y 2.x x e y x+=13.1004)13(-=x y 4.122-+-=x xe y5.bx e y ax sin =(b a ,为常数) 6.3cos 12e ey x x ++= 7.xxy --+=1111 8.x x x x y 3cot sin )32(252-+-+=9.)1lg()1(22x e x y x -++=- 10.)1ln(2x x y ++= 11.xy 1tan 2= 12. 322)13(+=x y13.4)sin(=++xy e y x (求y ') 14.4)sin(=++xy e y x (求y ')答案:1.2312121)53(23)53()53(21])53[(------='-⋅--='-='x x x x y2.x e x x x x x e x x e y x xx 23121)1()()(12211+-=⋅++-⋅='+'='3.99434994)13(1200)13()13(100-='-⋅-='x x x x y 4.1221222)22()12(-+--+-+-='-+-⋅='x xx xe x x x e y5.)cos sin ()(sin sin )()sin (bx b bx a e bx e bx e bx e y ax ax ax ax +='+'='='6.x x x x x x e x e x e e y -----=+-'='+'+'='sin )2(ln 20)(cos 2ln 2)()()2(cos cos 3cos 7.x xx x x x xxy --=-+---=--+=1211111111 22)1(1)1()1()1(212)1(2x x x x x x x x xx y -+-=-'----='--='8.)3(cot )(sin ])32[(252'-'+'-+='x x x x yx x x x x x x x x x x x x 3csc 3cos sin 2)32)(22(533csc cos sin 2)32()32(52422242++-++=⋅++'-+⋅-+=9.])1[lg(])1[(22'-+'+='-x e x y x10ln )1(2)1(2)1(10ln )1(1))(1()1(222222x x e x xe x x e x e x xx x x --+-='--+'++'+=----10.])1[ln(2'++='x x y2222222211])1(1211[11])1(1[11)1(11x x xx x x x x x x x x +='+⋅++++='++++='++++=11.)1(1sec 2ln 2)1(1sec 2ln 2)1(tan 2ln 2)2(221tan 21tan 1tan1tanxx x x x y x x xx-⋅⋅='='⋅='='12.3122312322)13(4)13()13(32])13[(--+='+⋅+='+='x x x x x y13.4)sin(=++xy e y x解:方程两边同时对x 求导xyxy xy xy xy xy xe y x ye y x y ye y x xe y x y y x y e y y x xy e y x y x ++++-='∴++-=++'='+⋅+'+⋅+='⋅+'+⋅+)cos()cos( ])[cos(])[cos( 0)()1()cos( 0)()()cos(14.(与13同)三、确定下列函数的单调区间: 1.7186223---=x x x y函数在]1,(--∞、),3[+∞内单调递增,在]3,1[-内单调递减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案
一、填空题(每题3分,共15分) 1.]3,1[]1,3[⋃--; 2.
2
12
-x ; 3.2
2π-
+=x y ; 4 .8-e ;5.)1(1
x e
x ++
二、选择题(每题4分,共20分)
三、求极限(每题7分,共21分)
1.1
1
3
2
32lim
++∞
→++n n n n n 3322132lim
+⎪⎭
⎫
⎝
⎛+⎪⎭⎫
⎝⎛=∞
→n
n
n 3
1=
2.)
ln(lim
sin x x e
e
x x
x 212
+-→=3
sin sin 0
2)
1(lim
x
e
e
x
x x x --→=3
2sin lim
x
x x x -→ =2
6cos 1lim
x
x x -→ =
12
1
2.原式=)tan
11(
lim 2
2
x
x
x -
→=4
2
2
tan
lim
x
x x x -→=x
x
x x +→tan lim
3
tan lim
x
x
x x -→
=22
2
31
sec
lim
x
x x -→=
2
20
tan lim
3
2x
x
x →=
3
2
四、求解下列各题(每题8分,共32分) 1.
)(t f dt
dx ''=,
)()()(t f t f t t f dt
dy '-''+'=)(t f t ''=
=dx
dy t
=2
2
dx
y d dt
dx t dt
d /
)(=
)
(1t f ''
2. 两边微分得 )())(())((2
2x d y xf d x f y d =+
x d x dy y f x y dxf dx x f y x ydyf 2)()()()(22
='++'+
dx y f x f y x dy y f x x yf )]()(2[)]()(2[2
-'-='+
)
()(2)
()(22
y f x x yf y f x f y x dx
dy '+-'-=
3.两边对x 求导 0')cos('=ππ-+y y xy y (1) 把)1,0(代入得 π
-===1'
1
y x y
对(1)式两边在求导 0")cos()sin("'222=ππ-ππ++y y y y xy y
代入)1,0(及π
-===1'
1
y x y 得 2
1
2
π
===y x y "
4.函数的定义域为),0()0,(+∞-∞ 3
2'x
x y --=
,4
62"x
x y +=
令0"=y 得3-=x 以及"y 不存在的点0=x 列表讨论如下:
曲线的凸区间为:)3,(--∞,凹区间为:),0()0,3(+∞- 拐点为:)9
2,3(-
-
又01lim
2
=+∞
→x
x x ,∞=+→2
1lim
x
x x
所以曲线有水平渐近线0=y ,铅直渐近线0=x 五、证明题(每题6分,共12分)
1.设)1ln()1(1)(x x e x f x
++--=,0)0(=f
1)1ln()(-+-='x e x f x
,0)0('=f
1
1)(+-
=''x e x f x
当0>x 时,0)(>''x f 得,)(x f '在),0[+∞为单调增加函
数,)0()(f x f '>'0=
所以)(x f 在),0[+∞为单调增加函数,)0()(f x f >0= 即:)1ln()1(1x x e
x
++>-
2.构造辅助函数x x f x F sin )()(=, 显然)(x f 在],0[π上连续,在),0(π内可导,且
0)()0(==πf f
由罗尔定理,),(b a ∈ξ∃,使0)(='ξf x x f x x f x f c o s )(s i n )(')(+=' ξξξξξcos )(sin )(')(f f f +='0=
即 ξξξt a n )()(f f '-=。