高中数学:第2章 数列 §2.2-第2课时
高中数学必修5课件:第2章2-1-2数列的性质和递推关系
n 3n+1
为递
增数列.
数学 必修5
第二章 数列
方法二:∵n∈N*,∴an>0,
n+1
∵
an+1 an
=
3n+4 n
=
n+13n+1 3n+4n
=
3n2+4n+1 3n2+4n
=1+
1 3n2+4n
3n+1
>1,∴an+1>an,∴数列3nn+1为递增数列.
数学 必修5
第二章 数列
方法三:令f(x)=3x+x 1(x≥1),则 f(x)=133x3+x+1-1 1=131-3x+1 1, ∴函数f(x)在[1,+∞)上是增函数, ∴数列3nn+1是递增数列.
数学 必修5
第二章 数列
(2)∵bn=aan+n 1,且a1=1,a2=2,a3=3,a4=5,a5=8, ∴b1=aa12=12,b2=aa23=23,b3=aa34=35,b4=aa45=58. 故b1=12,b2=23,b3=35,b4=58.
数学 必修5
第二章 数列
数列的单调性问题
已知数列{an}的通项公式为an=
(1)写出此数列的前5项;
(2)通过公式bn=
an an+1
构造一个新的数列{bn},写出数列{bn}
的前4项.
数学 必修5
第二章 数列
解析: (1)∵an=an-1+an-2(n≥3),且a1=1,a2=2, ∴a3=a2+a1=3,a4=a3+a2=3+2=5, a5=a4+a3=5+3=8. 故数列{an}的前5项依次为 a1=1,a2=2,a3=3,a4=5,a5=8.
4分 6分 8分
10分
12分
数学 必修5
第二章 数列
2018_2019版高中数学第二章数列2.1.2数列的递推公式课件新人教A版必
������������ 2������+3
=
(2������+53)(������2������+3)<0
恒成立.因为(2n+5)(2n+3)>0,
所以必有 3k<0,故 k<0.
反思感悟判断数列的增减性,一般是将其转化为比较相邻两项的大 小,常用的方法有作差法、作商法,作差法判断数列增减性的步骤 为:(1)作差;(2)变形;(3)定号;(4)结论.作商法适用于各项都是同号的 数列,且应比较比值与1的大小关系.
解(1)由 an+1=an+n(n∈N*),得 an+1-an=n(n∈N*),所以 a2-a1=1,a3-a2=2,a4-a3=3,…,an-an-1=n-1, 以上各式相加,得 (a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=1+2+3+…+(n-1),
即 an-a1=������(���2���-1).因为 a1=1,所以 an=������(���2���-1)+1=������2-2������+2.故数列{an}的通
3.通项公式和递推公式的区别:
通项公式直接反映了an与n之间的关系,即已知n的值,即可代入通项 公式求得该项的值an;递推关系则是间接反映数列的式子,它是数列 任意两个(或多个)相邻项之间的推导关系,要求an,需将前面的各项 依次求出.
4.数列的表示方法:数列的表示方法有通项公式法、图象法、列表
法、递推公式法.
2.数列作为特殊的函数,也具有单调性,对于递减数列
1 ������
,显然满足
a1>a2>…>an>an+1>…,反之,若数列满足 an>an+1,数列一定是递减数 列吗?若数列满足 an<an+1,数列一定是递增数列吗?
第二章 2.2 2.2.1 第2课时 对数的运算
log27
=
−
1 2
×
4
−
1 2
log23
+
3 2
+
1 2
log23
=
−2
+
3 2
=
−对数的运算
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三 题型四
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
(2)原式=2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2
2 49 3
(2)2log32-log3
32 9
+
log38
−
5lo
g53.
解:(1)(方法一)原式 = 1 (5lg 2-2lg 7)− 4 × 3 lg 2+ 1 (2lg 7+lg 5)
2
32
2
=
5 2
lg
2-lg
7-2lg
2+lg
7+
1 2
lg
5
= 1 lg 2+ 1 lg 5= 1 (lg 2+lg 5)
=
lo g18 (5×9) lo g18 (2×18)
=
log185 + log189 log182 + log1818
=
1
������ +
+ ������ log18 2
������ + ������
������ + ������ ������ + ������
高中数学第二章数列2.2.3第2课时等差数列前n项和公式的变形及应用数学
梳理 等差数列前n项和的最值与{Sn}的单调性有关: (1)若a1>0,d<0,则数列的前面若干项为正项(或0),所以将这些项相 加即得{Sn}的最大值. (2)若a1<0,d>0,则数列的前面若干项为负项(或0),所以将这些项相 加即得{Sn}的最小值. (3)若a1>0,d>0,则{Sn}是递增数列,S1是{Sn}的最小值;若a1<0, d<0,则{Sn}是递减数列,S1是{Sn}的最大值.
12/13/2021
解答
(2)当n为何值时,数列{an}的前n项和取得最大值?
解 方法一 由(1)知,a1=9,d=-2,
Sn=9n+nn- 2 1·(-2)=-n2+10n=-(n-5)2+25,
∴当n=5时,Sn取得最大值.
方法二 由(1)知a1=9,d=-2<0,∴{an}是递减数列.
令 an≥0,则 11-2n≥0,解得 n≤121.
时,Sn 取得最小值.
3.求等差数列{an}前n项的绝对值之和,关键是找到数列{an}的正负项的 分界点.
12/13/2021
知识点一 等差数列前n项和与等差中项的关系 思考 在等差数列{an}中,若a3=2,求S5. 答案 S5=5a1+2 a5=5·a1+2 a5=5a3=10.
12/13/2021
梳理 等差数列{an}的前 n 项和 Sn=na12+an,其中a1+2 an为 a1,an 的等差中项,若结合性质“m+n=p+q 得 am+an=ap+aq,”还可 把 a1+an 换成 a2+an-1,a3+an-2,….
第2章 2.2.3 等差数列的前n项和
第2课时 等差数列前n项和公式的变形及应用
高中数学第二章数列 第2课时等差数列的性质学案含解析新人教A版必修
第2课时等差数列的性质[目标] 1.记住等差数列的一些常见性质;2.会用等差数列的性质解答一些简单的等差数列问题.[重点] 等差数列性质的应用.[难点] 等差数列性质的理解.知识点一等差数列的重要性质[填一填]1.a n=a m+(n-m)d(m,n∈N*).2.若m+n=p+q(m,n,q,p∈N*),则a m+a n=a p+a q.[答一答]1.在等差数列{a n}中,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q成立吗?提示:不一定.若数列{a n}是常数列,则m+n=p+q不一定成立.2.在公差为d的等差数列{a n}中,若m+n=2p(m,n,p∈N*),则2a p与a m,a n有何关系?提示:2a p=a m+a n.3.在等差数列{a n}中,若m+n=p,则a m+a n=a p成立吗?提示:不成立.知识点二等差数列的其他性质[填一填]1.若{a n}是公差为d的等差数列,则下列数列:(1){c+a n}(c为任一常数)是公差为d的等差数列;(2){ca n}(c为任一常数)是公差为cd的等差数列;(3){a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.2.若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[答一答]4.在等差数列中,如何判断数列的单调性?提示:在等差数列{a n}中,a n=a1+(n-1)d.当d>0时,{a n}是递增数列;当d=0时,{a n}是常数列;当d<0时,{a n}是递减数列.5.判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”. (1)等差数列去掉前面若干项后,剩下的项仍构成等差数列.( √ ) (2)摆动数列不可能是等差数列.( √ )(3)在等差数列{a n }中,若m +n +p =3t ,则a m +a n +a p =3a t .( √ )类型一 等差数列的性质应用[例1] (1)已知等差数列{a n },a 5=10,a 15=25,求a 25的值; (2)已知等差数列{a n },a 3+a 4+a 5+a 6+a 7=70,求a 1+a 9的值;(3)已知数列{a n },{b n }都是等差数列,且a 1=2,b 1=-3,a 7-b 7=17,求a 19-b 19的值. [分析] 分析题目,可利用等差数列的性质,也可利用通项公式求解. [解] (1)方法一:设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+4d =10,a 1+14d =25,解得⎩⎪⎨⎪⎧a 1=4,d =32,故a 25=a 1+24d =4+24×32=40.方法二:因为5+25=2×15,所以在等差数列{a n }中有a 5+a 25=2a 15,从而a 25=2a 15-a 5=2×25-10=40.方法三:因为5,15,25成等差数列,所以a 5,a 15,a 25也成等差数列,因此a 25-a 15=a 15-a 5,即a 25-25=25-10,解得a 25=40.(2)由等差数列的性质,得a 3+a 7=a 4+a 6=2a 5=a 1+a 9,所以a 3+a 4+a 5+a 6+a 7=5a 5=70,于是a 5=14,故a 1+a 9=2a 5=28.(3)令c n =a n -b n ,因为{a n },{b n }都是等差数列,所以{c n }也是等差数列,设其公差为d ,由已知,得c 1=a 1-b 1=5,c 7=17,则5+6d =17,解得d =2,故a 19-b 19=c 19=5+18×2=41.在等差数列中,一般存在两种运算方法:一是利用基本量运算,借助于a 1,d 建立方程组进行运算,这是最基本的方法;二是利用性质运算,运用等差数列的性质可简化计算,往往会有事半功倍的效果.[变式训练1] (1)在等差数列{a n }中,a 2=-5,a 6=a 4+6,则a 1等于( B ) A .-9 B .-8 C .-7 D .-4解析:∵{a n }是等差数列,∴a 6-a 4=6=2d . ∴d =3.∴a 1+d =-5.∴a 1=-8.(2)若数列{a n }的公差为2,则数列{3a n -2}的公差为( D ) A .3 B .4C.5 D.6解析:∵数列{a n}的公差为2,∴数列{3a n-2}的公差为3×2=6.(3)设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由a n+b n所组成的数列的第37项的值为( C )A.0 B.37C.100 D.-37解析:设c n=a n+b n,则c1=a1+b1=25+75=100,c2=a2+b2=100.故d=c2-c1=0.故c n=100(n∈N*).从而c37=100.类型二等差数列的实际应用[例2] 有一批影碟机原销售价为每台800元,在甲、乙两家商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所买各台单价均减少20元,但每台最低不低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪一家商场购买花费较少?[分析] 先求出购买n台时甲商场的售价,再与购买n台时乙商场的售价作差比较.[解]设该单位需购买影碟机n台,在甲商场购买单价为a n元,当a n不低于440时,a1,a2,…,a n构成等差数列,则a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于或等于18台时,每台售价为(800-20n)元,当购买台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600(元).又(800-20n)n-600n=20n(10-n),所以,当n<10时,600n<(800-20n)n;当n=10时,600n=(800-20n)n;当10<n≤18时,(800-20n)n<600n;当n>18时,440n<600n.所以当购买台数少于10台时,到乙商场购买花费较少;当购买10台时,到两商场购买花费相同;当购买台数多于10台时,到甲商场购买花费较少.1.在实际问题中,若涉及一组与顺序有关的数的问题,可考虑利用数列方法解决,若这组数依次成直线上升或下降,则可考虑利用等差数列方法解决.2.在利用数列方法解决实际问题时,一定要分清首项、项数等关键问题.[变式训练2] 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?解:由题知:a 1=3,a 2=5,a 3=7,a 4=9,…,可知其是以3为首项,2为公差的等差数列,则a n =2n +1,当n =102时,a 102=205,当a n =999时,2n +1=999,n =499.答:第102个雕塑是由205只蝴蝶组成的;由999只蝴蝶组成的雕塑是第499个. 类型三 等差数列的综合应用[例3] 已知两个等差数列5,8,11,…和3,7,11,…都是100项,求它们有多少个共同的项.[分析] 先写出两数列的通项公式,利用两通项公式寻找共同的项. [解] 解法一:设两个数列分别为{a n }与{b k }, 则a 1=5,d 1=8-5=3,通项a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项b k =3+(k -1)·4=4k -1. 设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,即3n +2=4k -1. ∵n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1,由条件知⎩⎪⎨⎪⎧1≤3r ≤100,1≤4r -1≤100,解得12≤r ≤1014,又∵r ∈N *,∴1≤r ≤25(r ∈N *). ∴共有25个共同的项.解法二:由解法一知两数列的通项分别为a n =3n +2,b k =4k -1,设共同项构成新数列{c n },则c 1=11,∵数列{a n },{b n }均为等差数列,∴数列{c n }仍为等差数列,且公差为d =12. ∴c n =11+(n -1)·12=12n -1. 又∵a 100=302,b 100=399, ∴c n =12n -1≤302,∴n ≤25.25,∴两数列有25个共同项.本题是探求两个数列的公共项问题,解法一是常规解法,解法二利用了最小公倍数.通常是从通项公式入手,建立a n =b m 这样的方程,再求其一定范围内的整数解.本题常见的错误是求得数列a n =3n +2,b n =4n -1,即令3n +2=4n -1,解得n =3,所以有一个公共项11,这显然是错误的.[变式训练3] 把数列{2n +1}中的项依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环,为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第104个括号内的各数之和为( D )A .2 036B .2 048C .2 060D .2 072解析:由观察发现,每四个括号是一个循环,一个循环由10个数组成,104个括号有26个循环,则第104个括号内有四个数,这四个数为数列3,5,7,9,…的第257项、第258项、第259项、第260项,分别为3+(257-1)×2,3+(258-1)×2,3+(259-1)×2,3+(260-1)×2,即515,517,519,521,其和为2 072.故选D.1.等差数列{a n }中,若a 2+a 4 024=4,则a 2 013=( A ) A .2 B .4 C .6 D .-2解析:∵2a 2 013=a 2+a 4 024=4,∴a 2 013=2.2.已知等差数列{a n }中,a 7=π4,则tan(a 6+a 7+a 8)等于( C )A .-33B .- 2C .-1D .1解析:∵在等差数列{a n }中,a 6+a 7+a 8=3a 7=3π4,∴tan(a 6+a 7+a 8)=tan 3π4=-1.3.如果等差数列{a n }中,a 1=2,a 3=6,则数列{2a n -3}是公差为4的等差数列. 解析:设数列{a n }的公差为d ,则a 3-a 1=2d =4, 即d =2.故数列{2a n -3}的公差为4.4.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=13. 解析:设等差数列{a n }的公差为d . ∵a 5=a 2+6,∴a 5-a 2=6,即3d =6,d =2. ∴a 6=a 3+3d =7+3×2=13. 5.在等差数列{a n }中: (1)若a 5=a ,a 10=b ,求a 15; (2)若a 3+a 8=m ,求a 5+a 6; (3)若a 5=6,a 8=15,求a 14. 解:(1)∵a 5+a 15=2a 10,∴a 15=2a 10-a 5=2b -a .(2)解法一:∵a 3+a 8=(a 1+2d )+(a 1+7d ) =2a 1+9d =m ,∴a 5+a 6=(a 1+4d )+(a 1+5d )=2a 1+9d =m . 解法二:∵5+6=3+8, ∴a 5+a 6=a 3+a 8=m .(3)解法一:∵a 8=a 5+(8-5)d , 即15=6+3d ,∴d =3.∴a 14=a 8+(14-8)d =15+6×3=33. 解法二:∵数列{a n }是等差数列,∴数列a 5,a 8,a 11,a 14,…是等差数列,首项a 5=6,公差d =a 8-a 5=15-6=9, ∴第四项a 14=6+3×9=33.——本课须掌握的问题运用等差数列的性质,能够简化问题,提高准确性.常用的性质主要有: (1)d =a m -a n m -n(m ,n ∈N *,且n ≠m ); (2)a n =a m +(n -m )d (n ,m ∈N *); (3)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m +a n =a p +a q .特别地,若m +n =2p (m ,n ,p ∈N *), 则a m +a n =2a p .在解决等差数列问题时要注意项数(即项的下标)之间的关系.。
高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5
则
an am
a1 (n 1)d, a1 (m 1)d
⇒
an-am=(n-m)d⇒
d an am , nm an am (n
m)d.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
2.对等差数列定义的理解 (1)“从第2项起”是因为首项没有“前一项”. (2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不 一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中 强调“同一个常数”,注意不要漏掉这一条件. (3)求公差d时,可以用d=an-an-1来求,也可以用d=an+1-an来求.注意公差是每 一项与其前一项的差,且用an-an-1求公差时,要求n≥2,n∈N*.
解析:由等差数列的定义知强调两个方面:①从第2项起; ②差为同一个常数,故选D.
2.等差数列{an}中,a4+a8=10,a10=6,则公差 d 等于( A )
(A) 1 4
(B) 1 2
(C)2
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
2d a14d 105, a1 3d a1 5d
99,
解得
ad1
39, 2,
所以
a20=a1+19d=1.
答案:1
课堂探究
题型一 等差数列的通项公式
【例1】 已知{an}为等差数列,a15=8,a60=20,求a75.
人教课标版高中数学必修5《第二章数列》知识概述
1.本章是通过对一般数列的研究,转入对两类特殊数列──等差数列、等比数列的通项公式及前n项求和公式的研究的。
教科书首先通过三角形数、正方形数的实例引入数列的概念,然后将数列作为一种特殊函数,介绍了数列的几种简单表示法(列表、图象、通项公式)。
作为最基本的递推关系──等差数列,是从现实生活中的一些实例引入的,然后由定义入手,探索发现等差数列的通项公式。
等差数列的前n项和公式是通过的高斯算法推广到一般等差数列的前n项和的算法。
与等差数列呈现方式类似,等比数列的定义是通过细胞分裂个数、计算机病毒感染、银行中的福利,以及我国古代关于“一尺之棰,日取其半,万世不竭”问题的研究探索发现得出的,然后类比等差数列的通项公式,探索发现等比数列的通项公式,接着通过实例引入等比数列的前n项求和,并用错位相减法探索发现等比数列前n项求和公式。
最后,通过“九连环”问题的阅读与思考以及“购房中的数学”的探究与发现,进一步感受数列与现实生活中的联系和具体应用。
2.人们对数列的研究有的源于现实生产、生活的需要,有的出自对数的喜爱。
教科书从三角形数、正方形数入手,指出数列实际就是按照一定顺序排列着的一列数。
随后,又从函数的角度,将数列看成是定义在正整数集或其有限子集上的函数。
通过数列的列表、图象、通项公式的简单表示法,进一步体会数列是型,借助数列的相关知识解决问题的思想。
三、编写中考虑的几个问题1.体现“现实问题情境——数学模型——应用于现实问题”的特点数列作为一种特殊函数,是反映自然规律的基本数学模型。
教科书通过日常生活中大量实际问题(存款利息、放射性物质的衰变等)的分析,建立起等差数列与等比数列这两种数列模型。
通过探索和掌握等差数列与等比数列的一些基本数量关系,进一步感受这两种数列模型的广泛应用,并利用它们解决了一些实际问题。
教科书的这一编写特点,可由下面图示清楚表明:数列:三角形数、正方形数数列概念数列的三种表示回归到实际问题(希尔宾斯基三角形、斐波那契数列、银行存款等)等差数列:4个生活实例等差数列概念等差数列通项公式等差数列基本数量关系的探究(出租车收费问题等)前100个自然数的高斯求解等差数列的前n项和公式等差数列数量关系的探究及实际应用(校园网问题)等比数列:细胞分裂、古代“一尺之棰”问题、计算机病毒、银行复利的实例等比数列概念等比数列的通项公式等比数列基本数量关系的探究及实际应用(放射性物质衰变、程序框图等)诺贝尔奖金发放金额问题等比数列前n项和公式等比数列基本数量关系探究及实际应用(商场计算机销售问题、九连环的智力游戏、购房中的数学等)教科书的这种内容呈现方式,一方面可以使学生感受数列是反映现实生活的数学模型,体会数学是来源于现实生活,并应用于现实生活的,数学不仅仅是形式的演绎推导,数学是丰富多彩而不是枯燥无味的;另一方面,这种通过具体问题的探索和分析建立数学模型、以及应用于解决实际问题的过程,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断,提高数学地提出、分析、解决问题的能力,提高学生的基本数学素养,为后续的学习奠定良好的数学基础。
2019-2020学年高中数学第二章数列2.2等差数列第二课时等差数列的性质及简单应用
解:设某单位需购买影碟机n台,在甲商场购买每台售价不低于440元 时,售价依台数成等差数列{an},则an=780+(n-1)(-20)=800-20n, 解不等式an≥440,800-20n≥440,得n≤18. 当购买台数小于18时,每台售价为(800-20n)元, 在台数大于或等于18时,每台售价440元. 到乙商场购买,每台售价为800×75%=600(元). 又(800-20n)n-600n=20n(10-n),所以,当n<10时,600n<(80020n)n; 当n=10时,600n=(800-20n)n;当10<n<18时,(800-20n)n<600n; 当n≥18时,440n<600n. 所以当购买台数少于10台时,到乙商场购买花费较少;当购买10台时, 到两商场购买花费相同;当购买多于10台时,到甲商场购买花费较少.
an=
1 6
(n+1)(n+2).…………………12
分
方法技巧 解决数列综合问题的方法策略 (1)结合等差数列的性质或利用等差中项. (2)利用通项公式,得到一个以首项a1和公差d为未知数的方程或不 等式. (3)利用函数或不等式的有关方法解决.
即时训练2-1:已知{an}是等差数列,且a1+a2+a3=12,a8=16. (1)求数列{an}的通项公式;
方法技巧
(1)利用等差数列的通项公式列关于a1和d的方程组,求出a1和d,进 而解决问题,是处理等差数列问题的最基本方法. (2)巧妙地利用等差数列的性质,可以大大简化解题过程. (3)通项公式的变形形式an=am+(n-m)d(m,n∈N*),它又可变形为d= am an ,应注意把握,并学会应用.
高中数学必修5课件:第2章2-2-1等差数列
第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.
【优化方案】2012高中数学 第2章2.2.1第二课时课件 新人教B版必修5
【点评】 点评】
利用等差数列的定义巧设未知量, 利用等差数列的定义巧设未知量,
从而简化计算.一般地有如下规律: 从而简化计算.一般地有如下规律:当等差数 的项数n为奇数时 列{an}的项数 为奇数时,可设中间一项为 , 的项数 为奇数时,可设中间一项为a, 再用公差为d向两边分别设项: a-2d, 再用公差为d向两边分别设项:…,a-2d,a 向两边分别设项 -d,a,a+d,a+2d,…;当项数为偶数项 , , + , + , 时,可设中间两项为a-d,a+d,再以公差为 可设中间两项为 - , + , 2d向两边分别设项:…a-3d,a-d,a+d,a 向两边分别设项: 向两边分别设项 - , - , + , 这样可减少计算量. +3d,…,这样可减少计算量. ,
第二课时
课前自主学案 第 二 课 时
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1. 等差数列的定义 : 如果一个数列从第 项 . 等差数列的定义: 如果一个数列从第2项 起 , 每一项与它的前一项的差都等于同一个 常数, 那么这个数列叫做等差数列, 常数 , 那么这个数列叫做等差数列 , 这个常 数叫做等差数列的_____,通常用字母 表示 表示. 数叫做等差数列的 公差 ,通常用字母d表示 - 2.等差数列的通项公式: _______________. .等差数列的通项公式: an=a1+(n-1)d
64 4 故 a75=a1+74d= +74× =24. = × 15 15 法二:因为 为等差数列, 法二:因为{an}为等差数列, 为等差数列 所以 a15,a30,a45,a60,a75 也成等差数列,其 也成等差数列, 为其第四项, 公差为 d,a15 为首项,则 a60 为其第四项, , 为首项, , = 所以 a60=a15+3d,得 d=4. 所以 a75=a60+d⇒a75=24. ⇒
2022年高中数学第二章数列2等差数列第2课时练习含解析人教版必修
第2课时一、选择题1.等差数列{a n}中,a6+a9=16,a4=1,则a11=( )A.64 B.30C.31 D.15[答案] D[解析] 解法一:∵,∴,∴,∴a11=a1+10d=15.解法二:∵6+9=4+11,∴a4+a11=a6+a9=16,∴a11=15.2.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=( ) A.14B.21C.28D.35[答案] C[解析] ∵a3+a4+a5=3a4=12,∴a4=4.又a1+a2+…+a7=7a4=28.3.已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( )A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0[答案] D[解析] 由题设a1+a2+a3+…+a101=101a51=0,∴a51=0.4.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于( ) A.-1B.1C.3D.7[答案] B[解析] ∵{a n}是等差数列,∴a1+a3+a5=3a3=105,∴a3=35,a2+a4+a6=3a4=99,∴a4=33,∴d=a4-a3=-2,a20=a4+16d=33-32=1.5.在a和b之间插入n个数构成一个等差数列,则其公差为( )A. B.C.D.[答案] C[解析] ∵a1=a,a n+2=b,∴公差d==.6.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于( )A.120 B.105C.90 D.75[答案] B[解析] ∵a1+a2+a3=3a2=15,∴a2=5,又∵a1a2a3=80,∴a1a3=16,即(a2-d)(a2+d)=16,∵d>0,∴d=3.则a11+a12+a13=3a12=3(a2+10d)=105.二、填空题7.等差数列{a n}中,已知a2+a3+a10+a11=36,则a5+a8=__________.[答案] 18[分析] 利用等差数列的性质求解,或整体考虑问题,求出2a1+11d的值.[解析] 解法1:根据题意,有(a1+d)+(a1+2d)+(a1+9d)+(a1+10d)=36,∴4a1+22d=36,则2a1+11d=18.∴a5+a8=(a1+4d)+(a1+7d)=2a1+11d=18.解法2:根据等差数列性质,可得a5+a8=a3+a10=a2+a11=36÷2=18.8.已知等差数列{a n}中,a3、a15是方程x2-6x-1=0的两根,则a7+a8+a9+a10+a11=__________.[答案] 15[解析] ∵a3+a15=6,又a7+a11=a8+a10=2a9=a3+a15,∴a7+a8+a9+a10+a11=(2+)(a3+a15)=×6=15.三、解答题9.已知等差数列{a n}的公差d>0,且a3a7=-12,a4+a6=-4,求{a n}的通项公式.[解析] 由等差数列的性质,得a3+a7=a4+a6=-4,又∵a3a7=-12,∴a3、a7是方程x2+4x-12=0的两根.又∵d>0,∴a3=-6,a7=2.∴a7-a3=4d=8,∴d=2.∴a n=a3+(n-3)d=-6+2(n-3)=2n-12.10.四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.[解析] 设四个数为a-3d,a-d,a+d,a+3d,据题意得,(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=94⇒2a2+10d2=47.①又(a-3d)(a+3d)=(a-d)(a+d)-18⇒8d2=18⇒d=±代入①得a=±,故所求四数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1.一、选择题1.设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么数列{a n+b n}的第37项为( )A.0B.37C.100D.-37[答案] C[解析] ∵数列{a n},{b n}都是等差数列,∴{a n+b n}也是等差数列.又∵a1+b1=100,a2+b2=100,∴{a n+b n}的公差为0,∴数列{a n+b n}的第37项为100.2.数列{a n}中,a2=2,a6=0且数列{}是等差数列,则a4等于( )A. B.C.D.[答案] A[解析] 令b n=,则b2==,b6==1,由条件知{b n}是等差数列,∴b6-b2=(6-2)d=4d=,∴d=,∴b4=b2+2d=+2×=,∵b4=,∴a4=.3.等差数列{a n}中,a2+a5+a8=9,那么关于x的方程:x2+(a4+a6)x+10=0( )A.无实根B.有两个相等实根C.有两个不等实根D.不能确定有无实根[答案] A[解析] ∵a4+a6=a2+a8=2a5,即3a5=9,∴a5=3,方程为x2+6x+10=0,无实数解.4.下列命题中正确的个数是( )(1)若a,b,c成等差数列,则a2,b2,c2一定成等差数列;(2)若a,b,c成等差数列,则2a,2b,2c可能成等差数列;(3)若a,b,c成等差数列,则ka+2,kb+2,kc+2一定成等差数列;(4)若a,b,c成等差数列,则,,可能成等差数列.A.4个B.3个C.2个D.1个[答案] B[解析] 对于(1)取a=1,b=2,c=3⇒a2=1,b2=4,c2=9,(1)错.对于(2),a=b=c⇒2a=2b=2c,(2)正确;对于(3),∵a,b,c成等差数列,∴a+c=2B.∴(ka+2)+(kc+2)=k(a+c)+4=2(kb+2),(3)正确;对于(4),a=b=c≠0⇒==,(4)正确,综上选B.二、填空题5.若x≠y,两个数列x,a1,a2,a3,y和x,b1,b2,b3,b4,y都是等差数列,则=________.[答案] [解析] 设两个等差数列的公差分别为d1,d2,由已知,得即解得=,即==.6.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.[答案] 15[解析] 设△ABC的三边长为a-4,a,a+4(a>4),则=-,解得a=10,三边长分别为6,10,14.所以S△ABC=×6×10×=15.三、解答题7.在△ABC中,三边a、b、c成等差数列,、、也成等差数列,求证△ABC为正三角形.[证明] ∵+=2,平方得a+c+2=4b,又∵a+c=2b,∴=b,故(-)2=0,∴a=b=C.故△ABC为正三角形.8.设数列{a n}是等差数列,b n=()a n又b1+b2+b3=,b1b2b3=,求通项a n.[解析] ∵b1b2b3=,又b n=()a n,∴()a1·()a2·()a3=.∴()a1+a2+a3=,∴a1+a2+a3=3,又{a n}成等差数列∴a2=1,a1+a3=2,∴b1b3=,b1+b3=,∴或,即或,∴a n=2n-3或a n=-2n+5.。
高中数学必修2第2章212第二课时两点式课件(30张)
[解] 当直线过原点时 ,它在 x 轴、y 轴上的截距都是 0, 满足题意,此时,直线的斜率为12,所以直线方程为 y=12x.2 分 当直线不过原点时 ,由题意可设直线方程为xa+by=1,又过 点 A,所以4a+2b=1①,4 分 因为直线在两坐标轴上的截距的绝对值相等,所以|a|=|b| ②,
将直线在两坐标轴上截距的绝对值相等正确转化为字母 表示,是解本题的重要一步.
对应用分类讨论思想解答的题目,最终要有总结性概述. (2)①在解题时要注意分类讨论思想的运用. ②对题目中的已知条件要弄准,分析清楚,不要出现偏差或把 已知条件理解错. ③解答时应注意规范性和步骤的完整性,必备的步骤不要漏 掉.
1.在例1的条件下,求过点B且平行于AC的直线方程. 解:设所求的直线为 l,由于 l 与直线 AC 平行,则这两条直线 的倾斜角相等,所以 kl=kAC=3-0--22=-25, 故直线 l 的方程为 y-2=-25(x-3).
直线的截距式方程 求过定点P(2,3)且在两轴上截距相等的直线方程.
方法归纳 (1)已知直线方程已是直线的截距式方程,所以必有m≠0,4- m≠0. (2)直线与坐标轴相交围成的面积问题,要把直线的方程和三 角形的面积结合起来,要注意截距与线段长的关系,必要时 要加绝对值符号,求函数的最值时,要注意定义域.
3.已知1≤t≤2,经过两点(m,2t)和(t-2,m)的直线l的 斜率为2. (1)用t表示m; (2)求直线l在y轴上的截距的取值范围.
化,形成用联系的观点看问题的习惯.
1.直线的两点式方程
(1)条件:P1(x1,y1),P2(x2,y2)(x1≠x2,y1≠y2). (2)方程:_y_y2-_-_yy_11_=__xx2_--_x_x1_1 __ 2.直线的截距式方程 (1)条件:A(a,0),B(0,b)且___a_b_≠__0_______ (2)方程:__xa_+__by_=__1______
高中数学:第2章 数列 §2.4-第2课时
第2课时等比数列的性质1.等比数列{a n}中,a4=4,则a2·a6等于A.4B.8C.16D.32解析因为{a n}是等比数列,所以a2·a6=a24=16.★答案★ C2.在正项等比数列{a n}中,a1,a99是方程x2-10x+16=0的两个根,则a40a50a60的值为A.32B.256C.±64D.64解析因为a1,a99是方程x2-10x+16=0的两个根,所以a1a99=16,又a40a60=a1a99=a250,{a n}是正项等比数列,所以a50=4,所以a40a50a60=a350=64.★答案★ D3.在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则a 6a 16等于A.32B.23C.16D.6解析 因为⎩⎪⎨⎪⎧a 7·a 11=a 4·a 14=6,a 4+a 14=5,解得⎩⎪⎨⎪⎧a 4=3a 14=2或⎩⎪⎨⎪⎧a 4=2,a 14=3.又因为a n >a n +1,所以a 4=3,a 14=2. 所以a 6a 16=a 4a 14=32. ★答案★ A4.在等比数列{a n }中,公比q =2,前3项和为21,则a 3+a 4+a 5=________. 解析 因为数列{a n }为等比数列,所以a 3=a 1·q 2,a 4=a 2·q 2,a 5=a 3·q 2, 所以a 3+a 4+a 5=a 1·q 2+a 2·q 2+a 3·q 2=q 2(a 1+a 2+a 3), 又因为q =2,所以a 3+a 4+a 5=4(a 1+a 2+a 3), 因为前3项和为21,所以a 1+a 2+a 3=21, 所以a 3+a 4+a 5=4×21=84. ★答案★ 845.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析 设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b ,解得⎩⎪⎨⎪⎧a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27.★答案★ 3或27[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.将公比为q的等比数列a1,a2,a3,a4,…依次取相邻两项的乘积组成新的数列a1a2,a2a3,a3a4,…,则此数列是A.公比为q的等比数列B.公比为q2的等比数列C.公比为q3的等比数列D.不一定是等比数列解析a n-1a na n-2a n-1=a n-1a n-2·a na n-1=q·q=q2(n≥3),所以新数列是公比为q2的等比数列.★答案★ B2.已知等比数列{ a n}中a7=-1,a19=-8,则a13=A.-22B.22C.16D.-32解析由等比数列的性质得:a19a7=(q6)2=8,q6=22,a13=a7·q6=(-1)·22=-2 2.★答案★ A3.已知等比数列{a n}中,a3a11=4a7,数列{b n}是等差数列,且b7=a7,则b5+b9等于A.2B.4C.8D.16解析由数列{a n}是等比数列,且a3a11=4a7,得a27=4a7,∴a7=4或a7=0(舍).所以在等差数列{b n}中,有b5+b9=2b7=2a7=8.★答案★ C4.设各项为正数的等比数列{a n}中,公比q=2,且a1·a2·a3·…·a30=230,则a 3·a 6·a 9·…·a 30等于A.230B.210C.220D.215解析 由a 1·a 2·a 3·…·a 30=230得a 301·21+2+…+29=a 301·229×302=230.∴a 101·2145=210. ∴a 101=2-135.∴a 3·a 6·a 9·…·a 30=a 101·22+5+8+…+29=a 101·2155=2-135×2155=220.★答案★ C5.已知数列{a n }(n ∈N *)是首项为1的等比数列,设b n =a n +2n ,若数列{b n }也是等比数列,则b 1+b 2+b 3=A.9B.21C.42D.45解析 设数列{a n }的公比为q ,则a 2=q ,a 3=q 2,∴b 1=a 1+21=3,b 2=a 2+22=q +4,b 3=a 3+23=q 2+8.∵数列{b n }也是等比数列,∴(q +4)2=3(q 2+8),解得q =2.当q =2时,a n =2n -1,b n =3·2n -1,符合题意,故q =2.∴b 1+b 2+b 3=3+6+12=21.★答案★ B6.(能力提升)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是A.-15B.-5C.5D.15解析 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n=1,得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.★答案★ B二、填空题(每小题5分,共15分)7.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7的值等于________. 解析 设{a n }的公比为q ,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去),所以a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.★答案★ 428.若-1,a ,b ,c ,-9成等比数列,则b =________,ac =____________.解析 因为-1,a ,b ,c ,-9成等比数列,所以b 2=(-1)×(-9)=9,设公比为q ,则b =-1·q 2<0,故b =-3,又-1,a ,b 成等比数列,所以a 2=-b =3,同理c 2=27,所以a 2c 2=3×27=81.又a ,c 符号相同,所以ac =9.★答案★ -3 99.(能力提升)画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析 这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048.★答案★ 2 048三、解答题(本大题共3小题,共35分)10.(11分)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解析 设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列,得S 22=S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ). 若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不符合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0,或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.11.(12分)互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数.解析 设三个数为aq,a ,aq ,∴a 3=-8,即a =-2,∴三个数为-2q ,-2,-2q .(1)若-2为-2q 和-2q 的等差中项,则2q+2q =4, ∴q 2-2q +1=0,q =1,与已知矛盾; (2)若-2q 为-2q与-2的等差中项,则1q +1=2q ,2q 2-q -1=0,q =-12或q =1(舍去),∴三个数为4,-2,1; (3)若-2q 为-2q 与-2的等差中项,则q +1=2q ,∴q 2+q -2=0,∴q =-2或q =1(舍去), ∴三个数为1,-2,4.综合(1)(2)(3)可知,这三个数为-2,1,4.12.(12分)(能力提升)已知数列{a n }为等差数列,S n 为其前n 项和,且a 2=3,4S 2=S 4. (1)求数列{a n }的通项公式; (2)求证:数列{2a n }是等比数列; (3)求使得S n +2>2S n 成立的n 的集合. 解析 (1)设数列{a n }的首项为a 1,公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+d =3,4×(2a 1+d )=4a 1+6d .解得a 1=1,d =2, 所以a n =2n -1.(2)依题意,得2a n 2a n -1=22n -122n -3=4,所以数列{2a n }是首项为2,公比为4的等比数列. (3)由a 1=1,d =2,a n =2n -1,得S n =n 2, 所以S n +2>2S n ⇒(n +2)2>2n 2⇒(n -2)2<8. 所以n =1,2,3,4, 故n 的集合为{1,2,3,4}.。
高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课
以用这三个基本量来表示,五个量a1,d,n,an,Sn中可知三
求二,注意利用等差数列的性质以简化计算过程,同时在具体
求解过程中还应注意已知与未知的联系及整体思想的运用.
2.2.2 等差数列的前n项和(一)
11
预课当跟习堂踪导讲检演学义测练1 在等差数列{a栏n}中目.索引 CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
CONTENTS PAGE
[学习目标]
1.体会等差数列前n项和公式的推导过程.
2.掌握等差数列前n项和公式.
3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由
其中三个求另外两个.
2.2.2 等差数列的前n项和(一)
2
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
(1)a1=65,an=-32,Sn=-5,求 n 和 d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由题意,得 Sn=na1+ 2 an=n56- 2 23=-5,
解得n=15.
又 a15=56+(15-1)d=-32,∴d=-61.
2.2.2 等差数列的前n项和(一)
12
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
(2)a1=4,S8=172,求a8和d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由已知,得 S8=8a1+2 a8=84+2 a8=172,解得 a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
2.2.2 等差数列的前n项和(一)
13
高中数学《2.2等差数列》第2课时课件新人教A版必修
请您根据提供的信息说明,求 (1)第2年养鸡场的个数及全县出产鸡的总只数; (2)到第6年这个县的养鸡业比第1年是扩大了还是缩小 了?请说明理由. (3)哪一年的规模最大?请说明理由. 审题指导 本题为图表信息题,综合考查了等差数列的知 识和等差数列的函数特征. [规范解答] 由题干图可知,从第1年到第6年平均每个鸡场 出产的鸡数成等差数列,记为{an},公差为d1,且a1=1, a6=2;从第1年到第6年的养鸡场个数也成等差数列,记 为{bn},公差为d2,且b1=30,b6=10; 从第1年到第6年全县出产鸡的总只数记为数列{cn}, 则cn=anbn. (2分)
fx2-fx1 (2) k= (x1≠x2). x2-x1 当k=0时,对于常数函数f(x)=b,上式仍然成立. (2)等差数列{an}的公差本质上是相应直线的斜率. 如am,an是等差数列{an}的任意两项,由an=am+(n-m)d, an-am 类比直线方程的斜率公式得 d= . n-m
即a=1,a2-9d2=-8, ∴d2=1,∴d=1或d=-1. 又四个数成递增等差数列,所以d>0, ∴d=1,故所求的四个数为-2,0,2,4. 法二 若设这四个数为a,a+d,a+2d,a+3d(公差为d), 依题意,2a+3d=2,且a(a+3d)=-8, 3 把 a=1- d 代入 a(a+3d)=-8, 2
解 由等差数列{an}的性质知:a3+a7=a4+a6,从而a3a7 =-12,a3+a7=-4,故a3,a7是方程x2+4x-12=0的两 根,又d>0,解之,得a3=-6,a7=2. a1+2d=-6, a1=-10, 再解方程组 解得 a1+6d=2, d=2, 则an=a1+(n-1)d=-10+(n-1)×2=2n-12, 即an=2n-12.
高中数学必修五第二章数列
设等差数列
的前n项和为sn,已知a3=12,s12>0,s13<0,
(1)求公差d的取值范围
(2)指出s1,s2,s3……,s12中哪一个的值最大,并说明理由
2.4等比数列
定义:一般的,如果一个数列从第二项起,每一项与它的前 一项的比等于同意常数,那么这个数列叫做等比数列,这个 常数叫做等比数列的公比,公比通常用字母q表示。
Sn=an+(an-d)+(an-2d)+……+【an-(n-1)d】 两式相加得 2sn=n(a1+an) 由此可得 sn=n(a1+an)/2 带入通项公式得 sn=na1+n(n-1)d/2
例题一
2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通 知》。
某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间在全 市中小学建成不同标准的校园网。据测算,2001年该市用于“校校通”工程 的经费为500万元。为了保证工程的顺利实施,计划每年投入的资金都比上 一年增加50万元。那么从2001年起的未来10年内,该市在“校校通”工程 中的总投入是多少?
(1)求AB,BC,CD的长
(2)已AB,BC,CD的长为等差数列的前三项,以第十项为边长的正方形 面积为多少?
AB C
D
2.3等差数列的前n项和
定义:一般的,我们称a1+a2+a3+……+an 为数列 表示,即sn=a1+a2+……+an
的前n项和,用Sn
推理过程: 因为 Sn=a1+(a1+d)+(a1+2d)+……+【a1+(n-1)d】
高中数学第二章数列2.2等差数列第2课时等差数列的性质课件新人教A版必修5
a1n为等差数列
由等差数列 通―项―公→式
求a1n
―→
求an
[规范解答] (1)数列a1n是等差数列,理由如下: ∵a1=2,an+1=a2n+an2,∴an1+1=an2+an2=12+a1n, 4分
∴an1+1-a1n=12,
6分
即a1n是首项为a11=12,公差为d=12的等差数列.
等差数列的性质
• (1)若{an}是公差为d的等差数列,则下列数列: • ①{c+an}(c为任一常数)是公差为d ____的等差数列; • ②{c·an}(c为任一常数)是公差为c_d___的等差数列; • ③ 列{.an+an+k}(k为常数,k∈N*)是公差2为d ___的等差数
• (数 的2)列等若差{{paa数nn}+,列q{.bbnn}}(分p,别q是是公常差数为)是pdd11公+,差qdd22为的_等__差__数__列__,__则_
• 【错解】 由已知两等差数列的前三项,容易求得 它们的通项公式分别为:
• an=3n-1,bn=4n-3(1≤n≤40,且n∈N*), • 令an=bn,得3n-1=4n-3,即n=2. • 所以两数列只有1个数值相同的项,即第2项.
• 【错因】 本题所说的是数值相同的项,但它们的 项数并不一定相同,也就是说,只看这个数在两个 数列中有没有出现过,而并不是这两个数列的第几 项.
•
利用等差数列的定义巧设未知量,可
以 的简项化数计n为算奇.数一时般,地可有设如中下间规一律项:为当a等,差再数用列公差{an为} d
向两边分别设项:…a-2d,a-d,a,a+d,a+
2d,…;当项数为偶数项时,可设中间两项为a-d,
a+d,再以公差为2d向两边分别设项:…a-3d,a
人教A版高中数学必修五第二章第2节《等差数列》(第2课时)教案
2.2.2等差数列的性质
一、教学目标:
1.明确等差中项的概念;进一步熟练掌握等差数列的通项公式及推导公式,
2.能通过通项公式与图像认识等差数列的性质,能运用等差数列的性质解决某些问题。
二、教学重点难点:
教学重点:等差数列的定义及性质的理解与应用
教学难点:灵活应用等差数列的定义及性质解决一些相关问题
三、教学策略及设计
“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。
基于这种理念的指导,在教法上采用探究发现式课堂教学模式,在学法上以学生独立自主和合作交流为前提,重视学生在学习过程中,能否运用等差数列的定义发现和推导等差数列的性质。
设计流程如下:
四、教学过程:。
高中数学新人教B版必修5课件:第二章数列2.2习题课——等差数列习题课
得 Sn-Sn-1+2SnSn-1=0.即
1
1
1
-1
−
1
+2=0,
∴ − =2.
∴数列
-1
1
是公差为 2 的等差数列.
1
1
2
1
又 S1=a1= ,∴ =2.
1
1
∴ =2+(n-1)×2=2n,Sn=2 ,
1
1
-1
∴当 n≥2 时,an=Sn-Sn-1=2 − 2(-1) = 2(-1).
+
当 p+q 为偶数时,n=
,Sn 最大;
2
+-1
++1
2
2
当 p+q 为奇数时,n=
或 n=
,Sn 最大.
②若a1<0,且Sp=Sq(p≠q),则
+
当 p+q 为偶数时,n=
,Sn 最小;
当 p+q 为奇数时,n=
或 n=
2
+-1
++1
2
2
,Sn 最小.
目标导航
题型一
4
(+2)
1
2
1
d=3n+
2
1
(-1)
1
1 1
2
1 1
-
2 4
1
1
-
4(+1)(+2)
.
+2
2
,
+…+
2 +1 +2
2+3
2(+1)(+2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时等差数列的性质
1.等差数列{a n}的公差为d,则数列{ca n}(c为常数且c≠0)
A.是公差为d的等差数列
B.是公差为cd的等差数列
C.不是等差数列
D.以上都不对
解析a n=a1+(n-1)d,
则ca n=ca1+(n-1)cd,
所以ca n+1-ca n=cd.
★答案★ B
2.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为
A.49
B.50
C.51
D.52
解析由条件可得a n+1-a n=1
2,故{a n}是等差数列,从而a101=a1+(101-1)×
1
2=2+
50=52.
★答案★ D
3.已知等差数列{a n}中,a7+a9=16,a4=1,则a12等于
A.15
B.30
C.31
D.64
解析因为a7+a9=2a8=16,故a8=8.
在等差数列中,a4,a8,a12成等差数列,
所以a12=2a8-a4=16-1=15.
★答案★ A
4.在等差数列{a n}中,若a1-a4-a8-a12+a15=2,则a3+a13=________.
解析因为a1+a15=a4+a12=2a8,
而a1+a15-(a4+a8+a12)=2,
即2a8-3a8=2,所以a8=-2,
所以a3+a13=2a8=-4.
★答案★-4
5.{a n}为等差数列,若a3+a11=10,则a6+a7+a8=________.
解析因为a3+a11=a6+a8=2a7=10,
所以a6+a7+a8=3
2(a3+a11)=15.
★答案★15
[限时45分钟;满分80分]
一、选择题(每小题5分,共30分)
1.在等差数列{a n}中,a1+a9=10,则a5的值为
A.5
B.6
C.8
D.10
解析由等差数列的性质,得a1+a9=2a5,
又∵a1+a9=10,即2a5=10,∴a5=5.
★答案★ A
2.设{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于
A.0
B.37
C.100
D.-37
解析设c n=a n+b n,由于{a n},{b n}都是等差数列,则{c n}也是等差数列,且c1=a1+b1=25+75=100,
c2=a2+b2=100,
所以{c n}的公差d=c2-c1=0.
所以c37=100.
★答案★ C
3.下列说法中正确的是
A.若a,b,c成等差数列,则a2,b2,c2成等差数列
B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列
C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列
D.若a,b,c成等差数列,则2a,2b,2c成等差数列
解析 因为a ,b ,c 成等差数列,则2b =a +c ,
所以2b +4=a +c +4,
即2(b +2)=(a +2)+(c +2),
所以a +2,b +2,c +2成等差数列.
★答案★ C
4.若等差数列{a n }的公差为整数,首项为19,从第6项开始为负值,则公差为
A.-5
B.-4
C.-3
D.-2
解析 设等差数列{a n }的公差为d (d ∈Z),依题意得a 6=a 1+5d =19+5d <0,即d <-195;a 5=a 1+4d =19+4d ≥0,即d ≥-194,所以-194≤d <-195
.又d ∈Z ,所以d =-4. ★答案★ B
5.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13
a 11的值为 A.14 B.15 C.16 D.17
解析 ∵a 4+a 6+a 8+a 10+a 12=5a 8=120,
∴a 8=24,a 9-13a 11=a 1+8d -13a 1-103d =23a 1+143d =23(a 1+7d )=23a 8=23
×24=16. ★答案★ C
6.(能力提升)《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样的一道题
目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17
是较小的两份之和,则最小的1份为
A.53
B.56
C.103
D.116
解析 设最小的一份为a 1,公差为d ,则a 1+a 2+a 3+a 4+a 5=5a 3=100,
则a 3=20,又17(a 3+a 4+a 5)=a 1+a 2,即17×3a 4=a 1+a 2,∴37
(a 3+d )=a 3-2d +a 3-d , 即37(20+d )=40-3d ,解得d =556,∴a 1=a 3-2d =20-553=53
. ★答案★ A
二、填空题(每小题5分,共15分)
7.如果等差数列{a n }中,a 4+a 5+a 6=15,那么a 1+a 2+a 3+…+a 8+a 9=________. 解析 ∵{a n }是等差数列,∴a 4+a 6=2a 5,∴a 4+a 5+a 6=3a 5=15,∴a 5=5,
∴a 1+a 2+a 3+…+a 8+a 9=(a 1+a 9)+(a 2+a 8)+(a 3+a 7)+(a 4+a 6)+a 5
=9a 5=9×5=45.
★答案★ 45
8.等差数列{a n }中,a 2 000=-15,a 2 015=15,则a 2 060=______.
解析 ∵a 2 015-a 2 000=15d ,∴15d =30,即d =2.
a 2 060=a 2 000+60d =-15+60×2=105.
★答案★ 105
9.(能力提升)已知实数a >0且a ≠1,函数f (x )=⎩
⎪⎨⎪⎧a x ,x <3,ax +b ,x ≥3.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是等差数列,则a =________,b =________.
解析 a 1=a ,a 2=a 2,a 3=3a +b ,a 4=4a +b ,所以等差数列{a n }的公差为a 4-a 3=a ,则a 2-a 1=a 2-a =a ,解得a =2,则a 1=2,a 2=4,a 3=6+b =6,所以b =0.
★答案★ 2 0
三、解答题(本大题共3小题,共35分)
10.(11分)在等差数列-5,-312,-2,-12
,…的每相邻两项之间插入一个数,使之组成一个新的等差数列.
(1)求新数列的通项公式;
(2)28是新数列中的项吗?若是,是第几项?若不是,请说明理由.
解析 (1)原数列的公差d =-312-(-5)=32,所以新数列的公差d ′=12d =34
, 故新数列的通项公式为a n =-5+34(n -1)=34n -234
. (2)设28是新数列的第n 项,则
3n 4-234
=28,解得n =45∈N +,所以28是新数列中的第45项.
11.(12分)某产品按质量分10个档次,生产最低档次的产品的利润是8元/件,每提高一个档次,利润每件增加2元,同时每提高一个档次,产量减少3件,在相同的时间内,最低档次的产品可生产60件.
试问:在相同的时间内,应选择生产第几档次的产品可获得最大利润?(设最低档次为第一档次)
解析 设在相同的时间内,从低到高每档产品的产量分别为a 1,a 2,…,a 10,利润分
别为b 1,b 2,…,b 10,
则{a n },{b n }均为等差数列,
且a 1=60,d 1=-3,b 1=8,d 2=2,
所以a n =60-3(n -1)=-3n +63,
b n =8+2(n -1)=2n +6,
所以利润f (n )=a n b n =(-3n +63)(2n +6)=-6n 2+108n +378=-6(n -9)2+864. 显然,当n =9时,f (n )max =f (9)=864.
答:在相同的时间内生产第9档次的产品可以获得最大利润.
12.(12分)(能力提升)已知数列{a n }中,a 1=14,a n =2-1a n -1
(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1
(n ∈Z *). (1)求证:数列{b n }是等差数列,并写出{b n }的通项公式;
(2)求数列{a n }的通项公式及数列{a n }中的最大项与最小项.
解析 (1)证明 因为a n =2-
1a n -1(n ≥2,n ∈Z *), 所以a n -1=
a n -1-1a n -1, 所以
1a n -1=a n -1-1+1a n -1-1=1+1a n -1-1, 即1a n -1-1a n -1-1
=1. 因为b n =
1a n -1,所以b n -b n -1=1(n ≥2,n ∈Z *). 又a 1=14,b 1=1a 1-1
=-43, 所以{b n }是以b 1=-43为首项,1为公差的等差数列.故b n =-43+(n -1)×1=n -73
,n ∈N *.
(2)由(1)得a n =1
n -73+1=1+33n -7, 当n ≥3时,数列{a n }是递减数列,且a n >1.
又a 1=14,a 2=-2,a 3=52
,
5
所以在数列{a n}中,最大项为a3=
2,最小项为a2=-2.。