中考数学真题模拟试卷 (61)

合集下载

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西中考模拟真题数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、单选题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列实数是无理数的是()AB C .12D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为()A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为()A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是()A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围()A .2k <-B .2k >-C .0k >D .0k <6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为()A .12B .16C .20D .247.如图,在O 中,半径OA ,OB 互相垂直,点C 在劣弧A 上.若26BAC ∠=︒,则ABC ∠=()A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32二、填空题(共5小题,每小题3分,计15分)9小的正整数.10.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题(共13小题,计81分,解答应写出过程)14()202441---.15.解方程:32544x x =---.16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩17.已知:如图,ABC V .求作:以AC 为弦的O ,使O 到AB 和BC的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题.20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sin(A) = 1/2,则角A的度数是()A. 30°B. 45°C. 60°D. 90°4. 若一个等差数列的前三项分别是2、5、8,则该数列的公差是()A. 1B. 2C. 3D. 45. 在直角坐标系中,点P(2, -3)关于原点的对称点是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题1. 任何两个奇数之和都是偶数。

()2. 一元二次方程的判别式Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根。

()3. 在等边三角形中,每个角的度数是60°。

()4. 函数y=2x+3的图像是一条直线。

()5. 互质的两个数的最小公倍数是它们的乘积。

()三、填空题1. 若 a 3 = 5,则 a 的值为______。

2. 若一个等比数列的前三项分别是2、4、8,则该数列的公比是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若sin(α) = 1/2,且α是锐角,则cos(α)的值是______。

5. 一元二次方程x^2 5x + 6 = 0的解是______和______。

四、简答题1. 解释什么是等差数列,并给出一个例子。

2. 什么是锐角和钝角?给出一个锐角和一个钝角的例子。

3. 解释一元二次方程的解的意义。

4. 什么是平行线?在直角坐标系中如何判断两条线是否平行?5. 解释什么是函数的图像,并给出一个例子。

五、应用题1. 一个等差数列的前三项分别是2、5、8,求该数列的第10项。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)
A. B. C. D.
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.

中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。

两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。

中考数学模拟测试卷带答案

中考数学模拟测试卷带答案

中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A .B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( )A .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x +=(k 为常数)的图象上123y y y 、、的大小关系为( ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 .11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 米(结果保留根号).三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)第5题图 第6题图 第8题图第10题图 第11题图 第12题图14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长?15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( B )B . B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( B )B .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( A )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上123y y y 、、的大小关系为( C ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( A )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( D ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( A )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( D )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= 1- .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 31 .第5题图 第6题图 第8题图11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 23 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 ()153 1.5 米(结果保留根号). 三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)1)由题意知60CAB ∠=︒,BC=4 ...................................................1分 ∴43tan603BC AB ==︒.................................................................3分 (2)43AB =30ACB ∠=︒ 90ABC ∠=︒ ⊙832AC AB = ...........................................................................................................................................................5分60BAC ∠=︒ 30ACB ∠=︒ 60DCE ∠=︒∴=90ACD ∠︒ 60DAC ∠=︒ ..........................................................................................................................................6分 ∴83tan6038DC AC =⋅︒== ...................................................................................................................................8分 在Rt CDE △中3sin60843DE CD =⋅︒==........................................................................................................10分 14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.第10题图 第11题图 第12题图(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;{}(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长? 1)解:设水温下降过程中,y 与x 的函数关系式为k y x=(k ≠0),...........................................1分 由题意得,点(4,100)在反比例函数k y x =的图象上 ∴4100k =..............................................................................................................................2分 解得:400k =∴水温下降过程中,y 与x 的函数关系式是400y x=;.....................................................3分 解:设在加热过程中,y 与x 的函数关系式为y=kx+b(k ≠0).......................................................................4分 把(0,20),(4,100)带入y=kx+b(k ≠0)得20=b, 100=4k+b.....................................................................................................................................................5分 解得:k=20,b=20..................................................................................................................................................6分 ∴y=20x+20当y=40时1x =.............................................................................................................................................7分在降温过程中,水温为40℃时40040x=..................................................................................................8分 解得:10x =...................................................................................................................................................9分1019-=........................................................................................................................................................10分∴一个加热周期内水温不低于40℃的时间为9min .15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.(1)证明:如图所示,连接OD ,.........................................................1分∵AD 平分∠CAB∴∠OAD =∠EAD ...........................................................................................................................................................2分 ∵OD =OA∴∠ODA =∠OAD ............................................................................................................................................................3分 ∴∠ODA =∠EAD .∴OD ∥AE .........................................................................................................................................................................4分 ∵AE PE ⊥∴OD PE ⊥∵D 在⊙O 上∴EP 与⊙O 相切...........................................................................................................................................................5分 (2)证明:OD PE ⊥∵∴90ODB BDP ∠+∠=︒.............................................................................................................................................6分 ∵AB 是⊙O 的直径⊙90ADB ∠=︒............................................................................................................................................................7分 即90ODB ODA ∠+∠=︒∴=ODA BDP ∠∠......................................................................................................................................................8分 ∵OD =OA∴∠ODA =∠OAD .⊙=OAD BDP ∠∠.....................................................................................................................................................9分 又∵APD DPB ∠=∠∴APD DPB ∆∆∽.....................................................................................................................................................10分 ∴AD AP BD DP=............................................................................................................................................................11分 ∴AD ·DP =BD ·AP ...................................................................................................................................................12分 解:作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB =90°∵AB =6,AD =2∴BD 22-AB AD 2 132OD AB ==.................................................................................................................15分 ∵12AB •DG =12AD •BD∴DG 423分 ∵AD 平分∠CAB ,AE ⊥DE ,DG ⊥AB∴DE =DG 423∴AE 22AD DE -163............................................................................................................................................17分 ∵OD ∥AE∴△ODP ∽△AEP .........................................................................................................................................................18分 ∴DP EP =OD AE ,即DP DE DP OD AE += ∴4213363DPDP =........................................................................................................................................................19分 ∴2721DP =分。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)数1.0.﹣.﹣2中最大的是()A.1B.0C.﹣D.﹣2 2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称.其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107 3.(4分)某物体如图所示.它的主视图是()A.B.C.D.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球.其中4个白球.2个红球.1个黄球.从布袋里任意摸出1个球.是红球的概率为()A.B.C.D.5.(4分)如图.在△ABC中.∠A=40°.AB=AC.点D在AC边上.以CB.CD为边作▱BCDE.则∠E的度数为()A.40°B.50°C.60°D.70°6.(4分)山茶花是温州市的市花、品种多样.“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录.统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm 7.(4分)如图.菱形OABC的顶点A.B.C在⊙O上.过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1.则BD的长为()A.1B.2C.D.8.(4分)如图.在离铁塔150米的A处.用测倾仪测得塔顶的仰角为α.测倾仪高AD为1.5米.则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米9.(4分)已知(﹣3.y1).(﹣2.y2).(1.y3)是抛物线y=﹣3x2﹣12x+m 上的点.则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 10.(4分)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.过点C作CR⊥FG于点R.再过点C作PQ⊥CR分别交边DE.BH于点P.Q.若QH=2PE.PQ=15.则CR的长为()A.14B.15C.8D.6二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:m2﹣25=.12.(5分)不等式组的解集为.13.(5分)若扇形的圆心角为45°.半径为 3.则该扇形的弧长为.14.(5分)某养猪场对200头生猪的质量进行统计.得到频数直方图(每一组含前一个边界值.不含后一个边界值)如图所示.其中质量在77.5kg及以上的生猪有头.15.(5分)点P.Q.R在反比例函数y=(常数k>0.x>0)图象上的位置如图所示.分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1.S2.S3.若OE=ED=DC.S1+S3=27.则S2的值为.16.(5分)如图.在河对岸有一矩形场地ABCD.为了估测场地大小.在笔直的河岸l上依次取点E.F.N.使AE⊥l.BF⊥l.点N.A.B在同一直线上.在F点观测A点后.沿FN方向走到M点.观测C点发现∠1=∠2.测得EF=15米.FM=2米.MN=8米.∠ANE=45°.则场地的边AB为米.BC为米.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).18.(8分)如图.在△ABC和△DCE中.AC=DE.∠B=∠DCE=90°.点A.C.D依次在同一直线上.且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE.当BC=5.AC=12时.求AE的长.19.(8分)A.B两家酒店规模相当.去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平.你选择什么统计量?求出这个统计量.(2)已知A.B两家酒店7~12月的月盈利的方差分别为1.073(平方万元).0.54(平方万元).根据所给的方差和你在(1)中所求的统计量.结合折线统计图.你认为去年下半年哪家酒店经营状况较好?请简述理由.20.(8分)如图.在6×4的方格纸ABCD中.请按要求画格点线段(端点在格点上).且线段的端点均不与点A.B.C.D重合.(1)在图1中画格点线段EF.GH各一条.使点E.F.G.H分别落在边AB.BC.CD.DA上.且EF=GH.EF不平行GH.(2)在图2中画格点线段MN.PQ各一条.使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.21.(10分)已知抛物线y=ax2+bx+1经过点(1.﹣2).(﹣2.13).(1)求a.b的值.(2)若(5.y1).(m.y2)是抛物线上不同的两点.且y2=12﹣y1.求m 的值.22.(10分)系统找不到该试题23.(12分)某经销商3月份用18000元购进一批T恤衫售完后.4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份.经销商将这批T恤衫平均分给甲、乙两家分店销售.每件标价180元.甲店按标价卖出a件以后.剩余的按标价八折全部售出;乙店同样按标价卖出a件.然后将b件按标价九折售出.再将剩余的按标价七折全部售出.结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量.请你求出乙店利润的最大值.24.(14分)如图.在四边形ABCD中.∠A=∠C=90°.DE.BF分别平分∠ADC.∠ABC.并交线段AB.CD于点E.F(点E.B不重合).在线段BF上取点M.N(点M在BN之间).使BM=2FN.当点P从点D匀速运动到点E时.点Q恰好从点M匀速运动到点N.记QN =x.PD=y.已知y=x+12.当Q为BF中点时.y=.(1)判断DE与BF的位置关系.并说明理由.(2)求DE.BF的长.(3)若AD=6.①当DP=DF时.通过计算比较BE与BQ的大小关系.②连结PQ.当PQ所在直线经过四边形ABCD的一个顶点时.求所有满足条件的x的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)数1.0.﹣.﹣2中最大的是()A.1B.0C.﹣D.﹣2【分析】根据有理数大小比较的方法即可得出答案.【解答】解:﹣2<﹣<0<1.所以最大的是1.故选:A.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点.右边的点表示的数比左边的点表示的数大.(2)正数大于0.负数小于0.正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称.其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.【解答】解:1700000=1.7×106.故选:B.【点评】此题考查科学记数法的表示方法.表示时关键要正确确定a 的值以及n的值.3.(4分)某物体如图所示.它的主视图是()A.B.C.D.【分析】根据主视图的意义和画法进行判断即可.【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A所表示的图形符合题意.故选:A.【点评】考查简单几何体的三视图的画法.主视图就是从正面看物体所得到的图形.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球.其中4个白球.2个红球.1个黄球.从布袋里任意摸出1个球.是红球的概率为()A.B.C.D.【分析】根据概率公式求解.【解答】解:从布袋里任意摸出1个球.是红球的概率=.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5.(4分)如图.在△ABC中.∠A=40°.AB=AC.点D在AC边上.以CB.CD为边作▱BCDE.则∠E的度数为()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠C.再根据平行四边形的性质可求∠E.【解答】解:∵在△ABC中.∠A=40°.AB=AC.∴∠C=(180°﹣40°)÷2=70°.∵四边形BCDE是平行四边形.∴∠E=70°.故选:D.【点评】考查了平行四边形的性质.等腰三角形的性质.关键是求出∠C的度数.6.(4分)山茶花是温州市的市花、品种多样.“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录.统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm【分析】根据表格中的数据.可以得到这组数据的中位数.本题得以解决.【解答】解:由表格中的数据可得.这批“金心大红”花径的众数为6.7.故选:C.【点评】本题考查众数.解答本题的关键是明确众数的含义.会求一组数据的众数.7.(4分)如图.菱形OABC的顶点A.B.C在⊙O上.过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1.则BD的长为()A.1B.2C.D.【分析】连接OB.根据菱形的性质得到OA=AB.求得∠AOB=60°.根据切线的性质得到∠DBO=90°.解直角三角形即可得到结论.【解答】解:连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB.∴OA=AB=OB.∴∠AOB=60°.∵BD是⊙O的切线.∴∠DBO=90°.∵OB=1.∴BD=OB=.故选:D.【点评】本题考查了切线的性质.菱形的性质.等边三角形的判定和性质.解直角三角形.熟练正确切线的性质定理是解题的关键.8.(4分)如图.在离铁塔150米的A处.用测倾仪测得塔顶的仰角为α.测倾仪高AD为1.5米.则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米【分析】过点A作AE⊥BC.E为垂足.再由锐角三角函数的定义求出BE的长.由BC=CE+BE即可得出结论.【解答】解:过点A作AE⊥BC.E为垂足.如图所示:则四边形ADCE为矩形.AE=150.∴CE=AD=1.5.在△ABE中.∵tanα==.∴BE=150tanα.∴BC=CE+BE=(1.5+150tanα)(m).故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题.根据题意作出辅助线.构造出直角三角形是解答此题的关键.9.(4分)已知(﹣3.y1).(﹣2.y2).(1.y3)是抛物线y=﹣3x2﹣12x+m 上的点.则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2.然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2.∵a=﹣3<0.∴x=﹣2时.函数值最大.又∵﹣3到﹣2的距离比1到﹣2的距离小.∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征.主要利用了二次函数的增减性和对称性.求出对称轴是解题的关键.10.(4分)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.过点C作CR⊥FG于点R.再过点C作PQ⊥CR分别交边DE.BH于点P.Q.若QH=2PE.PQ=15.则CR的长为()A.14B.15C.8D.6【分析】如图.连接EC.CH.设AB交CR于J.证明△ECP∽△HCQ.推出===.由PQ=15.可得PC=5.CQ=10.由EC:CH=1:2.推出AC:BC=1:2.设AC=a.BC=2a.证明四边形ABQC是平行四边形.推出AB=CQ=10.根据AC2+BC2=AB2.构建方程求出a 即可解决问题.【解答】解:如图.连接EC.CH.设AB交CR于J.∵四边形ACDE.四边形BCIH都是正方形.∴∠ACE=∠BCH=45°.∵∠ACB=90°.∠BCI=90°.∴∠ACE+∠ACB+∠BCH=180°.∠ACB+∠BCI=90°∴B.C.D共线.A.C.I共线.E、C、H共线.∵DE∥AI∥BH.∴∠CEP=∠CHQ.∵∠ECP=∠QCH.∴△ECP∽△HCQ.∴===.∵PQ=15.∴PC=5.CQ=10.∵EC:CH=1:2.∴AC:BC=1:2.设AC=a.BC=2a.∵PQ⊥CR.CR⊥AB.∴CQ∥AB.∵AC∥BQ.CQ∥AB.∴四边形ABQC是平行四边形.∴AB=CQ=10.∵AC2+BC2=AB2.∴5a2=100.∴a=2(负根已经舍弃).∴AC=2.BC=4.∵•AC•BC=•AB•CJ.∴CJ==4.∵JR=AF=AB=10.∴CR=CJ+JR=14.故选:A.【点评】本题考查相似三角形的判定和性质.平行四边形的判定和性质.解直角三角形等知识.解题的关键是学会添加常用辅助线.构造相似三角形解决问题.学会利用参数构建方程解决问题.属于中考选择题中的压轴题.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:m2﹣25=(m+5)(m﹣5).【分析】直接利用平方差进行分解即可.【解答】解:原式=(m﹣5)(m+5).故答案为:(m﹣5)(m+5).【点评】此题主要考查了运用公式法分解因式.关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.(5分)不等式组的解集为﹣2≤x<3.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可求解.【解答】解:.解①得x<3;解②得x≥﹣2.故不等式组的解集为﹣2≤x<3.故答案为:﹣2≤x<3.【点评】考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.(5分)若扇形的圆心角为45°.半径为 3.则该扇形的弧长为π.【分析】根据弧长公式l=.代入相应数值进行计算即可.【解答】解:根据弧长公式:l==π.故答案为:π.【点评】此题主要考查了弧长的计算.关键是掌握弧长公式.14.(5分)某养猪场对200头生猪的质量进行统计.得到频数直方图(每一组含前一个边界值.不含后一个边界值)如图所示.其中质量在77.5kg及以上的生猪有140头.【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数.本题得以解决.【解答】解:由直方图可得.质量在77.5kg及以上的生猪:90+30+20=140(头).故答案为:140.【点评】本题考查频数分布直方图.解答本题的关键是明确题意.利用数形结合的思想解答.15.(5分)点P.Q.R在反比例函数y=(常数k>0.x>0)图象上的位置如图所示.分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1.S2.S3.若OE=ED=DC.S1+S3=27.则S2的值为.【分析】设CD=DE=OE=a.则P(.3a).Q(.2a).R(.a).推出CP=.DQ=.ER=.推出OG=AG.OF=2FG.OF=GA.推出S1=S3=2S2.根据S1+S3=27.求出S1.S3.S2即可.【解答】解:∵CD=DE=OE.∴可以假设CD=DE=OE=a.则P(.3a).Q(.2a).R(.a).∴CP=.DQ=.ER=.∴OG=AG.OF=2FG.OF=GA.∴S1=S3=2S2.∵S1+S3=27.∴S3=.S1=.S2=.故答案为.【点评】本题考查反比例函数系数k的几何意义.矩形的性质等知识.解题的关键是学会利用参数解决问题.属于中考常考题型.16.(5分)如图.在河对岸有一矩形场地ABCD.为了估测场地大小.在笔直的河岸l上依次取点E.F.N.使AE⊥l.BF⊥l.点N.A.B在同一直线上.在F点观测A点后.沿FN方向走到M点.观测C点发现∠1=∠2.测得EF=15米.FM=2米.MN=8米.∠ANE=45°.则场地的边AB为15米.BC为20米.【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形.求得AE=EN=15+2+8=25(米).BF=FN=2+8=10(米).于是得到AB=AN﹣BN=15(米);过C作CH⊥l于H.过B作PQ∥l 交AE于P.交CH于Q.根据矩形的性质得到PE=BF=QH=10.PB =EF=15.BQ=FH.根据相似三角形的性质即可得到结论.【解答】解:∵AE⊥l.BF⊥l.∵∠ANE=45°.∴△ANE和△BNF是等腰直角三角形.∴AE=EN.BF=FN.∴EF=15米.FM=2米.MN=8米.∴AE=EN=15+2+8=25(米).BF=FN=2+8=10(米).∴AN=25.BN=10.∴AB=AN﹣BN=15(米);过C作CH⊥l于H.过B作PQ∥l交AE于P.交CH于Q.∴AE∥CH.∴四边形PEHQ和四边形PEFB是矩形.∴PE=BF=QH=10.PB=EF=15.BQ=FH.∵∠1=∠2.∠AEF=∠CHM=90°.∴△AEF∽△CHM.∴===.∴设MH=3x.CH=5x.∴CQ=5x﹣10.BQ=FH=3x+2.∵∠APB=∠ABC=∠CQB=90°.∴∠ABP+∠P AB=∠ABP+∠CBQ=90°.∴∠P AB=∠CBQ.∴△APB∽△BQC.∴.∴=.∴x=6.∴BQ=CQ=20.∴BC=20.故答案为:15.20.【点评】本题考查了相似三角形的应用.矩形的性质.等腰直角三角形的判定和性质.正确的识别图形是解题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣2+1+1=2;(2)(x﹣1)2﹣x(x+7)=x2﹣2x+1﹣x2﹣7x=﹣9x+1.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算.正确掌握相关运算法则是解题关键.18.(8分)如图.在△ABC和△DCE中.AC=DE.∠B=∠DCE=90°.点A.C.D依次在同一直线上.且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE.当BC=5.AC=12时.求AE的长.【分析】(1)由“AAS”可证△ABC≌△DCE;(2)由全等三角形的性质可得CE=BC=5.由勾股定理可求解.【解答】证明:(1)∵AB∥DE.∴∠BAC=∠D.又∵∠B=∠DCE=90°.AC=DE.∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE.∴CE=BC=5.∵∠ACE=90°.∴AE===13.【点评】本题考查了全等三角形的判定和性质.勾股定理.熟练掌握全等三角形的判定方法是本题的关键.19.(8分)A.B两家酒店规模相当.去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平.你选择什么统计量?求出这个统计量.(2)已知A.B两家酒店7~12月的月盈利的方差分别为1.073(平方万元).0.54(平方万元).根据所给的方差和你在(1)中所求的统计量.结合折线统计图.你认为去年下半年哪家酒店经营状况较好?请简述理由.【分析】(1)由要评价两家酒店月盈利的平均水平.即可得选择两家酒店月盈利的平均值.然后利用求平均数的方法求解即可求得答案;(2)平均数.盈利的方差反映酒店的经营业绩.A酒店的经营状况较好.【解答】解:(1)选择两家酒店月盈利的平均值;==2.5.==2.3;(2)平均数.方差反映酒店的经营业绩.A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5.B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073.B酒店盈利的方差为0.54.无论是盈利的平均数还是盈利的方差.都是A酒店比较大.且盈利折线A是持续上升的.故A酒店的经营状况较好.【点评】此题考查了折线统计图的知识.此题难度适中.注意掌握折线统计图表达的实际意义是解此题的关键.20.(8分)如图.在6×4的方格纸ABCD中.请按要求画格点线段(端点在格点上).且线段的端点均不与点A.B.C.D重合.(1)在图1中画格点线段EF.GH各一条.使点E.F.G.H分别落在边AB.BC.CD.DA上.且EF=GH.EF不平行GH.(2)在图2中画格点线段MN.PQ各一条.使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.【分析】(1)根据点E.F.G.H分别落在边AB.BC.CD.DA上.且EF =GH.EF不平行GH.画出线段即可;(2)根据使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.画出线段即可.【解答】解:(1)如图1.线段EF和线段GH即为所求;(2)如图2.线段MN和线段PQ即为所求.【点评】本题考查了作图﹣应用与设计作图.熟练掌握勾股定理是解题的关键.21.(10分)已知抛物线y=ax2+bx+1经过点(1.﹣2).(﹣2.13).(1)求a.b的值.(2)若(5.y1).(m.y2)是抛物线上不同的两点.且y2=12﹣y1.求m 的值.【分析】(1)把点(1.﹣2).(﹣2.13)代入y=ax2+bx+1解方程组即可得到结论;(2)把x=5代入y=x2﹣4x+1得到y1=6.于是得到y1=y2.即可得到结论.【解答】解:(1)把点(1.﹣2).(﹣2.13)代入y=ax2+bx+1得..解得:;(2)由(1)得函数解析式为y=x2﹣4x+1.把x=5代入y=x2﹣4x+1得.y1=6.∴y2=12﹣y1=6.∵y1=y2.且对称轴为x=2.∴m=4﹣5=﹣1.【点评】本题考查了二次函数图象上点的坐标特征.解方程组.正确的理解题意是解题的关键.22.(10分)系统找不到该试题23.(12分)某经销商3月份用18000元购进一批T恤衫售完后.4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份.经销商将这批T恤衫平均分给甲、乙两家分店销售.每件标价180元.甲店按标价卖出a件以后.剩余的按标价八折全部售出;乙店同样按标价卖出a件.然后将b件按标价九折售出.再将剩余的按标价七折全部售出.结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量.请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.可以得到相应的分式方程.从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同.可以得到关于a、b的方程.然后化简.即可用含a的代数式表示b;②根据题意.可以得到利润与a的函数关系式.再根据乙店按标价售出的数量不超过九折售出的数量.可以得到a的取值范围.从而可以求得乙店利润的最大值.【解答】解:(1)设3月份购进x件T恤衫..解得.x=150.经检验.x=150是原分式方程的解.则2x=300.答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元).(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简.得b=;②设乙店的利润为w元.w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×﹣600=36a+2100.∵乙店按标价售出的数量不超过九折售出的数量.∴a≤b.即a≤.解得.a≤50.∴当a=50时.w取得最大值.此时w=3900.答:乙店利润的最大值是3900元.【点评】本题考查一次函数的应用、分式方程的应用.解答本题的关键是明确题意.利用一次函数的性质和分式方程的知识解答.注意分式方程要检验.24.(14分)如图.在四边形ABCD中.∠A=∠C=90°.DE.BF分别平分∠ADC.∠ABC.并交线段AB.CD于点E.F(点E.B不重合).在线段BF上取点M.N(点M在BN之间).使BM=2FN.当点P从点D匀速运动到点E时.点Q恰好从点M匀速运动到点N.记QN =x.PD=y.已知y=x+12.当Q为BF中点时.y=.(1)判断DE与BF的位置关系.并说明理由.(2)求DE.BF的长.(3)若AD=6.①当DP=DF时.通过计算比较BE与BQ的大小关系.②连结PQ.当PQ所在直线经过四边形ABCD的一个顶点时.求所有满足条件的x的值.【分析】(1)推出∠AED=∠ABF.即可得出DE∥BF;(2)求出DE=12.MN=10.把y=代入y=﹣x+12.解得x=6.即NQ=6.得出QM=4.由FQ=QB.BM=2FN.得出FN=2.BM=4.即可得出结果;(3)连接EM并延长交BC于点H.易证四边形DFME是平行四边形.得出DF=EM.求出∠DEA=∠FBE=∠FBC=30°.∠ADE=∠CDE=∠FME=60°.∠MEB=∠FBE=30°.得出∠EHB=90°.DF=EM=BM=4.MH=2.EH=6.由勾股定理得HB=2.BE =4.当DP=DF时.求出BQ=.即可得出BQ>BE;②(Ⅰ)当PQ经过点D时.y=0.则x=10;(Ⅱ)当PQ经过点C时.由FQ∥DP.得出△CFQ∽△CDP.则=.即可求出x=;(Ⅲ)当PQ经过点A时.由PE∥BQ.得出△APE∽△AQB.则=.求出AE=6.AB=10.即可得出x=.由图可知.PQ不可能过点B.【解答】解:(1)DE与BF的位置关系为:DE∥BF.理由如下:如图1所示:∵∠A=∠C=90°.∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°.∵DE、BF分别平分∠ADC、∠ABC.∴∠ADE=∠ADC.∠ABF=∠ABC.∴∠ADE+∠ABF=×180°=90°.∵∠ADE+∠AED=90°.∴∠AED=∠ABF.∴DE∥BF;(2)令x=0.得y=12.∴DE=12.令y=0.得x=10.∴MN=10.把y=代入y=﹣x+12.解得:x=6.即NQ=6.∴QM=10﹣6=4.∵Q是BF中点.∴FQ=QB.∵BM=2FN.∴FN+6=4+2FN.解得:FN=2.∴BM=4.∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H.如图2所示:∵FM=2+10=12=DE.DE∥BF.∴四边形DFME是平行四边形.∴DF=EM.EH∥CD.∴∠MHB=∠C=90°.∵AD=6.DE=12.∠A=90°.∴∠DEA=30°.∴∠DEA=∠FBE=∠FBC=30°.∴∠ADE=60°.∴∠ADE=∠CDE=∠FME=60°.∴∠DFM=∠DEM=120°.∴∠MEB=180°﹣120°﹣30°=30°.∴∠MEB=∠FBE=30°.∴∠EHB=180°﹣30°﹣30°﹣30°=90°.DF=EM=BM=4.∴MH=BM=2.∴EH=4+2=6.由勾股定理得:HB===2.∴BE===4.当DP=DF时.﹣x+12=4.解得:x=.∴BQ=14﹣x=14﹣=.∵>4.∴BQ>BE;②(Ⅰ)当PQ经过点D时.如图3所示:y=0.则x=10;(Ⅱ)当PQ经过点C时.如图4所示:∵BF=16.∠FCB=90°.∠CBF=30°.∴CF=BF=8.∴CD=8+4=12.∵FQ∥DP.∴△CFQ∽△CDP.∴=.∴=.解得:x=;(Ⅲ)当PQ经过点A时.如图5所示:∵PE∥BQ.∴△APE∽△AQB.∴=.由勾股定理得:AE===6.∴AB=6+4=10.∴=.解得:x=.由图可知.PQ不可能过点B;综上所述.当x=10或x=或x=时.PQ所在的直线经过四边形ABCD的一个顶点.【点评】本题是四边形综合题.主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强.难度较大.熟练掌握平行四边形的判定与性质是解题的关键.。

中考数学试卷模拟及答案

中考数学试卷模拟及答案

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若a、b、c是等差数列,且a+b+c=9,则a的值为()A. 3B. 4C. 5D. 6答案:C解析:由等差数列的性质,a+b+c=3a,所以3a=9,解得a=3。

2. 下列函数中,y=√(x+1)是()A. 单调递增函数B. 单调递减函数C. 奇函数D. 偶函数答案:A解析:对于y=√(x+1),当x1<x2时,√(x1+1)<√(x2+1),所以函数是单调递增的。

3. 已知正方形的对角线长为2,则该正方形的面积为()A. 1B. 2C. 4D. 8答案:C解析:正方形的对角线长为2,根据勾股定理,正方形的边长为√2,所以面积为2。

4. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且a+b+c=0,则a的取值范围是()A. a>0B. a<0C. a≥0D. a≤0答案:A解析:由题意知,二次函数的图象开口向上,所以a>0。

又因为a+b+c=0,所以b+c=-a<0,所以a>0。

5. 已知等差数列{an}的前n项和为Sn,若S5=10,S10=30,则S15的值为()A. 50B. 55C. 60D. 65答案:C解析:由等差数列的性质,S10-S5=5d,S15-S10=5d,所以S15-S5=10d,即S15=10d+30=10(2d)+30=60。

6. 下列不等式中,正确的是()A. 2x>3xB. 2x<3xC. 2x≥3xD. 2x≤3x答案:B解析:对于任意实数x,2x<3x。

7. 已知函数y=kx+b(k≠0)的图象经过点(1,2),则k的取值范围是()A. k>0B. k<0C. k≥0D. k≤0答案:A解析:将点(1,2)代入函数,得2=k+b,所以k=2-b。

因为k≠0,所以2-b≠0,即b≠2,所以k>0。

最新九年级数学中考模拟考卷及答案

最新九年级数学中考模拟考卷及答案

最新九年级数学中考模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y=x^3B. y=x^2C. y=|x|D. y=2x2. 已知一组数据的方差是9,那么这组数据每个数都加上5后,方差是()A. 4B. 9C. 14D. 253. 下列等式中,正确的是()A. sin30°=1/2B. cos60°=1/2C. tan45°=1D. tan30°=1/24. 一个正方体的体积是8cm^3,那么它的表面积是()A. 24cm^2B. 32cm^2C. 36cm^2D. 48cm^25. 下列各数中是无理数的是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)1. 任何两个实数的和仍然是实数。

()2. 一元二次方程的解一定是实数。

()3. 对角线互相垂直的四边形一定是矩形。

()4. 任何数乘以0都等于0。

()5. 相似三角形的面积比等于边长比的平方。

()三、填空题(每题1分,共5分)1. 已知一组数据的平均数是10,那么这组数据的总和是______。

2. 一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______cm。

3. 若a+b=6,ab=2,则a=______,b=______。

4. 在直角坐标系中,点A(2,3)关于x轴的对称点是______。

5. 两个等差数列的通项公式分别是an=a1+(n1)d和bn=b1+(n1)d,那么这两个数列的前n项和分别是______和______。

四、简答题(每题2分,共10分)1. 简述平行线的性质。

2. 请解释无理数的概念。

3. 什么是二次函数的顶点坐标?4. 简述三角形面积的计算方法。

5. 请举例说明什么是等差数列。

五、应用题(每题2分,共10分)1. 某商店进行打折促销,原价100元的商品打8折,那么折后价格是多少?2. 一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的体积。

中考数学模拟试题及答案

中考数学模拟试题及答案

中考数学模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是答案:D3. 计算下列算式的结果:(3x - 2) - (x + 4) =A. 2x - 6B. 2x + 2C. x - 6D. x + 2答案:C4. 一个直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 6C. 7D. 8答案:A5. 下列哪个函数是二次函数?A. y = xB. y = x^2C. y = 2x + 1D. y = x^3答案:B6. 一个数的立方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D7. 计算下列算式的结果:(2x + 3)(2x - 3) =A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. 9 + 4x^2答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算下列算式的结果:(a^2 - b^2) / (a - b) =A. a + bB. a - bC. a^2 - b^2D. a^2 + b^2答案:B二、填空题(每题2分,共20分)1. 一个数的平方根是它本身,这个数是________。

答案:0或12. 一个数的立方根是它本身,这个数是________。

答案:0,1,-13. 一个数的相反数是它本身,这个数是________。

答案:04. 一个数的倒数是它本身,这个数是________。

答案:1或-15. 一个数的绝对值是它本身,这个数是________。

答案:非负数6. 一个数的平方是25,这个数是________。

答案:5或-57. 一个数的立方是-8,这个数是________。

中考数学试卷模拟题含答案

中考数学试卷模拟题含答案

一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.101001…D. 2/32. 若a,b是方程x² - 5x + 6 = 0的两根,则a² + b²的值为()A. 10B. 14C. 21D. 253. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (3,2)4. 若sinα = 1/2,则α的取值范围是()A. 0°<α<90°B. 90°<α<180°C. 180°<α<270°D. 270°<α<360°5. 一个长方体的长、宽、高分别为a、b、c,且a<b<c,那么下列命题正确的是()A. 对角线长度的平方和为a² + b² + c²B. 表面积最大值为2ab + 2ac + 2bcC. 体积最大值为abcD. 体积最小值为abc6. 若等比数列{an}的首项为2,公比为3,那么第n项an等于()A. 2 × 3^(n-1)B. 2 × 3^nC. 2 × 3^(n+1)D. 2 × 3^(n-2)7. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°8. 下列函数中,在定义域内单调递减的是()A. y = 2x - 1B. y = x²C. y = 1/xD. y = 3x + 29. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 线段[1, -1]B. 圆心在原点,半径为2的圆C. 圆心在原点,半径为1的圆D. 轴对称图形10. 若x,y是方程组\[\begin{cases}2x + 3y = 7 \\3x - 2y = 1\end{cases}\]的解,则x + y的值为()A. 2B. 3C. 4D. 5二、填空题(每小题4分,共20分)11. 若sinα = 3/5,且α为锐角,则cosα = __________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3.00分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3.00分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC 的大小为()A.20°B.60°C.70°D.160°3.(3.00分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3.00分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3.00分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3.00分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100° D.90°7.(3.00分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3.00分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB ⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3.00分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3.00分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3.00分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3.00分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3.00分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3.00分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3.00分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3.00分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3.00分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3.00分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

答应写出必要的文字说明、演算步骤或证明过程)19.(8.00分)计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|20.(8.00分)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.21.(8.00分)如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD ⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.22.(8.00分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.(8.00分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?24.(8.00分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD 为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度,(结果精确到0.lm.温馨提示:sin15°≈0.26,cosl5°≈0.97,tan15°≈0.27)25.(8.00分)如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;(不②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.要求证明)26.(10.00分)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM 为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN 的值;若不存在,请说明理由.2018年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3.00分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.8【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈1.732,∴与最接近的是1.7,故选:C.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.2.(3.00分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC 的大小为()A.20°B.60°C.70°D.160°【分析】根据对顶角相等解答即可.【解答】解:∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选:D.【点评】此题考查对顶角、邻补角,关键是根据对顶角相等解答.3.(3.00分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【解答】解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.4.(3.00分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3.00分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:28nm=28×10﹣9m=2.8×10﹣8m.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3.00分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100° D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7.(3.00分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界记录为9秒58,显然答案不符合实际意义,故选:D.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3.00分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB ⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2【分析】直接利用位似图形的性质以及结合A点坐标直接得出点C的坐标,即可得出答案.【解答】解:∵点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O 为位似中心缩小为原图形的,得到△COD,∴C(1,2),则CD的长度是:2.故选:A.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.9.(3.00分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定【分析】根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.【解答】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.【点评】本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.10.(3.00分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3.00分)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣2.【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.【点评】此题主要考查了在数轴上表示数的方法,以及相反数的含义和求法,要熟练掌握.12.(3.00分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:△ADF∽△ECF.【分析】利用平行四边形的性质得到AD∥CE,则根据相似三角形的判定方法可判断△ADF∽△ECF.【解答】解:∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.故答案为△ADF∽△ECF.【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了平行四边形的性质.13.(3.00分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是0.【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【解答】解:设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0.故答案为:0.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.14.(3.00分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是40°.【分析】根据外角的概念求出∠ADC,根据垂直的定义、四边形的内角和等于360°计算即可.【解答】解:∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【点评】本题考查的是多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.15.(3.00分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为16000人.【分析】用毕业生总人数乘以“综合素质”等级为A的学生所占百分比即可求得结果.【解答】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:16000【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.16.(3.00分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=2.【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.17.(3.00分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为:.【点评】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.18.(3.00分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是4.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,=|k|=2;∴S△AOB又∵函数图象位于一、三象限,∴k=4,故答案为4.【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

相关文档
最新文档