精选人教版数学必修三知识点精要归纳整理(精编Word版)
最全高中数学必修三知识点总结归纳(经典版)
最全高中数学(经典版)第一章算法初步1.1.1 算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2) 确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3) 顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4) 不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5) 普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一) 程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
人教版高中数学必修3知识点汇总(一册全)
人教版高中数学必修三知识点汇总第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
必修3-高一数学人教版最全知识点(必须珍藏)
高中数学必修3知识点总结目录高中数学必修3知识点总结 (2)第一章算法初步 (2)1.1算法的概念 (2)1.2 程序框图 (3)(一)程序构图的概念 (3)(二)构成程序框的图形符号及其作用 (3)(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(3)1.3输入、输出语句和赋值语句 (6)1.4条件语句 (7)1.5 循环语句 (8)1.6 UNTIL语句 (10)1.7 辗转相除法与更相减损术 (10)1.8 秦九韶算法与排序 (11)1.9 进位制 (12)第二章统计 (13)2.1 抽样方法 (13)2.1.1简单随机抽样 (13)2.1.2系统抽样 (14)2.1.3分层抽样 (14)2.2 用样本的数字特征估计总体的数字特征 (15)2.3 两个变量的线性相关 (16)第三章概率 (17)3.1随机事件的概率及概率的意义 (17)3.2 概率的基本性质 (17)3.3 古典概型及随机数的产生 (19)3.4 几何概型及均匀随机数的产生 (19)高中数学必修3知识点总结第一章算法初步1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
高中数学必修3知识点总结
高中数学必修3知识点总结一、直线与圆1. 直线的方程直线的方程有点斜式、斜截式和截距式。
其中,点斜式方程是通过直线上的一个点和直线的斜率来确定直线的方程;斜截式方程是通过直线的斜率和截距来确定直线的方程;截距式方程是通过直线在坐标轴上的两个截距来确定直线的方程。
2. 圆的方程圆的方程有标准方程和一般方程。
标准方程是圆心在原点的圆的方程,一般为x²+y²=r²;一般方程是圆心不在原点的圆的方程,一般为(x-a)²+(y-b)²=r²。
3. 直线与圆的位置关系直线与圆的位置关系有相离、相切和相交三种情况。
相离是指直线与圆没有公共点;相切是指直线与圆有且仅有一个公共点;相交是指直线与圆有两个交点。
4. 直线与圆的交点直线与圆有两个交点的情况下,求交点的方法可以通过联立直线方程和圆方程,再使用判别式来判断交点的情况。
5. 切线与法线圆上一点的切线和法线是确定的。
切线的斜率等于点到圆心的连线的斜率的相反数,法线的斜率等于切线的斜率的相反数。
二、平面向量1. 平面向量的定义平面向量是向量的一种,平面向量的定义是以有向线段为代表的,具有大小和方向的量。
平面向量通常用有向线段的起点和终点来表示。
2. 平面向量的加法与减法平面向量的加法与减法可以通过平行四边形法则进行计算,即两个向量相加时,将它们的起点放在一起,而两个向量的终点也放在一起,然后从起点到终点的有向线段即为它们的和。
3. 平行四边形法则平行四边形法则是求两个向量的和或差的方法。
在平行四边形中,对角线的和为两个向量的和,差为两个向量的差。
4. 数量积与向量积数量积也叫点积,是两个向量的数量乘积,定义为:a·b=|a|*|b|*cosθ,其中a、b为两个向量,|a|、|b|为它们的模,θ为它们的夹角。
向量积也叫叉积,是两个向量的向量乘积,定义为:a×b=|a|*|b|*sinθ*n,其中n为一个单位向量,垂直于a、b所确定的平面,并符合右手螺旋定则。
必修3-高一数学人教版最全知识点(必须珍藏)
高中数学必修3知识点总结目录高中数学必修3知识点总结 (2)第一章算法初步 (2)1.1算法的概念 (2)1.2程序框图 (3)(一) ........................................................................................... 程序构图的概念3(二) ............................................................................. 构成程序框的图形符号及其作用3(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(4)1.3输入、输出语句和赋值语句 (5)1.4条件语句 (6)1.5循环语句 (7)1.6 UNTIL 语句 (8)1.7辗转相除法与更相减损术 (8)1.8秦九韶算法与排序 (9)1.9进位制 (10)第二章统计 (11)2.1抽样方法 (11)2.1.1简单随机抽样 (11)2.1.2系统抽样 (13)2.1.3分层抽样 (13)2.2用样本的数字特征估计总体的数字特征 (14)2.3两个变量的线性相关 (15)第三章概率 (17)3.1随机事件的概率及概率的意义 (17)3.2概率的基本性质 (17)3.3古典概型及随机数的产生 (19)3.4几何概型及均匀随机数的产生 (19)高中数学必修3知识点总结第一章算法初步1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成2. 算法的特点:(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2) 确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可(3) 顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4) 不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5) 普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.2程序框图1、程序框图基本概念:(一)程序构图的概念程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
新人教版高中数学必修三知识点总结(详细)
新人教版高中数学必修三知识点总结(详
细)
本文旨在总结新人教版高中数学必修三的主要知识点,帮助学生复和掌握这一课程内容。
一、函数基本性质
1. 定义:函数是一个有输入和输出的对应关系。
2. 定义域和值域:函数的定义域是所有可能的输入值集合,值域是所有可能的输出值集合。
3. 图像与映射:函数可以通过图像表示,其中横坐标表示输入值,纵坐标表示输出值。
4. 奇偶性:函数可以根据输入值和输出值的奇偶性进行分类。
二、三角函数
1. 正弦函数:表示角的正弦值与其对边与斜边的比值。
2. 余弦函数:表示角的余弦值与其邻边与斜边的比值。
3. 正切函数:表示角的正切值与其对边与邻边的比值。
4. 幅角和周期:三角函数的图像在一定区间内呈周期性重复。
5. 三角函数的性质:包括奇偶性、单调性、增减性等。
6. 三角函数的简化:通过三角恒等式将复杂的三角函数化简为简单形式。
三、三角恒等式
1. 倍角公式:表示角的两倍与原角之间的关系。
2. 和差公式:表示两个角的和与差与它们的三角函数值之间的关系。
3. 积化和差公式:表示两个角的积与和与差与它们的三角函数值之间的关系。
4. 和差化积公式:表示两个角的和与差与它们的三角函数值之间的关系。
以上是新人教版高中数学必修三的主要知识点总结,通过复习和掌握这些知识,学生将能够更好地理解和应用数学。
希望本文对大家有所帮助!。
(完整word版)人教版高中数学必修3各章知识点总结
高中数学必修3知识点第一章算法初步1.1.1算法的概念算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B 框是依次执行的,只有在执行完A 框指定的操作后,才能接着执 行B 框所指定的操作。
数学必修三知识点总结
数学必修三知识点总结一、函数的概念与性质1. 函数的定义:描述变量间依赖关系的一种数学表达方式。
2. 函数的表示方法:符号表示法、图像表示法、表格表示法。
3. 函数的性质:单调性、奇偶性、周期性、有界性。
4. 函数的基本运算:加法、减法、乘法、除法、复合函数。
二、指数与对数1. 指数函数:定义、图像、性质。
2. 对数函数:对数的定义、对数的运算法则、对数函数的图像与性质。
3. 指数与对数的关系:换底公式、指数与对数的互化。
4. 指数方程和对数方程的解法。
三、三角函数1. 三角函数的定义:正弦、余弦、正切函数的定义及其图像。
2. 三角函数的基本关系:和差公式、倍角公式、半角公式。
3. 三角函数的性质:奇偶性、单调性、周期性。
4. 三角方程的解法。
四、平面向量1. 向量的概念:物理背景、基本运算(加法、数乘、数量积)。
2. 向量的几何表示与线性运算。
3. 向量的坐标表示与向量方程。
4. 向量的应用:速度、加速度、力的合成与分解。
五、数列1. 数列的概念:定义、通项公式。
2. 等差数列与等比数列:定义、通项公式、求和公式。
3. 数列的极限:极限的概念、性质、计算方法。
4. 数列的应用:级数、递推关系、数学归纳法。
六、解析几何1. 平面直角坐标系:点的坐标、距离公式、斜率公式。
2. 直线的方程:点斜式、两点式、一般式。
3. 圆的方程:标准方程、一般方程。
4. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
七、概率与统计1. 随机事件与概率:事件的定义、概率的计算。
2. 随机变量及其分布:离散型与连续型随机变量、概率分布。
3. 统计量:平均数、中位数、众数、方差、标准差。
4. 抽样与估计:抽样方法、总体参数的点估计与区间估计。
八、数学归纳法1. 数学归纳法的原理与步骤。
2. 证明方法:直接证明、反证法。
3. 应用:证明等式、不等式、数列的性质。
九、复数1. 复数的概念:实部、虚部、模、辐角。
2. 复数的运算:加法、减法、乘法、除法。
人教版数学必修3知识点总结(K12教育文档)
人教版数学必修3知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版数学必修3知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版数学必修3知识点总结(word版可编辑修改)的全部内容。
高中数学必修3知识点第一章算法初步1.1.1算法的概念算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。
(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可。
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决。
1.1.2程序框图(一)程序构图概念:程序框图又称流程图,是一种用规定图形、流程线及文字说明来准确、直观地表示算法的图形。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号.4、判断框分两大类,一类判断框“是”与“否"两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
人教版数学必修三知识点精要归纳整理(精编Word版)
必修三第一章算法初步一、算法与程序框图1、算法的概念:指按照一定规则解决某一类问题的明确和有限的步骤。
(解题步骤)2、(1)程序框图(流程图)流程线连接点(2)算法的基本逻辑结构(3种)顺序、条件、循环(海伦-秦九韶公式:S△=√p(p−a)(p−b)(p−c),其中P=a+b+c2。
)例:SQR(x):√x ABS(x):|x|MOD:b=x MOD 10(b是x除以10的余数)二、基本算法语句1、输入语句、输出语句和赋值语句①INPUT“提示内容”;变量②PRINT“提示内容”;表达式③变量=表达式例:“x”;x “a,b,c=”;a,b,c “s=”;s2、条件语句3、循环语句(1)直到型(2)当型(直到i>100)(当i≤100)三、算法案例1、(1)辗转相除法:欧几里得算法(最大公约数)例:8251与6105{8251=6105×1+21466105=2146×2+18132146=1813×1+333{1813=333×5+148333=148×2+37148=37×4→最大公约数37(2)更相减损术:《九章算术》(最大公约数)例:98与63{98−63=3563−35=2835−28=7{28−7=2121−7=1414−7=7→最大公约数72、秦九韶算法《数书九章》f(x)=a n x n+a n−1x n−1+⋯+a1x+a0=(…((a n x+a n−1)x+a n−2)x+⋯+a1)x+a0令v1=a n x+a n−1,则v2=v1x+a n−2,v3=v2x+a n−3,…,v n=v n−1x+a0∴f(x)=v n=v n−1x+a03、进位制(几进制的基数就是几,基数都是大于1的整数)例:二进制数1100112化为十进制数。
解:1100112=1×25+1×24+1×21+1×20=51★把十进制数化为k进制的算法称为除k取余法。
2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总
高考数学必修三知识点总结人教版高考数学必修三考点篇一自变量某和因变量y有如下关系:y=k某+b则此时称y是某的一次函数。
特别地,当b=0时,y是某的正比例函数。
即:y=k某(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的某的变化值成正比例,比值为k即:y=k某+b(k为任意不为零的实数b取任何实数)2.当某=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像,一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与某轴和y轴的交点)2.性质:(1)在一次函数上的任意一点p(某,y),都满足等式:y=k某+b。
(2)一次函数与y轴交点的坐标总是(0,b),与某轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随某的增大而增大;当k当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点a(某1,y1);b(某2,y2),请确定过点a、b的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=k某+b。
(2)因为在一次函数上的任意一点p(某,y),都满足等式y=k某+b。
所以可以列出2个方程:y1=k某1+b……①和y2=k某2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
高中数学必修3知识点总结篇二高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学某某两本书。
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
必修3数学知识点总结
必修3数学知识点总结一、函数与导数函数是数学中的重要概念,它描述了一个自变量和因变量之间的关系。
必修3课程中会学习到一元函数、二元函数、多元函数等不同类型的函数。
在学习函数的过程中,需要掌握函数的定义、图像、性质、变化率等内容。
另外,导数也是数学中的重要概念,它描述了函数在某一点的变化率。
学习导数的过程中,需要了解导数的定义、计算方法、性质、应用等内容。
掌握函数与导数的知识对于理解后续学习的微积分以及其他相关领域的知识都是至关重要的。
二、几何向量向量是另一个必修3课程中的重要概念。
学习向量的过程中,需要了解向量的定义、性质、运算、坐标表示等内容。
在学习向量的过程中,还需要了解向量的数量积、向量的夹角、向量的投影、向量的平行与垂直等相关知识。
必修3课程中还会学习到向量的应用,比如力的平衡、力的分解、速度、加速度等概念都与向量密切相关。
因此,掌握几何向量的知识对于理解物理学等相关学科都是至关重要的。
三、三角函数与数量关系在必修3课程中还会学习到三角函数与数量关系的知识。
学习三角函数时,需要了解正弦函数、余弦函数、正切函数等标准三角函数的定义、性质、图像、变化规律等知识。
在学习数量关系的过程中,需要了解数量关系的定义、性质、图像、变化规律等知识。
除此之外,必修3课程中还会学习到三角函数与数量关系的应用,比如角的辨认、三角函数的应用、数量关系的应用等内容。
掌握三角函数与数量关系的知识对于理解物理学、工程学等相关学科都是至关重要的。
总结以上是我对必修3课程中的一些重要数学知识点的总结。
当然,除了这些知识点之外,必修3课程中还包括了其他重要的数学知识,比如概率、统计等内容。
希望同学们能够认真学习这些知识,扎实掌握数学的基础知识,为将来的学习和发展打下坚实的基础。
高中数学必修3知识点总结
高中数学必修3知识点总结高中数学必修3是高中数学的一门重要课程,其中包含了许多基础而又必不可少的数学知识点。
下面将对高中数学必修3中的知识点进行总结,以便同学们对该门课程的内容有更清晰的了解。
1. 函数和方程- 函数的概念:函数是一种对应关系,它将一个集合的每个元素唯一地对应到另一个集合的元素上。
- 函数的表示:函数通常用公式或者图像来表示,常见的函数包括线性函数、二次函数、指数函数等。
- 方程的解法:解方程是数学中常见的问题,通过化简、代入、换元等方法可以求得方程的解。
2. 三角函数- 三角函数的定义:正弦函数、余弦函数、正切函数等是最基本的三角函数,它们在直角三角形和单位圆中有重要的几何意义。
- 三角函数的性质:三角函数具有周期性、奇偶性等特点,它们之间有一些重要的恒等关系如和差化积、倍角公式等。
- 三角函数的应用:在数学、物理、工程等领域,三角函数有广泛的应用,如波动、振动、电路等问题均可用三角函数来描述和求解。
3. 统计与概率- 统计学的基本概念:平均值、中位数、众数等是统计学中常见的概念,它们用来描述数据的集中趋势和分散程度。
- 概率的计算:概率是描述事件发生可能性的数字,通过频率、几何概型、公式等方法可以计算和判断概率。
- 抽样调查与推论统计:通过抽样和数据分析,可以对整体进行推论,判断某一现象是否具有普遍性。
4. 空间几何- 点、线、面、体的关系:点是空间中的一个位置,线是由无数点连结而成,面是由无数线连结而成,而体则是由无数面连接而成。
- 空间几何的测量:长度、面积、体积是空间几何中的重要测量指标,通过公式和计算方法可以求得各种图形的测量结果。
- 空间几何的应用:在建筑、工程、地理等领域,空间几何有着广泛的应用,如房屋设计、地形测量、容器容积计算等。
通过对高中数学必修3中的知识点进行总结,我们不仅可以更好地理解和掌握这门课程,也可以在日常生活和学习中更好地应用数学知识,提高解决问题的能力和效率。
必修三数学全册知识点总结
必修三数学全册知识点总结第一章二次函数1. 二次函数的定义和性质二次函数是具有形式f(x)=ax^2+bx+c的函数,其中a不等于0。
二次函数的图像是抛物线。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a)),对称轴方程为x=-b/2a。
2. 二次函数的图像和性质二次函数的图像是抛物线,具有对称轴方程x=-b/2a。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的平移、伸缩和反转对于二次函数y=ax^2+bx+c,若a不等于1,则可以通过平移、伸缩和反转来改变原函数的图像。
平移可以通过加减常数项来实现,伸缩可以通过改变a的值来实现,反转可以通过将a变为-a来实现。
4. 用二次函数解决实际问题二次函数在解决实际问题时,常常可以通过建立二次函数模型来描述问题,并利用二次函数的性质和图像来求解。
第二章三角函数1. 角的概念和弧度制角的概念是平面上由两条射线所夹的部分,而弧度制是用弧长和半径的比值来表示角的大小。
一个圆周的弧长为半径的长度时,所对的圆心角的大小为1弧度。
2. 三角函数的定义和性质三角函数包括正弦函数、余弦函数、正切函数和余切函数。
正弦函数的定义是sinθ=对边/斜边,余弦函数的定义是cosθ=邻边/斜边,正切函数的定义是tanθ=对边/邻边,余切函数的定义是cotθ=邻边/对边。
3. 三角函数图像、性质和对称性三角函数的图像是周期性的波形,具有对称性。
正弦函数和余弦函数的图像在[-π/2,π/2]上关于y轴对称,而在π的整数倍点上关于原点对称;正切函数和余切函数的图像在(-π/2,π/2)上关于y轴对称。
4. 用三角函数解决实际问题三角函数在解决实际问题时,常常可以通过建立三角函数模型来描述问题,并利用三角函数的性质和图像来求解。
第三章一元二次方程1. 一元二次方程的定义和解法一元二次方程是形如ax^2+bx+c=0的方程,其中a不等于0。
高中数学必修三知识点大全(精编文档).doc
【最新整理,下载后即可编辑】知识点串讲必修三第一章:算法1. 1.1 算法的概念1、算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
2、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
3、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
解:算法或步骤如下:S1 人带两只狼过河;S2 人自己返回;S3 人带一只羚羊过河;S4 人带两只狼返回;S5 人带两只羚羊过河;S6 人自己返回;S7 人带两只狼过河;S8 人自己返回;S9 人带一只狼过河.1.1.2程序框图1、基本概念:(1起止框是任何流程图都不可缺少的,它表明程序的开始和结束,所以一个完整的流程图的首末两端必须是起止框。
(2 表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。
(3 它是采用来赋值、执行计算语句、传送运算结果的图形符号。
(4) 判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y ”与“N ”)两个分支。
2、顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修三
第一章算法初步
一、算法与程序框图
1、算法的概念:指按照一定规则解决某一类问题的明确和有限的步骤。
(解题步骤)
2、(1)程序框图(流程图)
流程线连接点(2)算法的基本逻辑结构(3种)
顺序、条件、循环
(海伦-秦九韶公式:
,其中。
)
例:SQR(x):::(是除以的余数)
二、基本算法语句
1、输入语句、输出语句和赋值语句
①INPUT“提示内容”;变量②PRINT“提示内容”;表达式③变量=表达式
例:“x”;x “a,b,c=”;a,b,c “s=”;s
2、条件语句
3、循环语句
(1)直到型(2)当型
(直到i)(当i)
三、算法案例
1、(1)辗转相除法:欧几里得算法(最大公约数)
例:8251与6105最大公约数
(2)更相减损术:《九章算术》(最大公约数)
例:与最大公约数
2、秦九韶算法《数书九章》
令,则,,,
3、进位制(几进制的基数就是几,基数都是大于1的整数)
例:二进制数化为十进制数。
解:
★把十进制数化为k进制的算法称为除k取余法。
例:把89化为二进制数。
2 余数 2
1
2 0
2 0
2 1
2 1
2 0
第二章 统计
一、随机抽样
1、简单随机抽样(不放回地抽取) 适用总量小的
(1)抽签法(抓阄法)
(2)随机数法(表、骰子或计算机)
2、系统抽样 适用总量大的
编号 分段确定间隔 当 是整数时,取 简单随机抽取第一个 (N 是总容量,n 是样本容量)
3、分层抽样 适用总量大的
①分成互不交叉的层 ②按照一定的比例 ③从各层独立抽取
二、用样本估计总体
1、频率分布
①求极差 ②决定组距与组数 ③将数据分组 ④列频率分布表 ⑤画频率分布直方图
★总体密度曲线 ★组数 极差
组距 ★频率分布折线图(各小长方形的中点连线) ★纵轴:频率组距
★茎叶图(中间的数字是十位上的数)
2、数字特征
(1)众数、中位数、平均数
(2)标准差(数据的离散程度:正比关系),方差 。
三、变量间的相关关系
1、变量之间的相关关系(统计:调查、实验、统计分析、发现规律、作出判断。
)
(1)商品销售收入与广告支出经费(商品质量、居民收入等)
(2)粮食产量与施肥量(土壤质量、降雨量、田间管理水平等)
(3)人体内的脂肪含量与年龄(饮食习惯、个人先天体质、体育锻炼等)
2、两个变量的线性相关(统计图、表)★用表示各点到(1)散点图直线的“整体距离”。
(2)正相关 VS 负相关
(3)线性相关关系:在一条直线附近(回归直线)(回归方程)
(4)最小乘二法:
(利用计算器)→→→回归方程
第三章概率
一、随机事件的概率
1、事件确定事件:必然事件、不可能事件估计概率随机事件:用概率度量它发生的可能性大小频率频数
总次数
2、概率的意义
①概率的正确理解②游戏的公平性③决策中的概率思想小概率事件:几乎不可能发生。
极大似然法:使得样本出现的可能性最大。
④天气预报的概率解释⑤试验与发现⑥遗传机理中的统计规律
3、概率的基本性质
(1)事件的关系与运算
①包含②相等③并和事件:或④交积事件:或
⑤互斥:⑥互为对立:
为必然
(2)几个基本性质:,必然,不可能,互斥
对立
二、古典概型
1、古典概型
(1)基本事件(特点)任何两个基本事件是互斥的。
任何事件除不可能事件都可以表示成基本事件的和。
(2)古典概率模型:所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
包含的基本事件的个数
基本事件的总数
(运用时要验证)
2、(整数值)随机数的产生(参照书本P130的按键过程)
三、几何概型
1、几何概率模型:每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。
构成事件的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
2、均匀随机数的产生(参照书本P137的按键过程)。