等比数列、等比数列的前n项和测试题二

合集下载

等比数列的前n项和(二)

等比数列的前n项和(二)

课前自主学习
课堂讲练互动
课后智能提升
4.若等比数列的前n项和Sn=5n+m,则m= ( ) A.-1 B.1 C.-5 D.5 解析:a1=5+m,当n≥2时,an=5n-5n-1= 4· 5n-1所以5+m=4,m=-1. 答案:A
课前自主学习

等比数列前n项和性质
课前自主学习
课堂讲练互动
课后智能提升
课堂总结
灵活应用等比数列前n项和的性质解题,往往能 达到事半功倍的效果.
课前自主学习
课堂讲练互动
课后智能提升
误区解密
考虑不全面,导致错误
【例3】 设等比数列{an}的前n项和为Sn,a1≠0,若 S3+S6=2S9,求数列{an}的公比q.
错解:因为 S3+S6=2S9,所以 a11-q3 a11-q6 a11-q9 + = 2× , 1-q 1-q 1- q 由于 a1≠0,整理,得 q3(2q6-q3-1)=0. 因为 q≠0,所以(2q3+1)(q3-1)=0, 4 所以 q=1 或 q=- . 2 3
课前自主学习
课堂讲练互动
课后智能提升
520 520 由题意知4 a-4x4 +4x≥4a,

520 y=4 ,则
1g y=20(1g 5-1g 4)=20(1-31g 2 )≈2, ∴y=100,∴100a-400x+4x≥4a, 8 ∴x≤ a. 33 8 故每年砍伐量不能超过 a. 33
课前自主学习
课堂讲练互动
课后智能提升
1. 110a- 1.19x- 1.18x-…- 1.1x- x
10 1.1 -1 10 = 1.1 a- x= 2.6a- 16x. 1.1- 1
3 由题意, 得 2.6a- 16x= 2a.解得 x= a(m2). 80 a 3 - a× 10 2 80 1 (2)所求百分比为 = ≈ 6.3%. 2a 16

等比数列的前n项和公式专题练习(解析版)

等比数列的前n项和公式专题练习(解析版)

等比数列的前n 项和公式一、单选题 1.(2021·内蒙古宁城·高三月考(文))已知{}n a 是等比数列,若12a =,528a a =,数列{}n a 的前n 项和为n S ,则n S 为( ) A .22n - B .121n +- C .122n +- D .21n -【答案】C 【分析】设公比为q ,根据528a a =求得公比,再利用等比数列前n 项和的公式即可得出答案. 【详解】 解:设公比为q ,因为528a a =,所以3528a q a ==,所以2q ,所以()12122212nn n S +⨯-==--.故选:C.2.(2021·河北·高三月考)已知正项等比数列{}n a 的前n 项和为n S ,42S =,810S =,则{}n a 的公比为( ) A.1 B C .2 D .4【答案】B 【分析】利用等比数列的性质求解即可. 【详解】因为42S =,810S =,{}n a 为正项等比数列,所以4845678412344S S a a a a q S a a a a -+++===+++,解得q 故选:B .3.(2021·西藏·拉萨那曲第二高级中学高三月考(文))记等比数列{}n a 的前n 项和为n S ,若214a =,378S =,则公比q = ( ) A .12-B .12C .2D .12或2【答案】D 【分析】根据等比数列的性质可得2132116a a a ==,再由378S =,可得1358a a +=,分别求出13,a a ,即可得出答案. 【详解】解:在等比数列{}n a 中,若214a =,则2132116a a a ==,312378S a a a =++=,所以1358a a +=, 由13116a a =,1358a a +=,解得131218a a ⎧=⎪⎪⎨⎪=⎪⎩,或131812a a ⎧=⎪⎪⎨⎪=⎪⎩,当131218a a ⎧=⎪⎪⎨⎪=⎪⎩时,2112a a q ==, 当131812a a ⎧=⎪⎪⎨⎪=⎪⎩时,212a q a ==, 所以q =12或2.故选:D.4.(2021·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3 B .13C .2D .12【答案】B 【分析】 由已知得()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭.再求得13a =,从而有数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,由等比数列的通项公式求得n a ,再利用分组求和的方法,以及等比数列求和公式求得n S ,从而求得n T 得答案. 【详解】解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=,∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n na --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn n n n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n nn n a S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13.故选:B.5.(2021·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2 B .()1213n- C .4n ﹣1 D .()1413n- 【答案】D 【分析】根据等比数列定义,求出214n n n b a -==,可证明{}n b 是以1为首项,4为公比的等比数列,利用等比数列的求和公式,可得解 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --=== 由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列 a 12+a 22+⋯+a n 2=1(14)41143n n ⋅--=- 故选:D6.(2021·河南郑州·高二期中(理))设n A ,n B 分别为等比数列{}n a ,{}n b 的前n 项和.若23n n n n A aB b+=+(a ,b 为常数),则74a b =( )A .12881B .12780C .3227D .2726【答案】C 【分析】设(2),(3)n nn n A a m B b m =+=+,项和转换776a A A =-,443b B B =-求解即可【详解】由题意,23n n n n A a B b+=+ 设(2),(3)n nn n A a m B b m =+=+则76776[(2)(2)]64a A A a a m m =-=+-+=()()434433354b B B b b m m ⎡⎤=-=+-+=⎣⎦7464325427a mb m ∴== 故选:C7.(2021·河南郑州·高二期中(理))设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【答案】A 【分析】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,然后利用分求出,n n A B ,再利用n n n S A B =+列方程,由对应项的系数相等可求出结果 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则 ()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n nn n d d S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221b d da q q-====--, 解得111,2,5,4a d q b ====, 所以3d q -=-.8.(2021·福建·泉州科技中学高三月考)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列233464510105,,,,,,,,,,,则此数列的前35项和为( )A .994B .995C .1003D .1004【答案】B 【分析】没有去掉“1”之前,可得每一行数字和为首项为1,公比为2的等比数列,可求出其前n 项和为21n n S =-,每一行的个数构成一个首项为1,公差为1的等差数列,从而可求出前n 项总个数为(1)2n n n T +=,由此可计算出第10行去掉“1”后的最后一个数为第36个数,从而可求出前35项和。

高二数学等比数列的前n项和2

高二数学等比数列的前n项和2

① ②
②÷①得 q=2.将 q=2 代入①得11--44n=85,
∴4n=256,∴n=4.∴公比 q=2,项数为 8.
• [例3] 银行按规定每经过一定时间(贷款利 率中的时间间隔)结算贷款的利息一次,结算 后将利息并入本金,这种计算利息的方法叫
复利.现在某企业进行技术改造,有两种方 案:甲方案,一次性贷款10万元,第一年便 可获利1万元,以后每年比前一年增加30% 的利润;乙方案:每年年初贷款1万元,第 一年便可获利1万元,以后每年比前一年多 获利5千元.两种方案的实施期限都是十年, 到期一次性归还本息,若银行贷款利息按年 息10%的复利计算,比较两个方案,哪个获
(2)Sn=a111--qqn=64[11--2112n] =128[1-(12)n]<128.
• [例1] 在等比数列{an}中,已知Sn=48, S2n=60,求S3n.
• [分析] 用求和公式直接求解或用性质求 解.
[解] 解法 1:∵S2n≠2Sn,∴q≠1.
a111--qqn=48,① 由已知得a111--qq2n=60,②
• A. B.
• C. D.
解析:由aa12++aa23++aa34=aa2111+ +qq+ +qq22=aa21=q=-12, 又由 a1+a2+a3=6,且 q=-12,∴a1=8,可得 a2=a1q=8×(- 12)=-4, ∴a3+a4+a5+a6+a7=S7-a1-a2=a111--qq7-8-(-4)=181.
• 2.等比数列{an}中,S2=7,S6=91,则 S4为( )
• A.28
B.32
• C.35
D.49
• 解析:∵S2,S4-S2,S6-S4成等比数列 • ∴(S4-S2)2=S2(S6-S4) • ∴(S4-7)2=7(91-S4) • ∴S4=28. • 选A.

数学一轮复习第6章数列第3讲等比数列及其前n项和试题2理

数学一轮复习第6章数列第3讲等比数列及其前n项和试题2理

第六章 数 列第三讲 等比数列及其前n 项和1。

[2021陕西百校联考]已知等比数列{a n }的公比为q ,前4项的和为a 1+14,且a 2,a 3+1,a 4成等差数列,则q 的值为( )A.12或2 B 。

1或12C.2D.32。

[2021安徽省四校联考]已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 4=( )A.116B.18C 。

3116D.1583.[2020合肥三检][数学文化题]公元前1650年左右的埃及《莱因德纸草书》上载有如下问题:“十人分十斗玉米,从第二人开始,各人所得依次比前人少八分之一,问每人各得玉米多少斗?”在上述问题中,第一人分得玉米( ) A .70×89810-1斗 B .10×810810-710斗 C 。

10×89810-710斗 D 。

10×88810-710斗4.[2020南昌市测试]公比不为1的等比数列{a n }中,若a 1a 5=a m a n ,则mn 不可能为( ) A 。

5 B .6 C 。

8 D .95。

[2020成都市高三摸底测试]已知等比数列{a n }的各项均为正数,若log 3a 1+log 3a 2+…+log 3a 12=12,则a 6a 7=( ) A.1 B 。

3 C 。

6 D .96.[2021四省八校联考]已知等比数列{a n }的公比为q ,前n 项和为S n =m —q n ,若a 5=—8a 2,则S 5= .7。

[2020大同市高三调研]已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= .8。

[2020全国卷Ⅲ,17,12分]设等比数列{a n }满足a 1+a 2=4,a 3—a 1=8。

(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.9。

高中数学 第二章 数列 2.5 等比数列的前n项和 第1课时 等比数列前n项和的求解练习(含解析)新

高中数学 第二章 数列 2.5 等比数列的前n项和 第1课时 等比数列前n项和的求解练习(含解析)新

第1课时 等比数列前n 项和的求解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为() A .63 B .64 C .127 D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16,所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127.答案:C2.设在等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为() A.154B.152C.74D.72解析:根据等比数列的公式,得S 4a 3=a 1(1-q 4)(1-q )·a 1q 2=(1-q 4)(1-q )q 2=1-24(1-2)×22=154. 答案:A3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是()A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于()A .-6(1-3-10) B.19(1-3-10)C .3(1-3-10) D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为()A .-2B .2C .-3D .3解析:设数列{a n }的公比为q ,若q =1,则S 2mS m=2,与题中条件矛盾,故q ≠1. 因为S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m +1=9,所以q m=8. 所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8, 所以q =2. 答案:B 二、填空题6.在等比数列{a n }中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=________.解析:因为S 99=30,即a 1(299-1)=30,数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,所以a 3+a 6+a 9+…a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207.答案:12077.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n ,应用累加法可得a n =2n-1, 所以S n =a 1+a 2+a 3+…+a n =2+22+23+ (2)-n=2(1-2n)1-2-n=2n +1-n -2.答案:2n +1-n -28.(2016·某某卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1, 所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1121 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n 及其前n 项和S n ; (2)设b n =1+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n ·b n +1的前10项和T 10.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1,S n =1(1-3n )1-3=3n-12.(2)由(1)知b n =1+log 3a n =1+(n -1)=n , 则1b n b n +1=1n (n +1)=1n -1n +1,所以T 10=11×2+12×3+…+110×11=1-12+12-13+…+110-111=1-111=1011.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn=1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n.S n =1×31+2×32+3×33+…+n ·3n ,①3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1.②① —②得,-2S n =31+32+…+3n -n ·3n +1=3·(1-3n)1-3-n ·3n +1=(1-2n )·3n +1-32.所以S n =(2n -1)·3n +1+34.B 级 能力提升1.在等比数列{a n }中,a 1+a 2+…+a n =2n -1(n ∈N *),则a 21+a 22+…+a 2n 等于() A .(2n -1)2B.13(2n -1)2C .4n-1 D.13(4n -1)解析:a 1+a 2+…+a n =2n-1,即S n =2n-1,则S n -1=2n -1-1(n ≥2),则a n =2n -2n -1=2n -1(n ≥2),又a 1=1也符合上式,所以a n =2n -1,a 2n =4n -1,所以a 21+a 22+…+a 2n =13(4n -1).答案:D2.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则该数列的项数n =________.解析:a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=(a 1+a 2+a 3+a 4)q 4a 1+a 2+a 3+a 4=q 4=2.因为a 1+a 2+a 3+a 4=a 1(1-q 4)1-q =a 1(1-2)1-q =-a 11-q =1,所以a 11-q =-1.所以S n =a 1(1-q n )1-q=q n-1=15,所以q n=16,即(q 4)n4=24,所以n4=4,所以n =16.答案:163.已知等比数列{a n }的各项均为正数,且a 1+2a 2=5,4a 23=a 2a 6. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=2,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设=a nb n b n +1,求数列{}的前n 项和T n . 解:(1)设等比数列{a n }的公比为q ,由4a 23=a 2a 6得4a 23=a 24,所以q 2=4,由条件可知q >0,故q =2,由a 1+2a 2=5得a 1+2a 1q =5,所以a 1=1,故数列{a n }的通项公式为a n =2n -1.(2)由b n +1=b n +a n 得b n +1-b n =2n -1,故b 2-b 1=20,b 3-b 2=21,……,b n -b n -1=2n -2(n ≥2),以上n -1个等式相加得b n -b 1=1+21+…+2n -2=1·(1-2n -1)1-2=2n -1-1,由b 1=2,所以b n =2n -1+1(n ≥2).当n =1时,符合上式,故b n =2n -1+1(n ∈N *).(3)=a nb n b n +1=b n +1-b n b n b n +1=1b n -1b n +1, 所以T n =c 1+c 2+…+=⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1b n -1b n +1=1b 1-1b n +1=12-12n +1.。

等比数列的前n项和(二)

等比数列的前n项和(二)

课前训练
1 1 1 的前n项和 求等比数列 1, , , ,…的前 项和 n. 的前 项和S 2 4 8
例题1: 例题1: 变式1: 变式1:
n 17 3 5 9 2 +1 的前n项和 项和S 求数列 2 , , 8 , 16,… 2 n 的前 项和 n. 4
若数列{a 的通项a 项和S 若数列 n} 的通项 n =2n+n,求其前 项和 n. ,求其前n项和
变式2 学案与测评》 变式2:《学案与测评》P32 第7题 题
求数列1,1+2,1+2+22,…,1+2+22+…+2n-1 ,…的前 求数列 的前 n项和 n. 项和S 项和
Байду номын сангаас
例题2: 例题2:
若数列{a 的通项a 求其前n项和 项和S 若数列{an} 的通项an =n2n,求其前n项和Sn.
变式1: 变式1
课外练习: 课外练习:
《学案与测评》P32 学案与测评》 “举一反三”第2题, ”能力提高”第8题, 举一反三” 能力提高” 举一反三 题 能力提高 题 ”拓展延伸”第9题 拓展延伸” 拓展延伸 题
课外作业
课本P61 课本P61 第4题
等比数列的前n项和
na1 等比数列{a 中 当公比 当公比q=1时,Sn=_________; 等比数列 n}中,当公比 时 n a1 an q a1(1-q ) ( 当公比q≠1时,Sn=________________=________________; 当公比 时 1-q 1 q
等比数列的前n项和 的公式推导过程中, 等比数列的前 项和Sn的公式推导过程中,用 项和 了什么方法?___________ 了什么方法 错位相减法

等比数列的前n项和(2)最新版

等比数列的前n项和(2)最新版

1
1


1
8
S8
2 2 1 1


255 256
2
练习
已知等比 an中 数 , 列
1 a 1 2 , S 3 1 . 则 q 4 2或-3
a 3

8或18
2 a 1 1 , a 4 2 则 q 1 -6 , S 4 6 185
sn=a1+a2+a3+ ······+an-1+an
Sn = a1 + a1q + a1q2 +……+a1qn-2 + a1qn-1 (*)
q n a s 1 q a 1 q 2 a 1 q 3 a n 1 q a 1 q n (*
两式相减有 ( 1 – q )Sn = a1 – a1 q n
欢迎光临指导
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方

2.5等比数列的前n项和

2.5等比数列的前n项和

预习测评
1.等比数列1,a,a2,a3,…的前n项和为(
a1-an-1 A.1+ 1-a an+1-1 C. a-1 1-an B. 1-a D.以上皆错
)
解析:要考虑到公比为1的情况,此时Sn=n. 答案:D
2.数列{2n-1}的前99项和为 A.2100-1 B.1-2100 C.299-1 D.1-299
15 = .所以 a1=1. 8
答案:1
要点阐释
1.等比数列前n项和公式的推导 设等比数列a1,a2,a3,…,an,…它的前n项和 是Sn=a1+a2+…+an. 由等比数列的通项公式可将Sn写成 Sn=a1+a1q+a1q2+…+a1qn-1. ① ①式两边同乘以q得, qSn=a1q+a1q2+a1q3+…+a1qn. ② ①-②,得(1-q)Sn=a1-a1qn,由此得q≠1时,
1.若本例(1)中的条件不变,如何求{an}的通项 公式?
解:∵S2=30,S3=155,∴a3=S3-S2=125, 125 即 a1· =125.∴a1= 2 . q q
2
又∵a1+a1q=30, 125 125 ∴ 2 + q =30,即 6q2-25q-25=0. q
a1=5 解得: q=5
∴数列{an}的通项公式为an=(a2-1)a2n-2(n∈N*). 即数列{an}是首项为a2-1,公比为a2的等比数列. 方法点评:将已知条件Sn=a2n-1与an=Sn-Sn-1 结合起来 ,得到n≥2时的通项公式an=(a2-1)a2n-2, 特别注意的是,n=1时即a1=a2-1能否统一到an=(a2- 1)·2n-2中去,如果能统一起来,则数列{an}为等比数列, a 否则数列{an}不是等比数列.
典例剖析

等比数列前n项和公式基础训练题(有详解)

等比数列前n项和公式基础训练题(有详解)
参考答案
1.A
【解析】
【分析】
利用等比数列的通项公式、前 项和公式列出方程组,求出首项和公比,由此能求出 .
【详解】
解: 等比数列 为单调递增数列,
设其前 项和为 , , ,

解得 , ,

故选: .
【点睛】
本题考查数列的第5项的求法,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.
23.已知正项等比数列{ }满足 .记 ,则数列{ }的前 项和为________.
三、解答题
24.已知 为等差数列,且 , .
(1)求 的通项公式;
(2)若等比数列 满足 , ,求数列 的前 项和公式.
25.等比数列{ }的前n项和为 ,已知 , , 成等差数列
(1)求{ }的公比q;
(2)求 - =3,求
【详解】
因为 ,所以 .又 ,所以 , ,
【点睛】
若 是等比数列,且 ,则 ,
前 项和公式 。
6.B
【解析】
【分析】
根据等比数列通项公式,可求得首项与公比;再代入即可求得结果。
【详解】
数列 是等比数列,且 ,
所以由通项公式可得 ,解得
所以
代入
可得
所以选B
【点睛】
本题考查了等比数列通项公式的简单应用,属于基础题。
等比数列前n项和公式基础训练题(有详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知等比数列 为单调递增数列,设其前 项和为 ,若 , ,则 的值为( )
A.16B.32C.8D.
2.设等比数列{ }的前n项和为 ,若 =3,则 =

高中数学五2第2课时等比数列的前n项和检测(教师)

高中数学五2第2课时等比数列的前n项和检测(教师)

2.5等比数列的前n项和(2)一、选择题1.数列a n=错误!,其前n项之和为错误!,则项数n为()A.12 B.11 C.10 D.9答案:D2.已知等比数列{a n}的首项为1,公比为q,前n项和为S n,则数列错误!的前n项和为()A.错误!B.S n q n-1C.S n q1-n D.错误!解析:数列错误!的首项为1,公比为错误!,它的前n项和为T n=错误!=错误!,又S n=错误!,所以T n=错误!·S n=q1-n·S n.答案:C3.数列{a n}的通项公式a n=错误!,则该数列的前________项之和等于9。

()A.99 B.98 C.97 D.96解析:a n=错误!=错误!=错误!-错误!,所以S n=a1+a2+a3+…+a n=(错误!-错误!)+(错误!-错误!)+…+(错误!-错误!)=错误!-1.令错误!-1=9⇒n+1=100,所以n=99.答案:A4.数列错误!,错误!,错误!,…,错误!,…的前n项和为()A.错误!B。

错误!C。

错误!D。

错误!解析:因为错误!=错误!错误!,得前n项和S n=错误!(错误!-错误!+错误!-错误!+错误!-错误!+…+错误!-错误!)=错误!错误!=错误!。

答案:B5.已知数列{a n}的前n项和为S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值是()A.13 B.-76 C.46 D.76解析:S15=-4×7+a15=-28+57=29,S22=-4×11=-44,S31=-4×15+a31=-4×15+121=61,S15+S22-S31=29-44-61=-76.答案:B二、填空题6.求和:1错误!+3错误!+5错误!+…+错误!=______________.解析:S n+1=[1+3+…+(2n+1)]+错误!=n2+2n+2-错误!错误!.答案:n2+2n+2-错误!错误!7.已知数列{a n}的通项公式为a n=log2(n2+3)-2,那么log23是这个数列的第________项.解析:令a n=log23⇒log2(n2+3)-2=log23⇒n2+3=12,所以n2=9,n=3。

2022年高中数学第二章数列5-1等比数列的前n项和练习含解析新人教A版必修

2022年高中数学第二章数列5-1等比数列的前n项和练习含解析新人教A版必修

课时训练13 等比数列的前n项和一、等比数列前n 项和公式的应用1.已知等比数列的公比为2,且前5项和为1,那么前10项的和等于( )A.31B.33C.35D.37答案:B解析:∵S 5=1,∴a 1(1-25)1-2=1,即a 1=131.∴S 10=a 1(1-210)1-2=33.2.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案:D解析:S n =a 1(1-q n)1-q =a 1-a n q 1-q =1-23a n1-23=3-2a n ,故选D .3.(2015福建厦门高二期末,7)设S n 为等比数列{a n }的前n 项和,若27a 2-a 5=0,则S 4S 2等于( )A.-27 B.10C.27D.80答案:B解析:设等比数列{a n }的公比为q ,则27a 2-a 2q 3=0,解得q=3,∴S 4S 2=a 1(1-q 4)1-q ·1-q a 1(1-q 2)=1+q 2=10.故选B .4.(2015课标全国Ⅰ高考,文13)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和.若S n=126,则n= .答案:6解析:∵a n+1=2a n,即an+1a n=2,∴{a n}是以2为公比的等比数列.又a1=2,∴S n=2(1-2n)1-2=126.∴2n=64,∴n=6.5.设数列{a n}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|= .答案:15解析:由数列{a n}首项为1,公比q=-2,则a n=(-2)n-1,a1=1,a2=-2,a3=4,a4=-8,则a1+|a2|+a3+| a4|=1+2+4+8=15.二、等比数列前n项和性质的应用6.一个等比数列的前7项和为48,前14项和为60,则前21项和为( )A.180B.108C.75D.63答案:D解析:由性质可得S7,S14-S7,S21-S14成等比数列,故(S14-S7)2=S7·(S21-S14).又∵S7=48,S14=60,∴S21=63.7.已知数列{a n},a n=2n,则1a1+1a2+…+1an= .答案:1-1 2n解析:由题意得:数列{a n }为首项是2,公比为2的等比数列,由a n =2n ,得到数列{a n }各项为:2,22,…,2n ,所以1a 1+1a 2+…+1a n =12+122+…+12n .所以数列{1a n }是首项为12,公比为12的等比数列.则1a 1+1a 2+…+1a n =12+122+…+12n=12[1-(12)n]1-12=1-12n.8.在等比数列{a n }中,a 1+a n =66,a 2·a n-1=128,S n =126,求n 和q.解:∵a 2a n-1=a 1a n ,∴a 1a n =128.解方程组{a 1a n =128,a 1+a n =66,得{a 1=64,a n =2,①或{a 1=2,a n =64.②将①代入S n =a 1-a n q 1-q=126,可得q=12,由a n =a 1q n-1,可得n=6.将②代入S n =a 1-a n q 1-q=126,可得q=2,由a n =a 1q n-1可解得n=6.综上可得,n=6,q=2或12.三、等差、等比数列的综合应用9.已知数列{a n }是以1为首项,2为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,设c n =a b n ,T n =c 1+c 2+…+c n ,当T n >2 013时,n 的最小值为( )A.7B.9C.10D.11答案:C解析:由已知a n =2n-1,b n =2n-1,∴c n =a b n =2×2n-1-1=2n -1.∴T n =c 1+c 2+…+c n =(21+22+ (2))-n=2×1-2n1-2-n=2n+1-n-2.∵T n>2013,∴2n+1-n-2>2013,解得n≥10,∴n的最小值为10,故选C.10.已知公差不为0的等差数列{a n}满足S7=77,a1,a3,a11成等比数列.(1)求a n;(2)若b n=2a n,求{b n}的前n项和T n.解:(1)设等差数列{a n}的公差为d(d≠0),由S7=7(a1+a7)2=77可得7a4=77,则a1+3d=11 ①.因为a1,a3,a11成等比数列,所以a32=a1a11,整理得2d2=3a1d.又d≠0,所以2d=3a1 ②,联立①②,解得a1=2,d=3,所以a n=3n-1.(2)因为b n=2a n=23n-1=4·8n-1,所以{b n}是首项为4,公比为8的等比数列.所以T n=4(1-8n)1-8=23n+2-47.(建议用时:30分钟) 1.在等比数列{a n}中,a1=3,a n=96,S n=189,则n的值为( ) A.5B.4C.6D.7答案:C解析:显然q≠1,由a n=a1·q n-1,得96=3×q n-1.又由S n=a1-anq1-q,得189=3-96q1-q.∴q=2.∴n=6.2.等比数列{a n}的前n项和为S n,若S1,S3,S2成等差数列,则{a n}的公比等于( )A.1B.12C.-12D.1+√52答案:C解析:设等比数列{a n}的公比为q,由2S3=S1+S2,得2(a1+a1q+a1q2)=a1+a1+a1q,整理得2q2+q=0,解得q=-12或q=0(舍去).故选C.3.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( )A.2B.12C.4D.14答案:C解析:a3=3S2+2,a4=3S3+2,等式两边分别相减得a4-a3=3a3即a4=4a3,∴q=4.4.设S n为等比数列{a n}的前n项和,8a2+a5=0,则S5S2=( )A.11B.5C.-8D.-11答案:D解析:设等比数列的首项为a1,公比为q,则8a1q+a1q4=0,解得q=-2.∴S5S2=a1(1-q5)1-qa1(1-q2)1-q=1-q51-q2=-11.5.设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是( )A.X+Z=2YB.Y(Y-X)=Z(Z-X)C.Y2=XZD.Y(Y-X)=X(Z-X)答案:D解析:S n=X,S2n-S n=Y-X,S3n-S2n=Z-Y,不妨取等比数列{a n}为a n=2n,则S n,S2n-S n,S3n-S2n成等比数列,∴(Y-X)2=X(Z-Y),整理得D正确.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于 . 答案:6解析:由题意知每天植树的棵数组成一个以2为首项,2为公比的等比数列,所以S n =2(1-2n)1-2=2(-1+2n )≥100,∴2n ≥51,∴n ≥6.7.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为 . 答案:3116解析:易知公比q ≠1.由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q=2.∴{1a n }是首项为1,公比为12的等比数列.∴其前5项和为1-(12)51-12=3116.8.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q= ;|a 1|+|a 2|+…+|a n |= .答案:-2 2n-1-12解析:设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q=-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n-1,所以|a1|+|a2|+|a3|+…+|a n|=12(1+2+22+…+2n-1)=12(2n-1)=2n-1-12.9.已知等差数列{a n}的前n项和为S n,且满足a2=4,a3+a4=17.(1)求{a n}的通项公式;(2)设b n=2a n+2,证明数列{b n}是等比数列并求其前n项和T n. (1)解:设等差数列{a n}的公差为d.由题意知{a3+a4=a1+2d+a1+3d=17,a2=a1+d=4,解得a1=1,d=3,∴a n=3n-2(n∈N*).(2)证明:由题意知,b n=2a n+2=23n(n∈N*),b n-1=23(n-1)=23n-3(n∈N*,n≥2),∴bnb n-1=23n23n-3=23=8(n∈N*,n≥2),又b1=8,∴{b n}是以b1=8,公比为8的等比数列.∴T n=8×(1-8n)1-8=87(8n-1).10.已知公差不为0的等差数列{a n}的首项a1为a(a∈R),且1a1,1a2,1a4成等比数列.(1)求数列{a n}的通项公式;(2)对n∈N*,试比较1a2+1a22+1a23+…+1a2n与1a1的大小.解:(1)设等差数列{a n}的公差为d,由题意可知(1a2)2=1a1·1a4,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,∴d=a1=a.故通项公式a n=na.(2)记T n=1a2+1a22+…+1a2n,因为a2n=2n a,所以T n=1a(12+122+ (12))=1 a ·12[1-(12)n]1-12=1a[1-(12)n].从而,当a>0时,T n<1 a 1 ;当a<0时,T n>1 a 1 .。

等比数列的前n项和(二)

等比数列的前n项和(二)

等比数列的前n 项和(二)[学习目标] 1.熟练应用等比数列前n 项和公式的有关性质解题.2.应用方程的思想方法解决与等比数列前n 项和有关的问题.知识点一 等比数列的前n 项和的变式1.等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1-a n q 1-q =a 1q nq -1-a 1q -1; 当q =1时,S n =na 1.2.当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q ·qn+a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数. 当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 思考 在数列{a n }中,a n +1=ca n (c 为非零常数)且前n 项和S n =3n -1+k ,则实数k 等于________.答案 -13解析 由题{a n }是等比数列, ∴3n 的系数与常数项互为相反数, 而3n 的系数为13,∴k =-13.知识点二 等比数列前n 项和的性质1.连续m 项的和(如S m 、S 2m -S m 、S 3m -S 2m )仍构成等比数列.(注意:q ≠-1或m 为奇数) 2.S m +n =S m +q m S n (q 为数列{a n }的公比).3.若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q .思考 在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210 D .520答案 A解析 S 2=20,S 4-S 2=40,∴S 6-S 4=80, ∴S 6=S 4+80=S 2+40+80=140.题型一 等比数列前n 项和的性质例1 (1)等比数列{a n }中,S 2=7,S 6=91,则S 4=______.(2)等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =____. 答案 (1)28 (2)2解析 (1)∵数列{a n }是等比数列, ∴S 2,S 4-S 2,S 6-S 4也是等比数列, 即7,S 4-7,91-S 4也是等比数列, ∴(S 4-7)2=7(91-S 4), 解得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2 =(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0, ∴S 4=28.(2)由题S 奇+S 偶=-240,S 奇-S 偶=80, ∴S 奇=-80,S 偶=-160, ∴q =S 偶S 奇=2.跟踪训练1 (1)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( )A .2 B.73 C.83 D .3答案 B解析 方法一 因为数列{a n }是等比数列,所以S 6=S 3+q 3S 3,S 9=S 6+q 6S 3=S 3+q 3S 3+q 6S 3,于是S 6S 3=(1+q 3)S 3S 3=3,即1+q 3=3,所以q 3=2.于是S 9S 6=1+q 3+q 61+q 3=1+2+41+2=73.方法二 由S 6S 3=3,得S 6=3S 3.因为数列{a n }是等比数列,且由题意知q ≠-1,所以S 3,S 6-S 3,S 9-S 6也成等比数列,所以(S 6-S 3)2=S 3(S 9-S 6),解得S 9=7S 3,所以S 9S 6=73.(2)一个项数为偶数的等比数列,各项之和为偶数项之和的4倍,前3项之积为64,求通项公式.解 设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇、S 偶,由题意知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,即a 1=12. 故所求通项公式为a n =12·⎝⎛⎭⎫13n -1. 题型二 等比数列前n 项和的实际应用例2 小华准备购买一台售价为5 000元的电脑,采用分期付款方式,并在一年内将款全部付清.商场提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.解 方法一 设小华每期付款x 元,第k 个月末付款后的欠款本利为A k 元,则: A 2=5 000×(1+0.008)2-x =5 000×1.0082-x , A 4=A 2(1+0.008)2-x =5 000×1.0084-1.0082x -x , …A 12=5 000×1.00812-(1.00810+1.0088+…+1.0082+1)x =0, 解得x = 5 000×1.008121+1.0082+1.0084+…+1.00810=5 000×1.008121-(1.0082)61-1.0082≈880.8.故小华每期付款金额约为880.8元.方法二 设小华每期付款x 元,到第k 个月时已付款及利息为A k 元,则: A 2=x ;A 4=A 2(1+0.008)2+x =x (1+1.0082); A 6=A 4(1+0.008)2+x =x (1+1.0082+1.0084); …A 12=x (1+1.0082+1.0084+1.0086+1.0088+1.00810). ∵年底付清欠款,∴A 12=5 000×1.00812,即5 000×1.00812=x (1+1.0082+1.0084+…+1.00810), ∴x = 5 000×1.008121+1.0082+1.0084+…+1.00810≈880.8.故小华每期付款金额约为880.8元.跟踪训练2 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增长14.设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n的表达式.解 第1年投入800万元,第2年投入800×⎝⎛⎭⎫1-15万元,…,第n 年投入800×⎝⎛⎭⎫1-15n -1万元,所以总投入a n =800+800×⎝⎛⎭⎫1-15+…+800× ⎝⎛⎭⎫1-15n -1=4 000×⎣⎡⎦⎤1-⎝⎛⎭⎫45n (万元).同理,第1年收入400万元,第2年收入400×⎝⎛⎭⎫1+14万元,…,第n 年收入400×⎝⎛⎭⎫1+14n -1万元.所以总收入b n =400+400×⎝⎛⎭⎫1+14+…+400× ⎝⎛⎭⎫1+14n -1=1 600×⎣⎡⎦⎤⎝⎛⎭⎫54n -1.综上,a n =4 000×⎣⎡⎦⎤1-⎝⎛⎭⎫45n ,b n =1 600×⎣⎡⎦⎤⎝⎛⎭⎫54n -1. 题型三 新情境问题例3 定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数. (1)证明:数列{2a n +1}是“平方数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方数列”的前n 项之积为T n ,则T n =(2a 1+1)(2a 2+1)·…·(2a n +1),求数列{a n }的通项及T n 关于n 的表达式;(3)对于(2)中的T n ,记b n =log 2a n +1T n ,求数列{b n }的前n 项和S n ,并求使S n >4 024的n 的最小值.(1)证明 由条件得a n +1=2a 2n +2a n ,2a n +1+1=4a 2n +4a n +1=(2a n +1)2.∴数列{2a n +1}是“平方数列”.∵lg(2a n +1+1)=lg(2a n +1)2=2lg(2a n +1), 且lg(2a 1+1)=lg 5≠0, ∴lg (2a n +1+1)lg (2a n +1)=2,∴{lg(2a n +1)}是首项为lg 5,公比为2的等比数列. (2)解 ∵lg(2a 1+1)=lg 5,∴lg(2a n +1)=2n -1lg 5.∴2a n +1=125n -,∴a n =12(125n --1).∵lg T n =lg(2a 1+1)+lg(2a 2+1)+…+lg(2a n +1) =lg 5(1-2n )1-2=(2n -1)lg 5, ∴T n =25n-1.(3)解 ∵b n =log 12n a +T n =lg T nlg (2a n +1)=(2n-1)lg 52n -1lg 5=2n -12n -1=2-⎝⎛⎭⎫12n -1, ∴S n =2n -⎣⎡⎦⎤1+12+⎝⎛⎫122+…+⎝⎛⎫12n -1 =2n -1-⎝⎛⎭⎫12n1-12=2n -2+2⎝⎛⎭⎫12n.由S n >4 024,得2n -2+2⎝⎛⎭⎫12n >4 024, 即n +⎝⎛⎭⎫12n >2 013.当n ≤2 012时,n +⎝⎛⎭⎫12n <2 013; 当n ≥2 013时,n +⎝⎛⎭⎫12n >2 013. ∴n 的最小值为2 013.跟踪训练3 把一个边长为1正方形等分成九个相等的小正方形,将中间的一个正方形挖掉(如图(1));再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个正方形挖掉(如图(2));如此继续下去,则:(1)图(3)共挖掉了________个正方形;(2)第n 个图形共挖掉了________个正方形,这些正方形的面积和是________. 答案 (1)73 (2)8n -17 1-⎝⎛⎭⎫89n解析 (1)8×9+1=73.(2)设第n 个图形共挖掉a n 个正方形,则a 1=1,a 2-a 1=8,a 3-a 2=82,…,a n -a n -1=8n -1(n ≥2),所以a n =1+8+82+…+8n -1=8n -17(n ≥2).当n =1时,a 1=1也满足上式,所以a n =8n -17.原正方形的边长为1,则这些被挖掉的正方形的面积和为1×⎝⎛⎭⎫132+8×⎝⎛⎭⎫134+82×⎝⎛⎭⎫136+…+8n -1×⎝⎛⎭⎫132n =19[1-⎝⎛⎭⎫89n ]1-89=1-⎝⎛⎭⎫89n .1.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n 等于( ) A .2n-1 B.4n -13C.1-(-4)n 5D.1-(-2)n 32.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于( ) A .3 B .4 C .5 D .63.等比数列{a n }的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A .28 B .48 C .36 D .524.已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列.求证:2S 3,S 6,S 12-S 6成等比数列.一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.等比数列{a n }的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列⎩⎨⎧⎭⎬⎫1a n ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项的和是( )A.1S B .Sq n -1 C .Sq 1-n D.q n S3.已知等比数列{a n }的前3项和为1,前6项和为9,则它的公比q 等于( ) A.12B .1C .2D .4 4.已知数列{a n }的前n 项和S n =a n -1(a 是不为零的常数且a ≠1),则数列{a n }( ) A .一定是等差数列 B .一定是等比数列C .或者是等差数列,或者是等比数列D .既非等差数列,也非等比数列5.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025 B .1 024 C .10 250D .20 2406.已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 1=8,S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为( ) A .S 1 B .S 2 C .S 3 D .S 47.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a n +1a n -1B.S 5S 3C.S 5a 3D.S n +1S n二、填空题8.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________.9.等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________.10.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.11.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x ,y ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n =________.三、解答题12.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =2x +1上,其中n ∈N *. (1)若数列{a n }是等比数列,求实数t 的值;(2)设各项均不为0的数列{c n }中,所有满足c i ·c i +1<0的整数i 的个数称为这个数列{c n }的“积异号数”,令c n =na n -4na n (n ∈N *),在(1)的条件下,求数列{c n }的“积异号数”.13.某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放量比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量m(m>0)万吨.(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列{a n},求相邻两年主要污染物排放总量的关系式;(2)证明:数列{a n-10m}是等比数列;(3)若该市始终不需要采取紧急限排措施,求m的取值范围.当堂检测答案1.答案 B解析 由a 1a 2a 3=1得a 32=1, ∴a 2=1, 又∵a 4=4, ∴a 4a 2=4. ∴数列a 2,a 4,a 6,…,a 2n 是首项为1, 公比为4的等比数列.∴a 2+a 4+a 6+…+a 2n =1-4n 1-4=4n -13.2.答案 D解析 设每天植树棵数为{a n },则{a n }是等比数列, ∴a n =2n (n ∈N *,n 为天数). 由题意得2+22+23+…+2n ≥100, ∴2n -1≥50, ∴2n ≥51, ∴n ≥6.∴需要的最少天数n =6. 3.答案 A解析 易知S m =4,S 2m -S m =8, ∴S 3m -S 2m =16, ∴S 3m =12+16=28.4.证明 设等比数列{a n }的公比为q ,由题意得2a 7=a 1+a 4, 即2a 1·q 6=a 1+a 1·q 3, ∴2q 6-q 3-1=0.令q 3=t ,则2t 2-t -1=0, ∴t =-12或t =1,即q 3=-12或q 3=1.当q 3=1时,2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1, ∴S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.当q 3=-12时,2S 3=2×a 1(1-q 3)1-q =2a 1×321-q =3a 11-q,S 6=a 1(1-q 6)1-q =3a 141-q , S 12-S 6=a 7(1-q 6)1-q =a 1·q 6(1-q 6)1-q =a 14×341-q , ∴S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.综上可知,2S 3,S 6,S 12-S 6成等比数列.课时精练答案一、选择题1.答案 C解析 由题意得4a 2=4a 1+a 3,∴4(a 1q )=4a 1+a 1·q 2,∴q =2,∴S 4=1·(1-24)1-2=15. 2.答案 C解析 易知数列⎩⎨⎧⎭⎬⎫1a n 也是等比数列,首项为1,公比为1q ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1-(1q )n 1-1q=q (1-q n )(1-q )q n =1-q n 1-q ·1q n -1=S qn -1=S ·q 1-n . 3.答案 C解析 S 3=1,S 6=9,∴S 6-S 3=8=a 4+a 5+a 6=q 3(S 3)=q 3,∴q 3=8,∴q =2.4.答案 B解析 当n ≥2时,a n =S n -S n -1=(a -1)·a n -1; 当n =1时,a 1=S 1=a -1,也满足上式.∴a n =(a -1)·a n -1,n ∈N *. ∴a n +1a n=a ,为常数.∴数列{a n }一定是等比数列.5.答案 C解析 ∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0,∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.6.答案 C解析 由题S 1正确.若S 4错误,则S 2、S 3正确,于是a 1=8,a 2=S 2-S 1=12,a 3=S 3-S 2=16,与{a n }为等比数列矛盾,故S 4=65.若S 3错误,则S 2正确,此时,a 1=8,a 2=12.∴q =32,∴S 4=a 1(1-q 4)1-q =8⎣⎡⎦⎤1-(32)41-32=65,符合题意. 7.答案 D解析 由8a 2+a 5=0,得8a 2+a 2q 3=0,∵a 2≠0,∴q 3=-8,∴q =-2,∵a n +1a n -1=q 2=4, S 5S 3=a 1(1-q 5)1-q a 1(1-q 3)1-q=1-q 51-q 3=113, S 5a 3=a 1(1-q 5)1-q a 1q 2=1-q 5q 2(1-q )=114, 而D 中S n +1S n =1-q n +11-q n 与n 有关,故不确定. 二、填空题8.答案 12(9n -1) 解析 {a n }的首项为2,公比为3,∴{a 2n }也为等比数列,首项为4,公比为9,∴{a 2n }的前n 项和为4(1-q n )1-q=12(9n -1) 9.答案 16解析 方法一 ∵S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列, ∴(S 6-S 3)2=S 3·(S 9-S 6).又∵S 3=2,S 6=6,∴S 9=14.再由S 6-S 3,S 9-S 6,S 12-S 9成等比数列,即(S 9-S 6)2=(S 6-S 3)·(S 12-S 9),求出S 12-S 9=16,即a 10+a 11+a 12=16.方法二 由S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列,此数列首项为S 3=2,公比q ′=S 6-S 3S 3=6-22=2,得S 12-S 9=2×23=16. 10.答案 12解析 由210S 30-(210+1)S 20+S 10=0,得210(S 30-S 20)=S 20-S 10.又S 10,S 20-S 10,S 30-S 20成等比数列,∴S 30-S 20S 20-S 10=q 10=(12)10. 又{a n }为正项等比数列,∴q =12. 11.答案 1-12n 解析 令x =n ,y =1,则f (n )·f (1)=f (n +1),又a n =f (n ),∴a n +1a n =f (n +1)f (n )=f (1)=a 1=12, ∴数列{a n }是以12为首项,12为公比的等比数列, ∴S n =12(1-12n )1-12=1-12n . 三、解答题12.解 (1)由题意,当n ≥2时,有⎩⎪⎨⎪⎧a n +1=2S n +1a n =2S n -1+1, 两式相减,得a n +1-a n =2a n ,即a n +1=3a n (n ≥2),所以,当n ≥2时{a n }是等比数列,要使n ≥1时{a n }是等比数列,则只需a 2a 1=2t +1t=3,从而得出t =1.(2)由(1)得,等比数列{a n }的首项为a 1=1,公比q =3,∴a n =3n -1, ∴c n =na n -4na n =n ·3n -1-4n ·3n 1=1-4n ·3n 1, ∵c 1=1-41=-3,c 2=1-42×3=13, ∴c 1c 2=-1<0,∵c n +1-c n =4n ·3n -1-4(n +1)·3n =4(2n +3)n (n +1)·3n>0, ∴数列{c n }递增.由c 2=13>0得,当n ≥2时,c n >0. ∴数列{c n }的“积异号数”为1.13.(1)解 由已知得,a 1=40×0.9+m ,a n +1=0.9a n +m (n ≥1).(2)证明 由(1)得:a n +1-10m =0.9a n -9m =0.9(a n -10m ), 所以数列{a n -10m }是以a 1-10m =36-9m 为首项,0.9为公比的等比数列.(3)解 由(2)得a n -10m =(36-9m )·0.9n -1, 即a n =(36-9m )·0.9n -1+10m . 由(36-9m )·0.9n -1+10m ≤55,得 m ≤55-36×0.9n -110-9×0.9n -1=5.5-4×0.9n 1-0.9n = 1.51-0.9n +4 恒成立(n ∈N *),解得m ≤5.5,又m >0,综上可得m ∈(0,5.5].。

人教版高中数学选择性必修第二册 等比数列的前n项和公式(第2课时) 分层作业(含解析)

人教版高中数学选择性必修第二册 等比数列的前n项和公式(第2课时) 分层作业(含解析)

人教版高中数学选择性必修第二册等比数列的前n 项和公式(第2课时)分层作业(原卷版)(50分钟100分)基础对点练基础考点分组训练知识点1等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则()A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于()A .35B .53C .-35D .-533.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.知识点2分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为()A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n-16.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为()A .978B .557C .467D .979知识点3等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=()A .1033B .1034C .2057D .20588.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a1=()A.2B.-2C.12D.-129.(5分)(多选)已知{a n}为等比数列,S n是其前n项和.若a2a3=8a1,且a4与2a5的等差中项为20,则()A.a1=-1B.公比q=-2C.a4=8D.S5=31能力提升练能力考点拓展提升10.(5分)等比数列{a n}的前n项和为S n,若S3=2,S6=18,则S10S5等于()A.-3B.5C.-31D.3311.(5分)设等比数列的前n项和、前2n项和、前3n项和分别为A,B,C,则() A.A+B=C B.B2=ACC.A+B-C=B2D.A2+B2=A(B+C)12.(5分)已知等比数列{a n}的前n项和S n=2n-1,则数列{log2a n}的前12项和等于() A.66B.55C.45D.613.(5分)已知{a n}是等比数列,若a1=1,a6=8a3,n项和为T n,则T5=() A.3116B.31C.158D.15414.(5分)在等比数列{a n}中,公比q=2,前n项和为S n,若S5=1,则S10=________.15.(5分)若等比数列{a n}的前n项和S n=2×3n+r,则r=________.16.(12分)已知等差数列{a n}(n∈N*)的前n项和为S n,且a3=5,S3=9.(1)求数列{a n}的通项公式;(2)等比数列{b n}(n∈N*),若b2=a2,b3=a5,求数列{a n+b n}的前n项和T n.17.(13分)已知数列{a n}是等比数列,S n是其前n项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6成等比数列.人教版高中数学选择性必修第二册等比数列的前n 项和公式(第2课时)分层作业(解析版)(50分钟100分)基础对点练基础考点分组训练知识点1等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则()A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a nD解析:在等比数列{a n }中,S n =a 1-a n q 1-q =1-a n ×231-23=3-2a n .2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于()A .35B .53C .-35D .-53D解析:设等比数列{a n }的公比为q ,则a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=158,a 2a 3=a 21q 3=-98,∴1a 1+1a 2+1a 3+1a 4=+1q +1q 2+=q 3+q 2+q +1a 1q 3=a 1(q 3+q 2+q +1)a 21q3=158-98=-53.3.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.2解析:设{a n }的公比为q ,由已知可得q ≠1,则奇数项也构成等比数列,其公比为q 2,首项为a 1,S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.11解析:∵S 3=1,S 6-S 3=-2,∴S 9-S 6=4,S 12-S 9=-8,S 15-S 12=16,∴S 15=S 3+S 6-S 3+S 9-S 6+S 12-S 9+S 15-S 12=1-2+4-8+16=11.知识点2分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为()A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n -1B解析:∵数列的通项a n =12+14+…+12n =21-12=1-12n ,∴前n 项和S n…=n +14+…=n -1+12n .6.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为()A .978B .557C .467D .979A解析:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d .∵c n =a n +bn 1+b 1=1,2+b 2=1,3+b 3=2,1=1,=-1,=2.∴c n =2n -1+(1-n ).∴{c n }的前10项和为1-2101-2+10×(0-9)2=978.知识点3等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=()A .1033B .1034C .2057D .2058A解析:∵a n =n +1,b n =2n -1,∴ab 1+ab 2+…+ab 10=a 1+a 2+a 4+…+a 29=(1+1)+(2+1)+(22+1)+…+(29+1)=10+(1+2+22+…+29)=10+1-2101-2=1033.8.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=()A .2B .-2C .12D .-12D解析:∵S 1,S 2,S 4成等比数列,∴S 22=S 1·S 4,∴(2a 1-1)2=a 1·(4a 1-6),∴a 1=-12.9.(5分)(多选)已知{a n }为等比数列,S n 是其前n 项和.若a 2a 3=8a 1,且a 4与2a 5的等差中项为20,则()A .a 1=-1B .公比q =-2C .a 4=8D .S 5=31CD解析:∵a 2a 3=8a 1,∴a 1q 3=8,即a 4=8.∵a 4+2a 5=40,∴a 4(1+2q )=40,∴q =2,a 1=1.∴S 5=1-251-2=31.能力提升练能力考点拓展提升10.(5分)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33D解析:设{a n }的公比为q ,∵S 3=a 1·(1-q 3)1-q =2,S 6=a 1·(1-q 6)1-q =18,∴1+q 3=9,∴q =2,∴S 10S 5=1-q 101-q5=1+q 5=33.11.(5分)设等比数列的前n 项和、前2n 项和、前3n 项和分别为A ,B ,C ,则()A .A +B =C B .B 2=ACC .A +B -C =B 2D .A 2+B 2=A(B +C)D解析:∵S n ,S 2n -S n ,S 3n -S 2n 成等比数列,∴(S 2n -S n )2=S n (S 3n -S 2n ),即(B -A)2=A(C -B),∴A 2+B 2=A(B +C).12.(5分)已知等比数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前12项和等于()A .66B .55C .45D .6A解析:∵S n =2n -1,∴S n -1=2n -1-1(n ≥2),两式相减得a n =2n -1(n ≥2).又a 1=S 1=1,∴a n =2n -1.∴log 2a n =n -1.∴{log 2a n }是等差数列,首项为0,公差为1.∴前12项和为66.13.(5分)已知{a n }是等比数列,若a 1=1,a 6=8a 3,n 项和为T n ,则T 5=()A .3116B .31C .158D .154A解析:∵a 1=1,a 6=8a 3,∴q =2.1,公比为12,∴T 51-12=3116.14.(5分)在等比数列{a n }中,公比q =2,前n 项和为S n ,若S 5=1,则S 10=________.33解析:∵S 5=a 1(1-25)1-2=1,∴a 1=131.∴S 10=a 1(1-210)1-2=131×1023=33.15.(5分)若等比数列{a n }的前n 项和S n =2×3n +r ,则r =________.-2解析:∵S n =2×3n +r ,∴当n ≥2时,a n =S n -S n -1=2×3n -2×3n -1=4×3n -1.当n =1时,a 1=S 1=6+r .∵{a n }为等比数列,∴6+r =4.∴r =- 2.16.(12分)已知等差数列{a n }(n ∈N *)的前n 项和为S n ,且a 3=5,S 3=9.(1)求数列{a n }的通项公式;(2)等比数列{b n }(n ∈N *),若b 2=a 2,b 3=a 5,求数列{a n +b n }的前n 项和T n .解:(1)由S 3=9,得3a 2=9,所以a 2=3.又因为a 3=5,所以公差d =2.从而a n =a 2+(n -2)d =2n -1.(2)由(1)可得b 2=a 2=3,b 3=a 5=9,所以公比q =3.从而b n =b 2q n -2=3n -1,则a n +b n =(2n -1)+3n -1,分组求和可得T n =n 2+12(3n -1).17.(13分)已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6成等比数列.证明:∵a 1,a 7,a 4成等差数列,∴2a 7=a 1+a 4,∴2q 6=1+q 3,∴q 3=-12或q 3=1.若q 3=1,则2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1.∴2S 3,S 6,S 12-S 6成等比数列.若q 3=-12,则2S 3=3a 11-q ,S 6=34a 11-q ,S 12-S 6=316a 11-q .34a 11-q 2=3a 11-q ·316a 11-q ,即S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列.。

等比数列的前n项和2

等比数列的前n项和2
n n
a1 n 0,则 Sn Aq A 令 A 1 q
性质1: 数列 an 为等比数列 n S Aq A, 数列 an 的前n项和 n
其中A 0, q 0且q 1, n N
*
变形:{an}是等比数列 S n Aq n B
其中A 0, q 1, A B 0.
n
3. 在等比数列中,若项数为2n(n∈N *), 则 S偶与S奇分别为偶数项和与奇数项和, S偶 q. S奇
项数是偶数时又如何?
错位相减求和强化练
2 3 n1 a 例、设数列 n 为 1,2 x,3x ,4 x nx x 0 求此数列前n项和。
Sn 1 2x 3x 4x nx
n 1
3
3
.
课堂小结:
1. {an}是等比数列 S n Aq B
n
其中A 0, q 1, A B 0.
2. Sn为等比数列的前n项和,则Sn,S2n-Sn, S3n-S2n是等比数列.
3. 在等比数列中,若项数为2n(n∈N *), S偶与S奇分别为偶数项和与奇数项和, S偶 则 q. S奇
S20 (舍) 3 或 S 20 4
练习:
3、等比数列
S15 则 S10
an
.
S10 3, 的前n项和为 Sn ,若 S5
答案:7/3
归纳小结:
1. {an}是等比数列 S n Aq B 其中A 0, q 1, A B 0. 2. Sn为等比数列的前n项和,则Sn,S2n-Sn, S3n-S2n是等比数列.
2 3
n1
n1
1 xSn 1 x x

等比数列及其前n项和专题练习(含参考答案)

等比数列及其前n项和专题练习(含参考答案)

数学 等比数列及其前n 项和一、选择题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( )A .3B .4C .5D .62.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A .32B .23C .-23D .23或-233.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( ) A .16 B .32 C .64D .1285.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则实数a 的值为( )A .-13B .13C .-12D .126.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a nS n ,则( )A .T 3≤T 6B .T 3<T 6C .T 3≥T 6D .T 3>T 67.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n}的前4项和为( ) A .158或4B .4027或4C .4027D .1588.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( )A .62B .48C .36D .31二、填空题9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=_____.10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2= .11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=_____.12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是_____. 三、解答题13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( )A .52或-52B .-52C .52D .122.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( )A .1B .2C .3D .43.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( ) A .80 B .30 C .26D .164.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( )A .4B .5C .6D .75. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c na n=b n ,n ∈N *,求{c n }的前n 项和T n .【参考答案】一、选择题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .62.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( C ) A .32B .23C .-23D .23或-23[解析] 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23,又a 1<0,因此q =-23.故选C .3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( B )A .1盏B .3盏C .5盏D .9盏[解析] 设塔的顶层共有灯x 盏,则各层的灯数构成一个公比为2的等比数列,由x (1-27)1-2=381可得x =3.4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( C ) A .16 B .32 C .64D .128[解析] 由题意得,等比数列的公比为q ,由S 3=14,a 3=8,则⎩⎪⎨⎪⎧a 1(1+q +q 2)=14,a 3=a 1q 2=8,,解得a 1=2,q =2,所以a 6=a 1q 5=2×25=64,故选C .5.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则实数a 的值为( A )A .-13B .13C .-12D .12[解析] 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,又因为{a n }是等比数列,所以a +16=a 2,所以a =-13.6.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a nS n ,则( D )A .T 3≤T 6B .T 3<T 6C .T 3≥T 6D .T 3>T 6[解析] T 6-T 3=a 6(1-q )a 1(1-q 6)-a 3(1-q )a 1(1-q 3)=q 5(1-q )1-q 6-q 2(1-q )1-q 3=-q 2(1-q )1-q 6,由于q >0且q ≠1,所以1-q 与1-q 6同号,所以T 6-T 3<0,∴T 6<T 3,故选D .7.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n}的前4项和为( C ) A .158或4B .4027或4C .4027D .158[解析] 设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.S 6=6,两者不相等,因此不合题意. 当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q ,解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列{1a n }的前4项和为1+13+19+127=4027.8.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( A )A .62B .48C .36D .31[解析] 由a 2+a 5=18,a 3a 4=32,得a 2=16,a 5=2或a 2=2,a 5=16(不符合题意,舍去),设数列{a n }的公比为q ,则a 1=32,q =12,所以S 5=32[1-(12)5]1-12=62,选A .二、填空题9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=__320___.[解析] 由题意知log 2a n +1=log 22a n ,∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=647(1-2-3n) .[解析] 设数列{a n }的公比为q ,则q 3=a 5a 2=18,解得q =12,a 1=a 2q=4.易知数列{a n a n +1a n+2}是首项为a 1a 2a 3=4×2×1=8,公比为q 3=18的等比数列,所以a 1a 2a 3+a 2a 3a 4+…+a n a n+1a n +2=8(1-18n )1-18=647(1-2-3n ). 11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=__32___.[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是__(-∞,-1]∪[3,+∞)___.[解析] 设等比数列的公比为q ,则S 3=1q +q +1∵|1q +q |=1|q |+|q |≥2(当且仅当|q |=1时取等号) ∴1q +q ≥2或1q+q ≤-2∴S 3≥3或S 3≤-1,∴S 3的取值范围是(-∞,-1]∪[3,+∞). 三、解答题13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .[分析] 本题考查等比数列的通项公式、前n 项和公式. (1)根据已知,建立含有q 的方程→求得q 并加以检验→代入等比数列的通项公式(2)利用等比数列前n 项和公式与已知建立等量关系即可求解. [解析] (1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2.故a n =(-2)n -1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1-(-2)n 3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6.综上,m =6. [解后反思] 等比数列基本量运算问题的常见类型及解题策略: (1)求通项.求出等比数列的两个基本量a 1和q 后,通项便可求出. (2)求特定项.利用通项公式或者等比数列的性质求解. (3)求公比.利用等比数列的定义和性质建立方程(组)求解.(4)求前n 项和.直接将基本量代入等比数列的前n 项和公式求解或利用等比数列的性质求解.[易错警示] 解方程时,注意对根的检验.求解等比数列的公比时,要结合题意进行讨论、取值,避免错解.14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C )A .52或-52B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C . [技巧点拨] (1)在等差(比)数列的基本运算中要注意数列性质的运用,利用性质解题可简化运算,提高运算的速度.(2)根据等比中项的定义可得,在等比数列中,下标为奇数的项的符号相同,下标为偶数的项的符号相同,在求等比数列的项时要注意这一性质的运用,避免出现符号上的错误.2.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( C )A .1B .2C .3D .4[解析] ∵a n =192, ∴q =S 偶S 奇-a n =-12663=-2.又S n =a 1-a n q1-q=S 奇+S 偶,∴a 1-192×(-2)1-(-2)=255+(-126),解得a 1=3,故选C .3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( B ) A .80 B .30 C .26D .16[解析] 由等比数列的性质知S n 、S 2n -S n 、S 3n -S 2n 成等比数列,∴(S 2n -2)2=2(14-S 2n ),∴S 2n =6或-4(舍去),又S 2n -S n 、S 3n -S 2n 、S 4n -S 3n 成等比数列,∴82=4(S 4n -14),∴S 4n =30.故选B .另解:(特殊化)不妨令n =1,则a 1=S 1=2,S 3=2(1-q 3)1-q =14,∴q 2+q -6=0,∴q =2或-3(舍去)∴S 4=2(1-q 4)1-q=30.故选B .4.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( B )A .4B .5C .6D .7[解析] 在等比数列{a n }中,a 3·a n -2=a 1·a n =81,又a 1+a n =82,所以⎩⎪⎨⎪⎧a 1=1,a n =81或⎩⎪⎨⎪⎧a 1=81,a n =1.当a 1=1,a n =81时,S n =1-81q1-q =121,解得q =3.由a n =a 1q n -1得81=3n -1,解得n =5. 同理可得当a 1=81,a n =1时,n =5.故选B .5. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c na n =b n ,n ∈N *,求{c n }的前n 项和T n .[解析] (1)设{a n }的通项公式为a n =a 1q n -1,n ∈N *,由已知a 2+a 4=3(a 1+a 3),a 1q +a 1q 3=3(a 1+a 1q 2),得q =3,由已知a 2n =3a 2n ,即a 1q 2n -1=3a 21q 2n -2, 解得q =3a 1,a 1=1,所以{a n }的通项公式为a n =3n -1.因为b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *), 可得b 2-b 1=3,b 3-b 2=5,…,b n -b n -1=2n -1, 累加可得b n =n 2.(2)当n =1时,c 1a 1=1,c 1=1,当n ≥2时,c 1a 1+c 2a 2+c 3a 3+…+c na n =n 2①c 1a 1+c 2a 2+c 3a 3+…+c n -1a n -1=(n -1)2② 由①-②得到c na n =2n -1,c n =(2n -1)·3n -1,n ≥2,综上,c n =(2n -1)·3n -1,n ∈N *.T n =1×30+3×31+…+(2n -3)×3n -2+(2n -1)×3n -1③ 3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ④ 由③-④得到-2T n =1×30+2×(31+32+…+3n -1)-(2n -1)×3n =1×30+2×3(3n -1-1)3-1-(2n -1)×3n .所以T n =1+(n -1)×3n .。

等差等比数列及其前n项和作业及答案

等差等比数列及其前n项和作业及答案

等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。

等比数列的前n项和练习题

等比数列的前n项和练习题

等比数列的前n项和练习1、设Sn 是数列{an}(n∈N*)的前n项和,已知a1=4,an+1=Sn+3n,设bn=Sn﹣3n.(Ⅰ)证明:数列{bn }是等比数列,并求数列{bn}的通项公式;(Ⅱ)令cn =2log2bn﹣+2,求数列{cn}的前n项和Tn.2、已知数列{an }的前n项和Sn=,且a1=1.(1)求数列{an}的通项公式;(2)令bn =lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.3、数列{an }满足a1=1,a2=r(r>0),令bn=an•an+1,{bn}是公比为q(q≠0,q≠﹣1)的等比数列,设cn =a2n﹣1+a2n.(1)求证:cn=(1+r)•q n﹣1;(2)设{cn }的前n项和为Sn,求的值;(3)设{cn }前n项积为Tn,当q=﹣时,Tn的最大值在n=8和n=9的时候取到,求n为何值时,Tn取到最小值.4、已知等比数列{an }的公比为q,a1=,其前n项和为Sn(n∈N*),且S2,S 4,S3成等差数列.(I)求数列{an}的通项公式;(Ⅱ)设bn=Sn﹣(n∈N*),求bn的最大值与最小值.5、等比数列{}的前n 项和为,已知,,成等差数列(1)求{}的公比q;(2)若-=3,求。

6、对于一组向量(),令,如果存在(),使得,那么称是该向量组的“向量”.(1)设(),若是向量组的“向量”,数的取值围;(2)若(),向量组是否存在“向量”?给出你的结论并说明理由;(3)已知均是向量组的“向量”,其中,.设在平面直角坐标系中有一点列满足:为坐标原点,为的位置向量的终点,且与关于点对称,与()关于点对称,求的最小值.7、已知数列为等比数列,其前项和为,已知,且对于任意的有,,成等差数列.求数列的通项公式;已知(),记,若对于恒成立,数的围.8、已知各项都为正数的等比数列的前n项和,数列的通项公式,若是与的等比中项。

等比数列的前n项和典型例题含解答

等比数列的前n项和典型例题含解答

倒序相加法
总结词
将等比数列倒序写,然后正序和倒序分别求和,最后取两者和的一半。
详细描述
首先将等比数列倒序写,然后正序和倒序分别求和,最后取两者和的一半。这种方法适 用于公比q满足q≠1的情况。
错位相减法
总结词
将等比数列的一项乘以公比的负一次方 后错位相减,得到一个等差数列,再求 和。
VS
详细描述
$frac{a_5}{a_4} = frac{32}{-16} = 2$
由于相邻两项之比相等, 所以这个数列是等比数列。04CHAPTER
等比数列前n项和的实际应 用
在金融中的应用
贷款还款
等比数列前n项和公式常用于计算 贷款的分期还款额,例如房屋贷 款、汽车贷款等。
投资回报
在投资领域,等比数列前n项和公 式可用于计算复利,即投资的利 息或收益会逐年增长。
化。
元素周期表
元素周期表中的元素按照原 子序数排列,形成等差数列 ,而元素的某些性质则可能 呈现等比数列的变化趋势。
05
CHAPTER
等比数列前n项和的练习题 及答案
练习题一及答案
题目:求等比数列 1, 2, 4, 8, ... 的前n项和。
等比数列的前n项和公式为
将 $a_1 = 1$ 和 $r = 2$ 代入公式,得到
在此添加您的文本16字
等比数列的前n项和公式为
在此添加您的文本16字
$S_n = frac{a_1(1 - r^n)}{1 - r}$
在此添加您的文本16字
将 $a_1 = frac{1}{2}$ 和 $r = frac{1}{2}$ 代入公式,得 到
在此添加您的文本16字
$S_n = frac{frac{1}{2}(1 - (frac{1}{2})^n)}{1 frac{1}{2}} = 1 - (frac{1}{2})^n$
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间:60分钟满分:62分
一、选择题(共25分)
1.若等比数列{a n}的公比为正数,且a3a9=2a52,a2=1,则a1等于()
A.1
2B.2
2
C.2
D.2
2.已知等比数列{a n}的公比q=2,若存在两项a m,a n使得a m a n=4a1,则m+n的值为()
A.8
B.6
C.4
D.2
3.设等比数列{a n}的前n项和为S n,若8a2+a5=0,则下列式子中数值不能确定的是()
A.a5
a3 B.S5
S3
C.a n+1
a n
D.S n+1
S n
4.若数列{a n}满足a n+1=3a n+1,则()
A.{an}为等比数列;
B.{a n−1
2
}为等比数列;
C.{ a n+1
2
}为等比数列;
D.{3a n+1}为等比数列。

5.设{a n}是公比为2,首项为1的等比数列,若S n是它的前n项和,则对于任意的n∈N+,点(S n,S n+1)所在的直线为()
A.y=2x+1
B.y=2x-1
C.y=x+2
D.y=x-2
二、填空题(共10分)
6.在等比数列{a n}中,若a1a2a3=1,a2a3a4=8,则公比q= 。

7.若等比数列{a n}的通项公式为a n=4(1
2)
n−1
,则a1a2+a2a3+…+a n a n+1= .
三、解答题(27分)
8.(13分)在数列{a n}中,已知a1=2,a n+1=2a n-n+1 (1)求证:数列{a n-n}是等比数列;
(2)求数列{a n}的前n项和S n。

9.(14分)在等比数列{a n}中,已知a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列。

(1)求数列{a n}的通项公式a n;
(2)若数列{b n}满足bn=2n−1
a n,求其前n项的和S n。

2。

相关文档
最新文档