【真卷】2016-2017年江苏省盐城市建湖县八年级(上)数学期中试卷带答案
【苏科版】 八年级上期中数学试卷(含答案
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!2016-2017学年江苏省泰州市兴化市顾庄学区三校八年级(上)期中数学试卷一、选择题(本大题共有6小题, 每小题3分, 共18分)1.化简:的值为()A.4 B.﹣4 C.±4 D.162.有些国家的国旗设计成了轴对称图形, 观察如图代表国旗的图案, 你认为是轴对称图形的有()A.4个B.3个C.2个D.1个3.下列各组线段能构成直角三角形的一组是()A.5cm, 9cm, 12cm B.7cm, 12cm, 13cmC.30cm, 40cm, 50cm D.3cm, 4cm, 6cm4.在实数、﹣、0.1010010001、、3.14、﹣中, 无理数有()A.2个B.3个C.4个D.5个5.已知点A(a, 2016)与点B关于x轴对称, 则a+b的值为()A.﹣1 B.1 C.2 D.36.如图, 等腰三角形ABC的底边BC长为4, 面积是16, 腰AC的垂直平分线EF分别交AC, AB边于E, F点.若点D为BC边的中点, 点M为线段EF上一动点, 则△CDM周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本大题共有10小题, 每小题3分, 共30分)7.等边三角形的边长为a, 则它的周长为.8.比较大小:4(填“>”或“<”)9.估算:的值是(精确到0.1).10.若点A的坐标(x, y)满足条件(x﹣3)2+|y+2|=0, 则点A在第象限.11.等腰三角形的顶角为80°, 则底角等于.12.如图, 在△ABC中, ∠ACB=90°, AB=10cm, 点D为AB的中点, 则CD=cm.13.已知一个三角形的三边长分别为12、16、20, 则这个三角形的面积是.14.如图, 在平面直角坐标系xOy中, 已知点A(3, 4), 将OA绕坐标原点O逆时针旋转90°至OA′, 则点A′的坐标是.15.在长、宽都是3, 高是8的长方体纸箱的外部, 一只蚂蚁从顶点A沿纸箱表面爬到顶点B点, 那么它所行的最短路线的长是.16.在△ABC中, AB=13cm, AC=20cm, BC边上的高为12cm, 则BC长为.三、解答题(本大题共有10小题, 共102分.解答时应写出必要的步骤)17.(1)计算:﹣(π+2)0+|1﹣|;(2)已知:(x+1)2=16, 求x.18.如图, 正方形网格中的每个小正方形边长都是1.(1)图1、图2中已知线段AB、CD, 画线段EF(图1与图2不得相同), 使它与AB、CD 组成轴对称图形;(2)在图3中画出一条以格点为端点长为的线段MN.19.已知:如图, P、Q是△ABC边BC上两点, 且AB=AC, AP=AQ.求证:BP=CQ.20.已知在△ABC中, 三条边长分别为a、b、c, 且a=n2﹣1、b=2n、c=n2+1, △ABC是直角三角形吗?请说明理由.21.已知:如图, △ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.22.如图, 在平面直角坐标系中, A(﹣1, 5), B(﹣1, 0), C(﹣4, 3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1, B1, C1的坐标.23.如图, 在△ABC中, ∠C=90°, CB=6, AB的垂直平分线分别交AB、AC于点D、E, CD=5.(1)求线段AC的长;(2)求线段AE的长.24.在Rt△ABC中, ∠ACB=90°, AC=BC, D为BC中点, CE⊥AD于E, BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.25.阅读材料, 解答下列问题:例:当a>0时, 如a=5, 则|a|=|5|=5, 故此时a的绝对值是它本身;当a=0时, |a|=0, 故此时a的绝对值是0;当a<0时, 如a=﹣5, 则|a|=|﹣5|=﹣(﹣5), 故此时a的绝对值是它的相反数.综上所述, 一个数的绝对值要分三种情况, 即:|a|=, 这种分析方法渗透了数学中的分类讨论思想.(1)请仿照例中的分类讨论, 分析的各种化简后的情况;(2)猜想与|a|的大小关系;(3)当1<x<2时, 试化简|x+1|+.26.已知, 点P是Rt△ABC斜边AB上一动点(不与A、B重合), 分别过A、B向直线CP作垂线, 垂足分别为E、F、Q为斜边AB的中点.(1)如图1, 当点P与点Q重合时, AE与BF的位置关系是, QE与QF的数量关系是;(2)如图2, 当点P在线段AB上不与点Q重合时, 试判断QE与QF的数量关系, 并给予证明;(3)如图3, 当点P在线段BA(或AB)的延长线上时, 此时(2)中的结论是否成立?请画出图形并给予证明.2016-2017学年江苏省泰州市兴化市顾庄学区三校八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有6小题, 每小题3分, 共18分)1.化简:的值为()A.4 B.﹣4 C.±4 D.16【考点】二次根式的性质与化简.【分析】表示16的算术平方根, 根据二次根式的意义解答即可.【解答】解:原式==4.故选A.2.有些国家的国旗设计成了轴对称图形, 观察如图代表国旗的图案, 你认为是轴对称图形的有()A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合, 这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:根据轴对称的概念可知:加拿大国旗、瑞士国旗是轴对称图形, 符合题意;澳大利亚国旗、乌拉圭国旗都不是轴对称图形, 不符合题意.故选C.3.下列各组线段能构成直角三角形的一组是()A.5cm, 9cm, 12cm B.7cm, 12cm, 13cmC.30cm, 40cm, 50cm D.3cm, 4cm, 6cm【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形, 这里给出三边的长, 只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+92≠122, 不能构成直角三角形, 故选项错误;B、72+122≠132, 不能构成直角三角形, 故选项错误;C、302+402=502, 能构成直角三角形, 故选项正确;D、32+42≠62, 不能构成直角三角形, 故选项错误.故选C.4.在实数、﹣、0.1010010001、、3.14、﹣中, 无理数有()A.2个B.3个C.4个D.5个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数, ②无限不循环小数, ③含有π的数, 解答即可.【解答】解:、﹣是无理数,故选:A.5.已知点A(a, 2016)与点B关于x轴对称, 则a+b的值为()A.﹣1 B.1 C.2 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点, 横坐标相同, 纵坐标互为相反数”求出a、b的值, 然后代入代数式进行计算即可得解.【解答】解:∵点A(a, 2016)与点B关于x轴对称,∴a=2017, b=﹣2016,∴a+b=2017+(﹣2016)=1.故选B.6.如图, 等腰三角形ABC的底边BC长为4, 面积是16, 腰AC的垂直平分线EF分别交AC, AB边于E, F点.若点D为BC边的中点, 点M为线段EF上一动点, 则△CDM周长的最小值为()A.6 B.8 C.10 D.12【考点】轴对称-最短路线问题.【分析】连接AD, 由于△ABC是等腰三角形, 点D是BC边的中点, 故AD⊥BC, 再根据三角形的面积公式求出AD的长, 再再根据EF是线段AC的垂直平分线可知, 点C关于直线EF的对称点为点A, 故AD的长为CM+MD的最小值, 由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形, 点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16, 解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选C.二、填空题(本大题共有10小题, 每小题3分, 共30分)7.等边三角形的边长为a, 则它的周长为3a.【考点】等边三角形的性质.【分析】等边三角形的边长为a, 进而求出它的周长.【解答】解:因为等边三角形的三边相等, 而等边三角形的边长为a, 所以它的周长为3a.故答案为3a.8.比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【分析】根据二次根式的性质求出=4, 比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.9.估算:的值是 4.2(精确到0.1).【考点】估算无理数的大小;近似数和有效数字.【分析】先估算的范围, 再尝试求出答案即可.【解答】解:4<<5, 4.22=17.64, 4.32=18.49,∴≈4.2,故答案为:4.2.10.若点A的坐标(x, y)满足条件(x﹣3)2+|y+2|=0, 则点A在第四象限.【考点】点的坐标;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数之和等于0的特点, 求得x, y的值, 求出点A的坐标, 即可判断其所在的象限.【解答】解:∵(x﹣3)2+|y+2|=0,∴x﹣3=0, y+2=0,∴x=3, y=﹣2,∴A点的坐标为(3, ﹣2),∴点A在第四象限.故填:四.11.等腰三角形的顶角为80°, 则底角等于50°.【考点】等腰三角形的性质.【分析】因为等腰三角形的两个底角的度数相等, 再依据三角形的内角和是180度, 即可分别求出三角形的底角的度数.【解答】解:÷2=100°÷2=50°.故答案为:50°.12.如图, 在△ABC中, ∠ACB=90°, AB=10cm, 点D为AB的中点, 则CD=5cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形中, 斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°, 点D为AB的中点,∴CD=AB=5cm.故答案为:5.13.已知一个三角形的三边长分别为12、16、20, 则这个三角形的面积是96.【考点】勾股定理的逆定理.【分析】首先根据勾股定理的逆定理判定该三角形是直角三角形, 再进一步根据直角三角形的面积等于两条直角边的乘积的一半求解.【解答】解:∵122+162=400=202,∴该三角形是直角三角形,∴这个三角形的面积是×12×16=96.故答案为96.14.如图, 在平面直角坐标系xOy中, 已知点A(3, 4), 将OA绕坐标原点O逆时针旋转90°至OA′, 则点A′的坐标是(﹣4, 3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B, 过点A′作A′B′⊥x轴于B′, 根据旋转的性质可得OA=OA′, 利用同角的余角相等求出∠OAB=∠A′OB′, 然后利用“角角边”证明△AOB和△OA′B′全等, 根据全等三角形对应边相等可得OB′=AB, A′B′=OB, 然后写出点A′的坐标即可.【解答】解:如图, 过点A作AB⊥x轴于B, 过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′, ∠AOA′=90°,∵∠A′OB′+∠AOB=90°, ∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4, A′B′=OB=3,∴点A′的坐标为(﹣4, 3).故答案为:(﹣4, 3).15.在长、宽都是3, 高是8的长方体纸箱的外部, 一只蚂蚁从顶点A沿纸箱表面爬到顶点B点, 那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【分析】分情况讨论, 将纸箱展开后, 蚂蚁可经上表面爬到B点, 也可经右侧面爬到B点.求出这两种情况所走路线的长度, 比较可得答案.【解答】解:将纸箱展开, 当蚂蚁经上表面爬到B点, 则AB==当蚂蚁经右侧面爬到B点, 则AB==比较上面两种情况, 一只蚂蚁从顶点A沿纸箱表面爬到顶点B点, 那么它所行的最短路线的长是, 即10.16.在△ABC中, AB=13cm, AC=20cm, BC边上的高为12cm, 则BC长为21cm或11cm.【考点】勾股定理.【分析】分两种情况:①∠B为锐角;②∠B为钝角;利用勾股定理求出BD、CD, 即可求出BC的长.【解答】解:分两种情况:①当∠B为锐角时, 如图1所示,在Rt△ABD中,BD===5(cm),在Rt△ADC中,CD===16cm,∴BC=BD+CD=21cm;②当∠B为钝角时, 如图2所示,在Rt△ABD中,BD═==5(cm),在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11(cm);综上所述:BC的长为21cm或11cm.三、解答题(本大题共有10小题, 共102分.解答时应写出必要的步骤)17.(1)计算:﹣(π+2)0+|1﹣|;(2)已知:(x+1)2=16, 求x.【考点】实数的运算;零指数幂.【分析】(1)本题有零指数幂、立方根、绝对值化简3个考点.在计算时, 需要针对每个考点分别进行计算, 然后根据实数的运算法则求得计算结果.(2)根据平方运算, 转化为一元一次方程, 求出x的值.【解答】解:(1)原式=2﹣1+﹣1=;(2)因为(±4)2=16所以x+1=4或x+1=﹣4∴x=3或x=﹣5.答:x的值为3或者﹣5.18.如图, 正方形网格中的每个小正方形边长都是1.(1)图1、图2中已知线段AB、CD, 画线段EF(图1与图2不得相同), 使它与AB、CD 组成轴对称图形;(2)在图3中画出一条以格点为端点长为的线段MN.【考点】利用轴对称设计图案;勾股定理.【分析】(1)根据轴对称的性质画出图形即可;(2)根据勾股定理画出线段MN即可.【解答】解:(1)如图1, 2所示, 线段EF即为所求;(2)如图3所示, 线段MN即为所求.19.已知:如图, P、Q是△ABC边BC上两点, 且AB=AC, AP=AQ.求证:BP=CQ.【考点】等腰三角形的性质.【分析】根据线段垂直平分线的性质, 可得BO=CO, PO=QO, 根据等式的性质, 可得答案.【解答】证明:过点A作AO⊥BC于O.∵AB=AC, AO⊥BC∴BO=CO∵AP=AQ, AO⊥BC∴PO=QO∴BO﹣PO=CO﹣QO∴BP=CQ.20.已知在△ABC中, 三条边长分别为a、b、c, 且a=n2﹣1、b=2n、c=n2+1, △ABC是直角三角形吗?请说明理由.【考点】勾股定理的逆定理.【分析】判断一组数能否成为直角三角形的三边, 就是看是否满足两较小边的平方和等于最大边的平方即可.【解答】解:△ABC是直角三角形,理由如下:∵(n2﹣1)2+(2n)2=n4+2n2+1=(n2+1)2,∴a2+b2=c2,∴能成为直角三角形的三边长.21.已知:如图, △ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【考点】角平分线的性质.【分析】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N, 根据角平分线上的点到角的两边距离相等可得PD=PM, 同理可得PM=PN, 从而得到PD=PN, 再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:如图, 过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC, 点P在BE上,∴PD=PM,同理, PM=PN,∴PD=PN,∴点P在∠A的平分线上.22.如图, 在平面直角坐标系中, A(﹣1, 5), B(﹣1, 0), C(﹣4, 3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1, B1, C1的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点, 再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;(2)如图所示:(3)A1(2, 5), B1(1, 0), C1(4, 3).23.如图, 在△ABC中, ∠C=90°, CB=6, AB的垂直平分线分别交AB、AC于点D、E, CD=5.(1)求线段AC的长;(2)求线段AE的长.【考点】线段垂直平分线的性质;勾股定理.【分析】(1)根据直角三角形的性质得到AB=2CD=10, 根据勾股定理计算即可;(2)连接BE, 设AE=x, 根据线段垂直平分线的性质得到BE=AE=x, 根据勾股定理列出关于x的方程, 解方程即可.【解答】解:(1)∵AB的垂直平分线,∴CD为中线,∵∠C=90°,∴AB=2CD=10,∵∠C=90°,∴;(2)连接BE,设AE=x,∵AB的垂直平分线,∴BE=AE=x,∴CE=8﹣x,∵∠C=90°,∴CE2+BC2=BE2,∴(8﹣x)2+62=x2,解得:,∴线段AE的长为.24.在Rt△ABC中, ∠ACB=90°, AC=BC, D为BC中点, CE⊥AD于E, BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】(1)根据∠ACB=90°, 求证∠CAD=∠BCF, 再利用BF∥AC, 求证∠ACB=∠CBF=90°, 然后利用ASA即可证明△ACD≌△CBF.(2)先根据ASA判定△ACD≌△CBF得到BF=BD, 再根据角度之间的数量关系求出∠ABC=∠ABF, 即BA是∠FBD的平分线, 从而利用等腰三角形三线合一的性质求证即可.【解答】解:(1)∵在Rt△ABC中, ∠ACB=90°, AC=BC,∴∠CAB=∠CBA=45°,∵CE⊥AD,∴∠CAD=∠BCF,∵BF∥AC,∴∠FBA=∠CAB=45°∴∠ACB=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF;(2)证明:∵∠BCE+∠ACE=90°, ∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC, BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF,∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°, CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF, 即BA是∠FBD的平分线.∴BA是FD边上的高线, BA又是边FD的中线,即AB垂直平分DF.25.阅读材料, 解答下列问题:例:当a>0时, 如a=5, 则|a|=|5|=5, 故此时a的绝对值是它本身;当a=0时, |a|=0, 故此时a的绝对值是0;当a<0时, 如a=﹣5, 则|a|=|﹣5|=﹣(﹣5), 故此时a的绝对值是它的相反数.综上所述, 一个数的绝对值要分三种情况, 即:|a|=, 这种分析方法渗透了数学中的分类讨论思想.(1)请仿照例中的分类讨论, 分析的各种化简后的情况;(2)猜想与|a|的大小关系;(3)当1<x<2时, 试化简|x+1|+.【考点】二次根式的性质与化简;实数大小比较.【分析】(1)分a>0, a=0及a<0三种情况进行讨论即可;(2)根据(1)的结果可得出结论;(3)先判断出x+1, x﹣2的符号, 再去绝对值符号, 合并同类项即可.【解答】解:(1)当a>0时, 如a=5, 则==5, 即=a;当a=0 时, ==0, 即=0;当a<0时, 如a=﹣5, 则==5, 即=﹣a.综合起来:=;(2)由(1)可知=|a|;(3)∵1<x<2,∴x+1>0, x﹣2<0,∴|x+1|+=|x+1|+|x﹣2|=x+1﹣(x﹣2)=3.26.已知, 点P是Rt△ABC斜边AB上一动点(不与A、B重合), 分别过A、B向直线CP作垂线, 垂足分别为E、F、Q为斜边AB的中点.(1)如图1, 当点P与点Q重合时, AE与BF的位置关系是AE∥BF, QE与QF的数量关系是QE=QF;(2)如图2, 当点P在线段AB上不与点Q重合时, 试判断QE与QF的数量关系, 并给予证明;(3)如图3, 当点P在线段BA(或AB)的延长线上时, 此时(2)中的结论是否成立?请画出图形并给予证明.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)根据AAS推出△AEQ≌△BFQ, 推出AE=BF即可;(2)延长EQ交BF于D, 求出△AEQ≌△BDQ, 根据全等三角形的性质得出EQ=QD, 根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D, 求出△AEQ≌△BDQ, 根据全等三角形的性质得出EQ=QD, 根据直角三角形斜边上中点性质得出即可.【解答】解:(1)如图1,当点P与点Q重合时, AE与BF的位置关系是AE∥BF, QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ, BF⊥CQ,∴AE∥BF, ∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF, QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时, 此时(2)中的结论成立, 证明:延长EQ交FB于D, 如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.2016年12月8日。
人教版2016-2017年八年级上期中数学试卷含答案
八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。
苏科版2016-2017学年八年级(上)期中数学试卷 有答案
2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,35.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.139.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>210.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)二、填空题11.的平方根为__________.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是__________.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为__________.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是__________(填写序号).15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=__________.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是__________.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为__________.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是__________.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=__________;b=__________;m=__________;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±【考点】平方根.【专题】计算题.【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.【解答】解:数字6.01×104精确到百位;故选B.【点评】此题考查了近似数,对于用科学记数法表示的数,精确到哪一位是需要识记的内容.4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.5.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式有意义被开方数为非负数,即可得出x的取值范围.【解答】解:∵在实数范围内有意义,∴3x+2≥0,解得:x≥﹣.故选C.【点评】本题考查了二次根式有意义的条件,注意掌握二次根式有意义被开方数为非负数.6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据平方数非负数的性质求出点P的横坐标与纵坐标的正负情况,再根据各象限内点的坐标特征求出点P所在的象限,然后解答即可.【解答】解:∵a2≥0,∴a2+1≥1,﹣a2﹣2≤﹣2,∴点P在第四象限,(3,2),(﹣3,2)(﹣3,﹣2)(3,﹣2)中只有(3,﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.13【考点】勾股定理;完全平方公式.【分析】先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.【解答】解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.9.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的图象y=(a﹣2)x+1,当a﹣2<0时,y随着x的增大而减小分析即可.【解答】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,可得:a﹣2<0,解得:a<2.故选C.【点评】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k >0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.10.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点B n﹣1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值.【解答】解:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB1=1,OB2=3,则B1B2=2.∵△A1B1O是等腰直角三角形,∠A1OB1=90°,∴OA1=OB1=1.∴点A1的坐标是(0,1).同理,在等腰直角△A2B2B1中,∠A2B1B2=90°,A2B1=B1B2=2,则A2(1,2).∵点A1、A2均在一次函数y=kx+b的图象上,∴,解得,,∴该直线方程是y=x+1.∵点A3,B2的横坐标相同,都是3,∴当x=3时,y=4,即A3(3,4),则A3B2=4,∴B3(7,0).同理,B4(15,0),…B n(2n﹣1,0),∴当x=2n﹣1﹣1时,y=2n﹣1﹣1+1=2n﹣1,即点A n的坐标为(2n﹣1﹣1,2n﹣1).故选D.【点评】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点B n的坐标的规律.二、填空题11.的平方根为.【考点】平方根;算术平方根.【分析】先计根据平方根的定义直接求解即可.【解答】解:=3,3多的平方根为.故答案为:.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理根据2直角边求斜边是解题的关键.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到x、y 的值,进而计算出答案.【解答】解:∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,∴(x+y)2013=﹣1,故答案为:﹣1.【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的变化规律.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是②④(填写序号).【考点】无理数;平方根;立方根;实数与数轴;二次根式有意义的条件.【专题】推理填空题.【分析】根据无理数的定义判断即可;根据平方根、立方根的定义求出,即可判断②③;根据二次根式的定义即可判断④;根据实数与数轴上的点能建立一一对应,即可判断⑤.【解答】解:无限循环小数是有理数,∴①错误;5的平方根是±,∴②正确;8的立方根是2,∴③错误;要使有意义,必须x+1≥0,即x≥﹣1,∴④正确;与数轴上的点一一对应的数是实数,∴⑤错误;故答案为:②④.【点评】本题考查了无理数、平方根、立方根、实数与数轴、二次根式有意义的条件等知识点的应用,能熟练地运用进行说理是解此题的关键.15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=2.【考点】坐标与图形变化-平移.【专题】计算题;压轴题.【分析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.【解答】解:∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1=1,b=0+1=1,故a+b=1+1=2.故答案为:2.【点评】本题考查了坐标与图形的变化﹣﹣﹣平移,找到坐标的变化规律是解题的关键.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是y=﹣x+2.【考点】两条直线相交或平行问题.【专题】计算题.【分析】设所求直线解析式为y=kx+b,根据两直线平行的问题得到k=﹣1,然后把点(﹣1,3)代入y=﹣x+b中计算出b的值,从而得到所求直线解析式.【解答】解:设所求直线解析式为y=kx+b,∵直线y=kx+b与直线y=1﹣x平行,∴k=﹣1,把点(﹣1,3)代入y=﹣x+b得1+b=3,解得b=2,∴所求直线解析式为y=﹣x+2.故答案为y=﹣x+2.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】首先将点A的坐标代入正比例函数中求得m的值,然后结合图象直接写出不等式的解集即可.【解答】解:∵函数y=﹣2x经过点A(m,3),∴﹣2m=3,解得:m=﹣,则关于x的不等式kx+b+2x>0可以变形为kx+b>﹣2x,由图象得:kx+b>﹣2x的解集为x>﹣,故答案为:x>﹣.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是求得m的值,然后利用数形结合的方法确定不等式的解集.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是3+.【考点】翻折变换(折叠问题).【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP 的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC 和BE长,代入求出即可.【解答】解:如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴CD=DE=,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠BAC=30°,∴∠B=60°,∵DE=,∴BE=1,即BC=2+,∴△PEB的周长的最小值是BC+BE=2++1=3+.故答案为:3+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式第一项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=﹣2﹣+1﹣2+=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.【考点】立方根;平方根.【分析】(1)先整理成x3=a的形式,再直接开立方解方程即可;(2)直接开平方法解方程即可.【解答】解(1)(x﹣1)3﹣27=0,(x﹣1)3=27,x﹣1=3,x=4;(2)(2x+1)2=,2x+1=4,或2x+1=﹣4,x1=,x2=﹣.【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.【考点】勾股定理.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)根据三角形的面积=正方形的面积﹣三个角上三角形的面积即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=9﹣1﹣﹣3=.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【点评】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)把(2,a)代入正比例函数解析式即可得到a的值;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b中可得关于k、b的方程组,然后解方程组求出k、b即可;(3)先利用描点法画哈图象,再求出两直线与y轴的交点坐标,然后根据三角形面积公式求解.【解答】解:(1)把(2,a)代入y=x得a=1;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣3;(3)如图,直线y=2x﹣3与y轴的交点坐标为(0,﹣3),直线y=x与y轴的交点为原点,这两条直线与y轴围成的三角形的面积=×3×2=3.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.【考点】一次函数图象上点的坐标特征.【分析】根据第一象限的特点和一次函数的点的坐标解答即可.【解答】解:把x=m,y=n代入一次函数的解析式可得:n=2m﹣1,因为点P在第一象限,可得:,解得:m>0.5.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【考点】全等三角形的判定与性质;勾股定理.【专题】证明题.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?【考点】一次函数的应用.【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值,由图可求m的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解解即可.【解答】解:(1)∵=0.6,∴非节假日打6折,a=6,∵=0.8,∴节假日打8折,b=8,由图可知,10人以上开始打折,所以,m=10;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,300),∴10k1=300,∴k1=30,∴y1=30x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,500),∴10k1=500,∴k1=50,∴y1=50x,x>10时,设y2=kx+b,∵函数图象经过点(10,500)和,∴,∴,∴y2=40x+100;∴y2=;(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,50n+30(50﹣n)=1900,解得n=20(不符合题意舍去),当n>10时,40n+100+30(50﹣n)=1900,解得n=30,∴50﹣n=50﹣30=20,答:A团有30人,B团有20人.故答案为:a=6;b=8;m=10.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.【考点】一次函数综合题.【专题】综合题.【分析】(1)对于直线解析式,分别令x=0与y=0求出对应y与x的值,确定出A与B的坐标,得到OA与OB的长,利用勾股定理求出AB的长即可;(2)过D作DE垂直于x轴,过C作CF垂直于y轴,根据四边形ABCD的正方形,得到四条边相等,四个角为直角,利用同角的余角相等得到三个角相等,利用AAS得到三角形EDA,三角形AOB以及三角形BFC全等,利用全等三角形的对应边相等得到DE=OA=BF=4,AE=OB=CF=2,进而求出OE与OF的长,即可确定出D与C的坐标;(3)找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,设直线DB′解析式为y=kx+b,把D与B′坐标代入求出k与b 的值,确定出直线DB′解析式,令y=0求出x的值,确定出此时M的坐标即可.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①利用待定系数法求解即可,②由①知点P坐标为(a,﹣a+3),可求出点Q坐标,再利用S△QOA=×|OA|×|﹣a+3|求出a的值,即可得出点P的坐标.(2)分两种情况①当∠QAC=90°且AQ=AC时,QA∥y轴,②,当∠AQC=90°且QA=QC 时,过点Q作QH⊥x轴于点H,分别求解即可.【解答】解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得,所以直线AB的函数表达式为y=﹣x+3,②由①知点P坐标为(a,﹣a+3),∴点Q坐标为(﹣a,﹣a+3),。
【苏科版】2016-2017学年八年级数学上期中试题(含答案)
2016/2017学年度第一学期期中考试试卷八年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是(▲ )A.清华大学 B.北京大学 C.中国人民大学 D.浙江大学2.如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲ )A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°3.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是(▲ )A.SSS B.SAS C.SSA D.ASA4.根据下列已知条件,能唯一画出△ABC的是(▲ )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6(第2题)(第3题)(第5题)5.等腰三角形的周长为13 cm,其中一边长为3 cm.则该等腰三角形的底长为(▲ )A.3 cm或5 cm B.3 cm或7 cm C.3 cm D.5 cm6.如果a、b、c是一个直角三角形的三边,则a:b:c可以等于(▲ )A.1:2:4 B.2:3:4 C.3:4:7 D.5:12:13 7.如图,在△ABC中,∠ABC=45°,F是高AD和高BE的交点,若FD=4,AF=2.则线段BC的长度为(▲ )A.6 B.8 C.10 D.128.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为(▲ )A.36 B.9 C.6 D.18(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分)9.如图,△OAD≌△OBC,且OA=2,OC=6,则BD= ▲ .10.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为▲ .(第9题)(第10题)(第11题)(第12题)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=▲ .12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是▲ .(填上一个条件即可)13.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是▲ .14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E、D,BD=CF,BE=CD.若∠AFD=140°,则∠EDF=▲ .15.如图,∠BAC =100°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ = ▲ .(第13题) (第14题) (第15题) (第16题)16.如图,AB //CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD之间的距离等于 ▲ .17.一个直角三角形的两边长分别为3、4,则它的第三条边的平方是 ▲ .18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为 ▲ .乙甲D 1ACB ABE DE 1CO(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(8分)如图,△ABC 与△C B A '''关于直线l 对称,若∠A =76°,∠C '=48°.求∠B 的度数.20.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.21.(8分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =36°.求∠BAC ,∠C 的度数.22.(8分)如图,△ABC 中,AB =AC ,两条角平分线BD 、CE 相交于点O .(1)证明:△ABD ≌△ACE ; (2)证明:OB =OC .23.(10分)如图,AD ∥ BC ,∠ A =90°,以点B 为圆心、BC 长为半径作弧,交射线AD 于点E ,连接BE ,过点C 作CF ⊥BE ,垂足为F .求证:AB =FC .FEDCBADEOCBA24.(10分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D.求AD,BD的长25.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为14 cm,AC=6 cm,求DC长.26.(10分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以BP为底的等腰三角形?27.(12分)如图,△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,BE交AC于F,AD交CE于H,连接FH.(1)求证:△ACD≌△BCE;(2)求证:AH=BF;(3)求证:△CFH为等边三角形.28.(12分)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在DC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:<Ⅰ>如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.<Ⅱ>如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,<Ⅰ>中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.2016/2017学年度第一学期期中考试试卷八年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)20.(8分)21.(8分)22.(8分)DEOCBA23.(10分)FE DCBA24.(10分)25.(10分)26.(10分)2016/2017学年度第一学期期中考试八年级数学答案一、选择题B C D C C D C A二、填空题9.4 10.70°11.50°12.BE=CE(或∠BAE=∠CAE,或∠ABE=∠ACE)13.914.50°15.20°16.2 17.25或7 18.10 三、解答题19.56°20.略 21.72°;54° 22.略23.略24.12,16 25.35°,4 26.5,6 27.略28.(1)AF=BD.证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质).同理知,DC=CF,∠DCF=60°.∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF.在△BCD和△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,∴△BCD≌△ACF(SAS).∴BD=AF(全等三角形的对应边相等).(2)AF=BD仍然成立.通过证明△BCD≌△ACF,即可证明AF=BD.(3)<Ⅰ>AF+BF′=AB.证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF.同理△BCF′≌△ACD(SAS),则BF′=AD.∴AF+BF′=BD+AD=AB.<Ⅱ> <Ⅰ>中的结论不成立,新的结论是AF=AB+BF′.证明如下:在△BCF′和△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,∴△BCF′≌△ACD(SAS).∴BF′=AD(全等三角形的对应边相等).又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.。
苏科版盐城市八年级上期中数学试卷含答案解析
八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母代号填在题后括号内)1.下列图形中,是轴对称图形的是( )A.B.C.D.2.如图,在△ABC中,AB=AC,D为BC中点,△BAD=35°,则△C的度数为( )A.35°B.45°C.55°D.60°3.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开.若测得BM的长为1.2km,则点M与点C之间的距离为( )A.0.5km B.0.6km C.0.9km D.1.2km4.如图,已知△ABC=△DCB,下列所给条件不能证明△ABC△△DCB的是( )A.△A=△D B.AB=DC C.△ACB=△DBC D.AC=BD5.由下列条件不能判定△ABC为直角三角形的是( )A.△A+△C=△B B.a=,b=,c=C.(b+a)(b﹣a)=c2D.△A:△B:△C=5:3:26.如图,在△ABC中,△A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.请仔细观察用直尺和圆规作一个角△A′O′B′等于已知角△AOB的示意图,请你根据图形全等的知识,说明画出△A′O′B′=△AOB的依据是( )A.SSS B.SAS C.ASA D.AAS8.如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有( )A.6种B.7种C.8种D.9种二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)9.如果等腰三角形有一个角等于50°,那么它的底角为__________°.10.角是轴对称图形,__________是它的对称轴.11.已知:△DEF△△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE=__________cm.12.如图,在△ABC中,△C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为__________.13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.14.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为__________.15.如图,△ABC中,D是BC上一点,AC=AD=DB,△BAC=105°,则△ADC=__________°.16.如图,在等边△ABC中,点D、E分别在边BC、AB上,且DE△AC,过点E作EF△DE,交CB的延长线于点F,若BD=2,则EF2=__________.17.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成__________个直角三角形.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.三、解答题(本大题共有9小题,共74分.解答时应写出必要的文字说明、推理过程或演算步骤)19.如图,AC平分△BAD,△1=△2,AB与AD相等吗?请说明理由.20.如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上)(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形.(规定:点P与点B对应)21.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.22.如图,△ABC△△ADE,△EAB=125°,△CAD=25°,求△BFD的度数.23.已知:如图,AB=AC,点D是BC的中点,AB平分△DAE,AE△BE,垂足为E.(1)求证:AD=AE.(2)若BE△AC,试判断△ABC的形状,并说明理由.24.如图,在四边形ABCD中,△BAD=△BCD=90°,M、N分别是BD、AC的中点(1)求证:MN△AC;(2)若△ADC=120°,求△1的度数.25.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若△MFN=70°,求△MCN的度数.26.如图,在Rt△ABC中,△ACB=90°,E为AC上一点,且AE=BC,过点A作AD△CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.27.在△ABC和△DEC中,AC=BC,DC=EC,△ACB=△ECD=90°(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5①求证:AF△BD ②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时,求证:AF△BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,△AFG是一个固定的值吗?若是,求出△AFG的度数;若不是,请说明理由-学年江苏省盐城市八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母代号填在题后括号内)1.下列图形中,是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在△ABC中,AB=AC,D为BC中点,△BAD=35°,则△C的度数为( )A.35°B.45°C.55°D.60°【考点】等腰三角形的性质.【分析】由等腰三角形的三线合一性质可知△BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【解答】解:AB=AC,D为BC中点,△AD是△BAC的平分线,△B=△C,△△BAD=35°,△△BAC=2△BAD=70°,△△C=(180°﹣70°)=55°.故选C.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.3.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开.若测得BM的长为1.2km,则点M与点C之间的距离为( )A.0.5km B.0.6km C.0.9km D.1.2km【考点】直角三角形斜边上的中线.【专题】应用题.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=BM=1.2km.【解答】解:△在Rt△ABC中,△ACB=90°,M为AB的中点,△MC=AB=BM=1.2km.故选:D.【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.4.如图,已知△ABC=△DCB,下列所给条件不能证明△ABC△△DCB的是( )A.△A=△D B.AB=DC C.△ACB=△DBC D.AC=BD【考点】全等三角形的判定.【分析】根据题目所给条件△ABC=△DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加△A=△D可利用AAS判定△ABC△△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC△△DCB,故此选项不合题意;C、添加△ACB=△DBC可利用ASA定理判定△ABC△△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC△△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.由下列条件不能判定△ABC为直角三角形的是( )A.△A+△C=△B B.a=,b=,c=C.(b+a)(b﹣a)=c2D.△A:△B:△C=5:3:2【考点】勾股定理的逆定理;三角形内角和定理.【分析】由三角形内角和定理得出条件A和B是直角三角形,由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可得出条件C是直角三角形,B不是;即可得出结果.【解答】A、△△A+△C=△B,△△B=90°,故是直角三角形,正确;B、设a=20k,则b=15k,c=12k,△(12k)2+(15k)2≠2,故不能判定是直角三角形;C、△(b+a)(b﹣a)=c2,△b2﹣a2=c2,即a2+c2=b2,故是直角三角形,正确;D、△△A:△B:△C=5:3:2,△△A=×180°=90°,故是直角三角形,正确.故选:B.【点评】本题考查勾股定理的逆定理、三角形内角和定理;熟练掌握三角形内角和定理和勾股定理的逆定理是证明直角三角形的关键,注意计算方法.6.如图,在△ABC中,△A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:△AB=AC,△△ABC是等腰三角形;△AB=AC,△A=36°,△△ABC=△C=72°,△BD是△ABC的角平分线,△△ABD=△DBC=△ABC=36°,△△A=△ABD=36°,△BD=AD,△△ABD是等腰三角形;在△BCD中,△△BDC=180°﹣△DBC﹣△C=180°﹣36°﹣72°=72°,△△C=△BDC=72°,△BD=BC,△△BCD是等腰三角形;△BE=BC,△BD=BE,△△BDE是等腰三角形;△△BED=(180°﹣36°)÷2=72°,△△ADE=△BED﹣△A=72°﹣36°=36°,△△A=△ADE,△DE=AE,△△ADE是等腰三角形;△图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.请仔细观察用直尺和圆规作一个角△A′O′B′等于已知角△AOB的示意图,请你根据图形全等的知识,说明画出△A′O′B′=△AOB的依据是( )A.SSS B.SAS C.ASA D.AAS【考点】作图—基本作图;全等三角形的判定.【分析】根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,在△OCD与△O′C′D′中,△△OCD△△O′C′D′(SSS),△△A′O′B′=△AOB.故选:A.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.8.如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有( )A.6种B.7种C.8种D.9种【考点】利用轴对称设计图案.【分析】根据轴对称的性质画出图形,进一步得出答案即可.【解答】解:如图,得到的不同图案共有8种.故选:C.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)9.如果等腰三角形有一个角等于50°,那么它的底角为50或65°.【考点】等腰三角形的性质.【专题】证明题.【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.【点评】此题主要考查了三角形的内角和定理及等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10.角是轴对称图形,角平分线所在的直线是它的对称轴.【考点】轴对称图形.【专题】常规题型.【分析】根据角的对称性解答.【解答】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【点评】本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.11.已知:△DEF△△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE=9cm.【考点】全等三角形的性质.【分析】先求出AB的长,根据全等三角形的性质得出DE=AB,即可得出答案.【解答】解:△△ABC中,AB=AC,且△ABC的周长为22cm,BC=4cm,△AB=AC=9cm,△△DEF△△ABC,△DE=AB=9cm,故答案为:9.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等,解此题的关键是求出AB=DE和求出AB的长.12.如图,在△ABC中,△C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为9.【考点】角平分线的性质.【分析】过点D作DE△AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式求出CD,即可得解.【解答】解:如图,过点D作DE△AB于E,△△C=90°,AD是角平分线,△DE=CD,由勾股定理得,CD===9,△DE=9,即点D到AB的距离为9.故答案为:9.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理的应用,熟记性质是解题的关键.13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:13、84、85.【考点】勾股数.【专题】规律型.【分析】先根据给出的数据找出规律,再根据勾股定理进行求解即可.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,第6组第一个数是13,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:132+x2=(x+1)2,解得x=84.则得第6组数是:13、84、85.故答案为:13、84、85.【点评】本题考查了勾股数,关键是根据给出的数据找出规律,发现第一个数是从3,5,7,9,…的奇数,第二、第三个数相差为一.14.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为1或4.【考点】勾股定理的证明.【分析】分两种情况:①5为斜边时,由勾股定理求出另一直角边长为4,小正方形的边长=4﹣3=1,即可得出小正方形的面积;②3和5为两条直角边长时,求出小正方形的边长=2,即可得出小正方形的面积;即可得出结果.【解答】解:分两种情况:①5为斜边时,由勾股定理得:另一直角边长==4,△小正方形的边长=4﹣3=1,△小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5﹣3=2,△小正方形的面积22=4;综上所述:小正方形的面积为1或4;故答案为:1或4.【点评】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理,分两种情况得出结果是解决问题的关键.15.如图,△ABC中,D是BC上一点,AC=AD=DB,△BAC=105°,则△ADC=50°.【考点】等腰三角形的性质.【分析】设△ADC=α,然后根据AC=AD=DB,△BAC=105°,表示出△B和△BAD的度数,最后根据三角形的内角和定理求出△ADC的度数.【解答】解:△AC=AD=DB,△△B=△BAD,△ADC=△C,设△ADC=α,△△B=△BAD=,△△BAC=105°,△△DAC=105°﹣,在△ADC中,△△ADC+△C+△DAC=180°,△2α+105°﹣=180°,解得:α=50°.故答案为:50.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.16.如图,在等边△ABC中,点D、E分别在边BC、AB上,且DE△AC,过点E作EF△DE,交CB的延长线于点F,若BD=2,则EF2=12.【考点】勾股定理;等边三角形的性质.【分析】根据平行线的性质可得△EDC=△C=60°,根据三角形内角和定理结合勾股定理即可求解;【解答】解:△△ABC是等边三角形,△△C=60°,△DE△AC,△△EDB=△C=60°,△EF△DE,△△DEF=90°,△△F=90°﹣△EDC=30°;△△ABC=60°,△EDB=60°,△△EDB是等边三角形.△ED=DB=2,△△DEF=90°,△F=30°,△DF=2DE=4,△EF2=FD2﹣DE2=12.故答案为:12.【点评】本题考查了等边三角形的判定与性质以及直角三角形的性质、勾股定理等知识,得出DF的长是解题关键.17.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成3个直角三角形.【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,△AD2+BD2=AB2,AC2+AB2=BC2,AC2+AB2=CD2,△能够组成3个直角三角形.故答案为:3.【点评】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理,由勾股定理的逆定理得出直角三角形是解决问题的关键.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为4.8.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】压轴题.【分析】由折叠的性质得出EP=AP,△E=△A=90°,BE=AB=8,由ASA证明△ODP△△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:△四边形ABCD是矩形,△△D=△A=△C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP△△EBP,△EP=AP,△E=△A=90°,BE=AB=8,在△ODP和△OEG中,,△△ODP△△OEG(ASA),△OP=OG,PD=GE,△DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,△CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,△AP=4.8;故答案为:4.8.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共有9小题,共74分.解答时应写出必要的文字说明、推理过程或演算步骤)19.如图,AC平分△BAD,△1=△2,AB与AD相等吗?请说明理由.【考点】全等三角形的判定与性质.【分析】根据等角的补角相等得到△ABC=△ADC,再根据角平分线的定义得到△BAC=△DAC,然后根据全等三角形的判定方法得到△ABC△△ADC,再利用全等三角形的性质即可得到AB=AD.【解答】解:△△ABC+△1=180°,△ADC+△2=180°,而△1=△2,△△ABC=△ADC,△AC平分△BAD,△△BAC=△DAC,在△ABC和△ADC中,△△ABC△△ADC(AAS),△AB=AD.【点评】本题考查了全等三角形的判定与性质:有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等,解决本题的关键是证明△ABC△△ADC.20.如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上)(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形.(规定:点P与点B对应)【考点】作图-轴对称变换.【分析】(1)分别作出各点关于直线l的对称点,再顺次连接各点即可;(2)根据勾股定理画出与△ABC全等的格点三角形即可.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,△FPE即为与△ABC全等的格点三角形.【点评】本题考查的是作图﹣轴对称变换,熟知图形轴对称的性质是解答此题的关键.21.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【考点】勾股定理的应用.【专题】方案型;操作型.【分析】根据旗杆、绳子、地面正好构成直角三角形,设出旗杆的高度,再利用勾股定理解答即可.【解答】解:设旗杆的高为x米,则绳子长为x+1米,由勾股定理得,(x+1)2=x2+52,解得,x=12米.答:旗杆的高度是12米.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.如图,△ABC△△ADE,△EAB=125°,△CAD=25°,求△BFD的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出△EAD=△CAB,△B=△D,求出△△EAC=△DAB=50°,根据三角形内角和定理求出△BFD=△DAB,代入求出即可.【解答】解:△△ABC△△ADE,△△EAD=△CAB,△B=△D,△△EAD﹣△CAD=△CAB﹣△CAD,△△△EAC=△DAB,△△EAB=125°,△CAD=25°,△△DAB=△EAC=(125°﹣25°)=50°,△△B=△D,△FGD=△BGA,△D+△BFD+△FGD=180°,△B+△DAB+△AGB=180°,△△BFD=△DAB=50°.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能根据全等三角形的性质求出△EAD=△CAB,△B=△D是解此题的关键,注意:全等三角形的对应角相等,对应边相等.23.已知:如图,AB=AC,点D是BC的中点,AB平分△DAE,AE△BE,垂足为E.(1)求证:AD=AE.(2)若BE△AC,试判断△ABC的形状,并说明理由.【考点】等边三角形的判定;全等三角形的判定与性质.【专题】应用题.【分析】(1)由边角关系求证△ADB△△AEB即可;(2)由题中条件可得△BAC=60°,进而可得△ABC为等边三角形.【解答】证明:(1)△AB=AC,点D是BC的中点,△AD△BC,△△ADB=90°,△AE△AB,△△E=90°=△ADB,△AB平分△DAE,△△1=△2,在△ADB和△AEB中,,△△ADB△△AEB(AAS),△AD=AE;(2)△ABC是等边三角形.理由:△BE△AC,△△EAC=90°,△AB=AC,点D是BC的中点,△△1=△2=△3=30°,△△BAC=△1+△3=60°,△△ABC是等边三角形.【点评】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够熟练掌握.24.如图,在四边形ABCD中,△BAD=△BCD=90°,M、N分别是BD、AC的中点(1)求证:MN△AC;(2)若△ADC=120°,求△1的度数.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】(1)首先由直接三角形的斜边上的中线的性质得出AM=CM,进一步利用等腰三角形的三线合一得出结论;(2)由直接三角形的斜边上的中线的性质得出AM=MD=MC,利用三角形的内角和得出△AMD=180°﹣2△ADM,△CMD=180°﹣2△CDM,求得△AMC,进一步利用等腰三角形的性质得出答案即可.【解答】(1)证明:△△BAD=△BCD=90°,M是BD的中点,△AM=BD,CM=BD,△N是AC的中点,△MN△AC;(2)解:△M是BD的中点,△MD=BD,△AM=DM,△△AMD=180°﹣2△ADM,同理△CMD=180°﹣2△CDM,△△AMC=△AMD+△CMD=180°﹣2△ADM+180°﹣2△CDM=120°,△AM=DM,△△1=△2=30°.【点评】本题考查了直角三角形斜边上中线性质,等腰三角形的判定的应用与性质,三角形的内角和定理,掌握图形的基本性质是解决问题的关键.25.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若△MFN=70°,求△MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段的垂直平分线的性质得到MA=MC,NB=NC,根据三角形的周长公式计算即可;(2)根据四边形内角和定理和等腰三角形的性质求出△A+△B=70°,由△MCA=△A,△NCB=△B,计算即可.【解答】解:(1)△DM是AC边的垂直平分线,△MA=MC,△EN是BC边的垂直平分线,△NB=NC,AB=AM+MN+NB=MC+MN+NC=△CMN的周长=20cm;(2)△MD△AC,NE△BC,△△ACB=180°﹣△△MFN=110°,△△A+△B=70°,△MA=MC,NB=NC,△△MCA=△A,△NCB=△B,△△MCN=40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,注意三角形内角和定理的应用.26.如图,在Rt△ABC中,△ACB=90°,E为AC上一点,且AE=BC,过点A作AD△CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.【考点】全等三角形的判定与性质;勾股定理的证明.【分析】(1)根据全等三角形的判定与性质,可得△1与△3的关系,AB与DE的关系,根据余角的性质,可得△2与△3的关系;(2)根据面积的不同求法,可得答案.【解答】解:(1)AB=DE,AB△DE,如图2,△AD△CA,△△DAE=△ACB=90°.在△ABC和△DEA中,,△△ABC△△DEA (SAS),AB=DE,△3=△1.△△DAE=90°,△△1+△2=90°,△△3+△2=90°,△△AFE=90°,△AB△DE;(2)S四边形ADBE=S△ADE+S△BDE=DE•AF+DE•BF=DE•AB=c2,S四边形ADBE=S△ABE+S△ADE=a2+b2,△a2+b2=c2,△a2+b2=c2.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,面积的割补法是求勾股定理的关键.27.在△ABC和△DEC中,AC=BC,DC=EC,△ACB=△ECD=90°(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5①求证:AF△BD ②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时,求证:AF△BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,△AFG是一个固定的值吗?若是,求出△AFG的度数;若不是,请说明理由【考点】全等三角形的判定与性质.【分析】(1)①证明△ACE△△BCD,得到△1=△2,由对顶角相等得到△3=△4,所以△BFE=△ACE=90°,即可解答;②根据勾股定理求出BD,利用△ABD的面积的两种表示方法,即可解答;(2)证明△ACE△△BCD,得到△1=△2,又由△3=△4,得到△BFA=△BCA=90°,即可解答;(3)△AFG=45°,如图3,过点C作CM△BD,CN△AE,垂足分别为M、N,由△ACE△△BCD,得到S△ACE=S△BCD,AE=BD,证明得到CM=CN,得到CF平分△BFE,由AF△BD,得到△BFE=90°,所以△EFC=45°,根据对顶角相等得到△AFG=45°.【解答】(1)①证明:如图1,在△ACE和△BCD中,△,△△ACE△△BCD,△△1=△2,△△3=△4,△△BFE=△ACE=90°,△AF△BD.②△△ECD=90°,BC=AC=12,DC=EC=5,△BD==13,△S△ABD=AD•BC=BD•AF,即△AF=.(2)证明:如图4,△△ACB=△ECD,△△ACB+△ACD=△ECD+△ACD,△△BCD=△ACE,在△ACE△△BCD中△△ACE△△BCD,△△1=△2,△△3=△4,△△BFA=△BCA=90°,△AF△BD.(3)△A FG=45°,如图3,过点C作CM△BD,CN△AE,垂足分别为M、N,△△ACE△△BCD,△S△ACE=S△BCD,AE=BD,△S△ACE=AE•CN,S△BCD=BD•CM,△CM=CN,△CM△BD,CN△AE,△CF平分△BFE,△AF△BD,△△BFE=90°,△△EFC=45°,△△AFG=45°.【点评】本题考查了全等三角形的判定定理与性质定理,角平分线的性质,解决本题的关键是证明△ACE△△BCD,得到三角形的面积相等,对应边相等.。
2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷
2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1. 下面四个手机应用图标中是轴对称图形的是()A. B. C. D.2. 下列条件中,不能判断两个三角形全等的方法有()A.两个角及其夹边分别相等的两个三角形B.两边和一个角分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形3. 下列说法正确的是( )A.9的立方根是3B.无限小数都是无理数C.数轴上的每一个点都对应一个有理数D.平方根等于本身的数是04. 下列各组数不能作为直角三角形的边长的是()A.8,15,17B.3,4,5C.7,9,11D.9,12,155. 小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.705<x<1.715B.1.7≤x≤1.8C.1.705≤x≤1.715D.1.705≤x<1.7156. 如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP // AR;④△BRP≅△QSP.正确的有()A.2个 B.1个 C.4个 D.3个7. 关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.l经过定点(−1, 0)B.点(0, k)在l上C.l经过第一、二、三象限D.当k>0时,y随x的增大而增大8. 如图,经过点B(1, 0)的直线y=kx+b与直线y=4x+4相交于点A(m, 83),则0<kx+b<4x+4的解集为()A.−13<x<1 B.x<13C.x<1D.−1<x<1二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.√81的平方根是________.在平面直角坐标系中,点P(2, −3)在第________象限.某人一天饮水1890mL,用四舍五入法对1890mL精确到1000mL表示为________.将点A(1, −3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为________.如图所示,AB // CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于________.比较大小:−√5−12________−12(填“>”或“<”).如图,在△ABC 中,AB =AC ,∠A =40∘,BD 是△ABC 的角平分线,则∠ABD =________∘.如图,AB =9cm ,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =3m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动________分钟后△CAP 与△PQB 全等.已知y 是x 的一次函数,下表中给出了x 与y 的部分对应值,则m 的值是________.如图,直线y =2x +2√3与x 、y 轴分别交于A 、B 两点,以OB 为边在y 轴左侧作等边△OBC ,将△OBC 沿y 轴上下平移,使点C 的对应点C′恰好落在直线AB 上,则点C ′的坐标为________.三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.解答下列各题:(1)计算:√(−52)2−√−210273+(2017−π)0;(2)求x 的值:12(x −2)3−32=0.如图,点C ,D 在线段BF 上,AB // DE ,AB =DF ,BC =DE .求证:AC =FE .已知:y 与x −3成正比例,且x =4时y =3. (1)求y 与x 之间的函数关系式;(2)当y =−12时,求x 的值.已知:P(4x, x −3)在平面直角坐标系中. (1)若点P 在第三象限的角平分线上,求x 的值;(2)若点P 在第四象限,且到两坐标轴的距离之和为9,求x 的值.如图,∠ACB =∠ADB =90∘,M 、N 分别为AB 、CD 的中点.求证:MN ⊥CD .在如图10×9的网格图中,△ABC 和△CDE 都是等腰直角三角形,其顶点都在格点上,若点A 、C 的坐标分别为(−5, −2)和(−1, 0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF // AB.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6, 0),点M的横坐标为2,过点P(a, 0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(ℎ)的函数图象.(1)小芳骑车的速度为________,H点坐标________.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?参考答案与试题解析2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.【答案】此题暂无答案【考点】轴正算图形【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】立方根隐应用在数轴来表示兴数实数平方根【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】近似数于有效旋字【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】等边三角表础判定方法全等三表形木判定角平较线的停质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】一次水体的性质【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】一次验我与一萄一次人等式【解析】此题暂无解析【解答】此题暂无解答二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.【答案】此题暂无答案【考点】平方根算三平最根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】近似数于有效旋字【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】坐标与图体变某-平移【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平行线常间换距离角平较线的停质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】实数根盖比较【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等体三火暗服判定与性质等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点等边三角表础判定方法坐标与图体变某-平移【解析】此题暂无解析【解答】此题暂无解答三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.【答案】此题暂无答案【考点】实因归运算零使数解、达制数指数幂【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直使三碳形望边扩的中线等体三火暗服判定与性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角表的病积坐标正测形性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】翻折变换(折叠问题)勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】两直线相来非垂筒问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用待定正数键求一程植数解析式【解析】此题暂无解析【解答】此题暂无解答。
2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷
2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形3.(3分)下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数4.(3分)下列各组数不能作为直角三角形的边长的是()A.3,4,5 B.8,15,17 C.7,9,11 D.9,12,155.(3分)小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.7156.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个7.(3分)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限8.(3分)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A.x<B.﹣<x<1 C.x<1 D.﹣1<x<1二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.9.(2分)的平方根是.10.(2分)在平面直角坐标系中,点P(2,﹣3)在第象限.11.(2分)某人一天饮水1890mL,用四舍五入法对1890mL精确到1000mL表示为.12.(2分)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.13.(2分)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.14.(2分)比较大小:﹣(填“>”或“<”).15.(2分)如图,在△ABC中,AB=AC,∠A=40°,BD是△ABC的角平分线,则∠ABD=°.16.(2分)如图,AB=9cm,CA⊥AB于A,DB⊥AB于B,且AC=3m,P点从B 向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m 的值是.18.(2分)如图,直线y=2x+2与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C的对应点C′恰好落在直线AB上,则点C'的坐标为.三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.19.(8分)解答下列各题:(1)计算:﹣+(2017﹣π)0;(2)求x的值:(x﹣2)3﹣32=0.20.(6分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.21.(6分)已知:y与x﹣3成正比例,且x=4时y=3.(1)求y与x之间的函数关系式;(2)当y=﹣12时,求x的值.22.(6分)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.23.(7分)如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN ⊥CD.24.(7分)在如图10×9的网格图中,△ABC和△CDE都是等腰直角三角,其顶点都在格点上,若点A、C的坐标分别为(﹣5,﹣2)和(﹣1,0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.25.(8分)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.26.(8分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.27.(10分)如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.28.(10分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.(3分)(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.(3分)(2016秋•建湖县期末)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形【分析】根据全等三角形的判定方法逐项判断即可.【解答】解;在A中,两个三角形满足的是SSA,不能判定两个三角形全等;在B中,两个三角形满足ASA,能判定两个三角形全等;在C中,两个三角形满足SSS,能判定两个三角形全等;在D中,两个三角形满足HL,能判定两个三角形全等;∴不能判断两个三角形全等的是A,故选A.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.3.(3分)(2017春•兰陵县期末)下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数【分析】根据实数的分类、平方根和立方根的定义进行选择即可.【解答】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选C.【点评】本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.4.(3分)(2016秋•建湖县期末)下列各组数不能作为直角三角形的边长的是()A.3,4,5 B.8,15,17 C.7,9,11 D.9,12,15【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,能构成直角三角形,故不符合题意;B、82+152=172,能构成直角三角形,故不符合题意;C、72+92≠112,能构成直角三角形,故不符合题意;D、92+122=152,能构成直角三角形,故不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.(3分)(2016秋•建湖县期末)小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.715【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:据题意可知,他实际身高可能是最矮1.705米,最高小于1.715米.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.6.(3分)(2016秋•建湖县期末)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB 于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.【点评】本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.7.(3分)(2016•玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限【分析】直接根据一次函数的性质选择不正确选项即可.【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;B、当x=﹣1时,y=﹣k+k=0,此选项正确;C、当k>0时,y随x的增大而增大,此选项正确;D、不能确定l经过第一、二、三象限,此选项错误;故选D.【点评】本题主要考查了一次函数的性质,解题的关键是掌握一次函数的性质,一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).此题难度不大.8.(3分)(2016秋•建湖县期末)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A.x<B.﹣<x<1 C.x<1 D.﹣1<x<1【分析】将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方且直线y=kx+b落在x轴上方的部分对应的x的取值即为所求.【解答】解:∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),∴4m+4=,∴m=﹣,∴直线y=kx+b与直线y=4x+4的交点A的坐标为(﹣,),直线y=kx+b与x 轴的交点坐标为B(1,0),又∵当x<1时,kx+b>0,当x>﹣时,kx+b<4x+4,∴0<kx+b<4x+4的解集为﹣<x<1.故选B.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.9.(2分)(2016秋•建湖县期末)的平方根是±3.【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:∵=9,9的平方根是±3,∴的平方根是±3.故答案为±3.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.10.(2分)(2016秋•建湖县期末)在平面直角坐标系中,点P(2,﹣3)在第四象限.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(2,﹣3)在第四象限.故答案为:四.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(2分)(2016秋•建湖县期末)某人一天饮水1890mL,用四舍五入法对1890mL 精确到1000mL表示为2×103.【分析】先利用科学记数法表示,然后把百位上的数字8进行四舍五入即可.【解答】解:1890mL≈2×103(精确到1000mL).故答案为2×103.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.(2分)(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.(2分)(2016秋•建湖县期末)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于2.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判断出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.14.(2分)(2016秋•建湖县期末)比较大小:﹣<(填“>”或“<”).【分析】先比较出﹣1与1的大小关系,再比较出与的大小关系,最后根据两个负数比较大小,绝对值大的反而小,即可得出答案.【解答】解:∵﹣1>1,∴,∴:﹣<;故答案为:<【点评】此题考查了实数的大小比较,解题的关键是根据两个负数比较大小,绝对值大的反而小.15.(2分)(2016秋•建湖县期末)如图,在△ABC中,AB=AC,∠A=40°,BD是△ABC的角平分线,则∠ABD=35°.【分析】由已知根据等腰三角形的性质易得两底角的度数,结合角平分线的性质和三角形内角和定理即可求解.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)÷2=70°,又∵BD为∠ABC的平分线,∴∠ABD=35°,故答案为:35.【点评】本题考查了三角形内角和定理及等腰三角形的性质、角平分线的性质;综合运用各种知识是解答本题的关键.16.(2分)(2016秋•建湖县期末)如图,AB=9cm,CA⊥AB于A,DB⊥AB于B,且AC=3m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动3分钟后△CAP与△PQB全等.【分析】由全等三角形的性质可得到PB=AC=3,然后依据时间=路程÷速度求解即可.【解答】解:∵△CAP与△PQB全等,∴AC=PB=3.∴运动时间=3÷1=3.故答案为:3.【点评】本题主要考查的是全等三角形的性质,依据题意得PB=3是解题的关键.17.(2分)(2016秋•建湖县期末)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m的值是﹣9.【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣1,y=5;x=2时,y=﹣1代入即可得出k、b的值,故可得出一次函数的解析式,再把x=6代入即可求出m的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣1时y=5;x=2时y=﹣1,∴,解得,∴一次函数的解析式为y=﹣2x+3,∴当x=6时,y=﹣2×6+3=﹣9,即m=﹣9.故答案是:﹣9.【点评】本题考查的是待定系数法求一次函数解析式.解题时,利用了一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.18.(2分)(2016秋•建湖县期末)如图,直线y=2x+2与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C 的对应点C′恰好落在直线AB上,则点C'的坐标为(﹣3,﹣6+2).【分析】根据直线y=2x+2可以求得点A和点B的坐标,从而可以求得点C到OB的距离,从而可以得到C′的横坐标,然后代入y=2x+2,即可得到点C′的坐标,本题得以解决.【解答】解:∵y=2x+2,∴当x=0时,y=2;当y=0时,x=﹣,∴点A(,0),点B(0,2),∵△OBC是等边三角形,OB=,∴点C到OB的距离是:,将x=﹣3代入y=2x+2,得y=﹣6+2,∴点C′的坐标为(﹣3,﹣6+2),故答案为:(﹣3,﹣6+2).【点评】本题考查一次函数图象上点的坐标特征、等边三角形的性质、坐标与图形变化﹣平移,解题的关键是明确题意,找出所求问题需要的条件,利用等边三角形的性质和平移的性质解答.三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.19.(8分)(2016秋•建湖县期末)解答下列各题:(1)计算:﹣+(2017﹣π)0;(2)求x的值:(x﹣2)3﹣32=0.【分析】(1)原式利用平方根、立方根定义,以及零指数幂法则计算即可得到结果;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)原式=++1=;(2)方程整理得:(x﹣2)3=64,开立方得:x﹣2=4,解得:x=6.【点评】此题考查了实数的运算,以及立方根,熟练掌握运算法则及立方根定义是解本题的关键.20.(6分)(2015•怀柔区二模)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.【分析】首先由AB∥DE,可以得到∠B=∠EDF,然后利用SAS证明△ABC与△DEF 全等,最后利用全等三角形的性质即可解决问题.【解答】证明:∵AB∥DE,∴∠B=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=FE.【点评】此题考查全等三角形的判定和性质,关键是根据AB∥DE得到∠B=∠EDF,再利用SAS证明全等.21.(6分)(2016秋•建湖县期末)已知:y与x﹣3成正比例,且x=4时y=3.(1)求y与x之间的函数关系式;(2)当y=﹣12时,求x的值.【分析】(1)根据正比例函数的关系式可得y=k(x﹣3),再把x=4时y=3代入即可得出k的值;(2)把y的再代入即可得出x的值.【解答】解:(1)设y与x之间的函数关系式y=k(x﹣3),把x=4时y=3代入得:k(4﹣3)=3,解得k=3,则y与x之间的函数关系式y=3(x﹣3)即y=3x﹣9;(2)当y=﹣12时,3x﹣9=﹣12,解得x=﹣1.【点评】本题考查了用待定系数法求一次函数的解析式,掌握正比例函数的解析式y=kx是解题的关键.22.(6分)(2016秋•建湖县期末)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.【分析】(1)根据角平分线上的点到坐标轴的距离相等,课的答案;(2)根据坐标的和,可得方程.【解答】解:(1)由题意,得4x=x﹣3,解得x=﹣1∴点P在第三象限的角平分线上时,x=﹣1.(2)由题意,得4x+[﹣(x﹣3)]=9,则3x=6,解得x=2,此时点P的坐标为(8,﹣1),∴当点P在第四象限,且到两坐标轴的距离之和为9时,x=2.【点评】本题考查了点的坐标,理解题意得出方程是解题关键.23.(7分)(2016秋•建湖县期末)如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.【分析】连接CM、DM,根据直角三角形斜边上的中线等于斜边的一半可得CM=DM=AB,再根据等腰三角形三线合一的性质证明即可.【解答】证明:如图,连接CM、DM,∵∠ACB=∠ADB=90°,M为AB的中点,∴CM=AB,DM=AB,∴CM=DM=AB,∵N为CD的中点,∴MN⊥CD.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.24.(7分)(2016秋•建湖县期末)在如图10×9的网格图中,△ABC和△CDE 都是等腰直角三角,其顶点都在格点上,若点A、C的坐标分别为(﹣5,﹣2)和(﹣1,0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.【分析】(1)根据图形的特点建立平面直角坐标系即可;(2)根据三角形面积公式即可得到结论.【解答】解:(1)建立平面直角坐标系,如图所示,∴B(﹣3,4),D(2,﹣2),E(1,3);(2)∵BC2=22+42=20,AC2=22+42=20,∵∠ACB=90°,∵△ABC的面积=AC•BC,∵AC=BC,∴△ABC的面积=BC2=10.【点评】本题考查了三角形的面积的计算,坐标与图形的性质,勾股定理,正确的理解题意是解题的关键.25.(8分)(2016秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【分析】过E作AC的平行线于AD延长线交于G点,可证明△DEG≌△DCA,可得EG=EF,可证明EF∥AB.【解答】解:过E作AC的平行线于AD延长线交于G点,∵EG∥AC在△DEG和△DCA中,,∴△DEG≌△DCA(ASA),∴EG=EF,∠G=∠CAD,又EF=AC故EG=AC∵AD平分∠BAC,∴∠BAD=∠CAD,∵EG=EF,∴∠G=∠EFD,∴∠EFD=∠BAD,∴EF∥AB.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证△DEG≌△DCA是解题的关键.26.(8分)(2016秋•建湖县期末)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.【分析】由四边形ABCD为矩形,AB=6cm,BC=10cm,又由折叠的性质,即可得AF=AD,然后在Rt△ABF中,利用勾股定理求得BF的长,即可得CF的长,然后设CE=xcm,在Rt△FCE中,由勾股定理即可得方程:(6﹣x)2=22+x2,解此方程即可求得CE的长【解答】解:∵△AFE是由△ADE折叠得到,∴AF=AD=10cm,FE=DE,在Rt△ABF中,BF===8cm,∴CF=2cm,设CE=xcm,则FE=DE=(6﹣x)cm,在Rt△FCE中,FE2=EC2+FC2,即(6﹣x)2=22+x2,解得x=,即CE=cm.【点评】本题考查了折叠的性质,矩形的性质以及勾股定理.此题难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.27.(10分)(2016秋•建湖县期末)如图,一次函数y1=kx+b的图象与x轴、y 轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x 的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.【分析】(1)先求出M的坐标,然后将M与A的坐标代入y1=kx+b中,即可求出k与b的值.(2)根据条件先证明△MBO≌△MCD(ASA),由此可知OB=CD,分别求出OB 与CD的长度即可求出a的值.【解答】解:(1)∵M的横坐标为2,点M在直线y=x上,∴y=2,∴M(2,2)把M(2,2)、A(6,0)代入y1=kx+b中,可得:,解得:∴函数的表达式为:y1=﹣x+3(2)∵PD⊥x轴,∴PC∥OB∴∠BOM=∠CDM,∵点M是线段CD的中点,∴MO=MD在△MBO与△MCD中∴△MBO≌△MCD(ASA)∴OB=CD当x=0时,y1=x+3=3,∴OB=2,∴DC=3,当x=a时,y1=﹣x+3=3﹣a,∴y2=x=a即D(a,a),C(a,﹣a+3)∴DC=a﹣(﹣a+3)=a﹣3=3,∴a=4,【点评】本题考查一次函数的解析式,涉及待定系数法求解析式,全等三角形的判定与性质,一元一次方程的解法,题目较为综合.28.(10分)(2016•绥化)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为20km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【分析】(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出当y=0时候的横坐标,再求出两横坐标的差值即可.【解答】解:(1)由函数图可以得出,小芳家距离甲地的路程为10km,花费时间为0.5h,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:+=,故点H的坐标为(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40,设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小芳出发1.75小时后被妈妈追上,此时距家25km;(3)将y=0代入直线CD解析式有:﹣20x+40=0,解得x=2,将y=0代入直线EF的解析式有:﹣60x+110=0,解得x=,2﹣=(h)=10(分钟),故小芳比预计时间早10分钟到达乙地.【点评】本题考查了一次函数的应用,解答本题的关键在于读懂题意,根据函数图所给的信息求出合适的函数解析式并求解.。
苏教版八年级上期中数学试卷及答案(五套).docx
八年级上学期中数学试卷(一)一、选择题(本大题共6小题,每小题2分,共12分)1.在下血的四个京剧脸谱中,不是轴对称图形的是(▲)等腰三角形两边长分别为2和4,则这个等腰三角形的周长为5. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是的屮点,AB 绕着点O 上下转 动.当A 端落地时,ZOAC=20。
,跷跷板上下可转动的最大角度(即ZA fOA )是(▲) A. 20°B. 40°C. 60°D. 80°6. 如图,在四边形ABCD 中,AB=AC=BD, AC 与BQ 相交于H,且AC 丄BD.①AB 〃 CD ; ②、ABD^ABAC ;③AB 2+CD 1=AD 1+CB 2;④ ZACB+ ZBDA = 135。
・其屮真命题的个数是(▲) A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每空2分,共2()分)7. 、代的相反数是一 ▲.8. 一个罐头的质量约为2.026kg,用四舍五入法将2.026kg 精确到0.01kg 可得近似值▲ kg.9. 如图,已知点A, D, C, F 在同一•条直线上,AB=DE, ZB=ZE,要使ZBCQ'DEF,还需要添加一个条件是一 ▲.10. 如图,在RlA ABC 1!', CD 是斜边43上的小线,若AB=2,则—▲2. A. B. C. D.下列长度的三条线段能组成直角三角形的是(▲) A. 1, 2, 3B. 2, 3, 4C. 3, 4, 5D. 5, 6, 73. 4. A. 6B. 8C. 10D. 8或10如图,在数轴上表示实数甫+1的点可能是(▲) A. PB. QC. RD.11.如图,在厶ABC中,AB=AC, ZB=66。
,D, E 分别为AB, BC 上一点,AF//DE.若ZBDE=30°,则ZMC的度数为▲•12.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF =1, CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是一▲・13.如图,△ABC, A/IDE均是等腰直角三角形,BC与DE相交于F点,若AC = AE=\.则四边形AEFC的周长为▲14.如图,AABC是边长为6的等边三角形,D是BC上一点,BD=2, DEVBC交AB于点、E,则AE= A .15.如图,在△ABC中,AB=4, AC=3, BC=5, AD是厶ABC的角平分线,DE丄AB于点E,则DE长是一▲.16.如图,在厶ABC中,ZC=90°, ZA = 34°t D, E 分别为AB, AC 1.一点,将厶BCD,/\ADE沿CD, DE翻折,点A, B恰好重合于点P处,则ZACP=A三、解答题(本大题共10题,共68分)17.(6分)计算(1)(―2)2+^/64—\/4;(2) A /l^+(7t—3)°—11 —18.(6分)求下列各式中的x(1)(兀+2)2=4;(2) 1+(X-1)3=-7.19.(6分)请在下图屮画岀三个以为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,饨角三角形各画一个;2.点C在格点上.)20. (6分)如图,AC丄BC, BD丄AD,垂足分别为C, D, AC=BD.求证BC=AD.21.(6分)如图,在△ ABC中,边AB, 4C的垂直平分线相交于点P.求证PB=PC.22.(6分)如图,已知点P为△ABC边3C上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法)23.(7分)如图,在长方形ABCD中,AD=IO,点E为BC上一点,将/VIBE沿AE折卷,使点B落在长方形内点F处,且DF=6,求BE的长.24.(8 分)如图,在厶ABC中,AB=AC, ZA=48% 点D、E、F 分别在BC、AB. AC边上,且BE=CF, BD=CE,求ZEDF的度数.25.(8分)阅读理解:求J而的近似值.解:设迈丽=10+x,其中0<x<l,贝ij 107 = (10+x)2, B|J 107=100+20x+x2. 因为0<x<l,所以0<"<i,所以1072100+20X,解Z得兀乏0.35,即丽的近似值为10.35.理解应用:利用上面的方法求帧的近似值(结果精确到0.01).26.(9 分)如图,在四边形ABCD中,AB//CD, ZD=90°,若A£>=3, AB=4, CD=8, 点P为线段CD上的一动点,若氏ABP为等腰三角形,求DP的长.南京市建邺区2017-2018学年度第一学期期中学情试卷八年级数学参考答案及评分标准说明:本评分标准每题给岀了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.一托. 8. 2.23. 9.BC=EF(答案不惟一). 10. 1. 11. 18.12.帧. 13. 2返・14. 2.16.22.三、解答题(本大题共10小题,共计68分)17.(本题6分)解:(1)(—2)+寸丽一甫=4+4-2=6 ............................................................................................................................ 3 分⑵寸為+(兀—3屮一|1一帀|=|+1-(^3-1)=学一羽. ........................................................... 6分18.(本题6分)解:(1)兀—2 = ±2 ........................................................................................................... 1 分兀=±2+2兀=0, X2=4. ........................................................................................................... 3 分(2)................................................................................................................. (X-1)3=-84 分x~\ = ~2..................................................................................................................... 5分x=—1. .................................................................................................................. 6 分19.(本题6分)图略.20.(本题6分)证明:I AC丄BC, BD丄AD f:.ZC=ZD=90°.在RtAABC 和RtABAD 中,AB=BA,AC=BD.・・・BC=AD. ..................................................................................................................... 6分21.(本题6分)证明:・・・边AB, AC的垂直平分线相交于点P,PA = PB, PA = PC.PB=PC.22.(本题6分)图略.23.(本题7分)解:I 将△ABE沿AE折叠,使点B落在长方形内点F处,・•・ ZAFE= ZB=90。
苏科版八年级上册数学期中考试试卷带答案
苏科版八年级上册数学期中考试试题一、单选题1..下列图形中,不是轴对称图形的是()A.B.C.D.2.下列选项可使△ABC≌△A′B′C′的是()A.AB=A′B′,∠B=∠B′,AC=A′C′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′3.在下列各组数中,是勾股数的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6 4.在Rt△ABC中,∠A=90°,AB=3,AC=4,则点A到BC的距离为()A.125B.425C.34D.525.如图,在△ABC中,AC=6,F是高AD和BE的交点,若AD=BD,则BF的长是()A.4B.5C.6D.86.如图,在△ABC中,CD是边AB上的高,BE平分∠ABC,交CD于点E,BC=10,DE=3,则△BCE的面积为()A.16B.15C.14D.137.如图,在△ABC中,∠A=60°,BD⊥AC,垂足为D,CE⊥AB,垂足为E,O为BC的中点,连接OD、OE,则∠DOE的度数为()A.40°B.45°C.60°D.65°8.如图,在△ABC中,AC=BC,∠ACB=90°D是AB的中点,点E在AC上,点F在BC上,DE⊥DF,AE=4,BF=3,则EF的长为()A.4B.5C.6D.7二、填空题9.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=___.10.在△ABC中,∠C=40°,CA=CB,则∠B=_____°.11.如图,在Rt△ABC中,∠BAC=90°,点D在边BC上,将△ABD沿AD折叠,使点B 恰好落在边AC上的点E处.若∠C=28°,则∠CDE=_____°.12.已知一个直角三角形的两条边长分别为1和2,则第三条边长的平方是_____.13.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长为_________cm;14.如图,以Rt△ABC的三边分别向外作正方形,若斜边AB=a,则图中阴影部分的面积和为______.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____.AC,则△ABC顶角的度数16.在△ABC中,AB=AC,BD⊥AC,垂足为D,且BD=12为_____.三、解答题17.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.18.已知:如图,在Rt△ABC中,∠A=90°,在BC边上取CD=CA,过D点作DE⊥BC 交AB于点E.若AB=10,DE=4,求BE的长.19.已知:如图,在△ABC中,点D、E分别在边AB、AC上,BE平分∠ABC,DE∥BC.求证:BD=DE.20.如图,在△ABC中.(1)作BC的垂直平分线DE,分别交AC、BC于点D、E;(要求:尺规作图保留作图痕迹,不写作法.)(2)若AB=6,AC=10,求△ABD的周长.21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(三角形的顶点都在网格格点上).(1)在图中画出△ABC关于直线l对称的△A′B′C′(要求:点A与点A′、点B与点B′、点C与点C′相对应);(2)在(1)的结果下,设AB交直线l于点D,连接AB′,求四边形AB′CD的面积.22.已知:如图,AD是△ABC的中线,AB=25,BC=14,AD=24,求AC的长.23.如图,折叠等腰三角形纸片ABC,使点C落在边AB上的点F处,折痕为DE.已知AB=AC,FD⊥BC.(1)求证:∠AFE=90°;(2)如果AF=3,BF=6,求AE的长.24.已知:如图,在Rt△ABC中,∠A=90°,AB=AC,点D在BC上,点E与点A在BC的同侧,且∠CED=90°,∠B=2∠EDC.(1)求证:∠FDC=∠ECF;(2)若CE=1,求DF的长.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案1.B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选B.【点睛】考点:轴对称图形.2.C【解析】【分析】根据全等三角形的判定逐项判定即可.【详解】解:A、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意;B、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意;C、满足SAS,能证明△ABC≌△A′B′C′,符合题意;D、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意,故选:C.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.3.C【解析】【分析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选C.【点睛】本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a2+b2=c2,则△ABC是直角三角形.4.A【解析】【分析】根据勾股定理求出BC,再根据三角形的面积公式求解即可.【详解】解:∵在Rt△ABC中,∠A=90°,AB=3,AC=4,∴5BC===,设点A到BC的距离为h,由1122ABCS AB AC BC h=⋅⋅=⋅⋅得:1134522h⨯⨯=⨯,解得:125h=,即点A到BC的距离为12 5,故选:A.【点睛】本题考查勾股定理、三角形的面积公式,会利用等面积法求距离是解答的关键.5.C【解析】【分析】证△DBF≌△DAC,推出BF=AC即可解决问题.【详解】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD ,在△DBF 和△DAC 中,FBD CAD DB AD FDB CDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DBF ≌△DAC (ASA ),∴BF=AC=6,故选:C .【点睛】本题考查了全等三角形的性质和判定,等角的余角相等,关键是推出△DBF ≌△DAC .6.B【解析】【分析】作EH ⊥BC 于点H ,根据角平分线的性质得出EH=DE ,最后根据三角形的面积公式进行求解.【详解】解:如图,作EH ⊥BC 于点H,∵BE 平分∠ABC ,CD 是AB 边上的高,EH ⊥BC ,∴EH=DE=3,∴111031522BCE S BC EH =⋅=⨯⨯=△.故选B .【点睛】本题考查角平分线的性质,三角形面积,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.C【解析】【分析】根据垂直的定义得到∠AEC=∠BEC=∠ADB=∠BDC=90°,根据三角形的内角和定理得到∠ABD=∠ACE=30°,根据直角三角形的性质得到OE=CD=12BC,OD=OB=12BC,根据三角形的外角性质和平角的定义即可得到∠EDF=60°.【详解】证明:∵CE⊥AB,BD⊥AC,∴∠AEC=∠BEC=∠ADB=∠BDC=90°,∵∠A=60°,∴∠ABD=∠ACE=30°,∴∠DBC+∠ECB=180°-∠A-∠ABD-∠ACE=60°,∵点O是BC的中点,∴OE=OC=12BC,OD=OB=12BC,∴∠OEC=∠OCE,∠OBD=∠ODB,OE=OD,∵∠BOE=∠OEC+∠OCE=2∠OCE,∠COD=∠OBD+∠ODB=2∠OBD,∴∠BOE+∠COD=2∠OCE+2∠OBD=2×60°=120°,∴∠DOE=60°.故选:C.【点睛】本题考查了直角三角形斜边上的中线,等腰三角形的判定和性质,熟练掌握直角三角形斜边上的中线是斜边的一半是解题的关键.8.B【解析】【分析】连接CD,根据全等三角形的判定易得到△ADE≌△CDF,求得CF、CE的长,利用勾股定理可得出结论.【详解】解:连接CD,∵AC=BC ,∠ACB=90°,∴△ABC 是等腰直角三角形,∠A=∠B=45°,∵D 为AB 中点,∴BD=AD ,CD 平分∠BCA ,CD ⊥AB .∴∠DCF=45°,∵DE ⊥DF ,即∠EDF=90°,∴∠ADE+∠EDC=90°,∠CDF+∠EDC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,ADE CDF AD CD A DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ),∴AE=CF ,∵AE=4,BF=3,∴CF=4,则AC=BC=4+3=7,∴CE=7-4=3,∴2222345CE CF +=+=,故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,关键是掌握全等三角形的判定方法.9.20【解析】【分析】先利用三角形的内角和定理求出70A ∠=︒,然后根据全等三角形对应边相等解答.【详解】解:如图,180506070A ∠=︒-︒-︒=︒,ABC DEF ∆≅∆ ,20EF BC ∴==,即20x =.故答案为:20.【点睛】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.10.70【解析】【分析】根据等边对等角和三角形的内角和定理即可求得答案.【详解】如图,∠C =40°,CA =CB ,()1180702A B C ∴∠=∠=︒-∠=︒故答案为:70【点睛】本题考查了等边对等角,三角形内角和定理,掌握以上知识是解题的关键.11.34【解析】【分析】根据直角三角形的两锐角互余和折叠性质求出∠AED=∠B=62°,再根据三角形的外角性质求解即可.【详解】解:∵在Rt △ABC 中,∠BAC =90°,∠C =28°,∴∠B=90°﹣∠C=90°﹣28°=62°,由折叠知∠AED=∠B=62°,∵∠AED=∠C+∠CDE ,∴∠CDE=62°﹣28°=34°,故答案为:34.【点睛】本题考查直角三角形的两锐角互余、折叠性质、三角形的外角性质,熟练掌握折叠性质和三角形的外角性质是解答的关键.12.3或5【解析】【分析】求第三边的长必须分类讨论,分2是斜边或直角边两种情况,然后利用勾股定理求解.【详解】解:当直角三角形的直角边为1和2时,第三边的平方为22125=+=当直角三角形的斜边为2时,第三边的平方为22213=-=综上所述,第三边的平方为3或5故答案为3或5【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.13.5cm【解析】【详解】∵O 是∠APB 内的一点,点M ,N 分别是O 点关于PA ,PB 的对称点,∴OE=ME ,OF=NF ,∵MN=5cm ,∴△OEF 的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm ).故答案为5cm .【点睛】考点:轴对称的性质.14.2a 2【解析】【分析】根据勾股定理可得AC 2+BC 2=AB 2,然后判断出阴影部分的面积=2S 正方形,再利用正方形的面积等于边长的平方计算即可得解.【详解】∵△ABC 是直角三角形,∴AC 2+BC 2=AB 2,∵图中阴影部分的面积和=2S 正方形=2a 2,故答案为2a 2【点睛】本题考查了勾股定理,正方形的性质,熟记定理与正方形的面积的求法是解题的关键.15.50【解析】【分析】通过“AAS ”得到EFA AGB ≌、BCG CDH △≌△,求得四个直角三角形的面积,围成的图形面积,就是梯形DEFH 减去四个直角三角形的面积,即可求解.【详解】解:由题意可得:EF AF ⊥、BG AC ⊥、DH AC⊥∴90BGA EFA FAE FEA ∠=∠=∠+∠=︒∵AE ⊥AB∴90EAB ∠=︒,即90EAF BAG ∠+∠=︒∴BAG FEA ∠=∠、BGA EFA∠=∠又∵AE AB=∴()EFA AGB AAS △≌△∴3AF BG ==,6EF AG ==同理可得:()BCG CDH AAS △≌△∴3==BG CH ,4CG DH ==∴16FH AF AG CG CH =+++=192AEF ABG S S AF EF ==⨯⨯=△△,162BCG CDH S S CH DH ==⨯⨯=△△11()10168022DEFH S DH EF FH =⨯+⨯=⨯⨯=梯形所围成的图形的面积2250AEF BCG DEFH SS S S --==△△梯形故答案为50【点睛】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.16.30°或150°##150°或30°【解析】【分析】根据题意分两种情况作出图形,证明ABD AED ≌,进而证明ABE △是等边三角形,即可求得30BAC ∠=︒.【详解】①如图,延长BD 至E ,使DE BD =, BD =12AC ,AB =AC ,BD ⊥AC ,则2BE BD AB==在ABD △和AED 中90AD AD ADB ADE BD DE =⎧⎪∠=∠=︒⎨⎪=⎩ABD AED∴△≌△AE AB ∴=,BAD EAD∠=∠AB AE BE∴==ABE ∴ 是等边三角形60BAE ∴∠=︒1302BAD EAD BAE ∴∠=∠=∠=︒②如图,当BD AC ⊥的延长线时,1122DB AC AB ==,同理可得30BAD ∠=︒,150BAC ∴∠=︒故答案为:30°或150︒【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,三角形全等的判定与性质,分类讨论画出图形是解题的关键.17.详见解析【解析】【分析】要证明BE=CD ,把BE 与CD 分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA 可得出三角形ABE 与三角形ACD 全等,利用全等三角形的对应边相等可得证.【详解】证明:在△ABE 和△ACD 中,∵B C AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△ACD∴BE=CD (全等三角形的对应边相等)18.BE=6.【解析】【分析】连接EC ,先证Rt △AEC ≌Rt △DEC (HL ),得出AE=DE=4,再用线段之差计算BE=AB-AE=10-4=6即可.【详解】解:连接EC ,∵∠A =90°,DE ⊥BC∴∠EDC=∠A=90°,在Rt △AEC 和Rt △DEC 中,CA CD EC EC=⎧⎨=⎩∴Rt △AEC ≌Rt △DEC (HL ),∴AE=DE=4,∴BE=AB-AE=10-4=6.【点睛】本题考查直角三角形全等判定与性质,线段差,掌握直角三角形全等判定与性质是解题关键.19.见解析【解析】【分析】根据角平分线的性质和平行线的性质得到∠DBE=∠DEB ,根据等角对等边解答即可证得结论.【详解】解:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠CBE=∠DEB,∴∠DBE=∠DEB,∴BD=DE.【点睛】本题考查角平分线的性质、平行线的性质、等腰三角形的判定,会利用等角对等边证明线段相等是解答的关键.20.(1)见解析;(2)16【解析】【分析】(1)分别以,B C为圆心,大于12BC为半径作弧,过两弧的交点作直线DE,分别交AC、BC于点D、E;(2)根据垂直平分线的性质可得DB DC=,进而根据AB BD AD AB DC AD AB AC++=++=+即可求得△ABD的周长.【详解】(1)如图,(2)连接BD,DE是BC的垂直平分线,DB DC∴=AB=6,AC=10,∴△ABD的周长为16AB BD AD AB DC AD AB AC++=++=+= 21.(1)见解析;(2)14【分析】(1)根据轴对称图形的性质画图即可;(2)根据网格结构和割补法进行计算即可求得面积.【详解】解:(1)如图,△A′B′C′即为所求作的三角形;(2)四边形AB′CD的面积为:4×6-12×3×5-12×4×1-12×1×1=24-7.5-2-0.5 =14.【点睛】本题考查画轴对称图形,熟练掌握轴对称的性质,会利用割补法求解网格中不规则图形的面积是解答的关键.22.25【解析】【分析】=.先根据勾股定理的逆定理证明AD BC⊥,进而根据垂直平分线的性质可得AC AB【详解】AD是△ABC的中线,AB=25,BC=14,AD=24,7∴==BD DC()()222524252449,249AB AD-=+-=BD=222∴+=AB AD BD∴ 是直角三角形ABD∴⊥AD BCBD DC=∴==AB AC25【点睛】本题考查了勾股定理的逆定理,垂直平分线的性质,三角形的中线的定义,证明AD BC⊥是解题的关键.23.(1)见解析;(2)5【解析】【分析】(1)根据折叠性质和等腰三角形性质得出∠B=∠C=∠EFD,再根据直角三角形的两锐角互余解答即可;(2)根据折叠性质和勾股定理解答即可.【详解】解:(1)由折叠性质,∠C=∠EFD,EF=CE,∵AB=AC,∴∠B=∠C=∠EFD,∵FD⊥BC,∴∠B+∠BFD=90°,∴∠EFD+∠BFD=90°,∴∠AFE=180°﹣∠EFD﹣∠BFD=90°;(2)∵AF=3,BF=6,AB=AC,∴AC=AB=3+6=9,∴EF=CE=AC﹣AE=9﹣AE,在Rt△AFE中,AF2+EF2=AE2,∴32+(9﹣AE)2=AE2,解得:AE=5.【点睛】本题考查折叠性质、等腰三角形的性质、直角三角形的两锐角互余、勾股定理,熟练掌握折叠性质和等腰三角形的性质,利用勾股定理建立方程思想是解答的关键.24.(1)见解析(2)2【解析】【分析】(1)如图,作C点关于DE的对称点H,设DH与AC交于G点,得到DE垂直平分CH,再证明AB∥DH,得到∠DGC=∠A=90°,再利用直角三角形两锐角互余求解;(2)先△ABC和△GDC是等腰直角三角形,得到DG=CG,再证明△GDF≌△GCH,得到DF=CH=2CE=2.【详解】(1)如图,作C点关于DE的对称点H,设DH与AC交于G点,∵∠CED=90°∴DE垂直平分CH∴CD=DH∴∠HDC=2∠EDC=2∠EDH∴∠EDC=∠EDH∵∠B=2∠EDC∴∠B=∠HDC∴AB∥DH∴∠DGC=∠A=90°∴∠GDF+∠GFD=∠ECF+∠EFC=90°∴∠GDF=∠ECF故∠FDC =∠ECF ;(2)∵∠A=90°,AB=AC∴△ABC 是等腰直角三角形∴∠ACB=45°∴∠GDC=90°-∠ACB=45°∴△GDC 是等腰直角三角形∴DG=CG∵∠GDF=∠GCH ,∠DGF=∠CGH=90°∴△GDF ≌△GCH (ASA )∴DF=CH=2CE=2.【点睛】此题主要考查等腰三角形与全等三角形综合,解题的关键是根据题意作辅助线,证明三角形全等进行求解.25.(1)(83)t cm -;(2)全等;(3)当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.【解析】【分析】(1)根据题意可得出答案;(2)由“SAS ”可证BPD CQP ∆≅∆;(3)根据全等三角形的性质得出4BPPC cm ==,5CQ BD cm ==,则可得出答案.【详解】解:(1)由题意可得,(83)PC BC BP t cm =-=-,故答案为:(83)t cm -.(2)全等,理由:1t s = ,点Q 的运动速度与点P 的运动速度相等,313()BP CQ cm ∴==⨯=,10AB cm = ,点D 为AB 的中点,5()BD cm ∴=.又PC BC BP =- ,8BC cm =,835()PC cm ∴=-=,PC BD ∴=,又AB AC = ,B C ∴∠=∠,在BPD ∆和CQP ∆中,PC BDB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴∆≅∆;(3) 点Q 的运动速度与点P 的运动速度不相等,BP ∴与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ∆≅∆,且B C ∠=∠,则4()BP PC cm ==,5()CQ BD cm ==,∴点P ,点Q 运动的时间4()33BPt s ==,∴点Q 的运动速度515(/)443CQcm s t ===;答:当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.。
江苏省盐城市建湖县2016-2017学年八年级(上)期中数学试卷(解析版)
2016-2017学年江苏省盐城市建湖县八年级(上)期中数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内.1.下列汽车标志中不是轴对称图形的是()A.B.C.D.2.如图,点E、F在线段BC上,△ABF≌△DCE,则∠C等于()A.∠B B.∠A C.∠BED D.∠AFB3.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是()A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC5.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,则DE的长为()A.8 B.5 C.3 D.27.如图,△ABC中,点E是AB中点,点D、F分别在AC、BC上,将△AED、△BEF分别沿ED、EF 翻折,使顶点A、B都落在点O处,若∠CDO+∠CFO=98°,则∠C的度数()A.40°B.41°C.42°D.43°8.在3×3的正方形网格中,将三个小正方形涂色如图所示,若移动其中一个涂色小正方形到空白方格中,与其余两个涂色小正方形重新组合,使得新构成的整个图案是一个轴对称图形,则这样的移法共有()A.5种 B.7种 C.9种 D.10种二、填空题:本大题共10小题,每小题3分,共30分,不需写出解答过程,请将答案直接写在题中横线上.9.等腰三角形的两边长分别是4cm和8cm,则它的周长是.10.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为.11.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有对.12.一个直角三角形斜边上的中线长为5,其中一条直角边的长是6,则此直角三角形的面积为.13.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC 于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.14.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了米.15.如图,将三个大小不同的正方形如图放置,顶点处两两相接.若正方形A的边长为5,正方形C 的边长为3,则正方形B的面积为.16.如图,设小方格的面积为1,以图中格点为端点且长为5的线段共有条.17.等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为.18.如图,已知△ABC的面积为20,AC=8,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值.三、解答题:本大题共有8小题,共66分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤.19.如图,点A、D、B、E在同一直线上,AC=DF,AD=BE,BC=EF,求证:△ABC≌△DEF.20.如图,在8×8的正方形网格纸中每个小正方形的边长都是1,线段AB的端点在小正方形的顶点上,直线l经过网格线.(1)在直线l上确定一点C(点C在小正方形的顶点上),使△ABC是轴对称图形,并在网格中画出△ABC;(2)直接写出△ABC的周长和面积.21.如图是校园内的一块菜地,数学活动小组的同学量得:∠ADC=90°,AD=40m,CD=30m,BC=120m,AB=130m,求这块菜地的面积.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.23.如图,等边△ABC中,点D在边BC上,点E在AB的延长线上,且BE=CD,试问:线段DE与AD 相等吗?并说明理由.24.如图,△ABC的周长为30cm,∠BAC=125°,AB+AC=18cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:(1)求△AEF的周长;(2)∠EAF的度数.25.在△ABE与△ACF中,AE=AB,AF=AC.(1)如图①,若AE⊥AB,AF⊥AC,则EC与BF的数量关系是;EC与BF的位置关系是;(2)如图②,若BE∥AC,请添加一个条件使得AB∥CF,并说明你的理由.26.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.2016-2017学年江苏省盐城市建湖县八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内.1.下列汽车标志中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选B.2.如图,点E、F在线段BC上,△ABF≌△DCE,则∠C等于()A.∠B B.∠A C.∠BED D.∠AFB【考点】全等三角形的性质.【分析】根据全等三角形的性质可得∠C=∠B.【解答】解:∵△ABF≌△DCE,∴∠C=∠B,故选:A.3.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是()A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C【考点】等腰三角形的性质.【分析】由在△ABC中,AB=AC,AD⊥BC,根据等边对等角与三线合一的性质求解即可求得答案.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∠1=∠2,∠B=∠C.故A错误,B,C,D正确.故选A.4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【考点】全等三角形的判定.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.5.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【考点】勾股定理的逆定理;三角形内角和定理.【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.6.如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,则DE的长为()A.8 B.5 C.3 D.2【考点】全等三角形的判定与性质;等腰直角三角形.【分析】利用等腰直角三角形的性质和已知条件易证△AEC≌△CDB,进而可得AE=CD,CE=BD,所以DE可求出.【解答】解:∵∠ACB=90°,∴∠ACE+∠DCB=90°,∵AE⊥CD于E,∴∠ACE+∠CAE=90°,∴∠CAE=∠DCB,∵BD⊥CD于D,∴∠D=90°,在△AEC和△CDB中,∴△AEC≌△CDB,(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=3cm,故选C.7.如图,△ABC中,点E是AB中点,点D、F分别在AC、BC上,将△AED、△BEF分别沿ED、EF 翻折,使顶点A、B都落在点O处,若∠CDO+∠CFO=98°,则∠C的度数()A.40°B.41°C.42°D.43°【考点】翻折变换(折叠问题).【分析】如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选B.8.在3×3的正方形网格中,将三个小正方形涂色如图所示,若移动其中一个涂色小正方形到空白方格中,与其余两个涂色小正方形重新组合,使得新构成的整个图案是一个轴对称图形,则这样的移法共有()A.5种 B.7种 C.9种 D.10种【考点】利用轴对称设计图案.【分析】利用轴对称的性质,以及轴对称的作图方法来作图,通过变换对称轴来得到不同的图案即可.【解答】解:如图所示:一共有10种轴对称图形.故选:D.二、填空题:本大题共10小题,每小题3分,共30分,不需写出解答过程,请将答案直接写在题中横线上.9.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,此时周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.10.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为3.【考点】角平分线的性质.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.11.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有4对.【考点】全等三角形的判定.【分析】由于OA=OB,∠AOD=∠BOC,OC=OD,利用SAS可证△AOD≌△BOC,再利用全等三角形的性质,可知∠A=∠B;在△ACE和△BDE中,∠A=∠B,∠AEC=∠BED,而OA﹣OC=OB﹣OD,即AC=BD,利用AAS可证△ACE≌△BDE;再利用全等三角形的性质,可得AE=BE,在△AOE和△BOE中,由于OA=OB,∠A=∠B,AE=BE,利用SAS可证△AOE≌△BOE;再利用全等三角形的性质,可得∠COE=∠DOE,而OE=OE,OC=OD,利用SAS可证△COE≌△DOE.【解答】解:∵OA=OB,∠AOD=∠BOC,OC=OD,∴△AOD≌△BOC,∴∠A=∠B,又∵∠AEC=∠BED,OA﹣OC=OB﹣OD,即AC=BD,∴△ACE≌△BDE,∴AE=BE,又∵OA=OB,∠A=∠B,∴△AOE≌△BOE,∴∠COE=∠DOE,又∵OE=OE,OC=OD,CE=DE,∴△COE≌△DOE.故全等的三角形一共有4对.故填4.12.一个直角三角形斜边上的中线长为5,其中一条直角边的长是6,则此直角三角形的面积为24.【考点】勾股定理;直角三角形斜边上的中线.【分析】根据“直角三角形斜边上的中线等于斜边的一半”求得该直角三角形的斜边长为13cm.根据勾股定理来求另一条直角边,即可求出面积.【解答】解:∵一个直角三角形斜边上的中线长为5,∴斜边长为2×5=10.∵一条直角边长为6,∴根据勾股定理知,另一条直角边的长为:=8,∴直角三角形的面积=×6×8=24.故答案为:2413.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC 于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为14cm.【考点】等腰三角形的判定与性质;平行线的性质.【分析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.14.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了0.5米.【考点】勾股定理的应用.【分析】由题意知,AB=DE=2.5米,CB=1.5米,BD=0.5米,则在直角△ABC中,根据AB,BC可以求AC,在直角△CDE中,根据CD,DE可以求CE,则AE=AC﹣CE即为题目要求的距离.【解答】解:在直角△ABC中,已知AB=2.5米,BC=1.5米,∴AC==2米,在直角△CDE中,已知CD=CB+BD=2米,DE=AB=2.5米,∴CE==1.5米,∴AE=2米﹣1.5米=0.5米.故答案为:0.5.15.如图,将三个大小不同的正方形如图放置,顶点处两两相接.若正方形A的边长为5,正方形C 的边长为3,则正方形B的面积为34.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】证△DEF≌△FH,推出DE=FH=6,根据勾股定理求出FG即可.【解答】解:如图,∵根据正方形的性质得:DF=FG,∠DEF=∠GHF=∠DFG=90°,∴∠EDF+∠DFE=90°,∠DFE+∠GFH=90°,∴∠EDF=∠GFH,在△DEF和△FHG中,∴△DEF≌△FHG(AAS),∴DE=FH=5,∵GH=3,∴在Rt△GHF中,由勾股定理得:FG==,所以正方形B的面积为34.故答案为34.16.如图,设小方格的面积为1,以图中格点为端点且长为5的线段共有4条.【考点】勾股定理.【分析】此题只需根据常见的勾股数3、4、5,构造以3、4为直角边的直角三角形即可.【解答】解:如图所示,共4条.故答案为:4.17.等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为65°或25°.【考点】等腰三角形的性质;三角形内角和定理.【分析】本题已知没有明确三角形的类型,所以应分这个等腰三角形是锐角三角形和钝角三角形两种情况讨论.【解答】解:当这个三角形是锐角三角形时:高与另一腰的夹角为40,则顶角是50°,因而底角是65°;如图所示:当这个三角形是钝角三角形时:∠ABD=40°,BD⊥CD,故∠BAD=50°,所以∠B=∠C=25°因此这个等腰三角形的一个底角的度数为25°或65°.故填25°或65°.18.如图,已知△ABC的面积为20,AC=8,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值5.【考点】轴对称﹣最短路线问题.【分析】根据AD是∠BAC的平分线确定出点B关于AD的对称点B′在AC上,根据垂线段最短,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,利用三角形的面积求出BE,再根据等腰三角形两腰上的高相等可得B′N=BE,从而得解.【解答】解:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,=20,∵AC=8,S△ABC∴×8•BE=20,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故答案为:5.三、解答题:本大题共有8小题,共66分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤.19.如图,点A、D、B、E在同一直线上,AC=DF,AD=BE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【分析】由AD=BE可求得AB=DE,再结合条件可证明△ABC≌△DEF.【解答】证明:∵AD=BE,∴AD+DB=BE+DB,即AB=DE,在△ABCt△DEF中∴△ABC≌△DEF(SSS).20.如图,在8×8的正方形网格纸中每个小正方形的边长都是1,线段AB的端点在小正方形的顶点上,直线l经过网格线.(1)在直线l上确定一点C(点C在小正方形的顶点上),使△ABC是轴对称图形,并在网格中画出△ABC;(2)直接写出△ABC的周长和面积.【考点】作图﹣轴对称变换;勾股定理.【分析】(1)根据勾股定理作AC=AB即可;(2)利用勾股定理求出各边的长,由此可得出三角形的周长,再利用三角形的面积公式可得出其面积.【解答】解:(1)如图,点C即为所求;(2)∵由勾股定理得,AB=AC==5,∴△ABC的周长=5+5+6=16;△ABC的面积=×6×4=12.21.如图是校园内的一块菜地,数学活动小组的同学量得:∠ADC=90°,AD=40m,CD=30m,BC=120m,AB=130m,求这块菜地的面积.【考点】勾股定理的应用.【分析】连接AC,先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB的形状,根据S四边形ABC=S△ACB﹣S△ACD即可得出结论【解答】解:连接AC,∵AD=40,CD=30,∠ADC=90°,∴AC==50,∵AB=130,BC=120,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴S四边形ABC =S△ACB﹣S△ACD=×50×120﹣×30×40=3000﹣600=2400(m2),答:这块菜地的面积为2400m2.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【考点】等腰三角形的性质;角平分线的性质.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.23.如图,等边△ABC中,点D在边BC上,点E在AB的延长线上,且BE=CD,试问:线段DE与AD 相等吗?并说明理由.【考点】等边三角形的性质.【分析】过点D作DF∥AC,交AB于点F,证明△AFD≌△DBE即可.【解答】解:DE=AD,理由如下:如图,过点D作DF∥AC,交AB于点F,∵△ABC为等边三角形,∴△BFD为等边三角形,∴BD=BF,且AB=BC,∴AF=CD=BE,∵∠DFB=∠DBF=60°,∴∠AFD=∠DBE=120°,在△AFD和△DBE中∴△AFD≌△DBE(SAS),∴DE=AD.24.如图,△ABC的周长为30cm,∠BAC=125°,AB+AC=18cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:(1)求△AEF的周长;(2)∠EAF的度数.【考点】线段垂直平分线的性质.【分析】(1)先根据线段垂直平分线的性质得出EA=EB,FA=FC,所以∠EBA=∠EAB,∠FAC=∠FCA,设∠EBA=∠EAB=α,∠FAC=∠FCA=β,由三角形内角和定理得出α+β的度数,进而可得出结论;(2)根据△AEF的周长=AE+AF+EF=BE+EF+FC=BC即可得出结论.【解答】解:(1)∵DE、FG分别垂直平分AB、AC,∴EA=EB,FA=FC,∴△AEF的周长=AE+AF+EF=BE+EF+FC=BC=30﹣18=12cm.(2)∵EA=EB,FA=FC,∴∠EBA=∠EAB,∠FAC=∠FCA.设∠EBA=∠EAB=α,∠FAC=∠FCA=β,∵∠BAC=125°,∴α+β=55°,∴∠BAE+∠FAC=55°,∴∠EAF=125°﹣55°=70°.25.在△ABE与△ACF中,AE=AB,AF=AC.(1)如图①,若AE⊥AB,AF⊥AC,则EC与BF的数量关系是EC=BF;EC与BF的位置关系是EC ⊥BF;(2)如图②,若BE∥AC,请添加一个条件使得AB∥CF,并说明你的理由.【考点】全等三角形的判定与性质.【分析】(1)结论:EC=BF,EC⊥BF.如图①中,设AC与BF交于点O.只要证明△EAC≌△BAF即可解决问题.(2)如图②中,当∠EAB=∠FAC时,AB∥CF.【解答】解:(1)结论:EC=BF,EC⊥BF.理由:如图①AC与BF交于点O.∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,在△EAC和△BAF中,,∴△EAC≌△BAF,∴EC=BF,∠ECA=∠AFB,∵∠AOF=∠COM,∴∠CMO=∠FAO=90°,∴CE⊥BF.故答案为CE=BF,CE⊥BF.(2)如图②中,当∠EAB=∠FAC时,AB∥CF.理由:∵∠AE=AB,AC=AF,∠EAB=∠CAF,∴∠AEB=∠ABE=∠ACF=∠AFC,∵BE∥AC,∴∠BAC=∠ABE,∴∠BAC=∠ACF,∴AB∥CF.26.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【考点】勾股定理;等腰三角形的性质.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(t﹣8)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=tcm,CP=|t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=62+(t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.2017年5月11日。
江苏省盐城市 八年级(上)期中数学试卷
八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A. B. C. D.2.在下列实数中,无理数是()A. 2B. 3.14C. −12D. 33.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A. 甲和乙B. 乙和丙C. 甲和丙D. 只有丙4.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 1,1,2C. 6,8,11D. 5,12,235.下面计算正确的是()A. (−3)2=−9B. −(−2)3=−8C. 16=±4D. −38=−26.如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A. 120∘B. 125∘C. 130∘D. 135∘7.数轴上点A表示的实数可能是()A. 7B. 10C. 17D. 218.在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°,②AE=EC,③S△ABF:S△AFC=BD:CD,④若BF=2EC,则△FDC周长等于AB的长.正确的是()A. ①②B. ①③C. ①④D. ①③④二、填空题(本大题共8小题,共24.0分)9.如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=______.10.(-5)2的平方根是______.11.等腰三角形的一个底角为50°,则它的顶角的度数为______.12.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=______.13.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有______(填序号).14.将0.20192018按四舍五入精确到0.001得______15.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是______.16.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=______cm.三、计算题(本大题共3小题,共24.0分)17.求下列各式中x的值:(1)9x2=16(2)(x-1)2-9=0(3)-2(x+1)3=5418.计算:|1-2|-364-219.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?四、解答题(本大题共6小题,共48.0分)20.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.21.如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.22.如图,AB=DC,∠ABC=∠DCB.(1)求证:BD=CA;(2)若∠A=62°,∠ABC=75°.求∠ACD的度数.23.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?24.如图,△ABC中,AB=AC,DE⊥BC,DE交AC于F,DE交BA延长线于E,G为EF中点.求证:AG∥BC.点,G是ED的中点,(1)求证:FG⊥DE;(2)若BC=16,ED=4,求FG的长.(结果保留根号)答案和解析1.【答案】C【解析】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.根据轴对称图形的概念进行判断即可.本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C、-是有理数,故本选项错误;D、是无理数,故本选项正确.故选:D.根据无理数,有理数的定义对各选项分析判断后利用排除法求解.主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.【答案】B【解析】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】B【解析】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.5.【答案】D【解析】解:A、(-3)2=9,此选项错误;B、-(-2)3=8,此选项错误;C、=4,此选项错误;D、-=-2,此选项正确;故选:D.根据有理数的乘方运算法则和算术平方根和立方根的定义逐一计算可得.本题主要考查立方根、算术平方根,解题的关键是掌握有理数的乘方运算法则和算术平方根和立方根的定义.6.【答案】D【解析】解:∵∠2=45°,∠1+∠3=90°,∴∠1+∠2+∠3=135度.故选:D.由图易得∠2=45°,∠1+∠3=90°,据此求三角之和即可.此题是对角进行度的加法计算,相对比较简单,但要准确求出各角大小是本题的难点.7.【答案】B【解析】解:∵3<<4,∴数轴上点A表示的实数可能是;故选:B.根数轴上点A的位置可得出点A表示的数比3大比4小,从而得出正确答案.本题考查实数与数轴上的点的对应关系,应先看这个点在哪两个相邻的整数之间,进而得出答案.8.【答案】D【解析】解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,与题意不符合,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故选:D.首先在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,由此可以得到∠BAD=45°,接着得到AD=BD,又∠DAC和∠FBD都是∠ACD的余角,所以可以证明△BDF≌△ADC,根据全等三角形的性质可以得到FD=CD,进一步得到①;根据三角形面积公式和它们有一条公共边可以得到③;若BF=2EC,根据①可以得到E是AC的中点,然后可以推出EF是AC的垂直平分线,最后由线段垂直平分线的性质即可得到④.此题比较复杂,考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.9.【答案】95°【解析】解:∵△ABC≌△ADC,∴∠DAC=∠BAC=60°,∵∠DAC+∠ACD+∠D=180°,∴∠D=180°-25°-60°=95°.故答案为95°.先根据全等三角形的性质得∠DAC=∠BAC=60°,然后根据三角形内角和求∠D的度数.本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.10.【答案】±5【解析】解:(-5)2=25,25的平方根是±5.故答案为:±5.先求得(-5)2的值,然后依据平方根的性质求解即可.本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.11.【答案】80°【解析】解:∵等腰三角形底角相等,∴180°-50°×2=80°,∴顶角为80°.故填80°.本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.【答案】3【解析】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.13.【答案】②④【解析】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.14.【答案】0.202【解析】解:0.20192018≈0.202(精确到0.001).故答案为0.202.把万分位上的数字9进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.【答案】16【解析】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16(角平分线性质),故答案为:16.过D作DE⊥AB于E,得出DE的长度是D到AB边的距离,根据角平分线性质求出CD=ED,代入求出即可.本题考查了对角平分线性质的应用,关键是作辅助线DE,本题比较典型,难度适中.16.【答案】6【解析】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.17.【答案】解:(1)∵9x2=16,∴x2=169,则x=±169,即x=±43;(2)∵(x-1)2-9=0,∴(x-1)2=9,则x-1=3或x-1=-3,解得:x=4或x=-2;(3)∵-2(x+1)3=54,∴(x+1)3=-27,则x+1=-3,∴x=-4.【解析】(1)两边都除以9,再根据平方根的定义计算可得;(2)移项后,依据平方根的定义可得关于x的方程,再分别求解可得;(3)两边都除以-2,再根据立方根的定义可得关于x的方程,解之可得.此题主要考查了立方根、平方根,关键是利用立方根和平方根的性质解方程,注意一个正数有两个平方根,它们互为相反数;一个负数的立方根是负数.18.【答案】解:原式=2-1-4-2=-5.【解析】先去绝对值符号、立方根,再计算加减可得.本题主要考查实数的运算,解题的关键是掌握绝对值性质和立方根的计算及实数混合运算顺序.19.【答案】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB=22+32=13,∴△ABP的周长为:AP+PB+AB=2+5+13=7+13.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD=PC2−CD2=32−2.42=1.8,所以BP=2PD=3.6cm,所以P运动的路程为9-3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t-3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t-4,AQ=2t-8,∵直线PQ把△ABC的周长分成相等的两部分,∴t-4+2t-8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【解析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3=6;当P 点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.20.【答案】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=12×3×2=3.【解析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A′、B′、C′,从而得到△A′B′C′;(2)利用三角形面积公式计算.本题考查了作图-轴对称变换:几何图形都可看做是有点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,21.【答案】证明:∵BF=EC,∴BF+FC=FC+EC,即BC=EF,∵∠A=∠D=90°,∴△ABC和△DEF都是直角三角形,在Rt△ABC和Rt△DEF中,AB=DEBC=EC,∴Rt△ABC≌Rt△DEF(HL).【解析】先由BF=EC得到BC=EF,再根据“HL”判定Rt△ABC≌Rt△DEF.本题考查了直角三角形全等的判定:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).22.【答案】证明:(1)在△ABC与△DBC中,AB=DC∠ABC=∠DCBBC=CB,∴△ABC≌△DBC(SAS),∴BD=CA;(2)∵△ABC≌△DBC,∴∠ABC=∠DCB=75°,∵∠A=62°,∠ABC=75°.∴∠ACB=180°-75°-62°=43°,∴∠ACD=∠DCB-∠ACB=75°-43°=32°.【解析】(1)根据SAS证明△ABC与△DBC全等,进而证明即可;(2)根据全等三角形的性质和三角形内角和解答即可.本题考查了全等三角形的性质和判定的应用,能推出△ABC与△DBC全等是解此题的关键,注意:全等三角形的对应角相等.23.【答案】解:(1)由题意得:AC=25米,BC=7米,AB=252−72=24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′=252−202=15(米),则:CC′=15-7=8(米),答:梯子的底端在水平方向滑动了8米.【解析】(1)利用勾股定理直接得出AB的长即可;(2)利用勾股定理直接得出BC′的长,进而得出答案.此题主要考查了勾股定理的应用,熟练利用勾股定理是解题关键.24.【答案】证明:∵DE⊥BC,∴∠EDB=∠EDC=90°,∴∠C+∠DFC=90°,∠B+∠E=90°,∵∠AFE=∠DFC,∴∠E=∠AFE,∴AE=AF,∵G为EF中点,∴AG⊥DE,∵DE⊥BC,∴AG∥BC.【解析】根据三角形内角和定理求出∠E=∠DFC=∠AFE,推出AE=AF,根据等腰三角形性质得出AG⊥DE,即可得出答案.本题考查了等腰三角形的性质和判定,平行线的判定,三角形内角和定理的应用,主要考查学生的推理能力.25.【答案】(1)证明:∵BD、CE是△ABC的高,F是BC的中点,∴在Rt△CEB中,EF=12BC,在Rt△BDC中,FD=12BC,∴FE=FD,∵G是ED的中点,∴FG是等腰三角形EFD的中线,∴FG⊥DE;(2)解:由(1)得,EF=12BC=8,∵FE=FD,G是ED的中点,∴EF=12ED=2,在Rt△FGE中,FG=EF2−EG2=415.【解析】(1)根据直角三角形的性质得到EF=BC,FD=BC,得到FE=FD,根据等腰三角形的性质证明;(2)根据直角三角形的性质求出EF,根据等腰三角形的性质求出EG,根据勾股定理计算.本题考查的是勾股定理,直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.。
2016-2017学年江苏省盐城中学八年级(上)期中数学试卷
2016-2017学年江苏省盐城中学八年级(上)期中数学试卷一、精心选一选:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.(2分)下列图形中,是轴对称图形的是()A. B.C.D.2.(2分)下列的点在第三象限的是()A.(0,﹣9)B.(2,0) C.(﹣1,6)D.(﹣2,﹣8)3.(2分)在△ABC中,∠A=∠B,则()A.AB=AC B.AB=BC C.BC=AC D.不能确定4.(2分)在△ABC中,∠ACB=90°,AB=6,CD是△ABC的中线,则CD的长是()A.3 B.6 C.12 D.不能确定5.(2分)0.303003,π﹣1,,这三个实数中,无理数的个数是()A.0个 B.1个 C.2个 D.3个6.(2分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.(2分)下列几组数中,为勾股数的是()A.,,B.6,8,10 C.3,﹣4,5 D.6,8,98.(2分)如图:在△ABC中,下列条件中能说明△ABC是等边三角形的是()A.AB=AC,∠B=∠C B.AD⊥BC,BD=CDC.BC=AC,∠B=∠C D.AD⊥BC,∠BAD=∠CAD二、细心填一填:(本大题共10小题,每小题2分,共20分.请把结果直接填在题中的横线上.)9.(2分)点P是线段AB垂直平分线上的一点,PA=3cm,PB=cm.10.(2分)﹣8的立方根是.11.(2分)把2.094精确到0.01,这个近似数是.12.(2分)函数y=中,自变量x的取值范围是.13.(2分)若关于x的函数y=(m+1)x |m|+9是一次函数,则m的值为.14.(2分)点A(4,﹣5)关于x轴对称的点的坐标是.15.(2分)任意写一个正比例函数关系式:.16.(2分)平面直角坐标系中点P(﹣2,﹣4)到x轴的距离是:.17.(2分)已知点A(3,4)先向左平移5个单位,再向下平移2个单位得到点B,则点B的坐标为.18.(2分)△ABC的周长为6,∠A和∠B的平分线相交于点P,若点P到边AB 的距离为1,则△ABC的面积为.三、认真算一算,答一答:(解答需写出必要的文字说明、演算步骤.)19.(4分)计算:(﹣)2+|3﹣|+()3.20.(8分)求下列各式中的x的值:(1)8x3+1=0(2)x2﹣1=3.21.(8分)已知:如图,△ABC中,在∠ABC=45°,AD是△ABC的高,高BE与AD交于点F,CD=4,(1)求证:AD=BD,(2)线段DF的长度.22.(6分)如图,在6×6的网格中,请你找出与线段AB能组成等腰三角形的格点C,如果有多个,请你以C1,C2…区分.23.(8分)已知香的长度与点燃的时间成一次函数关系,一柱香点燃一小时后测量其长度为20cm,再过两小时后测量其长度为12cm,(1)求香的长度y (cm)与点燃香的时间x(小时)之间的函数关系式.(2)求香原来的长度与可以燃烧的时间.24.(10分)小明剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,则△ACD的周长为cm;(2)如果∠B=35°,则∠CAD=度;操作二:如图2,小明拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.25.(10分)在实数这一节中,我们学会了在数轴上表示无理数,如果这个问题放在平面直角坐标系中,就更容易解决了,(1)如图1,请你作出点A(,0),点B(0,),求AB的长.(2)如图2,由第(1)小题求AB的长让我们联想到,平面内的两点,可以把它们间的距离分成水平距离与竖直距离两部分,例如点C(3,5)与点D(6,1);它们之间的水平距离是6﹣3=3,竖直距离是5﹣1=4,所以CD=5;已知:点E(﹣2,1),点F(1,5),求EF的长.(3)如图3,用上面积累的经验结合轴对称的性质解决问题:已知点P(1,3),Q(4,1)在x轴有一动点M,当△PQM的周长最小时,求周长的最小值.26.(10分)如图,∠AOB=120°,点P是∠AOB平分线上的一点,将三角板一个60°角的顶点放在点P处,60°角的两边与OA、OB边所在直线分别交于点E、F;(1)如图1,当点F与点O重合时,线段OE、OF、与线段OP有什么样的数量关系?请直接写出结论(2)如图2,探究线段OE、OF、与线段OP之间的数量关系,并写出说理的过程.(3)如图3,当点E在AO延长线时,请直接写出线段OE、OF与OP之间的数量关系.(4)如图4,如果∠AOB=∠EPF=90°,其他条件变,请直接写出线段OE、OF与OP之间的数量关系.2016-2017学年江苏省盐城中学八年级(上)期中数学试卷参考答案与试题解析一、精心选一选:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.【解答】解:A、(0,﹣9)在y轴的负半轴,不符合题意;B、(2,0)在x轴的正半轴,不符合题意;C、(﹣1,6)在第二象限,不符合题意;D、(﹣2,﹣8)在第三象限,符合题意;故选:D.3.【解答】解:∵∠A=∠B,∴BC=AC.故选:C.4.【解答】解:∵在△ABC中,∠ACB=90°,AB=6,CD是△ABC的中线,∴CD=AB=3,故选:A.5.【解答】解:0.303003是有理数,π﹣1,是无理数,故选:C.6.【解答】解:∵2=<<=3,∴3<+1<4,故选:B.7.【解答】解:A、不正确,因为其不是正整数;B、正确,因为52+122=132;C、不正确,因为其不是正整数;D、不正确,因为62+82≠92.故选:B.8.【解答】解:A、AB=AC,∠B=∠C,只能说明△ABC是等腰三角形,错误;B、AD⊥BC,BD=CD,只能说明△ABC是等腰三角形,错误;C、BC=AC,∠B=∠C,能说明△ABC是等边三角形,正确;D、AD⊥BC,∠BAD=∠CAD,只能说明△ABC是等腰三角形,错误;故选:C.二、细心填一填:(本大题共10小题,每小题2分,共20分.请把结果直接填在题中的横线上.)【解答】解:∵点P是线段AB垂直平分线上的一点,∴PB=PA=3cm,故答案为:3.10.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.11.【解答】解:把2.094精确到0.01,这个近似数是2.09.故答案为2.09.12.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.【解答】解:∵y=(m+1)x |m|+9是一次函数,∴|m|=1且m+1≠0,则m=±1且m≠﹣1,所以m=1,故答案为:1.14.【解答】解:点A(4,﹣5)关于x轴对称的点的坐标是(4,5),故答案为:(4,5).【解答】解:正比例函数关系式可以是y=x.故答案为y=x.16.【解答】解:点P(﹣2,﹣4)到x轴的距离是|﹣4|=4,故答案为:4.17.【解答】解:点B的横坐标为3﹣5=﹣2,纵坐标为4﹣2=2,所以点B的坐标是(﹣2,2),故答案为(﹣2,2).18.【解答】解:如图,过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,∵∠A和∠B的平分线相交于点P,∴PD=PE=PF=1,∵△ABC的周长为60,∴△ABC的面积=AB•PD+BC•PE+AC•PF=PD(AB+BC+AC)=×1×6=3.故答案为:3.三、认真算一算,答一答:(解答需写出必要的文字说明、演算步骤.)19.【解答】解:原式=2+3﹣﹣3=2﹣.20.【解答】解:(1)∵8x3+1=0,∴x3=﹣,∴x=﹣.(2)∵x2﹣1=3,∴x2=4.∴x=±2.21.【解答】证明:(1)∵AD是△ABC的高∴∠ADB=90°∵∠ABC=45°∴∠BAD=45°∴∠ABC=∠BAD∴AD=BD(2)∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD,∴∠AFE=∠C,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=4.22.【解答】解:如图所示;23.【解答】解:(1)y=﹣4x+24(2)当x=0时,y=24,当y=0时,x=6,答:香原来的长度24cm,可以燃烧的时间为6小时.24.【解答】解:操作一:(1)由折叠可得,DE垂直平分AB,∴AD=BD,∴△ACD的周长为AD+CD+AC=BD+CD+AC=BC+AC=8+6=14(cm)故答案为:14;(2)由折叠可得,DE垂直平分AB,∴AD=BD,∴∠B=∠BAD=35°,又∵Rt△ABC中,∠BAC=90°﹣35°=55°,∴∠CAD=55°﹣35°=20°,故答案为:20;操作二:设CD=DE=x,则BD=12﹣x,Rt△ABC中,AB==15,由折叠可得,AE=AC=9,∴BE=15﹣9=6,∵Rt△BDE中,DE2+BE2=BD2,∴x2+62=(12﹣x)2,解得x=4.5,∴CD=4.5cm.25.【解答】解:(1)点A、点B如图1中所示:AB==.(2)如图2中,作FH∥y轴,EH∥x轴,得到Rt△EHF.∵HF=4,EH=3∴EF===5(3)如图3中,作点Q关于x轴的对称点Q′,连接PQ′交x轴于M,连接QM,PQ,此时△PQM的周长最小.∵P(1,3),Q(4,1),∴Q′(4,﹣1),∵PQ′==5,PQ==,∴△PQM周长的最小值=PM+QM+PQ=PM+MQ′+PQ=PQ′+PQ=5+.26.【解答】解:(1)∵点P是∠AOB平分线上的一点,∴∠AOP=∠BOP=∠AOB,∵∠AOB=120°,∴∠AOP=∠BOP=60°,∵∠OPE=60°,∴△OPE是等边三角形,∴OP=OE,∵点F和点O重合,∴OE+OF=OP(或OE=OP),故答案为OE+OF=OP(或OE=OP);(2)如图2,过点P作PC⊥OA于C,作PD⊥OB于D,∵OP是∠AOB的平分线,∴PC=PD,∵∠AOB=120°,∴∠CPD=60°,∵∠EPF=60°,∴∠CPE=∠DPF,∴△PCE≌△PDF,∴CE=DF,在Rt△PDO中,∠OPF=90°﹣60°=30°,∴OD=OP,同理:OC=OP,∴OE+OF=OC+CE+OD﹣DF=OP+DF+OP﹣DF=OP;(3)如图3,过点P作PC⊥OA于C,作PD⊥OB于D,同(2)的方法得,CE=DF,OD=OP,OC=OP,∴OF﹣OE=DF+OD﹣(CE﹣OC)=DF+OD﹣CE+OC=OP,故答案为:OF﹣OE=OP;(4)如图4,过点P作PC⊥OA于C,作PD⊥OB于D,同(2)的方法得,CE=DF,∵OP是∠AOB的平分线,∠AOB=90°,∴∠AOP=∠BOP=45°,在Rt△POD中,OD=OP,同理:OC=OP,∴OE+OF=OC﹣CE+OD+DF=OC+OD=OP,故答案为:OE+OF=OP.。
江苏省盐城市 八年级(上)期中数学试卷(含答案)
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列图形中,是轴对称图形的是()A. B.C. D.2.下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 3,4,5C. 2,3,4D. 1,2,33.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A. 30∘B. 40∘C. 50∘D. 60∘4.等腰三角形两边分别为3和7,那么它的周长为()A. 10B. 13C. 17D. 13或175.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD6.如图,AC=AD,BC=BD,则下列判断正确的是()A. AB垂直平分CDB. CD垂直平分ABC. AB与CD互相垂直平分D. CD平分∠ACB7.与三角形三个顶点距离相等的点,是这个三角形的()A. 三条中线的交点B. 三条角平分线的交点C. 三条高的交点D. 三边的垂直平分线的交点8.如图,△ABC中,AB=5,AC=4,BO,CO分别平分∠ABC,∠ACB,过点O作直线平行于BC,交AB、AC于D、E,则△ADE的周长为()A. 8B. 9C. 10D. 12二、填空题(本大题共10小题,共30.0分)9.等腰△ABC中,若∠A=100°,则∠B= ______ .10.如图,要使四边形木架不变形,至少要钉上______ 根木条.11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=4,则CD= ______ .12.已知一个三角形的三边分别是6cm、8cm、10cm,则这个三角形的面积是______ .13.如图,一块三角形玻璃裂成①②两块,现需配一块同样的玻璃,为方便起见,只需带上碎片______ 即可.14.如图,已知AB∥CF,E为DF的中点,若AB=7cm,CF=4cm,则BD= ______ cm.15.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于D,如果∠B=35°,则∠CAD=______ °.16.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有______ 对.17.如图,以直角三角形各边向外作正方形,其中两个正方形的面积为225和144,则正方形A的面积为______ .18.如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF= ______ °.三、解答题(本大题共10小题,共96.0分)19.如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1.(2)△ABC ______ 直角三角形(填“是”或“不是”).20.如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.21.已知:如图,∠EAC是△ABC的一个外角,AD平分∠EAC,AD∥BC.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,求∠ABD的度数.23.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80m,BC=60m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为1000元/m,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?24.如图,△ABC中,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)如果BC=8,求△DAF的周长.(2)如果∠BAC=110°,求∠DAF的度数.25.已知:如图,△ABC中,AB=AC,点D是BC的中点,AB平分∠DAE,BE⊥AE,垂足为E,(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.26.如图,在△ABC中,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CE于E.(1)求证:△ADC≌△CEB;(2)若AD=10cm,DE=6cm,求线段BE的长.27.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边△CDE,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.28.如图1,△ABC中,∠C=90°,AB=20cm,BC=12cm,若动点P从点C开始,沿着C→A→B的路径运动,且速度为每秒1cm,设点P运动的时间为t秒.(1)当t=5秒时,求△ABP的周长.(2)当t为几秒时,PC=PB;(3)当t为几秒时,BP平分∠ABC.答案和解析1.【答案】C【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵32+42=52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵12+22≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.【答案】D【解析】解:∵∠B=90°,∠1=30°,∴∠3=90°-∠1=90°-30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC 全等,根据全等三角形对应角相等可得∠2=∠3.本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.4.【答案】C【解析】解:(1)当7是底边时,3+3<7,不能构成三角形;(2)当3是底边时,可以构成三角形,周长=7+7+3=17.故选C.因为题目的已知条件底边和腰没有确定,所以分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】D【解析】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】A【解析】解:在△ABC与△BDC中,,∴△ABC≌△ABD,∴∠CAB=∠DAB,∴AB垂直平分CD,故选A.根据全等三角形的性质得到∠CAB=∠DAB,根据等腰三角形的性质即刻得到结论.本题考查了线段垂直平分线的性质,全等三角形的判断和性质,熟练掌握线段垂直平分线的性质是解题的关键.7.【答案】D【解析】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.此题考查了线段垂直平分线的性质;题目比较简单,只要熟知线段垂直平分线的性质即可.分别思考,两两满足条件是解答本题的关键.8.【答案】B【解析】解:∵BO平分∠ABC,∴∠DBO=∠OBC,∵DE∥BC,∴∠DOB=∠OBC,∴∠DBO=∠DOB,∴DB=DO.同理可得:EC=EO.∴AD+AE+DE=AD+AE+DO+EO=AD+AE+DB+EC=AB+AC=5+4=9,即三角形ADE的周长为9.故选B.欲求△ADE的周长,根据已知可利用平行线的性质及等腰三角形的性质、角平分线的定义求解.本题综合考查等腰三角形的判定与性质,平行线的性质及角平分线的定义等知识;证明三角形是等腰三角形是解题的关键.9.【答案】40°【解析】解:分两种情况讨论:当∠A=100°为顶角时,∠B==40°;当∠A=100°为底角时,∠B为底角时∠B=∠A=100°,100°+100°=200°>180°,不能构成三角形,此种情况不存在.故答案为:40°.本题要分两种情况讨论:当∠A=100°为顶角;当∠A=100°为底角时,则∠B为底角时或顶角.然后求出∠B.本题考查的是等腰三角形的性质,熟知等腰三角形的两个底角相等是解答此题的关键.10.【答案】1【解析】解:根据三角形具有稳定性,在四边形的对角线上添加一根木条即可.故答案为:1当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.本题主要考查了三角形的稳定性,解题时注意:三角形具有稳定性,这一特性主要应用在实际生活中.11.【答案】2【解析】解:如图,∵D是AB的中点,∴CD=AB=2.故填空答案:2.根据直角三角形斜边上的中线等于斜边的一半即可求出CD.此题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.【答案】24cm2【解析】解:∵62+82=102,∴此三角形是直角三角形,∴此直角三角形的面积为:×6×8=24(cm2).故答案为:24cm2.先利用勾股定理的逆定理判断出三角形的形状,再利用三角形的面积公式即可求出其面积.本题考查了勾股定理的逆定理,能够根据具体数据运用勾股定理的逆定理判定该三角形是一个直角三角形是解决此类问题的关键.13.【答案】②【解析】解:只需带上碎片②即可.理由:碎片②中,可以测量出三角形的两边以及夹角的大小,三角形的形状即可确定.故答案为②.根据全等三角形的判定方法“SAS”即可判定.本题考查全等三角形的应用,灵活运用所学知识是解题的关键,属于基础题,中考常考题型.14.【答案】3【解析】解:∵AB∥FC,∴∠ADE=∠EFC,∵E是DF的中点,∴DE=EF,在△ADE与△CFE中,,∴△ADE≌△CFE(ASA),∴AD=CF=4cm,∴BD=AB-AD=7-4=3(cm).故答案为:3.根据平行的性质求得内错角相等,根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,即可得出BD的长.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.15.【答案】20【解析】解:∵∠C=90°,∠B=35°,∴∠BAC=55°,∵DE是AB的垂直平分线,∴DB=DA,∴∠DAB=∠B=35°,∴∠CAD=∠BAC-∠DAB=20°,故答案为:20.根据三角形内角和定理求出∠BAC=55°,根据线段垂直平分线的性质得到DB=DA,得到∠DAB=∠B=35°,计算即可.本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.16.【答案】4【解析】解:在△BOD和△COE中,,∴△BOD≌△COE,同理△ABO≌△ACO,△ADO≌△AEO,△ADC≌△AEB,故答案为:4.根据全等三角形的判定定理进行判断即可.本题考查的是全等三角形的判定,掌握三角形全等的判定定理是解题的关键.17.【答案】81【解析】解:如图,∵∠CBD=90°,CD2=225,BC2=144,∴BD2=CD2-BC2=81,∴正方形A的面积为81,故答案为:81.根据正方形可以计算斜边和一条直角边,则另一条直角边根据勾股定理就可以计算出来.本题考查了勾股定理的运用,考查了正方形面积的计算,本题中解直角△BCD是解题的关键.18.【答案】68【解析】解:∵AD∥BC,∴∠AFE=∠FEC=68°,∵将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,∴∠C′EF=∠FEC=68°,故答案为:68.根据平行线的性质得到∠AFE=∠FEC=68°,然后根据折叠的性质即刻得到结论.本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.19.【答案】是【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)∵AB2=12+22=5,BC2=22+42=20,AB2=25,∴AB2+BC2=AB2,∴△ABC是直角三角形.故答案为:是.(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用勾股定理逆定理得出答案.此题主要考查了轴对称变换以及勾股定理逆定理,正确得出对应点位置是解题关键.20.【答案】证明:∵BE=CF,∴BC=EF,--------------------------(2分)在△ABC和△DEF中,AB=DE,AC=DF,BC=EF,----------------------------(4分)∴△ABC≌△DEF(SSS).------------------(6分)【解析】根据BE=CF得到BC=EF,然后利用SSS判定定理证明△ABC≌△DEF即可.本题主要考查三角形全等的判定;要牢固掌握并灵活运用这些知识.21.【答案】证明:∵AD平分∠CAE,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C,∴∠B=∠C,∴AB=AC.故△ABC是等腰三角形.【解析】根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.22.【答案】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵BD=BC,∴∠C=∠BDC=70°,∴∠CBD=40°,∴∠ABD=30.【解析】根据等腰三角形的性质得到∠ABC=∠C=70°,∠C=∠BDC=70°,由三角形的内角和得到∠CBD=40°,于是得到结论.本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.23.【答案】解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB=√AC2+BC2=√602+802=100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中,AC=80,CD=48,∴AD=√AC2−CD2=√802−482=64米,所以,CD长为48米,水渠的造价最低,其最低造价为48000元.【解析】当CD为斜边上的高时,CD最短,从而水渠造价最低,根据已知条件可将CD 的长求出,在Rt△ACD中运用勾股定理可将AD边求出.此题考查勾股定理的应用,本题的关键是确定D点的位置,在运算过程中多次用到勾股定理.24.【答案】解:(1)∵DE、FG分别为AB、AC的垂直平分线,∴DA=DB,FA=FC,∴△DAF的周长=AD+DF+AF=BD+DF+FC=BC=8;(2)∵∠BAC=110°,∴∠B+∠C=70°,∵DA=DB,FA=FC,∴∠BAD=∠B,∠CAF=∠C,∴∠BAD+∠CAF=70°,∴∠DAF=110°-70°=40°.【解析】(1)根据线段垂直平分线的性质得到DA=DB,FA=FC,根据三角形的周长公式计算即可;(2)根据三角形内角和定理得到∠B+∠C=70°,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠BAD=∠B,∠CAF=∠C,计算即可.本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.25.【答案】(1)证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥AB,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠BAD=∠BAE,在△ADB和△AEB中,{∠ADB=∠E∠BAD=∠BAE AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE;(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠BAE=∠BAD=∠CAD=30°,∴∠BAC=∠BAD+∠CAD=60°,∴△ABC是等边三角形.【解析】(1)由边角关系求证△ADB≌△AEB即可;(2)由题中条件可得∠BAC=60°,进而可得△ABC为等边三角形.本题考查了等边三角形的判定,等腰三角形的性质,全等三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.26.【答案】证明:∵∠E=∠CDA=∠ACB=90°,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在:△ADC与△CEB中,{∠CBE=∠ACD ∠E=∠CDABC=AC,∴△ADC≌△CEB;(2)∵△ADC≌△CEB,∴BE=CD,AD=CE,∴AD-BE=CE-CD=DE,∵AD=10cm,DE=6cm,∴BE=4cm.【解析】(1)根据判断出∠CBE=∠ACD,根据AAS推出△BCE≌△CAD;(2)根据全等三角形的性质得出BE=CD,AD=CE,即可推出答案.本题考查了全等三角形的性质和判定的应用,解此题的关键是推出△BCE≌△CAD,注意:全等三角形的对应边相等.27.【答案】(1)证明:∵△ABC,△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠B=60°,∴∠ACE=∠BCD,在∠ACE和△BCD中,{AC=BC∠ACE=∠BCD EC=DC,∴△ACE≌△BCD(SAS),(2)解:结论:AE∥BC.理由:∵△ACE≌△BCD,∴∠EAC=∠DBC=60°,∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【解析】(1)只要证明∠ACE=∠BCD,根据SAS即可证明.(2)结论:AE∥BC.只要证明∠CAE=∠ACB=60°即可.本题考查等边三角形的性质、全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形,学会利用全等三角形的性质解决问题,属于中考常考题型.28.【答案】解:(1)如图1,∵∠C=90°,AB=20cm,BC=12cm,∴AC=16cm,∵点P的速度为每秒1cm,∴出发5秒时,CP=5cm,AP=11cm,∵∠C=90°,∴Rt△BCP中,BP=13cm,∴△ABP的周长为:AP+PB+AB=44cm;(2)当点P在AC边上时,PB>PC;如图,当点P在AB边上时,若BP=CP,则∠PCB=∠B,∵∠ACP+∠PCB=90°,∠B+∠A=90°,∴∠ACP=∠A,∴PA=PC,∴PA=PB=10cm,∴点P的运动路程=AC+AP=26cm,∴t=26÷1=26s,∴当t为26秒时,PC=PB;(3)如图,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC,在Rt△BPD和Rt△BPC中,BP=BP,{PC=PD∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=12cm,∴AD=20-12=8cm,设PC=xcm,则PD=xcm,AP=(16-x)cm,在Rt△APD中,PD2+AD2=AP2,即x2+82=(16-x)2,解得x=6,∴当t=6秒时,BP平分∠ABC.【解析】(1)根据勾股定理求得AC=16cm,根据运动的速度和时间求得CP=5cm,AP=11cm,最后根据勾股定理得到BP=13cm,即可得到△ABP的周长为:AP+PB+AB=44cm;(2)根据BP=CP,则∠PCB=∠B,进而得出PA=PB=10cm,故点P的运动路程=AC+AP=26cm,最后根据t=26÷1=26s,得到当t为26秒时,PC=PB;(3)过点P作PD⊥AB于点D,判定Rt△BPD≌Rt△BPC(HL),得到BD=BC=12cm,AD=20-12=8cm,再设PC=xcm,则PD=xcm,AP=(16-x)cm,在Rt△APD中,根据勾股定理得到PD2+AD2=AP2,即x2+82=(16-x)2,解得x=6,即可得到当t=6秒时,BP平分∠ABC.本题属于三角形综合题,主要考查了勾股定理,等腰三角形的性质,全等三角形的判定与性质以及角平分线的性质的综合应用,解决第(3)问的关键是作辅助线构造直角三角形,运用勾股定理列出方程进行求解.解题时注意方程思想的运用.。
2016-2017学年江苏省盐城市建湖县八年级(上)月考数学试卷(9月份)(含答案)
2016-2017学年江苏省盐城市建湖县八年级(上)月考数学试卷(9月份)一、选择题(3分×8=24分)1.下列图形是轴对称图形的是( )A.B.C.D.2.下列说法正确的是( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为( )A.4B.5C.6D.不能确定4.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙5.下列条件中,能判定两个三角形全等的是( )A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等6.如图,如果△ABC≌△FED,那么下列结论错误的是( )A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )A.20°B.30°C.35°D.40°8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(3分×10=30分)9.正方形是轴对称图形,它共有 条对称轴.10.小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词是 .11.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是 .12.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为 米.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= .14.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= .15.如图,AB∥CD,AD∥BC,CE=AF,则图中全等三角形有 对.16.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.17.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC= °.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG.若△ADG和△AED的面积分别为50和30,则△EDF的面积为 .三、简答题19.请你在所给的网格中画出四边形A'B'C'D',使四边形A'B'C'D'和四边形ABCD关于直线l对称.20.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.21.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.22.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.23.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.24.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.25.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,AD=5,BE=2,求线段DE的长.27.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:(1)△ABF与△AGF全等吗?说明理由;(2)求∠EAF的度数;(3)若AG=4,△AEF的面积是6,求△CEF的面积.2016-2017学年江苏省盐城市建湖县八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(3分×8=24分)1.下列图形是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.2.下列说法正确的是( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等三角形的判定;等边三角形的性质.【分析】根据全等三角形的判定方法,此题应采用排除法,对选项逐个进行分析从而确定正确答案.【解答】解:A、全等三角形的周长相等,但周长相等的两个三角形不一定全等,故本选项错误;B、全等三角形的面积相等,但面积相等的两个三角形不一定全等,故本选项错误;C、正确,符合全等三角形的定义;D、边长不相等的等边三角形不全等,故本选项错误.故选C.3.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为( )A.4B.5C.6D.不能确定【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求解即可.【解答】解:∵△ABC≌△DEF,∴DE=AB=4.故选A.4.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.5.下列条件中,能判定两个三角形全等的是( )A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等【考点】全等三角形的判定.【分析】熟练运用判定方法判断.做题时要按判定全等的方法逐个验证.【解答】解:有三个角对应相等,不能判定全等,A错误;有两条边对应相等,缺少条件不能判定全等,B错误;有两边及一角对应相等不能判定全等,C错误;有两角及一边对应相等可判断全等,符合AAS或ASA,是正确的.故选D.6.如图,如果△ABC≌△FED,那么下列结论错误的是( )A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C二、填空题(3分×10=30分)9.正方形是轴对称图形,它共有 4 条对称轴.【考点】轴对称图形.【分析】根据对称轴的定义,直接作出图形的对称轴即可.【解答】解:∵如图所示,正方形是轴对称图形,它共有4条对称轴.故答案为:4.10.小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词是 APPLE .【考点】镜面对称.【分析】注意观察,照镜子看到的字母是左右颠倒,问题可求.【解答】解:小明照镜子实际上看到的是APPLE.故答案为:APPLE.11.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是 三角形稳定性 .【考点】三角形的稳定性.【分析】将其固定,显然是运用了三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.12.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为 0.05 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11 .【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.14.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120° .【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.15.如图,AB∥CD,AD∥BC,CE=AF,则图中全等三角形有 3 对.【考点】全等三角形的判定.【分析】根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形,进而可得AD=BC,DC=AB,然后根据平行线的性质可得∠DAF=∠BCE,再证明△ADF≌△CBE,从而可得DF=BE,然后再证明△DFC≌△BEA,△ADC≌△CBA.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AD=BC,DC=AB,∵AD∥BC,∴∠DAF=∠BCE,在△ADF和△CBE中,∴△ADF≌△CBE(SAS),∴DF=BE,∵CE=AF,∴AE=CF,在△DFC和△BEA中,∴△DFC≌△BEA(SSS),在△ADC和△CBA中,∴△ADC≌△CBA(SSS),全等三角形共3对,故答案为:3,.16.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.17.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC= 59 °.【考点】全等三角形的判定与性质.【分析】先由条件可以得出△ACE≌△ADE,就可以得出∠CAE=∠DAE,再根据直角三角形的性质就可以求出∠CAE的值,从而得出结论.【解答】解:∵DE⊥AB,∴∠ADE=90°.∵∠C=90°,∴∠C=∠ADE.在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL).∴∠CAE=∠DAE.∵∠B=28°,∴∠BAC=62°,∴∠CAE=31°,∴∠AEC=59°故答案为:59°.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG.若△ADG和△AED的面积分别为50和30,则△EDF的面积为 7.5 .【考点】角平分线的性质.【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即30+S=50﹣S,解得S=7.5.故答案为7.5.三、简答题19.请你在所给的网格中画出四边形A'B'C'D',使四边形A'B'C'D'和四边形ABCD关于直线l对称.【考点】作图-轴对称变换.【分析】由作出已知点关于直线l的对称点,再顺次连接这些对称点,就得到原图形的轴对称图形.【解答】解:如图所示,四边形A'B'C'D'和四边形ABCD关于直线l对称.∴四边形A'B'C'D'即为所求.20.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的判定与性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.21.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.22.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【考点】全等三角形的判定与性质.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.23.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=6,FC=4,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB﹣AD=6﹣4=2.24.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)先证明BC=EF,再根据SSS即可证明.(2)结论AB∥DE,AC∥DF,根据全等三角形的性质即可证明.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,,∴△ABC≌△DEF(SSS).(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.25.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.【考点】全等三角形的判定与性质.【分析】首先根据角间的关系推出∠EAC=∠BAF.再根据边角边定理,证明△EAC≌△BAF.最后根据全等三角形的性质定理,得知EC=BF.【解答】证明:∵AE⊥AB,AF⊥AC⇒∠EAB=90°=∠FAC⇒∠EAB+∠BAC=∠FAC+∠BAC又∵∠EAC=∠EAB+∠BAC,∠BAF=∠FAC+∠BAC∴∠EAC=∠BAF在△EAC与△BAF中,⇒△EAC≌△BAF(SAS)∴EC=BF26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,AD=5,BE=2,求线段DE的长.【考点】旋转的性质;全等三角形的判定与性质;勾股定理.【分析】(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;②由①得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.【解答】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE;(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC﹣CD=AD﹣BE=5﹣2=3.27.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:(1)△ABF与△AGF全等吗?说明理由;(2)求∠EAF的度数;(3)若AG=4,△AEF的面积是6,求△CEF的面积.【考点】正方形的性质;全等三角形的判定;等腰三角形的性质.【分析】(1)根据HL可得出△ABF≌△AGF.(2)只要证明∠BAF=∠GAF,∠GAE=∠DAE;所以可求∠EAF=45°.(3)设FC=x,EC=y,则BF=4﹣y,DE=4﹣y,构建方程组,求出xy即可解决问题.【解答】解:(1)结论:△ABF≌△AGF.理由:在Rt△ABF与Rt△AGF中,,∴△ABF≌△AGF,(2)∵△ABF≌△AGF∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAD+∠FAG=∠BAD=45°,故∠EAF=45°.(3)∵S△AEF=×EF×AG,AG=4∴6=×EF×AG,∴EF=3,∵BF=FG,EG=DE,AG=AB=BC=CD=4,设FC=x,EC=y,则BF=4﹣y,DE=4﹣y,∵BF+DE=FG+EG=EF=3,∴4﹣x+4﹣y=3,∴x+y=5 ①在Rt△EFC中,∵EF2=EC2+FC2,∴x2+y2=32②①2﹣②得到,2xy=16,∴S△CEF=xy=4.2017年2月15日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省盐城市建湖县八年级(上)期中数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内.1.(3.00分)下列汽车标志中不是轴对称图形的是()A.B.C.D.2.(3.00分)如图,点E、F在线段BC上,△ABF≌△DCE,则∠C等于()A.∠B B.∠A C.∠BED D.∠AFB3.(3.00分)如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是()A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C4.(3.00分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC5.(3.00分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.(3.00分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,则DE的长为()A.8 B.5 C.3 D.27.(3.00分)如图,△ABC中,点E是AB中点,点D、F分别在AC、BC上,将△AED、△BEF分别沿ED、EF翻折,使顶点A、B都落在点O处,若∠CDO+∠CFO=98°,则∠C的度数()A.40°B.41°C.42°D.43°8.(3.00分)在3×3的正方形网格中,将三个小正方形涂色如图所示,若移动其中一个涂色小正方形到空白方格中,与其余两个涂色小正方形重新组合,使得新构成的整个图案是一个轴对称图形,则这样的移法共有()A.5种 B.7种 C.9种 D.10种二、填空题:本大题共10小题,每小题3分,共30分,不需写出解答过程,请将答案直接写在题中横线上.9.(3.00分)等腰三角形的两边长分别是4cm和8cm,则它的周长是.10.(3.00分)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为.11.(3.00分)如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD 与BC相交于点E,那么图中全等的三角形共有对.12.(3.00分)一个直角三角形斜边上的中线长为5,其中一条直角边的长是6,则此直角三角形的面积为.13.(3.00分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.14.(3.00分)如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了米.15.(3.00分)如图,将三个大小不同的正方形如图放置,顶点处两两相接.若正方形A的边长为5,正方形C的边长为3,则正方形B的面积为.16.(3.00分)如图,设小方格的面积为1,以图中格点为端点且长为5的线段共有条.17.(3.00分)等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为.18.(3.00分)如图,已知△ABC的面积为20,AC=8,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值.三、解答题:本大题共有8小题,共66分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤.19.(8.00分)如图,点A、D、B、E在同一直线上,AC=DF,AD=BE,BC=EF,求证:△ABC≌△DEF.20.(8.00分)如图,在8×8的正方形网格纸中每个小正方形的边长都是1,线段AB的端点在小正方形的顶点上,直线l经过网格线.(1)在直线l上确定一点C(点C在小正方形的顶点上),使△ABC是轴对称图形,并在网格中画出△ABC;(2)直接写出△ABC的周长和面积.21.(8.00分)如图是校园内的一块菜地,数学活动小组的同学量得:∠ADC=90°,AD=40m,CD=30m,BC=120m,AB=130m,求这块菜地的面积.22.(8.00分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.23.(8.00分)如图,等边△ABC中,点D在边BC上,点E在AB的延长线上,且BE=CD,试问:线段DE与AD相等吗?并说明理由.24.(8.00分)如图,△ABC的周长为30cm,∠BAC=125°,AB+AC=18cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:(1)求△AEF的周长;(2)∠EAF的度数.25.(8.00分)在△ABE与△ACF中,AE=AB,AF=AC.(1)如图①,若AE⊥AB,AF⊥AC,则EC与BF的数量关系是;EC与BF的位置关系是;(2)如图②,若BE∥AC,请添加一个条件使得AB∥CF,并说明你的理由.26.(10.00分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.2016-2017学年江苏省盐城市建湖县八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内.1.(3.00分)下列汽车标志中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3.00分)如图,点E、F在线段BC上,△ABF≌△DCE,则∠C等于()A.∠B B.∠A C.∠BED D.∠AFB【解答】解:∵△ABF≌△DCE,∴∠C=∠B,故选:A.3.(3.00分)如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是()A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∠1=∠2,∠B=∠C.故A错误,B,C,D正确.故选:A.4.(3.00分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【解答】解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.5.(3.00分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.6.(3.00分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,则DE的长为()A.8 B.5 C.3 D.2【解答】解:∵∠ACB=90°,∴∠ACE+∠DCB=90°,∵AE⊥CD于E,∴∠ACE+∠CAE=90°,∴∠CAE=∠DCB,∵BD⊥CD于D,∴∠D=90°,在△AEC和△CDB中,∴△AEC≌△CDB,(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=3cm,故选:C.7.(3.00分)如图,△ABC中,点E是AB中点,点D、F分别在AC、BC上,将△AED、△BEF分别沿ED、EF翻折,使顶点A、B都落在点O处,若∠CDO+∠CFO=98°,则∠C的度数()A.40°B.41°C.42°D.43°【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选:B.8.(3.00分)在3×3的正方形网格中,将三个小正方形涂色如图所示,若移动其中一个涂色小正方形到空白方格中,与其余两个涂色小正方形重新组合,使得新构成的整个图案是一个轴对称图形,则这样的移法共有()A.5种 B.7种 C.9种 D.10种【解答】解:如图所示:一共有10种轴对称图形.故选:D.二、填空题:本大题共10小题,每小题3分,共30分,不需写出解答过程,请将答案直接写在题中横线上.9.(3.00分)等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【解答】解:①8cm为腰,4cm为底,此时周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.10.(3.00分)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为3.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∴PD=3.故答案为:3.11.(3.00分)如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD 与BC相交于点E,那么图中全等的三角形共有4对.【解答】解:∵OA=OB,∠AOD=∠BOC,OC=OD,∴△AOD≌△BOC,∴∠A=∠B,又∵∠AEC=∠BED,OA﹣OC=OB﹣OD,即AC=BD,∴△ACE≌△BDE,∴AE=BE,又∵OA=OB,∠A=∠B,∴△AOE≌△BOE,∴∠COE=∠DOE,又∵OE=OE,OC=OD,CE=DE,∴△COE≌△DOE.故全等的三角形一共有4对.故填4.12.(3.00分)一个直角三角形斜边上的中线长为5,其中一条直角边的长是6,则此直角三角形的面积为24.【解答】解:∵一个直角三角形斜边上的中线长为5,∴斜边长为2×5=10.∵一条直角边长为6,∴根据勾股定理知,另一条直角边的长为:=8,∴直角三角形的面积=×6×8=24.故答案为:2413.(3.00分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为14cm.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.14.(3.00分)如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子【解答】解:在直角△ABC中,已知AB=2.5米,BC=1.5米,∴AC==2米,在直角△CDE中,已知CD=CB+BD=2米,DE=AB=2.5米,∴CE==1.5米,∴AE=2米﹣1.5米=0.5米.故答案为:0.5.15.(3.00分)如图,将三个大小不同的正方形如图放置,顶点处两两相接.若正方形A的边长为5,正方形C的边长为3,则正方形B的面积为34.【解答】解:如图,∵根据正方形的性质得:DF=FG,∠DEF=∠GHF=∠DFG=90°,∴∠EDF+∠DFE=90°,∠DFE+∠GFH=90°,∴∠EDF=∠GFH,在△DEF和△FHG中,∴△DEF≌△FHG(AAS),∴DE=FH=5,∵GH=3,∴在Rt△GHF中,由勾股定理得:FG==,所以正方形B的面积为34.故答案为34.16.(3.00分)如图,设小方格的面积为1,以图中格点为端点且长为5的线段共有4条.【解答】解:如图所示,共4条.故答案为:4.17.(3.00分)等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为65°或25°.【解答】解:当这个三角形是锐角三角形时:高与另一腰的夹角为40,则顶角是50°,因而底角是65°;如图所示:当这个三角形是钝角三角形时:∠ABD=40°,BD⊥CD,故∠BAD=50°,所以∠B=∠C=25°因此这个等腰三角形的一个底角的度数为25°或65°.故填25°或65°.点D,M、N分别是AD和AB上的动点,则BM+MN的最小值5.【解答】解:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=8,S=20,△ABC∴×8•BE=20,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故答案为:5.三、解答题:本大题共有8小题,共66分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤.19.(8.00分)如图,点A、D、B、E在同一直线上,AC=DF,AD=BE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AD=BE,∴AD+DB=BE+DB,即AB=DE,在△ABCt△DEF中∴△ABC≌△DEF(SSS).20.(8.00分)如图,在8×8的正方形网格纸中每个小正方形的边长都是1,线段AB的端点在小正方形的顶点上,直线l经过网格线.(1)在直线l上确定一点C(点C在小正方形的顶点上),使△ABC是轴对称图形,并在网格中画出△ABC;(2)直接写出△ABC的周长和面积.【解答】解:(1)如图,点C即为所求;(2)∵由勾股定理得,AB=AC==5,∴△ABC的周长=5+5+6=16;△ABC的面积=×6×4=12.21.(8.00分)如图是校园内的一块菜地,数学活动小组的同学量得:∠ADC=90°,AD=40m,CD=30m,BC=120m,AB=130m,求这块菜地的面积.【解答】解:连接AC,∵AD=40,CD=30,∠ADC=90°,∴AC==50,∵AB=130,BC=120,∴AC2+BC2=AB2,∴△ACB是直角三角形,=S△ACB﹣S△ACD=×50×120﹣×30×40=3000﹣600=2400(m2),∴S四边形ABC答:这块菜地的面积为2400m2.22.(8.00分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.23.(8.00分)如图,等边△ABC中,点D在边BC上,点E在AB的延长线上,且BE=CD,试问:线段DE与AD相等吗?并说明理由.【解答】解:DE=AD,理由如下:如图,过点D作DF∥AC,交AB于点F,∵△ABC为等边三角形,∴△BFD为等边三角形,∴BD=BF,且AB=BC,∴AF=CD=BE,∵∠DFB=∠DBF=60°,∴∠AFD=∠DBE=120°,在△AFD和△DBE中∴△AFD≌△DBE(SAS),∴DE=AD.24.(8.00分)如图,△ABC的周长为30cm,∠BAC=125°,AB+AC=18cm,AB、求:(1)求△AEF的周长;(2)∠EAF的度数.【解答】解:(1)∵DE、FG分别垂直平分AB、AC,∴EA=EB,FA=FC,∴△AEF的周长=AE+AF+EF=BE+EF+FC=BC=30﹣18=12cm.(2)∵EA=EB,FA=FC,∴∠EBA=∠EAB,∠FAC=∠FCA.设∠EBA=∠EAB=α,∠FAC=∠FCA=β,∵∠BAC=125°,∴α+β=55°,∴∠BAE+∠FAC=55°,∴∠EAF=125°﹣55°=70°.25.(8.00分)在△ABE与△ACF中,AE=AB,AF=AC.(1)如图①,若AE⊥AB,AF⊥AC,则EC与BF的数量关系是EC=BF;EC与BF的位置关系是EC⊥BF;(2)如图②,若BE∥AC,请添加一个条件使得AB∥CF,并说明你的理由.【解答】解:(1)结论:EC=BF,EC⊥BF.理由:如图①AC与BF交于点O.∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,在△EAC和△BAF中,,∴△EAC≌△BAF,∴EC=BF,∠ECA=∠AFB,∵∠AOF=∠COM,∴∠CMO=∠FAO=90°,∴CE⊥BF.故答案为CE=BF,CE⊥BF.(2)如图②中,当∠EAB=∠FAC时,AB∥CF.理由:∵AE=AB,AC=AF,∠EAB=∠CAF,∴∠AEB=∠ABE=∠ACF=∠AFC,∵BE∥AC,∴∠BAC=∠ABE,∴∠BAC=∠ACF,∴AB∥CF.26.(10.00分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm);(2)由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(2t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(2t﹣8)2]=(2t)2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=2tcm,CP=2|t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=62+(2t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.。