2020-2021高一数学上期中试题(附答案)(6)
湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案
华中师大一附中2020~2021学年度上学期期中检测高一年级数学试题试卷总分150分 考试时间120分钟一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.已知A ={3-,0,1 },B ={4-,3-,1},则A ∪B 的真子集的个数为( )A .3B .7C .15D .312.钱大姐常说“便宜没好货”,她这句话中,“不便宜”是“好货”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为 ( )A .(1,1)-B .(0, 1)C .(3,1)-D .((3),(1))f f - 4.若正实数a ,b 满足1a b +=,则12a b+的最小值为( )A.B .6C .D .3+5.函数(f x( )A .(,2]-∞B .[2,)+∞C .[0,2]D .[2,4]6.若关于x 的不等式2|1||2|1()x x a a a -+-≤++∈R 的解集为空集,则实数a 的取值范围是( ) A .10a -<<B .01a <<C .12a <<D .1a <-7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递减,(2)0f -=,则不等式()0xf x > 的解集为( )A .(,2)(0,2)-∞-B .(,2)(2,)-∞-+∞C .(2,0)(0,2)-D .(2,0)(2,)-+∞8.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-+∞二、多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.已知a ,b ,c 为互不相等的正数,且222a c bc +=,则下列关系中可能成立的是 ( )A .a b c >>B .c b a >>C .b a c >>D .a c b >> 10.下列各结论中正确的是( ) A .“0ab >”是“0ab>”的充要条件. B.函数y =2.C .命题“1x ∀>,20x x ->”的否定是“01x ∃≤,200x x -≤” . D .若函数21y x ax =-+有负值,则实数a 的取值范围是2a >或2a <-.11.定义域为R 的函数()f x 满足()()()f x y f x f y +=+,且当0x >时,()0f x >.以下结论正确的是( )A .()f x 为奇函数B .()f x 为偶函数C .()f x 为增函数D .()f x 为减函数12.设定义域为R 的函数1, 1|1|()1, 1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解x 1,x 2,x 3,且x 1 < x 2 < x 3.下列说法正确的是 ( )A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-三、填空题(本大题共4小题,每小题5分,共20分) 13.已知集合{2,1}A =-,{|2}B x ax ==,若AB B =,则实数a 的取值集合为____________.14.关于x 的一元二次方程2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,则实数k 的取值范围是___________.15.两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.则第______种购物方式比较经济.16.已知函数2()=x ax a f x x++在(]0,1上单调递减,则实数a 的取值范围为____________.四、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知集合26{||1|2}{|1}4x A x x B x x -=-≤=<-,,定义{|}A B x x A x B -=∈∉且. (1)求A B -;(2)求B A -.18.(本题满分12分)已知非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<.命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.19.(本题满分12分)已知函数2()1mx nf x x +=+是定义在[1,1]-上的奇函数,且(1)1f = (1)求m ,n 的值;判断函数()f x 的单调性并用定义加以证明; (2)求使2(1)(1)0f a f a -+-<成立的实数a 的取值范围.20.(本题满分12分)已知函数2()(1)()f x x a x a =-++∈R .(1)若对于任意[1,2]x ∈,恒有2()2f x x ≥成立,求实数a 的取值范围; (2)若2a ≥,求函数()f x 在区间[0, 2]上的最大值()g a .21.(本题满分12分)华师一附中为了迎接建校70周年校庆,决定在学校艺术中心利用一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的荣誉室.由于荣誉室的后背靠墙,无需建造费用,甲工程队给出的报价为:荣誉室前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设荣誉室的左右两面墙的长度均为x 米(36)x ≤≤.(1)当左右两面墙的长度为多少时,甲工程队的整体报价最低?并求最低报价; (2)现有乙工程队也要参与此荣誉室的建造竞标,其给出的整体报价为1800(1)a x x+元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功(乙工程队的整体报价比甲工程队的整体报价更低),试求实数a 的取值范围.22.(本题满分12分)若函数()y f x =自变量的取值区间为[a , b ]时,函数值的取值区间恰为22[,]b a,就称区间[a , b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合2{(,)|()}{(,)|}x y y h x x y y x m ==+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.高一年级数学试题参考答案一、单选题1.C 2.B 3.B 4.D 5.D 6.A 7.A 8.C 二、多选题9.BC 10.AD 11. AC 12.ABD 三、填空题13.{-1,0,2} 14.3,04⎛⎤- ⎥⎝⎦15.二 16.12a ≤-或1a ≥四、解答题17.解:{||1|2}{|13}A x x x x =-≤=-≤≤, (2)分26{|1}{|24}4x B x x x x -=<=<<- (4)分(1){|12}A B x x -=-≤≤ (7)分(2){|34}B A x x -=<< (10)分18.解:()(){}|2310A x x x a =---<⎡⎤⎣⎦,()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦.∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+. (2)分∵p 是q 的充分条件,∴A B ⊆. (3)分① 当1a =时,312a -=,A =∅,不符合题意; (5)分② 当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,则212312a a a a ⎧>⎪≤⎨⎪-≤+⎩ ∴12a <≤. (8)分③ 当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,则213122a a a a ⎧<⎪≤-⎨⎪≤+⎩ ∴112a ≤<. (11)分综上所述,实数a 的取值范围是1[,1)(1,2]2. (12)分19.(1)解法一:因为函数()f x 是定义在[-1,1]上的奇函数,则()()0011f f ⎧=⎪⎨=⎪⎩,得012n m n =⎧⎪⎨+=⎪⎩,解得20m n =⎧⎨=⎩, (2)分经检验2m =,0n =时,()221xf x x =+是定义在[1,1]-上的奇函数. (3)分法二:()f x 是定义在[1,1]-上的奇函数,则()()f x f x -=-,即2211mx n mx nx x -+--=++,则0n =,所以()21mxf x x =+,又因为()11f =,得2m =,所以2m =,0n =. ………………3分设12,[1,1]x x ∀∈-且12x x <,则()()22121221211212222222121212222(1)2(1)2()(1)11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++1211x x -≤<≤ 222112120,10,(1)(1)0x x x x x x ∴->-<++>()()120f x f x ∴-< ()()12f x f x ∴< ()f x ∴在[1,1]-上是增函数 (6)分(2)由(1)知()221xf x x =+,()f x 在[1,1]-上是增函数, 又因为()f x 是定义在[]1,1-上的奇函数,由()()2110f a f a -+-<,得()()211f a f a -<-, (7)分2211111111a a a a -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, (10)分即2020221a a a ≤≤⎧⎪≤≤⎨⎪-<<⎩,解得01a ≤<. 故实数a 的取值范围是[0,1). (12)分20.(1)解法一:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分构造函数()23(1)g x x a x =-+,其中[]1,2x ∈,则()max0g x ≤,即()()1020g g ⎧≤⎪⎨≤⎪⎩,…… 4分 即3(1)0122(1)0a a -+≤⎧⎨-+≤⎩,解得5a ≥,因此,实数a 的取值范围是[)5,+∞.………………6分解法二:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分max 1(3)6a x ∴+≥= (5)分因此,实数a 的取值范围是[)5,+∞. (6)分(2)()()22211(1)24a a f x x a x x ++⎛⎫=-++=--+⎪⎝⎭. 2a ≥ 102a +∴> (7)分①当122a +<,即23a ≤<时,函数()y f x =在10,2a +⎡⎤⎢⎥⎣⎦上单调递增, 在1,22a +⎡⎤⎢⎥⎣⎦上单调递减,此时()()21124a a g a f ++⎛⎫== ⎪⎝⎭; (9)分②当122a +≥,即3a ≥时,()y f x =在[0, 2]上单调递增,此时()()222g a f a ==-.………………11分 综上所述,2(1),23()422,3a a g a a a ⎧+≤<⎪=⎨⎪-≥⎩. (12)分21.(1)设甲工程队的总造价为y 元, 则72163006400144001800()14400(36)y x x x x x =⨯+⨯+=++≤≤, ………………2分161800()14400180021440028800x x ++≥⨯=, ………………4分 当且仅当16x x =,即x = 4时等号成立. ………………5分故当左右两侧墙的长度为4米时,甲工程队的报价最低,最低报价为28800元. ……6分(2)由题意可得161800(1)1800()14400a x x x x+++>对任意的[3,6]x ∈恒成立. 故2(4)(1)x a x x x ++>,从而2(4)1x a x +>+恒成立, ………………8分令1x t +=,22(4)(3)961x t t x t t++==+++,[4,7]t ∈. 又96y t t =++在[4,7]t ∈为增函数,故min 494y =. ………………11分所以a 的取值范围为49(0,)4. (12)分22.(1)因为()g x 为R 上的奇函数,∴(0)0g =又当(0,)x ∈+∞时,()3g x x =-+所以,当(,0)x ∈-∞时,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩ (3)分 (2)设0a b <<,∵()g x 在(0,)+∞上递单调递减,2()32()3g b b b g a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根. ∵0a b << ∴12a b =⎧⎨=⎩ ∴()g x 在(0,)+∞内的“和谐区间”为[1,2]. ………………6分 (3)设[a , b ]为()g x 的一个“和谐区间”,则22a b b a <⎧⎪⎨<⎪⎩,∴a ,b 同号. 当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.[1,2]3,()[2,1]3,h x x x x x -+∈⎧⎨----∈∴=⎩ (8)分依题意,抛物线2y x m =+与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,m 应当使方程23x m x +=-+在[1,2]内恰有一个实数根,并且使方程23x m x +=--,在[2,1]--内恰有一个实数.由方程23x m x +=-+,即230x x m ++-=在[1,2]内恰有一根,令2()3F x x x m =++-,则(1)10(2)30F m F m =-≤⎧⎨=+≥⎩,解得31m -≤≤;由方程23x m x +=--,即230x x m +++=在[2,1]--内恰有一根,令2()3G x x x m =+++,则(1)30(2)50G m G m -=+≤⎧⎨-=+≥⎩,解得53m -≤≤-. 综上可知,实数m 的取值集合为{3}-. ………………12分(用图象法解答也相应给分)。
2020-2021学年上海市普陀区同济二附中高一(上)期中数学试卷 (解析版)
2020-2021学年上海市普陀区同济二附中高一(上)期中数学试卷一、填空题(本题满分54分,共12小题,第1-6题每题4分,7-12题每题5分).1.已知集合A={x|x>1},B={x|﹣1<x<2},则A∩B等于.2.用列举法表示方程组的解集.3.已知集合A={1},B={a,a2+1},若A⫋B,则实数a的值为.4.已知方程2x2+4x﹣7=0的两个根为x1、x2,则x12+x22=.5.已知x>0,则的最小值为.6.已知关于x的一元二次不等式x2+ax+1>0解集为R,则实数a的取值范围是.7.用反证法证明命题“若实数a,b满足a2+b2=0,则a,b全为0”的过程中,第一步应假设.8.已知集合A={x|ax2﹣2x+1=0}有两个子集,则实数a的取值集合为.9.关于x的不等式|x﹣6|+|x﹣3|≥k的解集为R,则实数k的取值范围是.10.已知a2x=2(a>0),则=.11.已知全集U=R,实数a,b满足a>b>0,集合M={x|<x<a},N={x|b},则∩N=.12.若a>0,b>0,a+2ab+2b=15,则ab的最大值为.二、选择题(本题满分20分,共4小题,每小题5分)13.若命题α为“x=1”,命题β为“x2=1”,则α是β的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分又不必要14.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则<15.已知3a=2,那么log38﹣2log36用a表示是()A.a﹣2B.5a﹣2C.3a﹣(1+a)2D.3a﹣a216.设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立三、解答题(本题满分76分,共5小题)17.解下列不等式(组):(1);(2)(a﹣1)x>a2﹣1.18.(1)已知=1,求的值.(2)若lga,lgb是方程2x2﹣4x+1=0的两个实根,求ab的值.19.为了保护环境,某单位采用新工艺,把二氧化硅转化为一种可利用的化工产品,已知该单位每月处理量最多不超过300吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y=x2﹣200x+40000(0<x≤300),且每处理一吨二氧化碳得到可利用的化工产品价值为300元.(1)设该单位每月获利为S(元),试将S表示成月处理量x(吨)的函数,若要保证该单位每月不亏损,则每月处理量应控制在什么范围?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?20.(16分)已知关于x的不等式≤0的解集为M.(1)若a=4时,求集合M;(2)若5∉M,求实数a的取值范围;(3)若实数3和5中有且只有一个属于集合M,求a的取值范围.21.(18分)已知符号[x]表示不大于x的最大整数(x∈R),例如:[1.3]=1,[2]=2,[﹣1.2]=﹣2.(1)已知方程[x]=3,求该方程的解集;(2)设方程[|x|+|x﹣1|]=3的解集为A,集合B={x|2x2﹣11kx+15k2≥0},若A∪B=R,求实数k的取值范围;(3)在(2)的条件下,集合C={x|x2﹣ax+1﹣2a≤0,a∈R},是否存在实数a,A∩C =A,若存在,请求出实数a的取值范围;若不存在,请说明理由.参考答案一、填空题(本题满分54分,共12小题,第1-6题每题4分,7-12题每题5分)1.已知集合A={x|x>1},B={x|﹣1<x<2},则A∩B等于{x|1<x<2}.【分析】找出集合A和B中x范围的公共部分,即可确定出两集合的交集.解:∵A={x|x>1},B={x|﹣1<x<2},∴A∩B={x|1<x<2}.故答案为:{x|1<x<2}.2.用列举法表示方程组的解集{(3,1)}.【分析】解出方程组的解集,再用列举法表示即可.解:解方程组,得,∴用列举法表示方程组的解集为{(3,1)},故答案为:{(3,1)}.3.已知集合A={1},B={a,a2+1},若A⫋B,则实数a的值为0或1.【分析】根据A⫋B,从而得出a=1或a2+1=1,解得a=0或1.解:∵A⫋B,∴a=1或a2+1=1,解得a=0或1.故答案为:0或1.4.已知方程2x2+4x﹣7=0的两个根为x1、x2,则x12+x22=11.【分析】利用一元二次方程根与系数的关系得到两根之和与两根之积,进而求得结论.解:∵方程2x2+4x﹣7=0的两个根为x1、x2,可得:x1+x2=﹣=﹣2,x1•x2==﹣,故x12+x22=(x1+x2)2﹣2x1•x2=4﹣2×(﹣)=11,故答案为:11.5.已知x>0,则的最小值为4.【分析】因为x>0,直接利用基本不等式求出其最小值.解:∵x>0,则≥2=4,当且仅当x=时,等号成立,故答案为4.6.已知关于x的一元二次不等式x2+ax+1>0解集为R,则实数a的取值范围是(﹣2,2).【分析】根据判别式列出不等式,求得a的取值范围.解:关于x的一元二次不等式x2+ax+1>0的解集为R,则△<0,即a2﹣4<0解得﹣2<a<2,所以实数a的取值范围是(﹣2,2).故答案为:(﹣2,2).7.用反证法证明命题“若实数a,b满足a2+b2=0,则a,b全为0”的过程中,第一步应假设a,b至少有一个不为0.【分析】根据已知条件,先求出原命题的否命题,即可求解.解:∵命题“若实数a,b满足a2+b2=0,则a,b全为0”的否定为“若实数a,b满足a2+b2=0,则a,b至少有一个不为0”,∴用反证法证明命题“若实数a,b满足a2+b2=0,则a,b全为0”的过程中,第一步应假设a,b至少有一个不为0.故答案为:a,b至少有一个不为0.8.已知集合A={x|ax2﹣2x+1=0}有两个子集,则实数a的取值集合为0或1.【分析】由题意可知方程ax2﹣2x+1=0有两个相等的实根,对a是否为0分情况讨论,分别求出a的值即可.解:∵集合A={x|ax2﹣2x+1=0}有两个子集,∴方程ax2﹣2x+1=0有两个相等的实根,①当a=0时,方程化为﹣2x+1=0,解得x=,此时集合A={},符合题意,②当a≠0时,∴△=(﹣2)2﹣4a=0,∴a=1,此时集合A={1},符合题意,综上所述,a的值为0或1,故答案为:0或1.9.关于x的不等式|x﹣6|+|x﹣3|≥k的解集为R,则实数k的取值范围是(﹣∞,3].【分析】由绝对值三角不等式可得|x+2|+|x﹣3|≥k的最小值,即可求得k的取值范围.解:|x﹣6|+|x﹣3=|x﹣6|+|3﹣x|≥|(x﹣6)+(3﹣x)|=3,∵关于x的不等式|x﹣6|+|x﹣3|≥k的解集为R,∴k≤3.故答案为:(﹣∞,3].10.已知a2x=2(a>0),则=.【分析】根据指数幂的运算法则即可求出.解:==a2x+a﹣2x+1=2++1=.故答案为:.11.已知全集U=R,实数a,b满足a>b>0,集合M={x|<x<a},N={x|b},则∩N={x|b}.【分析】推导出0<b<<<a,求出={x|x或x≥a},由此能求出∩N.解:全集U=R,实数a,b满足a>b>0,∴0<b<<<a,集合M={x|<x<a},N={x|b},={x|x或x≥a},∴∩N={x|b}.故答案为:{x|b}.12.若a>0,b>0,a+2ab+2b=15,则ab的最大值为.【分析】由已知可得a+2b=15﹣2ab,结合a+2b≥2,解不等式即可求解.解:∵a>0,b>0,a+2ab+2b=15,∴a+2b=15﹣2ab,∵a+2b≥2,∴15﹣2ab≥2,∵ab>0,∴解可得0<ab≤,则ab的最大值为.故答案为:.二、选择题(本题满分20分,共4小题,每小题5分)13.若命题α为“x=1”,命题β为“x2=1”,则α是β的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分又不必要【分析】根据充要条件的定义,即可判断得出答案.解:当“x=1”时,“x2=1”成立,当“x2=1”时,“x=±1”故“x=1”不一定成立,即“x=1”是“x2=1”的充分不必要条件,故选:A.14.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则<【分析】A,若a>b,当c=0时,ac2=bc2,可判断A;B,令a=3,b=2,c=2,d=0,可判断B;C,利用不等式的性质可判断C;D,令a=2>﹣1=b,可判断D.解:A,若a>b,当c=0时,ac2=bc2,A错误;B,若a=3,b=2,c=2,d=0,满足a>b,c>d,但a﹣c=1<b﹣d=2,故B错误;C,若a>|b|,则a2>|b|2=b2,正确;D,若a=2>﹣1=b,则>﹣1,故<错误.故选:C.15.已知3a=2,那么log38﹣2log36用a表示是()A.a﹣2B.5a﹣2C.3a﹣(1+a)2D.3a﹣a2【分析】先表示出a=,结合对数的运算性质,从而得到答案.解:∵3a=2,∴a=,∴﹣2=3﹣2(+1)=3a﹣2(a+1)=a﹣2,故选:A.16.设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立【分析】命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card (A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card (B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A.三、解答题(本题满分76分,共5小题)17.解下列不等式(组):(1);(2)(a﹣1)x>a2﹣1.【分析】(1)结合分式及二次不等式的求法进行转化即可求解;(2)结合a﹣1的正负及一元一次不等式的求法进行分类讨论,即可求解.解:(1)原不等式组可转化为,即,解得﹣1<x≤6;(2)当a=1时,不等式的解集为∅;当a>1时,不等式的解集为{x|x>a+1},当a<1时,不等式的解集为{x|x<a+1},故当a=1时,不等式的解集为∅;当a>1时,不等式的解集为{x|x>a+1},当a<1时,不等式的解集为{x|x<a+1}.18.(1)已知=1,求的值.(2)若lga,lgb是方程2x2﹣4x+1=0的两个实根,求ab的值.【分析】(1)根据指数幂的运算性质计算即可;(2)根据根与系数的关系求出lga+lgb =2,根据指数幂的运算性质求出ab的值即可.解:(1)∵=1,∴====3;(2)若lga,lgb是方程2x2﹣4x+1=0的两个实根,则lga+lgb=2,则lg(ab)=2,故ab=100.19.为了保护环境,某单位采用新工艺,把二氧化硅转化为一种可利用的化工产品,已知该单位每月处理量最多不超过300吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y=x2﹣200x+40000(0<x≤300),且每处理一吨二氧化碳得到可利用的化工产品价值为300元.(1)设该单位每月获利为S(元),试将S表示成月处理量x(吨)的函数,若要保证该单位每月不亏损,则每月处理量应控制在什么范围?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?【分析】(1)根据已知条件,结合利润=总价值﹣总成本,列式即可得到函数关系,令S≥0,求解不等式即可;(2)利用基本不等式求解即可得到答案.解:(1)由题意可得,S=300x﹣(x2﹣200x+40000)=﹣x2+500x﹣40000(0<x≤300),令S≥0,即﹣x2+500x﹣40000≥0,解得100≤x≤400,又0<x≤300,所以100≤x≤300,故要保证该单位每月不亏损,则每月处理量应控制在[100,300]范围内;(2)每吨的平均出来成本为,当且仅当,即x=200时取等号,所以该单位每月处理量为200吨时,才能使每吨的平均处理成本最低.20.(16分)已知关于x的不等式≤0的解集为M.(1)若a=4时,求集合M;(2)若5∉M,求实数a的取值范围;(3)若实数3和5中有且只有一个属于集合M,求a的取值范围.【分析】(1)结合一元二次不等式的解法即可直接求解;(2)由题意得>0或5﹣a=0,从而可求;(3)结合集合元素与集合关系进行分类讨论,当3∈M,5∉时,,当5∈M,3∉时,,解不等式组可求.解:(1)当a=4时,原不等式可转化为,解得﹣,所以M={x|﹣};(2)因为5∉M,所以>0或5﹣a=0,解得﹣1<a≤5,所以a的范围{a|﹣1<a≤5};(3)若实数3和5中有且只有一个属于集合M,当3∈M,5∉M时,,解得3≤a≤5,当5∈M,3∉M时,,解得﹣,综上,a的取值范围{a|3≤a≤5或﹣}.21.(18分)已知符号[x]表示不大于x的最大整数(x∈R),例如:[1.3]=1,[2]=2,[﹣1.2]=﹣2.(1)已知方程[x]=3,求该方程的解集;(2)设方程[|x|+|x﹣1|]=3的解集为A,集合B={x|2x2﹣11kx+15k2≥0},若A∪B=R,求实数k的取值范围;(3)在(2)的条件下,集合C={x|x2﹣ax+1﹣2a≤0,a∈R},是否存在实数a,A∩C =A,若存在,请求出实数a的取值范围;若不存在,请说明理由.【分析】(1)根据定义,直接求解即可;(2)先求出集合A,B中表示元素的范围,再根据A∪B=R,分k=0,k>0和k<0三种情况,求解k的取值范围即可;(3)由题意得到A⊆C,设集合C的解集为(x1,x2)(x1<x2),得到,再由子集的定义列式求解即可.解:(1)由题意,方程[x]=3,则x∈[3,4),所以该方程的解集为[3,4);(2)因为[|x|+|x﹣1|]=3,所以3≤|x|+|x﹣1|<4,根据绝对值不等式的几何意义可得,A=,又B={x|2x2﹣11kx+15k2≥0}={x|(2x﹣5k)(x﹣k)≥0},当k=0时,B={x|2x2≥0}=R,则A∪B=R,符合题意;当k>0时,B=,若A∪B=R,则,解得k∈;当k<0时,,若A∪B=R,则,解得k∈.综上所述,实数k的取值范围为∪{0}∪;(3)因为A∩C=A,则A⊆C且A=,所以设集合C的解集为(x1,x2)(x1<x2),则,所以,解得,故实数a的取值范围为.。
潍坊市2020-2021学年高一上学期期中数学试题(解析版)
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;
北京市清华大学附属中学2020-2021学年第一学期高一数学期中试题(Word解析版)
2020-2021学年北京市清华附中高一(上)期中数学试卷一、选择题(共10小题).1.已知集合A={x|x2<1},且a∈A,则a的值可能为()A.﹣2B.﹣1C.0D.12.已知命题P:∀x∈N,x3≥1,则命题P的否定为()A.∀x∈N,x3<1B.∃x∈N,x3<1C.∀x∉N,x3<1D.∃x∉N,x3<1 3.若函数为R上的奇函数,且当x>0时,f(x)=2x﹣1,则f(0)+f(﹣1)=()A.﹣4B.﹣3C.﹣2D.﹣14.函数f(x)=的定义域为()A.[2,+∞)B.(2,+∞)C.[﹣2,0)∪(0,+∞)D.(﹣2,0)∪(0,+∞)5.已知a,b∈R,则“ab=0”是“a2+b2=0”的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要6.已知a<b<c,则下列不等式一定成立的是()A.ac2<bc2B.a2<b2<c2C.ab<ac D.>7.下列函数中,在定义域内单调递增的是()A.y=﹣B.y=C.y=|x|D.y=x+(x>0)8.已知函数f(x)=x2﹣4x在[0,m]上的值域为[﹣4,0],则实数的取值范围是()A.(0,2]B.[2,4]C.(0,4]D.[2,+∞)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件10.已知f(x)=,则下列关于y=f[f(x)]+1的零点的判断正确的是()A.当a>0时,有4个零点,当a<0时,有1个零点B.当a>0时,有3个零点,当a<0时,有2个零点C.无论a为何值,均有2个零点D.无论a为何值,均有4个零点二、填空题(共5小题)11.已知集合A={0,1,2},B={x|x<2},则集合A∩B=.12.函数f(x)=的值域为.13.已知函数f(x)的定义域为{1,2,3,4},且自变量x与函数值的关系对应如表:(1)f[f(1)]=;(2)不等式f(x)≥2的解集为.14.函数f(x)=x2+ax﹣1在[2,3]上不单调,则实数a的取值范围为.15.已知p,q∈R,p<q,不等式x2﹣px﹣qx+pq﹣2≤0的解集为[m,n],有下列四个命题:①p+q∈[m,n];②(m+1)(n+1)<(p+1)(q+1);③n﹣m=q﹣p+2;④m3+n3>p3+q3.其中,全部正确命题的序号为.三、解答题(共6小题,第16-20题每小题14分,第21题15分,共85分)16.解下列关于x的不等式:(1)x2﹣x﹣6≤0;(2)x2﹣3x+4>0;(3)x2≥ax.17.已知集合A={x|x2﹣ax+1>0}.(1)若1∈A,2∉A,求实数a的取值范围;(2)若集合A=R,求实数a的取值范围;(3)已知a≠0,判断a+能否属于集合A,并说明你的理由.18.已知函数f(x)满足:∀a,b∈R,均有f(a+b)=f(a)+f(b),且f(2)=4.(1)求f(0),f(4)的值;(2)判断函数的奇偶性,并说明理由;(3)求f(﹣1)的值.19.已知函数f(x)=x2+bx+c的图象经过坐标原点,且y=f(x+1)为偶函数.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求证:对于任意的x∈[0,4],总有2x﹣4≤f(x)≤2x;(Ⅲ)记函数y=|f(x)﹣2x﹣m|在区间[0,4]的最大值为G(m),求G(m)的最小值.20.已知函数f(x)=,其中P,M是非空数集,且P∩M=∅,设f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.(1)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);(2)若P=(﹣∞,a),M=[a,+∞),且f(P)∪f(M)=R,求实数a的取值范围.21.已知集合A为数集,定义f A(x)=,若A,B⊆{x|x≤8,x∈N*},定义:d(A,B)=|f A (1)﹣f B(1)|+|f A(2)﹣f B(2)|+……+|f A(8)﹣f B(8)|.(1)已知集合A={1,2,3},B={2,3,4},C=∅,求d(A,B),d(A,C)的值;(2)若A,B,C⊆{x|x≤8,x∈N*}.①求证:d(A,B)+d(A,C)≥d(B,C);②求d(A,B)+d(A,C)+d(B,C)的最大值.参考答案一、选择题(共10小题)1.已知集合A={x|x2<1},且a∈A,则a的值可能为()A.﹣2B.﹣1C.0D.1解:集合A={x|x2<1}={x|﹣1<x<1},四个选项中,只有0∈A,故选:C.2.已知命题P:∀x∈N,x3≥1,则命题P的否定为()A.∀x∈N,x3<1B.∃x∈N,x3<1C.∀x∉N,x3<1D.∃x∉N,x3<1解:命题是全称命题,则命题的否定是特称命题,即∃x∈N,x3<1,故选:B.3.若函数为R上的奇函数,且当x>0时,f(x)=2x﹣1,则f(0)+f(﹣1)=()A.﹣4B.﹣3C.﹣2D.﹣1解:根据题意,当x>0时,f(x)=2x﹣1,则f(1)=2﹣1=1,函数为R上的奇函数,则f(0)=0,f(﹣1)=﹣f(1)=﹣1,故f(0)+f(﹣1)=0+(﹣1)=﹣1,故选:D.4.函数f(x)=的定义域为()A.[2,+∞)B.(2,+∞)C.[﹣2,0)∪(0,+∞)D.(﹣2,0)∪(0,+∞)解:要使f(x)有意义,则,解得x≥2,∴f(x)的定义域为:[2,+∞).故选:A.5.已知a,b∈R,则“ab=0”是“a2+b2=0”的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要解:p:ab=0即为a=0或b=0;q:a2+b2=0即为a=b=0;所以p成立q不一定成立,反之q成立p一定成立,所以p是q的必要不充分条件,故选:B.6.已知a<b<c,则下列不等式一定成立的是()A.ac2<bc2B.a2<b2<c2C.ab<ac D.>解:根据a<b<c,取c=0,则A不成立;取a=﹣1,b=0,c=1,则BC不成立;由a<b<c,可知a﹣c<b﹣c<0,∴,故D一定成立.故选:D.7.下列函数中,在定义域内单调递增的是()A.y=﹣B.y=C.y=|x|D.y=x+(x>0)解:对于A:函数在定义域不单调,不合题意,对于B:函数在[0,+∞)递增,符合题意,对于C:函数在(﹣∞,0)递减,在(0,+∞)递增,不合题意,对于D:函数在(0,1)递减,在(1,+∞)递增,不合题意,故选:B.8.已知函数f(x)=x2﹣4x在[0,m]上的值域为[﹣4,0],则实数的取值范围是()A.(0,2]B.[2,4]C.(0,4]D.[2,+∞)解:∵f(x)=x2﹣4x的开口向上,对称轴x=2,且f(0)=f(4)=0,f(2)=﹣4,∵函数f(x)在[0,m]内的值域为[﹣4,0],则实数2≤m≤4故选:B.9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故选:B.10.已知f(x)=,则下列关于y=f[f(x)]+1的零点的判断正确的是()A.当a>0时,有4个零点,当a<0时,有1个零点B.当a>0时,有3个零点,当a<0时,有2个零点C.无论a为何值,均有2个零点D.无论a为何值,均有4个零点解:当a>0时,①当x≤0时,f(x)∈(﹣∞,1],则当f(x)≤0时,函数f(f(x))≤1,此时函数有1个零点,当f(x)∈(0,1]时,f(f(x))∈(﹣∞,0],此时函数有1个零点;②当x>0时,f(x)∈R,当f(x)≤0时,f(f(x))∈(﹣∞,1],函数有1个零点,当f(x)>0时,f(f(x))∈R,函数有1个零点,所以当a>0时,函数有4个零点;当a<0时,①当x≤0时,f(x)≥1,f(f(x))≥0,函数无零点;②当x>0时,f(x)∈R,当f(x)≤0时,f(f(x))≥0,函数无零点,当f(x)<0时,f(f(x))∈R,函数有1个零点,所以当a<0时,函数有1个零点,故A正确,故选:A.二、填空题(共5小题,每小题5分,共25分)11.已知集合A={0,1,2},B={x|x<2},则集合A∩B={0,1}.解:集合A={0,1,2},B={x|x<2},则集合A∩B={0,1},故答案为:{0,1}.12.函数f(x)=的值域为(0,2]..解:因为x2+2≥2,所以f(x)=∈(0,2],故f(x)=的值域(0,2].故答案为:(0,2].13.已知函数f(x)的定义域为{1,2,3,4},且自变量x与函数值的关系对应如表:(1)f[f(1)]=1;(2)不等式f(x)≥2的解集为{1,2,4}.解:(1)x=1时,f(1)=3,故f[f(1)]=f(3)=1,(2)若f(x)≥2,则x=1,2,4,故不等式的解集是{1,2,4},故答案为:1,{1,2,4}.14.函数f(x)=x2+ax﹣1在[2,3]上不单调,则实数a的取值范围为(﹣6,﹣4).解:因为f(x)=x2+ax﹣1在[2,3]上不单调,所以2,解可得,﹣6<a<﹣4.故答案为:(﹣6,﹣4)15.已知p,q∈R,p<q,不等式x2﹣px﹣qx+pq﹣2≤0的解集为[m,n],有下列四个命题:①p+q∈[m,n];②(m+1)(n+1)<(p+1)(q+1);③n﹣m=q﹣p+2;④m3+n3>p3+q3.其中,全部正确命题的序号为①②.解:不等式x2﹣px﹣qx+pq﹣2≤0的解集为[m,n],∴(x﹣p)(x﹣q)≤2,(*)①代入x=p+q,可得(q﹣p)(p﹣q)=﹣(p﹣q)2<0≤2,不等式成立,即p+q∈[m,n],故正确;②∵m,n为方程x2﹣px﹣qx+pq﹣2=0的两个根,∴m+n=p+q,mn=pq﹣2,∴(m+1)(n+1)=mn+(m+n)+1=pq﹣2+p+q+1=pq+p+q﹣1<(p+1)(q+1),故正确;③(n﹣m)2=(m+n)2﹣4mn=(p+q)2﹣4pq+8=(q﹣p)2+8,∴n﹣m=≠q﹣p+2,故错误;④m3+n3=(m+n)(m2+n2﹣mn)=(m+n)[(m+n)2﹣3mn],=(p+q)3﹣3(p+q)(pq﹣2)=p3+q3+3p2q+3pq2﹣3(p2q﹣2p+pq2﹣2q)=p3+q3+6(p+q),由于p+q与0的关系不确定,故无法比较m3+n3与p3+q3,故错误;故答案为:①②.三、解答题(本题共6小题,第16-20题每小题14分,第21题15分,共85分)16.解下列关于x的不等式:(1)x2﹣x﹣6≤0;(2)x2﹣3x+4>0;(3)x2≥ax.解:(1)不等式x2﹣x﹣6≤0可化为(x+2)(x﹣3)≤0,解得﹣2≤x≤3,所以不等式的解集为[﹣2,3];(2)不等式x2﹣3x+4>0中,△=(﹣3)2﹣4×4=﹣7<0,所以不等式的解集为R;(3)不等式x2≥ax化为x(x﹣a)≥0,当a=0时,解不等式得x∈R;当a>0时,解不等式得x≤0或x≥a;当a<0时,解不等式得x≤a或x≥0;综上知,a=0时,不等式的解集为R;a>0时,不等式的解集为(﹣∞,0]∪[a,+∞);a<0时,不等式的解集为(﹣∞,a]∪[0,+∞).17.已知集合A={x|x2﹣ax+1>0}.(1)若1∈A,2∉A,求实数a的取值范围;(2)若集合A=R,求实数a的取值范围;(3)已知a≠0,判断a+能否属于集合A,并说明你的理由.解:(1)∵1∈A,2∉A,∴,解得,故a的取值范围是∅;(2)∵A=R,∴x2﹣ax+1>0恒成立,即解集是R,∴△=a2﹣4<0,解得:﹣2<a<2;(3)假设a+属于集合A,∴,整理得恒成立,a+可以属于集合A.18.已知函数f(x)满足:∀a,b∈R,均有f(a+b)=f(a)+f(b),且f(2)=4.(1)求f(0),f(4)的值;(2)判断函数的奇偶性,并说明理由;(3)求f(﹣1)的值.解:(1)令a=b=0,则f(0)=2f(0),则f(0)=0,令a=b=2,则f(4)=2f(2),则f(4)=8,(2)令a=x,b=﹣x,则f(0)=f(x)+f(﹣x),即f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)为奇函数,(3)令a=b=1,则f(2)=2f(1),则f(1)=2,∴f(﹣1)=﹣f(1)=﹣2.19.已知函数f(x)=x2+bx+c的图象经过坐标原点,且y=f(x+1)为偶函数.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求证:对于任意的x∈[0,4],总有2x﹣4≤f(x)≤2x;(Ⅲ)记函数y=|f(x)﹣2x﹣m|在区间[0,4]的最大值为G(m),求G(m)的最小值.解:(Ⅰ)由题意,得f(0)=0,即c=0,∴f(x)=x2+bx,f(x+1)=x2+(2+b)x+b+1,∵f(x+1)是偶函数,∴﹣=0 解得b=﹣2∴f(x)=x2﹣2x;(Ⅱ)对于任意的x∈[0,4],总有2x﹣4≤f(x)≤2x等价于对于任意的x∈[0,4],总有﹣4≤f(x)﹣2x≤0;令g(x)=x2﹣2x﹣2x=x2﹣4x=(x﹣2)2﹣4,则当x∈[0,4],g(x)∈[﹣4,0]即对于任意的x∈[0,4],总有﹣4≤f(x)﹣2x≤0,得证;(Ⅲ)y=|f(x)﹣2x﹣m|=|(x﹣2)2﹣4﹣m|当m≤﹣4时,结合(Ⅱ),因为对于任意的x∈[0,4],总有﹣4≤f(x)﹣2x≤0,则此时(x﹣2)2﹣4﹣m≥0,即有y=(x﹣2)2﹣4﹣m,故当x=0或4时,y取最大值,即G(m)=﹣m;当﹣4<m<﹣2时,如图,由图,可得此时在x=0或4时,y取最大值,即G(m)=﹣m;当m≥﹣2时,如图,或,由图,可得此时当x=2时y取最大值,即G(m)=|﹣4﹣m|,综上G(m)=,当m<﹣2时,G(m)>2,当m≥﹣2时,G(m)≥2,故G(m)的最小值为2.20.已知函数f(x)=,其中P,M是非空数集,且P∩M=∅,设f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.(1)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);(2)若P=(﹣∞,a),M=[a,+∞),且f(P)∪f(M)=R,求实数a的取值范围.解:(1)∵P=(﹣∞,0),∴f(P)={y|y=|x|,x∈(﹣∞,0)}=(0,+∞),∵M=[0,4],∴f(M)={y|y=﹣x2+2x,x∈[0,4]}=[﹣8,1],∴f(P)∪f(M)=[﹣8,+∞);(2)∵P=(﹣∞,a),M=[a,+∞),∴f(x)的定义域为R,∵f(P)∪f(M)=R,∴f(P)={y|y=f(x),x∈P}={y|y=|x|,x∈P},f(M)={y|y=f(x),x∈M}={y|y=﹣x2+2x,x∈M,分别画出y=|x|与y=﹣x2+2x的图象,从图象,可知:0≤a≤1,可使得f(P)∪f(M)=R,故得实数a的取值范围是[0,1].21.已知集合A为数集,定义f A(x)=,若A,B⊆{x|x≤8,x∈N*},定义:d(A,B)=|f A (1)﹣f B(1)|+|f A(2)﹣f B(2)|+……+|f A(8)﹣f B(8)|.(1)已知集合A={1,2,3},B={2,3,4},C=∅,求d(A,B),d(A,C)的值;(2)若A,B,C⊆{x|x≤8,x∈N*}.①求证:d(A,B)+d(A,C)≥d(B,C);②求d(A,B)+d(A,C)+d(B,C)的最大值.解:(1)d(A,B)=|f A(1)﹣f B(1)|+|f A(2)+f B(2)|+|f A(3)+f B(3)|+…+|f A(8)+f B(8)|=|1﹣0|+|1﹣1|+|1﹣1|+|0﹣1|+|0﹣0|+|0﹣0|+|0﹣0|+|0﹣0|=2,d(A,C)=|f A(1)+f B(1)|+|f A(2)+f B(2)|+|f A(3)+f B(3)|+…+|f A(8)+f B(8)|=|1﹣0|+|1﹣0|+|1﹣0|+|0﹣0|+|0﹣0|+|0﹣0|+|0﹣0|+0﹣0|=3.(2)①由题d(A,B)=cardA+cardB﹣card(A∩B),∴d(A,B)+d(A,C)=cardA+cardB﹣card(A∩B)+cardA+cardC﹣card(A∩C),d(B,C)=cardB+cardC﹣card(B∩C),欲证d(A,B)+d(A,C)≥d(B,C),即证2cardA+cardB+cardC﹣card(A∩B)﹣card(A∩C)≥cardB+cardC﹣card(B∩C),即证2cardA+card(B∩C)≥card(A∩B)+card(A∩C),∵cardA≥card(A∩B),cardA≥card(A∩C),∴得证,原不等式成立.②d(A,B)+d(A,C)+d(B,C)=cardA+cardB﹣card(A∩B)+cardA+cardC﹣card (A∩C)+cardB+cardC﹣card(B∩C)=2(cardA+cardB+cardC)﹣[card(A∩B)+card(A∩C)+card(B∩C)]≤2(cardA+cardB+cardC),当且仅当card(A∩B)=card(A∩C)=card(B∩C)=0时,等号成立,∴当A∪B∪C={x|x≤8,x∈N*}且A∩B=A∩C=B∩C=∅时,有d(A,B)+d(A,C)+d(B,C)最大值16.。
2020-2021学年重庆市高一上学期期中数学试题(解析版)
2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。
2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案
2020-2021学年江苏省徐州一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)已知幂函数f(x)=x a的图象过点(3,27),则f(2)=()A.4B.8C.9D.163.(5分)函数y=的定义域为()A.[﹣1,0)B.(0,+∞)C.[﹣1,0)∪(0,+∞)D.(﹣∞,0)∪(0,+∞)4.(5分)己知函数f(x)=,则f(f(4))的值为()A.﹣B.0C.1D.45.(5分)某中学高一年级的学生积极参加体育锻炼,其中有1056名学生喜欢足球或游泳,660名学生喜欢足球,902名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数是()A.682B.616C.506D.4626.(5分)函数y=的值域是()A.(﹣∞,+∞)B.(﹣∞,)∪(﹣,+∞)C.(﹣∞,)∪(﹣,+∞)D.(﹣∞,﹣)∪(﹣,+∞)7.(5分)若关于x的不等式x2﹣2x+c2<0的解集为(a,b),则+的最小值为()A.9B.﹣9C.D.﹣8.(5分)已知f(x)是定义在R上的奇函数,对任意两个正数x1,x2,都有<0,且f(2)=0,则满足(x﹣1)f(x)>0的x的取值范围是()A.(﹣∞,﹣2)∪(0,1)∪(2,+∞)B.(﹣2,0)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,2)二.选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得了分。
9.(5分)若a<b<0,则()A.|a|>|b|B.a2>b2C.<D.>10.(5分)下列函数与y=x2﹣2x+3的值域相间的是()A.y=4x(x≥)B.y=+2C.y=D.y=2x﹣11.(5分)已知2a=3.b=log32,则()A.a+b>2B.ab=1C.3b+3﹣b=D.=log91212.(5分)某学习小组在研究函数f(x)=的性质时,得出了如下的结论,其中正确的是()A.函数f(x)的图象关于y轴对称B.函数f(x)的图象关于点(2,0)中心对称C.函数f(x)在(﹣2,0)上是增函数D.函数f(x)在[0,2)上有最大值﹣三、填空题:本题共4小题,每小题5分,共20分。
2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷 及答案解析
2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷一、选择题(本大题共9小题,共45.0分)1. 已知集合A ={x|x 2−3x <0},B ={x|y =√1−x},则A ∩B =( )A. [0,3)B. (1,3)C. (0,1]D. (0,1)2. 下列函数中在定义域上既是奇函数又是增函数的为( )A. y =x +1B. y =−x 2C. y =−1xD. y =x 33. 已知函数f(x)={log 2x,x >03x ,x ≤0,则f(f(14))的值是( ) A. −19 B. −9 C. 19 D. 94. 命题“∀x ∈[1,2],2x 2−a ≥0”为真命题的一个充分不必要条件是( )A. a ≤1B. a ≤2C. a ≤3D. a ≤45. 设a =0.991.01,b =1.010.99,c =log 1.010.99,则( )A. c <b <aB. c <a <bC. a <b <cD. a <c <b6. 若函数y =f(x)和y =g(x)的图象如图1、图2所示,则不等式f(x)g(x)≥0的解集是( )A. (−1,1]∪(2,3]B. (−1,1)∪(2,3)C. (2,3]∪(4,+∞)D. (−1,1]∪(2,3]∪(4,+∞) 7. 已知函数f(x)=ln 1+x 1−x +x ,且f(a)+f(a +1)>0,则a 的取值范围为( )A. (−1,−12)B. (−12,0)C. (−12,1)D. (−12,+∞) 8. 已知函数f(x)={x e x +1(x ≥0)x 2+2x +1(x <0),若函数y =f(f(x)−a)−1有三个零点,则实数a 的取值范围是( )A. (1,1+1e )∪(2,3]B. (1,1+1e )∪(2,3]∪{3+1e }C. (1,1+1e )∪[2,3)∪{3+1e }D. (1,1+2e )∪(2,3] 9. 已知函数f(x)=a x−1+1(a >0,a ≠1)的图象恒过点A ,下列函数图象不经过点A( )A. y =√1−x +2B. y =|x −2|+1C. y =x −13+1D. y =2x−1二、不定项选择题(本大题共3小题,共15.0分)10. 已知函数f(1−x)的定义域为(0,1),则( ) A. 函数f(x)的定义域为(0,1)B. 函数f(x)的定义域为(−1,0)C. 函数f(1−x 2)的定义域为(−1,0)∪(0,1)D. 函数f(1−x 2)的定义域为(0,1)11. 若a ,b ,c 为实数,下列说法正确的是( )A. 若a >b ,则ac 2>bc 2B. 若a <b <0,则a 2>ab >b 2C. “关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件是“a >0,b 2−4ac ≤0”D. “a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件12. 已知函数f(x)={2−x −1(x ≤0)x 2(x >0).若函数y =f(x)−x −a 恰有两个零点,则实数a 的取值范围为( )A. (−∞,−14)B. (−∞,−14]C. (−14,+∞)D. [−14,+∞)E.三、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)=x 2+(m +2)x +3是偶函数,则m = ______ .14. 函数f(x)=ln x+1x−1的值域为______15. 已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是______.16. 若log a 23<1则实数a 的取值范围是________.四、解答题(本大题共6小题,共72.0分)17. (1)求值:2lg5+23lg8+lg5⋅lg20+lg 22;(2)已知x+x−1=4,求x32+x−32.18.已知全集U=R,集合A={x|x<1},B={x|a≤x≤a+3}.(1)若a=−1,求A∩B,A∪B;(2)若B⊆∁U A,求实数a的取值范围.−ax2,其中a∈R.19.已知函数f(x)=xx+2(1)若a=1时,求函数f(x)的零点;(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点.20.为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(单位:万元)与处理量x(单位:t)之间的函数关系可近似表示为y=x2−40x+1600,x∈[30,50].已知每处理1t的二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利.如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.已知函数f(x)=x−3x+2(1)求f(2)的值;(2)求函数f(x)的定义域和值域.22.设函数f(x)=x−1,x∈R且x≠−1,就m的取值情况,讨论关于x的方程f(x)−x=m在[0,1]上x+1的解的个数.-------- 答案与解析 --------1.答案:C解析:可求出集合A ,B ,然后进行交集的运算即可.考查描述法、区间的定义,一元二次不等式的解法,以及交集的运算.解:A ={x|0<x <3},B ={x|x ≤1};∴A ∩B =(0,1].故选:C .2.答案:D解析:本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性. 根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.解:A.y =x +1的图象不关于原点对称,不是奇函数,∴该选项错误;B .y =−x 2是偶函数;∴该选项错误;C .y =−1x为反比例函数,在其定义域上为奇函数,但不是增函数,不符合题意; D .y =x 3为幂函数,在其定义域上为奇函数,且是增函数,符合题意;故选D . 3.答案:C解析:解:∵函数f(x)={log 2x,x >03x ,x ≤0, ∴f(14)=log 214=−2,f(f(14))=f(−2)=3−2=19.故选:C .由已知得f(14)=log 214=−2,从而f(f(14))=f(−2),由此能求出结果.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.答案:A解析:解:由2x2−a≥0,得a≤2x2,函数y=2x2在[1,2]上的最小值为2.若对∀x∈[1,2],2x2−a≥0成立,则a≤2.∴由a≤1,得a≤2成立,反之不成立,则a≤1是“∀x∈[1,2],2x2−a≥0”为真命题的一个充分不必要条件;a≤2是“∀x∈[1,2],2x2−a≥0”为真命题的一个充分必要条件;a≤3与a≤4是“∀x∈[1,2],2x2−a≥0”为真命题的不充分条件.故选:A.求出对∀x∈[1,2],2x2−a≥0恒成立的a的取值范围,然后结合充分必要条件的判定逐一分析四个选项得答案.本题考查充分必要条件的判定方法,考查恒成立问题的求解方法,是基础题.5.答案:B解析:本题考查了指数函数与对数函数的单调性,考查比较大小,考查了推理能力与计算能力,属于基础题.利用指数函数与对数函数的单调性即可得出.解:∵a=0.991.01∈(0,1),b=1.010.99>1,c=log1.010.99<0,则c<a<b,故选:B.6.答案:D解析:本题主要考查函数图象和不等式的解集的问题,已知函数的图象及单调性为平台,考查了其他不等式的解法,是一道综合题.先根据函数的图象,观察可得f(x),g(x)与0的关系,再根据不等式的解集需要满足f(x)g(x)≥0,且g(x)≠0,得到答案.解:由y=f(x)图象知x∈(−∞,1)∪(3,+∞)时f(x)>0,x∈(1,3)时f(x)<0;由y =g(x)图象知x ∈(−∞,−1)∪(2,4)时,g(x)<0,x ∈(−1,2)∪(4,+∞)时,g(x)>0. 故x ∈(−1,1]时f(x)≥0,且g(x)>0,x ∈(4,+∞)时f(x)>0,g(x)>0,x ∈(2,3]时f(x)≤0且g(x)<0,因此不等式f(x)g(x)≥0的解集为(−1,1]∪(2,3]∪(4,+∞).故选:D . 7.答案:B解析:解:根据题意,函数f(x)=ln 1+x 1−x +x ,有1+x 1−x >0,解可得−1<x <1,即函数f(x)的定义域为(−1,1),有f(−x)=ln 1−x 1+x +(−x)=−(1+x 1−x +x)=−f(x),则函数f(x)为奇函数,分析易得,f(x)=ln 1+x 1−x +x 在(−1,1)上为增函数,f(a)+f(a +1)>0⇒f(a)>−f(a +1)⇒f(a)>f(−a −1),则有{a >−a −1−1<a <1−1<a +1<1,解可得−12<a <0,即a 的取值范围为(−12,0);故选:B .根据题意,求出函数的定义域,进而分析可得f(x)为奇函数且在(−1,1)上为增函数,据此可得原不等式等价于{a >−a −1−1<a <1−1<a +1<1,解可得a 的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,关键是得到关于a 的不等式,属于基础题. 8.答案:B解析:解:当x <0时,由f(x)−1=0得x 2+2x +1=1,得x =−2或x =0(舍);当x ≥0时,由f(x)−1=0得x e x +1=1,得x =0,当x ≥0时,f(x)=x e x +1,f′(x )=1−xe x ,当x >1时,f′(x )<0,f(x)单调递减;当0≤x <1时,f′(x )>0,f(x)单调递增;此时f(x)最大值为f(1)=1e +1,由y =f(f(x)−a)−1=0得f(x)−a =0或f(x)−a =−2,即f(x)=a ,f(x)=a −2,作出函数f(x)的图象如图:当1<a −2<1+1e 时,即a ∈(3,3+1e )时,y =f(f(x)−a)−1有4个零点,当a −2=1+1e 时,即a =3+1e 时,y =f(f(x)−a)−1有三个零点,当a −2>1+1e 时,即a >3+1e 时,y =f(f(x)−a)−1有2个零点当a =1+1e 时,则y =f(f(x)−a)−1有2个零点,当0<a −2≤1时,即2<a ≤3时,y =f(f(x)−a)−1有三个零点,当1<a <1+1e 时,则y =f(f(x)−a)−1有3个零点,其余情况显然不符合题意,综上a 的取值范围是:(1,1+1e )∪(2,3]∪{3+1e }.故选:B .先求出f(x)的零点,作出函数f(x)的图象,利用数形结合进行求解即可.本题主要考查函数与方程的应用,求出函数的零点,利用数形结合以及分类讨论是解决本题的关键.属于难题. 9.答案:D解析:本题考查了指数函数的性质,恒过定点的求法,属于基础题.根据指数函数的性质求出A的坐标,将A的坐标带入考查各选项即可.解:函数f(x)=a x−1+1(a>0,a≠1)的图象恒过点A,即x−1=0,可得x=1,那么f(1)=2,∴函数f(x)恒过点A(1,2),把x=1,y=2带入各选项,经考查各选项,只有D没有经过A点.故选D.10.答案:AC解析:解析:由函数f(1−x)的定义域为(0,1),即0<x<1,得到0<1−x<1,则函数f(x)的定义域为(0,1),由0<1−x2<1,解得−1<x<0或0<x<1,函数f(1−x2)的定义域为(−1,0)∪(0,1).故选A、C.11.答案:BD解析:【试题解析】本题考查了命题真假的判断问题,也考查了简易逻辑推理的应用问题,是基础题.根据不等式的基本性质,可以判断选项A、B是否正确;通过举反例可以判断选项C错误;求出命题成立的充要条件,判断选项D正确.解:对于A:若a>b,则ac2>bc2,在c=0时不成立,所以A错误;对于B:根据不等式的性质,若a<b<0,则−a>−b>0,所以−a2<−ab,−ab<−b2,所以a2>ab,ab>b2,即a2>ab>b2,选项B正确;对于C:a=b=0,c=0时,不等式ax2+bx+c≥0也恒成立,所以选项C错误;对于D:方程x2+x+a=0有两个异号的实根的充要条件是a<0,所以a<1是“关于x的方程x2+x+a=0有两个异号的实根”的必要不充分条件,D正确.故选:BD.12.答案:E解析:解:作出函数f(x)={2−x −1(x ≤0)x 2(x >0)的图象, 函数y =f(x)−x −a 恰有两个零点即为y =f(x)的图象和直线y =x +a 有两个交点,当直线y =x +a 与y =x 2(x >0)相切,可得x 2−x −a =0有两个相等实根,可得△=1+4a =0,即a =−14,由图象可得当a >−14时,y =f(x)的图象和直线y =x +a 有两个交点,故选:C .由题意,函数g(x)=f(x)−x −a 恰有两个零点可化为函数f(x)与函数y =x +a 有两个不同的交点,从而作图求解.本题考查了函数的图象的应用及数形结合的思想应用,以及直线和曲线相切的条件,属于中档题. 13.答案:−2解析:解:由于函数f(x)=x 2+(m +2)x +3是偶函数,则f(−x)=f(x),即(−x)2+(m +2)(−x)+3=x 2+(m +2)x +3,则有2(m +2)x =0,则有m =−2.故答案为:−2.由于函数f(x)=x 2+(m +2)x +3是偶函数,则f(−x)=f(x),即(−x)2+(m +2)(−x)+3=x 2+(m +2)x +3,化简即可得到m .本题考查函数的奇偶性及运用,考查定义法解题,属于基础题.14.答案:(−∞,0)∪(0,+∞)解析:解:由x+1x−1>0,解得x <−1或x >1,令t =x+1x−1=1+2x−1,则0<t <1或t >1. 故函数y =lnt 的值域为(−∞,0)∪(0,+∞),故答案为(−∞,0)∪(0,+∞).先求出函数的定义域,然后确定出t =x+1x−1的值域,最后借助对数函数的单调性求该函数的值域. 本题考查复合型函数的值域求法,属于中档题目. 15.答案:(−4,2)解析:本题考查不等式恒成立以及利用基本不等式求最值,属于基础题.利用基本不等式得到x +2y ⩾8,若x +2y >m 2+2m 恒成立,则8>m 2+2m ,即可求出答案. 解:x >0,y >0,且2x +1y =1,则x +2y =(x +2y )(2x +1y )=4+4y x +x y ⩾4+2√4y x ·x y =8, 当且仅当4y x =x y ,即x =4,y =2时,等号成立,若x +2y >m 2+2m 恒成立,则8>m 2+2m ,解得−4<m <2.故答案为(−4,2) .16.答案:(0,23)∪(1,+∞)解析:本题主要考查对数函数图像与性质的应用,属于中档题.解:由题意得,∴log a 23<log a a ,log a 23<1则实数a 的取值范围是(0,23)∪(1,+∞), 故答案为(0,23)∪(1,+∞). 17.答案:解:(1)2lg5+23lg8+lg5lg20+lg 22=lg25+lg823+(lg10−lg2)(lg10+lg2)+lg 22=lg25+lg4+1−lg 22+lg 22=lg100+1=2+1=3;(2)由已知(x12+x−12)2=x+2+x−1=6,又x12+x−12>0,所以x12+x−12=√6,所以x32+x−32=(x12+x−12)(x−1+x−1)=3√6.解析:本题考查指数和对数运算.属于基础题.(1)利用对数运算法则求解即可,注意lg2+lg5=1的使用;(2)由已知求出x12+x−12,然后利用立方和公式求解即可.18.答案:解:(1)若a=−1,B=[−1,2],A∩B=[−1,1),A∪B=(−∞,2];(2)∁U A={x|x≥1},∵a<a+3,∴B≠⌀∵B⊆∁U A,∴a≥1.∴实数a的取值范围为[1,+∞).解析:(1)由a=−1,得B=[−1,2],从而A∩B=[−1,1),A∪B=(−∞,2];(2)先求∁U A={x|x≥1},再由B⊆∁U A,借助数轴可得结果.本题考查了集合间的基本运算及集合的包含关系应用,集合关系中的参数问题,属基础题.−x2,19.答案:解:(1)当a=1时,函数f(x)=xx+2−x2=0,可得可得x=0,或x2+2x−1=0,令xx+2解得x=0,或x=−1−√2,或x=−1+√2.综上可得,当a=1时,函数f(x)的零点为x=0,或x=−1−√2,或x=−1+√2(2)证明:∵当a>0时,x>0,由函数f(x)=0得:ax2+2ax−1=0,记g(x)=ax2+2ax−1,则g(x)的图象是开口朝上的抛物线,由g(0)=−1<0得:函数g(x)在(0,+∞)内有且仅有一个零点.∴函数f(x)在(0,+∞)上有唯一零点解析:(1)当a=1时,函数f(x)=xx+2−x2,令xx+2−x2=0,可得函数f(x)的零点.(2)当a>0时,若x>0,由函数f(x)=0得:ax2+2ax−1=0,进而可证得f(x)在(0,+∞)上有唯一零点.本题主要考查函数的零点与方程的根的关系,转化思想,二次函数的图象和性质,属于中档题.20.答案:解:(1)当x∈[30,50]时,设该工厂获利S万元,则S=20x−(x2−40x+1600)=−(x−30)2−700,所以当x∈[30,50]时,S max=−700<0,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题易知,二氧化碳的平均处理成本P(x)=yx =x+1600x−40,x∈[30,50],当x∈[30,50]时,P(x)=x+1600x −40≥2√x⋅1600x−40=40,当且仅当x=1600x,即x=40时等号成立,故P(x)的最小值为P(40)=40,所以当处理量为40t时,每吨的平均处理成本最少.解析:本题考查函数模型问题,属于中档题列出函数表达式,求最值21.答案:解:(1)f(2)=2−32+2=−14;(2)要使f(x)有意义,则x≠−2,∴f(x)的定义域为{x|x≠−2};f(x)=x−3x+2=1−5x+2,5x+2≠0,∴f(x)≠1,∴f(x)的值域为{f(x)|f(x)≠1}.解析:本题考查已知函数求值的方法,函数定义域、值域的概念及求法,分离常数法的运用,属于一般题.(1)直接代入即可求得f(2);(2)容易看出f(x)需满足x≠−2,这样便可得出f(x)的定义域;分离常数得到f(x)=1−5x+2,显然得出f(x)≠1,即得出f(x)的值域.22.答案:解:由题意,知m=f(x)−x=x−1x+1−x=1−2x+1−x=2−2x+1−(x+1),设t=x+1,x∈[0,1],所以m=2−2t−t,t∈[1,2].设ℎ(t)=−(2t+t),因为ℎ(t)在[1,√2)上单调递增,在(√2,2]上单调递减,所以函数y=f(x)−x在[0,√2−1)上单调递增,在(√2−1,1]上单调递减.f(0)−0=−1,f(√2−1)−(√2−1)=2−2√2,f(1)−1=−1. ①当m<−1或m>2−2√2时,关于x的方程f(x)−x=m在[0,1]上无解; ②当m=2−2√2时,关于x的方程f(x)−x=m在[0,1]上有一个解; ③当−1≤m<2−2√2时,关于x的方程f(x)−x=m在[0,1]上有两个解.解析:本题考查了函数与方程以及函数的单调性,是难题.由题意,知m=f(x)−x=x−1x+1−x=1−2x+1−x=2−2x+1−(x+1),设t=x+1,x∈[0,1],所以m=2−2t −t,t∈[1,2].设ℎ(t)=−(2t+t),根据ℎ(t)的单调性和m的取值范围确定方程f(x)−x=m在[0,1]上的解的个数.。
2020-2021学年安徽省合肥市一六八中学高一上学期期中考试数学试题Word版含解析
2020-2021学年安徽省合肥市一六八中学上学期期中考试高一数学试题一、单选题1.已知集合{|0}M x x =,{}|,xN y y e x R ==∈,那么正确的一项是( )A NB .0N ∈C .M ND .N M ⊆【答案】D【解析】先求值域得集合N ,再根据元素与集合关系判断A,B ,根据集合与集合关系判断C,D. 【详解】{}|,(0,)x N y y e x R ==∈=+∞N N N∉,0,M ,故选:D 【点睛】本题考查函数值域、元素与集合关系以及集合与集合关系,考查基本分析判断能力,属基础题. 2.下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .ln ||y x = B .212y x =-C .||4x y -=D .x xy e e -=-【答案】A【解析】直接根据函数解析式分别判断奇偶性与单调性. 【详解】ln ||y x =是偶函数,且在(0,)+∞上单调递增;212y x =-是偶函数,且在(0,)+∞上单调递减; ||4x y -=是偶函数,且在(0,)+∞上单调递减; x x y e e -=-是奇函数,且在(0,)+∞上单调递增;故选:A 【点睛】本题考查基本奇偶性与单调性的分析判断能力,属基础题.3.函数2()46f x x x =--的定义域为[0,]m ,值域为[10,6]--,则m 的取值范围是A .[0,4]B .[4,6]C .[2,6]D .[2,4]【答案】D【解析】因为函数()246f x x x =--的图象开口朝上,由 ()()()046,210f f f ==-=-,结合二次函数的图象和性质可得m 的取值范围. 【详解】函数()246f x x x =--的图象是开口朝上,且以直线2x =为对称轴的抛物线, 故()()()046,210f f f ==-=-,函数()246f x x x =--的定义域为[]0,m ,值域为[]10,6--,所以24m ≤≤,即m 的取值范围是[]2,4,故选D. 【点睛】本题主要考查二次函数的图象和性质,以及函数的定义域与值域,意在考查灵活应用所学知识解答问题的能力.4.已知函数234,0()2,01,0x x f x x x x ⎧->⎪=+=⎨⎪-<⎩,则((1))=f f ( )A .1B .2C .1-D .3【答案】C【解析】根据自变量范围代入对应解析式计算得结果. 【详解】((1))(34)(1)1f f f f =-=-=-故选:C 【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.5.一元二次方程24260x mx m -++=有两个不等的非正根,则实数m 的范围为( ) A .30m -<<B .31m -<-C .31m -≤<-D .312m -≤【答案】C【解析】根据实根分布列不等式组,解得结果. 【详解】因为一元二次方程24260x mx m -++=有两个不等的非正根,所以231164(26)022********m m m m m m m m m ⎧><-⎪⎧∆=-+>⎪⎪<∴<∴-≤<-⎨⎨⎪⎪+≥≥-⎩⎪⎩或 故选:C 【点睛】本题考查实根分布,考查数形结合思想方法以及求解能力,属中档题. 6.已知5log 26a =,b =0.90.6c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】根据指数函数、幂函数和对数函数的单调性,结合临界值1和2可确定,,a b c 的大致范围,从而得到结果. 【详解】10.95550.60.61992log 25log 26<==<=<==<,即a b c >>本题正确选项:A 【点睛】本题考查根据指数函数、幂函数和对数函数单调性比较大小的问题,解决此类题的常用方法是利用临界值来确定所比较数字的大致范围. 7.函数()21ln f x x x=-+的图像大致为( )A .B .C .D .【答案】B 【解析】取特值1e判断正负,即可得出答案。
辽宁省大连市第二十四中学2020-2021学年高一上学期期中数学试题 答案和解析
辽宁省大连市第二十四中学【最新】高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知a b >,且0ab ≠,则下列不等式正确的是() A .22a b >B .22a b >C .||||a b >D .11a b< 2.已知集合{}221,M y y x x x R ==--∈,{}24P x x =-≤≤,则集合M 与集合P 的关系是( ) A .PM B .P M ∈C .M PD .M P3.在下列给出的四个命题中,为真命题的是( ) A .a R ∀∈,b Q ∃∈,220a b += B .n Z ∀∈,m Z ∃∈,nm m = C .n Z ∀∈,m Z ∃∈,2n m > D .a R ∀∈,b Q ∃∈,221a b +=4.函数212x y e π-=⋅的部分图象的大致是( ) A . B .C .D .5.若223x m >-是14x -<<的必要不充分条件,则实数m 的取值范围是( ) A .[-3,3] B .(][),33,-∞-+∞C .(][),11,-∞-+∞D .[-1,1]6.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f 13⎛⎫ ⎪⎝⎭的x 的取值范围是( ) A .12,33⎛⎫⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭7.若方程()()21210x k x k +--+=的一个根在区间()2,3内,则实数k 的取值范围是 A .()3,4 B .()2,3 C .()1,3D .()1,28.已知2533x ≤≤,11y -≤≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是( ) A .342,2⎡⎤⎣⎦B .62,2⎡⎤⎣⎦C .61,22⎡⎤⎢⎥⎣⎦D .72,2⎡⎤⎣⎦9.已知函数,1()(32)2,1ax f x x a x x ⎧-≤-⎪=⎨⎪-+>-⎩,在(—∞,+∞)上为增函数,则实数a 的取值范围是( ) A .30,2⎛⎤ ⎥⎝⎦B .30,2⎛⎫ ⎪⎝⎭C .31,2⎡⎫⎪⎢⎣⎭D .31,2⎡⎤⎢⎥⎣⎦10.已知实数,x y 满足2xy x y -=+,且1x >,则()8y x +的最小值是( ) A.12+B.12+C.12+ D.12+11.已知函数()222,2,x f x x -⎧-=⎨+⎩00x x ≥<,()22, 01, 0x x x g x x x⎧-≥⎪=⎨<⎪⎩,则函数()f g x ⎡⎤⎣⎦的所有零点之和是( ) A .72B .32C .52D .1212.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-,若对(],x m ∀∈-∞,都有()32f x ≥-,则m 的取值范围是( )A .10,3⎛⎤-∞ ⎥⎝⎦ B .11,3⎛⎤-∞ ⎥⎝⎦ C .15,4⎛⎤-∞ ⎥⎝⎦D .13,4⎛⎤-∞ ⎥⎝⎦二、填空题 13.已知2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,()(){}|0B x x a x b =--<,若“1a =-”是“A B φ⋂=”的充分条件,则实数b 的取值范围是______.14.已知函数()x x f x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x 的取值范围为______.15.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-<⎪=⎨⎪⎩,则总利润最大时店面经营天数是___. 16.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.三、解答题17.设集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. (1)当3m =且x ∈Z 时,求AB ;(2)当x ∈R 时,不存在元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 18.已知()f x 是二次函数,且满足(0)2,(1)()23f f x f x x =+-=+ (1)求函数()f x 的解析式(2)设()()2h x f x tx =-,当[1,)x ∈+∞时,求函数()h x 的最小值 19.已知函数()()0,1xf x a b a a =+>≠,其中,a b 均为实数.(1)若函数()f x 的图象经过点()0,2A ,()1,3B ,求函数()1y f x =的值域; (2)如果函数()f x 的定义域和值域都是[]1,1-,求+a b 的值.20.近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有2300m 的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为300元,且渗水面积以每天26m 的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积23m ,该部门需支出服装补贴费为每人600元,劳务费及耗材费为每人每天300元.若安排x 名人员参与抢修,需要k 天完成抢修工作.()1写出k 关于x 的函数关系式;()2应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)21.已知函数g (x )=ax 2﹣2ax+1+b (a >0)在区间[0,3]上有最大值4和最小值1.设f (x )=,(1)求a 、b 的值;(2)若不等式f (2x )﹣k•2x ≥0在x ∈[﹣1,1]上有解,求实数k 的取值范围. 22.对于函数()f x 与()g x ,记集合()(){}|f g D x f x g x >=>; (1)设()2f x x =-,()1g x =,求f g D >.(2)设()21f x ax ax =++,()2g x x x =+,若f g D R >=,求实数a 的取值范围.(3)设()()()121,,01x bf x x b f x h x x -=-+==-.如果12,f h f h D D R >>⋃=求实数b 的取值范围.参考答案1.B 【分析】通过反例可排除,,A C D ;根据2xy =的单调性可知B 正确. 【详解】当1a =-,2b =-时,22a b <,a b <,则,A C 错误; 当1a =,1b =-时,11a b>,则D 错误; 由2xy =单调递增可知,当a b >时,22a b >,则B 正确 本题正确选项:B 【点睛】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题. 2.D 【分析】首先,化简集合M ,就是求解函数221y x x =--,x ∈R 的值域,然后,利用集合之间的基本关系进行判断即可. 【详解】解:由集合M 得2221(1)2y x x x =--=--,x ∈R 2y ∴-, {|2}M y y ∴=-,{}24P x x =-≤≤,MP ∴,故选:D . 【点睛】本题重点考查集合之间的基本关系,属于基础题,注意落实集合M 的元素取值情形. 3.B 【解析】 【分析】结合量词的命题的定义,举反例进行判断即可 【详解】A ,若2a =,则220a b +=不成立,故A 错误,B ,当0m =时,nm m =恒成立,故 B 正确,C ,当1n =-时,2n m >不成立,故C 错误,D ,若2a =,则220a b +=不成立,故D 错误,故选B 【点睛】本题主要考查了命题的真假判断,根据特称命题和全称命题的定义和性质举出反例来进行判断,属于基础题。
2020-2021学年北京交大附中高一(上)期中数学试卷
2020-2021学年北京交大附中高一(上)期中数学试卷一、选择题(共10小题,共40分)1.(4分)已知集合P={x∈R||x|<2},Q={x∈R|﹣1≤x≤3},则P∩Q=()A.[﹣1,2)B.(﹣2,2)C.(﹣2,3]D.[﹣1,3] 2.(4分)已知命题p:∃c>0,方程x2﹣x+c=0有解,则¬p为()A.∀c>0,方程x2﹣x+c=0无解B.∀c≤0,方程x2﹣x+c=0有解C.∃c>0,方程x2﹣x+c=0无解D.∃c<0,方程x2﹣x+c=0有解3.(4分)如果a>b,那么下列不等式中正确的是()A.<B.a2>b2C.a|c|>b|c|D.>4.(4分)下面四组函数中,f(x)与g(x)表示同一个函数的是()A.B.C.D.f(x)=x0,g(x)=15.(4分)下列函数中,在区间[1,+∞)上为增函数的是()A.y=﹣(x﹣1)2B.y=﹣(x+1)2C.y=|x﹣1|D.y=6.(4分)a>﹣1是关于x的方程x2+2x﹣a+1=0有两个负根的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(4分)函数y=的图象大致为()A.B.C.D.8.(4分)已知函数f(x)=|x﹣m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[﹣2,+∞)D.(﹣∞,﹣2] 9.(4分)一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字()A.4,6B.3,6C.3,7D.1,710.(4分)设集合A是集合N*的子集,对于i∈N*,定义,给出下列三个结论:①存在N*的两个不同子集A,B,使得任意i∈N*都满足φi(A∩B)=0且φi(A∪B)=1;②任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∩B)=φi(A)•φi(B);③任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∪B)=φi(A)+φi(B).其中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③二、填空题(共5小题,共20分)11.(4分)函数f(x)=的定义域为.12.(4分)方程组的解集中元素的个数为.13.(4分)若不等式x2﹣ax﹣2<0在x∈(1,2)内恒成立,则a的取值范围是.14.(4分)已知函数y=f(x),y=g(x)的对应关系如表:x123f(x)131x123g(x)321则f(g(1))的值为;满足f(g(x))>g(f(x))的x的值是.15.(4分)对任意的x1<0<x2,若函数f(x)=a|x﹣x1|+b|x﹣x2|的大致图象为如图所示的一条折线(两侧的射线均平行于x轴),试写出a、b应满足的条件.三、解答题(共5小题;共60分)16.(12分)已知集合A={x|x2﹣4x﹣5>0},.(1)若A∩B=∅,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围.17.(12分)已知函数.(1)求函数f(x)的定义域;(2)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.18.(12分)已知函数f(x)=ax2+bx+1(a,b为实数),x∈R.(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求f(x)的解析式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k 的取值范围;(3)若f(x)为偶函数,且a>0,设,mn<0,m+n>0,判断F(m)+F(n)是否大于零,请说明理由.19.(12分)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P(单位:元/102kg)与上市时间t(单位:天)的关系符合图1中的折线表示的函数关系,西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的关系符合图2中的抛物线表示的函数关系.(1)写出图1表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与时间的函数关系式Q=g(t);(2)若市场售价减去种植成本为纯收益,问何时上市的纯收益最大?20.(12分)对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,存在唯一的x2∈D满足等式,则称M为函数y=f(x)的“均值”.(1)判断1是否为函数f(x)=2x+1(﹣1≤x≤1)的“均值”,请说明理由;(2)若函数f(x)=ax2﹣2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).2020-2021学年北京交大附中高一(上)期中数学试卷一、选择题(共10小题,共40分)1.(4分)已知集合P={x∈R||x|<2},Q={x∈R|﹣1≤x≤3},则P∩Q=()A.[﹣1,2)B.(﹣2,2)C.(﹣2,3]D.[﹣1,3]【分析】解关于x的不等式,求出P、Q的交集即可.【解答】解:∵P={x∈R,||x|<2}={x|﹣2<x<2},Q={x∈R|﹣1≤x≤3},则P∩Q=[﹣1,2),故选:A.【点评】本题考查了集合的运算,考查绝对值不等式问题,是一道基础题.2.(4分)已知命题p:∃c>0,方程x2﹣x+c=0有解,则¬p为()A.∀c>0,方程x2﹣x+c=0无解B.∀c≤0,方程x2﹣x+c=0有解C.∃c>0,方程x2﹣x+c=0无解D.∃c<0,方程x2﹣x+c=0有解【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p:∃c>0,方程x2﹣x+c=0 有解,则¬p为∀c>0,方程x2﹣x+c=0无解.故选:A.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.(4分)如果a>b,那么下列不等式中正确的是()A.<B.a2>b2C.a|c|>b|c|D.>【分析】由不等式的基本性质逐一判断即可.【解答】解:若a>0>b,则>,故A错误;取a=﹣1,b=﹣2,满足a>b,但a2<b2,故B错误;若c=0,a|c|=b|c|,故C错误,因为c2+1>0,a>b,∴>,故D正确.故选:D.【点评】本题主要考查不等式的基本性质,属于基础题.4.(4分)下面四组函数中,f(x)与g(x)表示同一个函数的是()A.B.C.D.f(x)=x0,g(x)=1【分析】看两个函数是不是同一个函数,要观察三个方面,A选项,f(x)的定义域{x|x ≠﹣1},定义域不同,不是同一个函数,选项C是定义域不同,前者是全体实数,后者是非负数,选项D也是定义域不同,后者是全体实数,后者是不等于0【解答】解:∵对于A选项,f(x)的定义域{x|x≠﹣1},定义域不同,不是同一个函数,选项C也是定义域不同,前者是全体实数,后者是非负数,选项D也是定义域不同,后者是全体实数,后者是不等于0,故选:B.【点评】本题考查判断两个函数是不是同一个函数,本题解题的关键是判断两个函数的定义域是否相同,本题是一个基础题.5.(4分)下列函数中,在区间[1,+∞)上为增函数的是()A.y=﹣(x﹣1)2B.y=﹣(x+1)2C.y=|x﹣1|D.y=【分析】结合基本初等函数的单调性分别检验各选项即可判断.【解答】解;根据二次函数的性质可知,y=﹣(x﹣1)2,y=﹣(x+1)2在区间[1,+∞)上为减函数,A,C不符合题意;根据反比例函数的性质可知,y=在区间[1,+∞)上为减函数,D不符合题意;故选:C.【点评】本题主要考查了函数单调性的判断,属于基础试题.6.(4分)a>﹣1是关于x的方程x2+2x﹣a+1=0有两个负根的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】关于x的方程x2+2x﹣a+1=0有两个负根,则△=4﹣4(﹣a+1)≥0,且﹣a+1>0,解得a范围,即可判断出结论.【解答】解:关于x的方程x2+2x﹣a+1=0有两个负根,则△=4﹣4(﹣a+1)≥0,且﹣a+1>0,解得:1>a≥0,∴a>﹣1是关于x的方程x2+2x﹣a+1=0有两个负根的必要不充分条件.故选:B.【点评】本题考查了简易逻辑的判定方法、方程与不等式的解法,考查了推理能力与计算能力,属于基础题.7.(4分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.【点评】本题考查了函数图象的识别,属于基础题.8.(4分)已知函数f(x)=|x﹣m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[﹣2,+∞)D.(﹣∞,﹣2]【分析】根据题意,分析可得f(x)在区间(﹣2,﹣1)上递增,将f(x)写成分段函数的形式,分析可得f(x)在区间(m,+∞)上为增函数,据此可得m的取值范围.【解答】解:根据题意,函数f(x)=|x﹣m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则f(x)在区间(﹣2,﹣1)上递增,而f(x)=|x﹣m|=,在区间(m,+∞)上为增函数,则有m≤﹣2,即m的取值范围为(﹣∞,﹣2];故选:D.【点评】本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.9.(4分)一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字()A.4,6B.3,6C.3,7D.1,7【分析】若正确的密码中一定含有数字3,6,而3,6在第1,2,3,4的位置都有,与它们各自的位置均不正确矛盾.同理正确的密码中一定含有数字4,6,或3,7不正确.正确的密码中一定含有数字1,7.【解答】解:若正确的密码中一定含有数字3,6,而3,6在第1,2,3,4的位置都有,与它们各自的位置均不正确矛盾.同理正确的密码中一定含有数字4,6,或3,7不正确.若正确的密码中一定含有数字1,7,而3,6在第1,2,3,4的位置都有,根据它们各自的位置均不正确,可得1在第三位置,7在第四位置.故选:D.【点评】本题考查了合情推理,考查了推理能力,属于中档题.10.(4分)设集合A是集合N*的子集,对于i∈N*,定义,给出下列三个结论:①存在N*的两个不同子集A,B,使得任意i∈N*都满足φi(A∩B)=0且φi(A∪B)=1;②任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∩B)=φi(A)•φi(B);③任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∪B)=φi(A)+φi(B).其中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③【分析】对题目中给的新定义要充分理解,对于i∈N*,φi(A)=0或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【解答】解:∵对于i∈N*,定义,∴①例如A={正奇数},B={正偶数},∴A∩B=∅,A∪B=N*,∴φi(A∩B)=0;φi (A∪B)=1,故①正确;②若φi(A∩B)=0,则i∉(A∩B),则i∈A且i∉B,或i∈B且i∉A,或i∉A且i∉B;∴φi(A)•φi(B)=0;若φi(A∩B)=1,则i∈(A∩B),则i∈A且i∈B;∴φi(A)•φi(B)=1;∴任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∩B)=φi(A)•φi(B);正确,故②正确;③例如:A={1,2,3},B={2,3,4},A∪B={1,2,3,4},当i=2时,φi(A∪B)=1;φi(A)=1,φi(B)=1;∴φi(A∪B)≠φi(A)+φi(B);故③错误;∴所有正确结论的序号是:①②;故选:A.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题(共5小题,共20分)11.(4分)函数f(x)=的定义域为(﹣∞,0)∪(2,+∞).【分析】根据二次根式的性质以及分母不为0,求出函数的定义域即可.【解答】解:由题意得:x2﹣2x>0,解得:x>2或x<0,故函数的定义域是(﹣∞,0)∪(2,+∞),故答案为:(﹣∞,0)∪(2,+∞).【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.12.(4分)方程组的解集中元素的个数为2.【分析】通过解方程组得到所求解集和元素个数.【解答】解:解方程组得到:或.所以原方程组解集为{(1,1),(1,﹣1)},则解集的元素个数为2.故答案是:2.【点评】本题集合的表示方法,考查运算能力,属于基础题.13.(4分)若不等式x2﹣ax﹣2<0在x∈(1,2)内恒成立,则a的取值范围是[1,+∞).【分析】不等式x2﹣ax﹣2<0在x∈(1,2)内恒成立⇔a>x﹣在x∈(1,2)内恒成立,令t(x)=x﹣,x∈(1,2),由函数的单调性求得t(x)的范围得答案.【解答】解:由不等式x2﹣ax﹣2<0在x∈(1,2)内恒成立,得ax>x2﹣2,即a>x﹣在x∈(1,2)内恒成立,令t(x)=x﹣,x∈(1,2),该函数为增函数,则t(x)<t(2)=1.可得a≥1.∴a的取值范围是[1,+∞).故答案为:[1,+∞).【点评】本题考查二次函数的性质,考查不等式恒成立问题的求解方法,训练了利用函数单调性求最值,是基础题.14.(4分)已知函数y=f(x),y=g(x)的对应关系如表:x123f(x)131x123g(x)321则f(g(1))的值为1;满足f(g(x))>g(f(x))的x的值是2.【分析】根据题意,对于第一空:由函数y=f(x)的对应关系求出g(1)的值,结合f (x)的图象可得f(g(1))的值,对于第二空:分别将x=1,2,3代入f[g(x)],g[f (x)],判断出满足f[g(x)]>g[f(x)]的x.【解答】解:根据题意,由f(x)的表格可得:g(1)=3,则f(g(1))=f(3)=1,当x=1时,f[g(1)]=1,g[f(1)]=g(1)=3,不满足f[g(x)]>g[f(x)],当x=2时,f[g(2)]=f(2)=3,g[f(2)]=g(3)=1,满足f[g(x)]>g[f(x)],当x=3时f[g(3)]=f(1)=1,g[f(3)]=g(1)=3,不满足f[g(x)]>g[f(x)],故满足f[g(x)]>g[f(x)]的x的值是2,故答案为1;2.【点评】本题考查函数的表示方法,涉及函数值的计算,属于基础题.15.(4分)对任意的x1<0<x2,若函数f(x)=a|x﹣x1|+b|x﹣x2|的大致图象为如图所示的一条折线(两侧的射线均平行于x轴),试写出a、b应满足的条件a>0且a+b=0;(该结论的等价形式都对).【分析】将f(x)化为分段函数,逐段与图象对应,根据图象在各段上的变化规律:常数函数、正比例函数、常数函数确定解析式的各项系数.找出共同条件.【解答】解:当x≤x1时,f(x)=﹣a(x﹣x1)﹣b(x﹣x2)=﹣(a+b)x+(ax1+bx2)由图可知当x1<0<x2时,f(x)=a(x﹣x1)﹣b(x﹣x2)=(a﹣b)x﹣ax1+bx2由图可知当x≥x2时,f(x)=a(x﹣x1)+b(x﹣x2)=(a+b)x﹣(ax1+bx2)由图又可得出①②两式.由①,①′两式可得a=﹣b>0,同时使得②,②′成立.故答案为:a>0且a+b=0 (或a=﹣b>0)【点评】本题考查绝对值函数的图象,以及识图能力、逆向思维能力.三、解答题(共5小题;共60分)16.(12分)已知集合A={x|x2﹣4x﹣5>0},.(1)若A∩B=∅,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围.【分析】(1)先化简集合A,B,再根据A∩B=∅,即可求得a的值.(2)B⊆A,即B是A的子集,即可求得a的取值范围.【解答】解:B={x|(x﹣a)[x﹣(a+3)]<0}={x|a<x<a+3},A={x|x2﹣4x﹣5>0}={x|x<﹣1或x>5},(1)要使A∩B=∅,则需满足下列不等式组,解此不等式组得﹣1≤a≤2,则实数a的取值范围为[﹣1,2],(2)要使B⊆A,即B是A的子集,则需满足a+3<﹣1或a>5,解得a>5或a<﹣4,即a的取值范围是{a|a>5或a<﹣4}.【点评】本题考查了集合间的关系和运算,深刻理解集合间的关系和运算法则是解决此题的关键.17.(12分)已知函数.(1)求函数f(x)的定义域;(2)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.【分析】(1)由分母1﹣x2≠0,求出函数的定义域{x|x≠±1};(2)证明:为了便于证明,先整理函数==﹣1,然后利用函数单调性定义证明,设1<x1<x2,作差(x1)﹣f(x2)变形,直到容易判断符号为止,从而证明函数单调性.【解答】解:(1)由1﹣x2≠0,得x≠±1,即f(x)的定义域{x|x≠±1}(2)证明:整理函数==﹣1,设1<x1<x2,则f(x1)﹣f(x2)==∵1<x1<x2,∴x1﹣x2<0,1﹣x2<0,1﹣x1<0,1+x2>0,1+x1>0,x2+x1>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则函数f(x)在(1,+∞)上是增函数.【点评】本题考查了分式函数求定义域的方法,利用函数单调性定义证明函数单调性,属于基础题.18.(12分)已知函数f(x)=ax2+bx+1(a,b为实数),x∈R.(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求f(x)的解析式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k 的取值范围;(3)若f(x)为偶函数,且a>0,设,mn<0,m+n>0,判断F(m)+F(n)是否大于零,请说明理由.【分析】(1)利用f(﹣1)=0和值域为[0,+∞),结合二次函数的性质可建立方程组求出a,b的值,进而可以求解,(2)由(1)可得函数g(x)解析式,利用已知可得函数的对称轴在区间外,建立不等式即可求解,(3)由已知函数是偶函数可得b=0,进而可得函数F(x)的解析式,再假设m>n,由已知可得m>﹣n>0,进而可得|m|>|﹣n|,即可判断F(m)+F(n)与0的关系.【解答】解:(1)由f(﹣1)=0可得a﹣b+1=0,又函数的值域为[0,+∞),所以,解得a=1,b=2,故函数f(x)的解析式为:f(x)=x2+2x+1;(2)由(1)可得g(x)=f(x)﹣kx=x2+(2﹣k)x+1,对称轴为x=,因为函数g(x)在区间[﹣2,2]上单调,则有,解得k≥6或k≤﹣2,故k的取值范围为(﹣∞,﹣2]∪[6,+∞);(3)大于零,理由如下:因为f(x)是偶函数,所以f(x)=ax2+1,则F(x)=,不妨设m>n,则n<0,由m+n>0得m>﹣n>0,所以|m|>|﹣n|,又a>0,所以F(m)+F(n)=f(m)﹣f(n)=(am2+1)﹣(an2+1)=a(m2﹣n2)>0,故F(m)+F(n)大于零.【点评】本题考查了二次函数的解析式与性质,考查了学生的逻辑推理能力和运算能力,属于中档题.19.(12分)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P(单位:元/102kg)与上市时间t(单位:天)的关系符合图1中的折线表示的函数关系,西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的关系符合图2中的抛物线表示的函数关系.(1)写出图1表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与时间的函数关系式Q=g(t);(2)若市场售价减去种植成本为纯收益,问何时上市的纯收益最大?【分析】(1)分0<t≤200和200<t≤300两种情况,结合一次函数分段写出P=f(t);根据二次函数的顶点式来写Q=g(t);(2)设纯收益为W,则W=f(t)﹣g(t),然后分0<t≤200和200<t≤300两种情况,并利用配方法来求W的最大值.【解答】解:(1)P=f(t)=,Q=g(t)=(t﹣150)2+100,0<t≤300.(2)设纯收益为W,则W=f(t)﹣g(t),若0<t≤200,W=﹣t+300﹣(t﹣150)2﹣100=﹣t2+t+=﹣(t﹣50)2+100,∴当t=50时,纯收益W最大,为100元/102kg,若200<t≤300,W=2t﹣300﹣(t﹣150)2﹣100=﹣t2+t﹣=﹣(t﹣350)2+100,∴当t=300时,纯收益W最大,为87.5元/102kg,综上所述,当t=50,即从2月1日开始的第50天上市,西红柿的纯收益最大.【点评】本题考查分段函数和二次函数的实际应用,选择合适的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.20.(12分)对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,存在唯一的x2∈D满足等式,则称M为函数y=f(x)的“均值”.(1)判断1是否为函数f(x)=2x+1(﹣1≤x≤1)的“均值”,请说明理由;(2)若函数f(x)=ax2﹣2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).【分析】(1)根据均值的定义,要判断1是函数f(x)=2x+1(﹣1≤x≤1)的“均值”,即要验证;(2)函数f(x)=ax2﹣2x(1<x<2,a为常数)存在“均值”,当a=0时,f(x)=﹣2x(1<x<2)存在“均值”,且“均值”为﹣3;当a≠0时,由f(x)=ax2﹣2x(1<x<2)存在均值,可知对任意的x1,都有唯一的x2与之对应,从而有f(x)=ax2﹣2x(1<x<2)单调,从而求得实数a的取值范围;(3)根据(1),(2)的结论对于当I=(a,b)或[a,b]时,函数f(x)存在唯一的“均值”;当I为(﹣∞,+∞)时,函数f(x)存在无数多个“均值”,当为半开半闭区间时,函数f(x)不存在均值.【解答】解:(1)对任意的x1∈[﹣1,1],有﹣x1∈[﹣1,1],当且仅当x2=﹣x1时,有,故存在唯一x2∈[﹣1,1],满足,所以1是函数f(x)=2x+1(﹣1≤x≤1)的“均值”.(2)当a=0时,f(x)=﹣2x(1<x<2)存在“均值”,且“均值”为﹣3;当a≠0时,由f(x)=ax2﹣2x(1<x<2)存在均值,可知对任意的x1,都有唯一的x2与之对应,从而有f(x)=ax2﹣2x(1<x<2)单调,故有或,解得a≥1或a<0或,综上,a的取值范围是或a≥1.(3)①当I=(a,b)或[a,b]时,函数f(x)存在唯一的“均值”.这时函数f(x)的“均值”为;②当I为(﹣∞,+∞)时,函数f(x)存在无数多个“均值”.这时任意实数均为函数f(x)的“均值”;③当I=(a,+∞)或(﹣∞,a)或[a,+∞)或(﹣∞,a]或[a,b)或(a,b]时,函数f(x)不存在“均值”.①当且仅当I形如(a,b)、[a,b]其中之一时,函数f(x)存在唯一的“均值”.这时函数f(x)的“均值”为;②当且仅当I为(﹣∞,+∞)时,函数f(x)存在无数多个“均值”.这时任意实数均为函数f(x)的“均值”;③当且仅当I形如(a,+∞)、(﹣∞,a)、[a,+∞)、(﹣∞,a]、[a,b)、(a,b]其中之一时,函数f(x)不存在“均值”.【点评】此题是个中档题,考查函数单调性的理解,和学生的阅读能力,以及分析解决问题的能力,其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.。
2020-2021学年北京石景山区景山学校远洋分校高一上学期期中考试数学试题(解析版)
北京石景山区景山学校远洋分校2020-2021学年高一上学期期中考试试题时间: 120分钟 总分: 100 分一、选择题(共10个小题,每题4分,共40分) 1. 设集合{|12},{0,1,2}A x x B =-<<=,则A B =( )A. {0}B. {0}1,C. {012},,D. {1,0,1,2}-『答案』B 『解析』{|12},{0,1,2}A x x B =-<<= ,{}0,1A B ∴⋂=.故选:B2. 下列函数在(0,)+∞上是增函数的是( )A.1()f x x =B. ()3xf x =C.1()()2xf x = D. 2()f x x =-『答案』B『解析』对A ,反比例函数1()f x x =在(0,)+∞上是减函数,故A 错误;对B ,指数函数()3xf x =在(0,)+∞上是增函数,故B 正确;对C ,指数函数1()()2xf x =在(0,)+∞上是减函数,故C 错误; 对D ,二次函数2()f x x =-在(0,)+∞上是减函数,故D 错误.故选:B3. 已知,a b ∈R ,则“a b >”是“1ab >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件『答案』D『解析』当1a =-,2b =-时,a b >,但112a b =<;当2a =-,1b =-时,1a b >,但a b <;综上,“a b >”是“1ab >”的既不充分也不必要条件,故选:D.4. 根据表格中的数据,可以判定方程e x ﹣x ﹣2=0的一个根所在的区间为( )A. (﹣1,0)B. (0,1)C. (1,2)D. (2,3)『答案』C『解析』令f (x )=e x ﹣x ﹣2,由表知f (1)=2.72﹣3<0,f (2)=7.39﹣4>0,∴方程e x ﹣x ﹣2=0的一个根所在的区间为(1,2). 故选:C .5. 已知函数22,2,()3, 2.x f x xx x ⎧≥⎪=⎨⎪-<⎩若关于x 的函数()y f x k =-有且只有三个不同的零点,则实数k 的取值范围是( ) A.()3,1-B.()0,1C.(]3,0-D.()0,∞+『答案』B『解析』因为关于x 的函数()y f x k =-有且只有三个不同的零点,所以函数()y f x =与函数y k =图象有三个不同的交点,画出图象,如图:由图可知,当01k <<时,函数()y f x =与函数y k =图象有三个不同的交点,所以实数k 的取值范围是(0,1). 故选:B6. 下列不等式中错误的是( )A. 70.80.33>B. 0.70.80.50.5>C. 0.70.745<D. 0.70.745--< 『答案』D『解析』对A ,考察指数函数3x y =,因为31>,所以3xy =在R 上是增函数,因为0.80.7>,所以70.80.33>,故A 正确;对B ,考察指数函数0.5x y =,因为0.51<,所以0.5xy =在R 上是减函数,因为0.70.8<,所以0.70.80.50.5>,故B 正确;对C ,考察幂函数0.7y x =,因为0.70>,所以0.7y x =在(0,)+∞上是增函数,因为45,所以0.70.745<,故C 正确;对D ,考察幂函数0.7y x -=,因为0.70-<,所以0.7y x -=在(0,)+∞上是减函数,因为45,所以0.70.745-->,故D 错误.故选:D7. 已知函数()22x xf x -=-,则函数()f x ( )A. 是奇函数,且在R 上单增B. 是奇函数,且在R 上单减C. 是偶函数,且在R 上单增D. 是偶函数,且在R 上单减『答案』A『解析』由题意,函数()22x xf x -=-的定义域为R ,关于原点对称, 因为()22(22)()x x x xf x f x ---=-=--=-,所以函数()f x 为奇函数, 又由11()222()2[()]22x x x x x x f x -=-=-=+-, 根据指数函数的图象与性质,可得函数2xy =和1()2xy =-都是增函数, 所以函数()22x xf x -=-是增函数.故选:A8. 已知1,1a b ><-,则函数()x f x a b =+ 的图象可能是( )A. B.C. D.『答案』B『解析』因为1a >,所以函数()f x 在R 单调递增,故排除C 、D ,又当0x =时,(0)10f a b b =+=+<,故排除A. 故选:B9. 函数()f x 是偶函数,且()f x 在[0)+∞,上单调递增,满足(1)(2)f x f -<的x 的取值范围是( ) A. ()3+∞,B. ()1-∞-,C.31,D.()13-,『答案』D『解析』由已知得函数()f x 的定义域为R ,因为函数()f x 是偶函数,所以不等式(1)(2)f x f -<可化为(|1|)(2)f x f -<,又()f x 在[0)+∞,上单调递增,所以|1|2x -<,解得13x .故选:D10. 已知函数()f x k=,若存在区间[][),1,a b ∈-+∞,使得函数f (x )在区间[],a b 上的值域为[]1,1,a b ++则实数k 的取值范围为( )A ()1,-+∞ B. (]1,0- C.1,4⎛⎫-+∞ ⎪⎝⎭ D. 1,04⎛⎤- ⎥⎝⎦『答案』D『解析』根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即可得到1010a k b k ⎧+-=⎪⎨+-=⎪⎩,20x x k --=的两个不同非负实根,所以121400k x x k ∆=+>⎧⎨=-≥⎩,解得104k -<≤.故选:D .二、填空题(共5个小题,每题3分,共15分) 11. 函数()xf x a =是指数函数,则a 的取值范围________.『答案』0a >且1a ≠.『解析』根据指数函数的定义,可得0a >且1a ≠.故答案为:0a >且1a ≠12. 函数()121x f x =-的定义域是________.『答案』(,0)(0,)-∞+∞『解析』由210x-≠,得0x ≠,故函数()f x 的定义域为(,0)(0,)-∞+∞.故答案为:(,0)(0,)-∞+∞13. 不等式261x x x -->-的解集是『答案』()2,1(3,)-⋃+∞『解析』26(2)(3)0021311x x x x x x x x --+->⇔>⇔-<<>--或.所以解集为:()2,1(3,)-⋃+∞.14.函数()6f x x =的零点个数是________『答案』1『解析』由题意可知()f x 的定义域为{}|0x x ≥,令()60f x x ==,可得260=,2=-(舍去)或3=,9x ∴=;所以函数()6f x x =的零点个数为1个.故答案为:1.15. 如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.『答案』①②『解析』P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤,P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根,故正确的是①②.故答案为:①②三、解答题(共6个小题,共45分) 16. 求下列各式的值.(Ⅰ)1123225164()()()91027-++ (Ⅱ)已知11223a a-+=,求1a a -+『解』(Ⅰ) 11231123212232251645454()()()(10)10103910273333---⎡⎤⎡⎤⎛⎫⎛⎫++=++++=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=(Ⅱ)1112222()2327a a a a --+=+-=-= 17. 已知函数1()f x x x =-在y 轴右边的一部分图象如图所示,(Ⅰ)作出函数1()f x x x =-在y 轴左边的图象;(Ⅱ)判断函数1()f x x x =-在(,0)-∞上的单调性,并用单调性定义加以证明.『解』(Ⅰ)(Ⅱ)函数()f x 在(,0)-∞是增函数. 证:任取12,(,0)x x ∈-∞,且12x x <,则221221211212121212121111()()()x x x x x x f x f x x x x x x x x x x x --+-=---=--+=12121212121212()()()(1)x x x x x x x x x x x x x x -+--+==,因为120x x <<,所以120x x -<,120x x >,所以12())0(f x f x -<,即12()()f x f x <,所以函数()f x 在(,0)-∞是增函数.18. 建一个容积为8立方米、深为2米的长方体无盖水池,如果池底造价是120元/平方米,池壁的造价是80元/平方米,求当池底宽为多少米的时候水池的总造价最低,并求出最低造价是多少.『解』设池底的长为x 米,故宽为4x 米,∴总造价8441202280480320S x x x x ⎛⎫⎛⎫=⨯+⨯+⨯=++ ⎪ ⎪⎝⎭⎝⎭≥480+320×4=1760 当且仅当4x x =,即x =2时等号成立∴当池底的长为2米,宽也是2米时,总造价最低为1760元.19. 已知函数2651()=2x x f x -+-⎛⎫ ⎪⎝⎭.(Ⅰ)求函数()f x 的定义域;(Ⅱ)求函数()f x 的单调增区间和单调减区间; (Ⅲ)求函数()f x 的值域.『解』(Ⅰ)由题意得函数()f x 的定义域是R ;(Ⅱ)令265t x x =-+-,∵265t x x =-+-在区间(),3-∞上是增函数,在区间()3,+∞上是减函数,且函数1y=2t⎛⎫ ⎪⎝⎭在R 上是减函数,∴函数()f x 的单调减区间是(),3-∞,单调增区间是()3,+∞;(Ⅲ)∵函数()f x 的单调减区间是(),3-∞,单调增区间是()3,+∞,23635min 11()=(3)=216f x f -+⨯-⎛⎫∴=⎪⎝⎭,∴函数()f x 的值域是1,16⎡⎫+∞⎪⎢⎣⎭.20. 已知函数2()23f x x ax =-+-. (Ⅰ)若函数()y f x =在(,1)-∞上是增函数,求实数a 的取值范围; (Ⅱ)求函数()f x 在[1,2]上的最大值. 『解』(Ⅰ)由已知得()222()233f x x ax x a a =-+-=--+-.∴函数2()23f x x ax =-+-的图象是开口朝下,且对称轴为直线x =a 的抛物线, 因为函数()y f x =在(,1)-∞上是增函数,所以a ≥1. 故实数a 的取值范围是『1,+∞); (Ⅱ)①当a ≤1时,函数()y f x =在『1,2』上是减函数, 于是()max 124y f a ==-;②当1<a <2时,函数()y f x =在『1,a 』上是增函数,在(a ,2』上是减函数, 于是()2max 3y f a a ==-;③当a ≥2时,函数()y f x =在『1,2』上是增函数, 于是()max 247y f a ==-.21. 已知函数()f x 对任意,∈x y R ,总有()()()f x y f x f y =++,且当0x >时,()0f x < ,()112f -=,(Ⅰ)求证:函数()f x 奇函数;(Ⅱ)利用函数的单调性定义证明,()f x 在R 上的单调递减;(Ⅲ)若不等式()22()11f mx x f x x +--+>-对于任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,求实数m的取值范围.『解』(Ⅰ)令0x y ==,得(0)(0)(0)f f f =+,所以(0)0f =, 令y x =-,得(0)()()f f x f x =+-,即0()()f x f x =+-,所以()()f x f x -=-, 所以函数()f x 是R 上的奇函数. (Ⅱ)任取12,x x R ∈,且12x x >,则121212()()()()()f x f x f x f x f x x -=+-=-,因为当0x >时,()0f x < ,而12x x >,即120x x ->,所以12()0f x x -<,所以12()()f x f x <,所以()f x 在R 上的单调递减.(Ⅲ)由(Ⅰ)知()f x 是R 上的奇函数,所以1(1)(1)2f f -=-=,所以1(1)2f =-, 所以11(2)(11)(1)(1)122f f f f =+=+=--=-,所以不等式()22()11f mx x f x x +--+>-可化为22()(1)(2)f mx x f x x f +--+>, 是期中考试试题11 即22()(2)(1)f mx x f f x x +>+-+,所以22()(3)f mx x f x x +>-+, 由(Ⅱ)知,()f x 在R 上的单调递减,所以223mx x x x +<-+,故问题转化为2223mx x x <-+对于任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 即2231m x x <-+对于任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令1t x =,2(0,]3t ∈,故问题可转化为2123m t t <-+对任意的2(0,]3t ∈恒成立,令2()321g t t t =-+,其对称轴为13t =, 所以min 12()()33g t g ==,所以23m <.。
甘肃省张掖市第二中学2020-2021学年高一上学期期中考试数学试题
D. y 2x
5. 已知幂函数
在
上是增函数,则实数 ( )
A. 2
B. -1
C. -1 或 2
D.
6. 在同一坐标系中,函数 y ax a 与 y ax 的图象大致是( )
A.
B.
7.若 a log3 0.6, b 30.6 , c 0.63 ,则(
C. )
A. c a b
B. a b c
由 2+ x > x2 解得 B = (-1,2) ; ……4 分
所以 A∪B = (-1,3)
……6 分
(2)由题意当 C=∅ 时,3a>a+2∴a>1;
……8 分
a ≤1
当 C≠∅
时,{ 3a a+
> 2
-1 <3
⇒解得
-
1 3
<
a< 1
……11 分
综上述,
a
>
-
1 3
且a
≠1
……12 分
19.【答案】(1)见解析;(2)见解析 【详解】(1)根据题意,函数
2020—2021 学年度第一学期期中考试试卷
高一数学
考试时间:120 分钟 满分:150 分
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一
项是符合题目要求的。请把答案一律用 2B 铅笔涂在答题卡上。)
1. 设集合
,
,则
()
A.
B.
C.
D.
2. 函数
8. 函数 y 1 ln x x 2 的零点所在的区间是( 2
C. b c a
)
2020-2021学年上海市奉贤区高一(上)期中数学试卷及答案
2020-2021学年上海市奉贤区高一(上)期中数学试卷一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分)1.(4分)集合{1,2}的真子集的个数为.2.(4分)若幂函数y=x a的图象经过点(3,),则a=.3.(4分)已知方程x2+x﹣4=0的两个根为x1,x2,则(2)=.4.(4分)已知“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则实数a的取值范围是.5.(4分)设a>0,a≠1,若log a4=2,则=.6.(4分)设集合A={x|x=2a,a>0},B={x|x2﹣2x+3>0},则A∩B=.7.(5分)若lg2=a,lg3=b,则log916=.(用a,b的代数式表示)8.(5分)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品件.9.(5分)设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底),则x2、y2的算术平均值的最小值是.10.(5分)已知集合A={(x,y)|kx+y=k+1},B={(x,y)|x+ky=2k},其中k为实数,当A∩B≠∅时,则k满足的条件是.11.(5分)已知关于x的不等式组的解集为[b,a],则实数a 的值为.12.(5分)已知实数x、y、z满足x>y>z,且x+y+z=1,x2+y2+z2=1,则x+y的取值范围为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.13.(5分)若a>0,a≠1,M>0,N>0,下列运算正确的是()A.log a=log a MB.(log a M)N=N log a MC.(log a M)÷(log a N)=log a(M﹣N)D.log a M+log a N=log a(M+N)14.(5分)若非空集合M、N满足M⊆N,则下列集合中表示空集的是()A.M∩B.∩N C.∪D.M∩N15.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.109316.(5分)对于区间(1,10000)内的任意两个正整数m、n,定义某种运算“※”如下:当m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,则在此定义下,集合M={(a,b)|a※b=4}中的元素个数是()A.3个B.4个C.5个D.6个三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.(14分)已知关于x的不等式≥0的解集为P,不等式(x﹣1)2<1的解集为Q.(1)若a=3,求集合P;(2)求集合P,并求当P∪Q=P时a的取值范围.18.(14分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y【单位:dB(分贝)】定义为y=10lg,其中,I 为声场中某点的声强度,其单位为W/m2(瓦/平方米),I0=10﹣12W/m2为基准值.(1)如果一辆小轿车内的声音是50dB,求相应的声强度;(2)如果飞机起飞时的声音是120dB,两人正常交谈的声音是60dB,那么前者的声强度是后者的声强度的多少倍?19.(14分)设x≥0,A=,B=.(1)求证:A<,并指出等号成立的条件;(2)比较A与B的大小关系,并说明理由.20.(16分)我们知道当a>0时,a m+n=a m•a n对一切m、n∈R恒成立,学生小贤在进一步研究指数幂的性质时,发现有这么一个等式21+1=21+21,带着好奇,他进一步对2m+n=2m+2n进行深入研究.(1)当m=2时,求n的值;(2)当m≤0时,求证:n是不存在的;(3)求证:只有一对正整数对(m,n)使得等式成立.21.(18分)已知代数式|x+2|和|ax﹣b|.(1)若a=0,b=,求不等式|x+2|<|ax﹣b|的解集(用区间表示);(2)若a=1,b=1,用反证法证明:|x+2|、|ax﹣b|中至少有一个数不小于;(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,试确定实数a、b满足的条件.2020-2021学年上海市奉贤区高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分)1.(4分)集合{1,2}的真子集的个数为3.【分析】若集合A中有n个元素,则集合A有2n﹣1个真子集.【解答】解:集合{1,2}的真子集一共有:22﹣1=3个.故答案为:3.【点评】本题考查集合的真子集个数的求法,是基础题,解题时要认真审题,注意真子集定义的合理运用.2.(4分)若幂函数y=x a的图象经过点(3,),则a=.【分析】设出函数的解析式,根据幂函数y=f(x)的图象过点(3,),构造方程求出指数的值,即可得到函数的解析式.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(3,),∴=3a,解得a=,故答案为:.【点评】本题考查的知识点是函数解析式的求法,属基础题.3.(4分)已知方程x2+x﹣4=0的两个根为x1,x2,则(2)=.【分析】利用根与系数的关系得到x1x2=﹣4,再对所求式子化简代入即可求出结果.【解答】解:∵方程x2+x﹣4=0的两个根为x1,x2,∴由根与系数的关系得:x1x2=﹣4,∴(2)==2﹣4=,故答案为:.【点评】本题主要考查了根与系数的关系,考查了指数幂的运算,是基础题.4.(4分)已知“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则实数a的取值范围是(﹣∞,﹣5]∪[5,+∞).【分析】根据“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,得到不等式组,解出即可.【解答】解:若“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则由“a≤x≤a+4”⇒“x<﹣1或x>5”,∴a≥5或a+4≤﹣1,解得:a≤﹣5或a≥5,故答案为:(﹣∞,﹣5]∪[5,+∞).【点评】本题考查了充分必要条件,考查不等式问题,属于基础题.5.(4分)设a>0,a≠1,若log a4=2,则=.【分析】先把对数式化为指数式,求出a的值,再利用指数幂的运算性质化简所求式子,代入a的值即可求出结果.【解答】解:∵log a4=2,∴a2=4,又∵a>0,a≠1,∴a=2,∴====.故答案为:.【点评】本题考查了对数式与指数式的互化,考查了指数幂的运算性质,属于基础题.6.(4分)设集合A={x|x=2a,a>0},B={x|x2﹣2x+3>0},则A∩B={x|x>1}.【分析】可求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|x>1},B=R,∴A∩B={x|x>1}.故答案为:{x|x>1}.【点评】本题考查了描述法的定义,指数函数的单调性,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.7.(5分)若lg2=a,lg3=b,则log916=.(用a,b的代数式表示)【分析】利用对数的换底公式、运算法则直接求解.【解答】解:∵lg2=a,lg3=b,∴log916===.故答案为:.【点评】本题考查对数式化简求值,对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.8.(5分)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品80件.【分析】确定生产x件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值.【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是800+x•=800+x2这样平均每件的生产准备费用与仓储费用之和为f(x)==(x为正整数)由基本不等式,得f(x)≥2=20当且仅当,即x=80时,f(x)取得最小值、∴x=80时,每件产品的生产准备费用与仓储费用之和最小故答案为80【点评】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.9.(5分)设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底),则x2、y2的算术平均值的最小值是1.【分析】由题意可得e x e y=e2,即x+y=2,x>0,y>0,然后结合即可求解.【解答】解:由题意可得e x e y=e2,∴x+y=2,x>0,y>0,∴=1,当且仅当x=y=1时取等号,故答案为:1.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础试题.10.(5分)已知集合A={(x,y)|kx+y=k+1},B={(x,y)|x+ky=2k},其中k为实数,当A∩B≠∅时,则k满足的条件是k≠±1.【分析】根据题意可得出:方程组有解,然后可得出方程(1﹣k2)x=k﹣k2有解,从而可得出k需满足的条件.【解答】解:∵A∩B≠∅,∴方程组有解,消y得(1﹣k2)x=k﹣k2,∴1﹣k2≠0,即k≠±1.故答案为:k≠±1.【点评】本题考查了描述法的定义,交集的定义及运算,空集的定义,考查了计算能力,属于基础题.11.(5分)已知关于x的不等式组的解集为[b,a],则实数a 的值为.【分析】结合解集区间为闭区间可知x=b,x=a是方程x2+2ax+b+1=4a2﹣3a3的解,且b<a,然后结合方程的根与系数关系可求.【解答】解:因为关于x的不等式组的解集为[b,a],结合解集区间为闭区间可知x=b,x=a是方程x2+2ax+b+1=4a2﹣3a3的解,且b<a,所以,解可得,或或(舍),当a=1,b=﹣3时,不等式组为,解得﹣3≤x≤1且x≠﹣1不合题意;当a=,b=﹣1时,不等式组,解得﹣1,此时符合题意.故a=,故答案为:.【点评】本题主要考查了二次不等式的求解,体现了方程与二次不等相互转化关系的应用.12.(5分)已知实数x、y、z满足x>y>z,且x+y+z=1,x2+y2+z2=1,则x+y的取值范围为(,).【分析】利用基本不等式和题设求得结果即可.【解答】解:令x+y=t,则z=1﹣t,∵x>y>z,且x+y+z=1,∴z=1﹣t<⇒t>,t2=(x+y)2<2(x2+y2),即x2+y2>,∵x2+y2+z2=1,∴1>+z2=+(1﹣t)2,即3t2﹣4t<0,解得:0<t<,综上,<t<,即x+y∈(,),故答案为:(,).【点评】本题主要考查基本不等式的应用及解不等式,属于中档题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.13.(5分)若a>0,a≠1,M>0,N>0,下列运算正确的是()A.log a=log a MB.(log a M)N=N log a MC.(log a M)÷(log a N)=log a(M﹣N)D.log a M+log a N=log a(M+N)【分析】利用对数的性质、运算法则直接求解.【解答】解:由a>0,a≠1,M>0,N>0,知:对于A,log a==log a M,故A正确;对于B,(log a M)N≠N log a M=,故B错误;对于C,(log a M)÷(log a N)≠log a(M﹣N),故C错误;对于D,log a M+log a N=log a MN≠log a(M+N),故D错误.故选:A.【点评】本题考查对数式化简求值、对数运算法则,考查运算求解能力,考查数学运算核心素养.14.(5分)若非空集合M、N满足M⊆N,则下列集合中表示空集的是()A.M∩B.∩N C.∪D.M∩N【分析】可以用Venn图来表示集合M,N,U,结合图形即可找出表示空集的选项.【解答】解:可用Venn图表示集合M,N,U如下:∴M∩(∁U N)=∅,即M∩=∅,故选:A.【点评】本题主要考查Venn图表示集合的方法,以及集合的补集和交集运算.15.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093【分析】根据对数的性质得:3=10lg3≈100.48,将M化为以10为底的指数形式,计算即可.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093.故选:D.【点评】本题考查了指数形式与对数形式的互化问题,是基础题.16.(5分)对于区间(1,10000)内的任意两个正整数m、n,定义某种运算“※”如下:当m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,则在此定义下,集合M={(a,b)|a※b=4}中的元素个数是()A.3个B.4个C.5个D.6个【分析】当a,b都为正偶数时,a※b=a b=4,a当a,b都为正奇数时,a※b=log a b=4,a4=b,再由a,b∈(1,10000),能求出集合M中元素的个数.【解答】解:∵m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,集合M={(a,b)|a※b=4},∴a,b都为正偶数时,a※b=a b=4,a=2,b=2,当a,b都为正奇数时,a※b=log a b=4,a4=b,∵a,b∈(1,10000),∴a=3,b=81,或a=5,b=625,或a=7,b=2401,或a=9,b=6561,∴M={(2,2),(3,81),(5,625),(7,2401),(9,6561)}.∴集合M中有5个元素.故选:C.【点评】本题考查集合中元素个数的求法,考查集合定义等基础知识,考查运算求解能力,是基础题.三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.(14分)已知关于x的不等式≥0的解集为P,不等式(x﹣1)2<1的解集为Q.(1)若a=3,求集合P;(2)求集合P,并求当P∪Q=P时a的取值范围.【分析】(1)a=3时,P={x|≥0},由此能求出集合P.(2)P={x|≥0}={x|≤0},根据a>﹣1,a=﹣1,a<﹣1分类讨论,由此能求出集合P,求出Q={x|(x﹣1)2<1}={x|0<x<2},由P∪Q=P,得Q⊆P,由此能求出a的取值范围.【解答】解:(1)a=3时,P={x|≥0}={x|≤0}={x|﹣1<x≤3},(2)P={x|≥0}={x|≤0},当a>﹣1时,P={x|﹣1<x≤a},当a=﹣1时,P=∅,当a<﹣1时,P={x|a≤x<﹣1}.∵Q={x|(x﹣1)2<1}={x|x2﹣2x<0}={x|0<x<2},P∪Q=P,∴Q⊆P,∴当a>﹣1时,a>2,当a≤﹣1时,无解,综上,当P∪Q=P时a的取值范围是(2,+∞).【点评】本题考查集合、实数的取值范围的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.18.(14分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y【单位:dB(分贝)】定义为y=10lg,其中,I 为声场中某点的声强度,其单位为W/m2(瓦/平方米),I0=10﹣12W/m2为基准值.(1)如果一辆小轿车内的声音是50dB,求相应的声强度;(2)如果飞机起飞时的声音是120dB,两人正常交谈的声音是60dB,那么前者的声强度是后者的声强度的多少倍?【分析】(1)直接把y=50代入y=10lg,求得I得结论;(2)分别求出声音是120dB和60dB的声强度,作比得结论.【解答】解:(1)由50=10lg,得,即I=W/m2.故声音是50dB,相应的声强度是10﹣7W/m2;(2)设声音是120dB的声强度为I1,则120=10lg,即,设声音是60dB的声强度为I2,则60=10lg,即,∴.∴前者的声强度是后者的声强度的106倍.【点评】本题考查函数模型的选择及应用,考查对数方程的求法,是基础的计算题.19.(14分)设x≥0,A=,B=.(1)求证:A<,并指出等号成立的条件;(2)比较A与B的大小关系,并说明理由.【分析】(1)把A进行分离常数,再由x的范围求得A的值域,则结论得证,并指出等号成立的条件;(2)利用基本不等式求出B的范围,结合(1)中求得的A的范围,即可比较A与B的大小关系.【解答】证明:(1)A==,∵x≥0,∴x+,8(x+)≥4,,可得<,即A<,当且仅当x=0时等号成立;解:(2)B<A,证明如下:由(1)知,A<,B=,当x=0时,B=0,当x>0时,x2+1≥2x>0,∴,当且仅当x=1时取等号,∴0,而A与B中的等号不同时成立,∴B<A.【点评】本题考查利用分离常数法与基本不等式求函数的值域,考查运算求解能力,是中档题.20.(16分)我们知道当a>0时,a m+n=a m•a n对一切m、n∈R恒成立,学生小贤在进一步研究指数幂的性质时,发现有这么一个等式21+1=21+21,带着好奇,他进一步对2m+n=2m+2n进行深入研究.(1)当m=2时,求n的值;(2)当m≤0时,求证:n是不存在的;(3)求证:只有一对正整数对(m,n)使得等式成立.【分析】(1)由题意求解关于n的方程即可确定实数n的值;(2)由题意求得2n的表达式,然后分类讨论即可证得题中的结论;(3)将m,n分离到等式的两侧,然后讨论左右两侧的值即可证得题中的结论.【解答】(1)解:当m=2时,22+n=22+2n,即3⋅2n=4,∴;(2)证明:设t=2m,由于m≤0,故t∈(0,1],由题意可得:t⋅2n=t+2n,当m=0,t=1时,上述等式明显不成立,当m≠0,t<1时,,由于2n>0,t>0,t﹣1<0,故上述等式不成立,综上可得,实数n不存在.(3)证明:由2m+n=2m+2n可得:,当m,n均为正整数时,等式左侧为2的指数幂,故右侧也是2的指数幂,很明显只有2m﹣1=1,m=1 时满足题意,此时n=1,即只有一对正整数对(1,1)使得等式成立.【点评】本题主要考查指数方程的解法,分类讨论的数学思想,方程思想的应用等知识,意在考查学生的转化能力和计算求解能力.21.(18分)已知代数式|x+2|和|ax﹣b|.(1)若a=0,b=,求不等式|x+2|<|ax﹣b|的解集(用区间表示);(2)若a=1,b=1,用反证法证明:|x+2|、|ax﹣b|中至少有一个数不小于;(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,试确定实数a、b满足的条件.【分析】(1)将a=0,b=代入|x+2|<|ax﹣b|中,然后去绝对值解不等式即可;(2)当a=1,b=1时,|ax﹣b|=|x﹣1|,然后假设|x+2|,|x﹣1|均小于,得到,推出矛盾结论,从而证明原命题成立;(3)根据a>0时,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,对|x+2|+|ax﹣b|去绝对值,然后分别得到满足条件实数a、b即可.【解答】解:(1)当a=0,b=时,由|x+2|<|ax﹣b|,得|x+2|,∴,∴,∴不等式的解集为{x|}.(2)当a=1,b=1时,|ax﹣b|=|x﹣1|.假设|x+2|,|x﹣1|均小于,则,∴,∴x∈∅,与假设矛盾,故|x+2|,|x﹣1|中至少有一个数不小于.(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,则①当x≥﹣2,ax﹣b≥0时,,∴,要使不等式在R上恒成立,则,∴.②当x⩾﹣2,ax﹣b≤0时,,∴,要使不等式在R上恒成立,则与a>0矛盾.③当x≤﹣2,ax﹣b≥0时,,∴,要使不等式在R上恒成立,则,∴,将代入中,得,要使与x≤﹣2有交集,则,∴与b≤﹣3矛盾.④当x≤﹣2,ax﹣b≤0时,,∴,要使不等式在R上恒成立,则与a>0矛盾.综上,要使不等式在R上恒成立,实数a、b满足的条件为.【点评】本题考查了绝对值不等式的解法,利用反证法证明不等式和不等式恒成立问题,考查了转化思想和分类讨论思想,属中档题.。
2020-2021学年江苏省盐城市高一上期中数学试卷及答案解析
【解答】解:∵a⊗b ∴函数 y=2x+1⊗2﹣x
, <
, ,<
的图象如下图所示:
由图可得:函数 y=2x+1⊗2﹣x 的减区间为(﹣∞, ],最小值为 ,
故选:B.
8.(5 分)若 loga3=m,loga5=n,则 a2m+n 的值是( )
A.15
B.75
C.45
【解答】解:loga3=m,loga5=n, 所以 am=3,an=5, 所以 a2m+n=a2man=9×5=45.
故选:C.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)下列各式中,是函数的有( )
A.y=1
B.y=x2
C.y=1﹣x
D.225 D.y
【解答】解:根据题意,依次分析选项, 对于 A,y=1,是常数函数,是函数, 对于 B,y=x2,是二次函数,是函数, 对于 C,y=1﹣x,是一次函数,是函数,
D.(2,3)
【解答】解:因为集合 A={y|y ,0≤x≤4}={y|0≤y≤2};
故(∁RA={y|y>2 或 y<0},
∵B={x|0<x<3},
∴(∁RA)∩B=(2,3)
故选:D.
2.(5 分)命题 p:∃x0∈R,x02﹣x0+2≤0,则¬p 为( )
A.∃x0∈R,
>
B.∀x∈R,x2﹣x+2≤0
(1)若 a=2,求 M∩(∁RN); (2)若 M∪N=M,求实数 a 的取值范围.
18.(12 分)计算:
(1)0.064
( )0+16 ⺁ 0.25 ;
(2)log3
lg25+2lg2﹣7 뗘 log42.
2020-2021学年山东省济南一中高一(上)期中数学试卷及答案
2020-2021学年山东省济南一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={﹣1,0,1,2,3},N={x|﹣1≤x<3},则M∩N=()A.{0,1,2}B.{﹣1,0,1}C.M D.{﹣1,0,1,2} 2.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件3.(5分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣1,C.f(x)=x,D.f(x)=|x|,4.(5分)设a=30.5,b=0.53,c=log30.5,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b5.(5分)已知函数f(x)=(m2﹣m﹣1)是幂函数,且x∈(0,+∞)时,f(x)是递减的,则m的值为()A.﹣1B.2C.﹣1或2D.36.(5分)已知a>1,函数y=a x﹣1与y=log a(﹣x)的图象可能是()A.B.C.D.7.(5分)已知函数上是增函数,则实数a的取值范围是()A.B.C.[1,+∞)D.[1,2]8.(5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有,且f(2)=0,则不等式xf(x)<0的解集是()A.(﹣2,2)B.(﹣2,0)∪(2,+∞)C.(﹣∞,﹣2)∪(0,2)D.(﹣∞,﹣2)∪(2,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(5分)下列不等式成立的是()A.若a<b<0,则a2>b2B.若ab=4,则a+b≥4C.若a>b,则ac2>bc2D.若a>b>0,m>0,则10.(5分)下列叙述正确的是()A.已知函数f(x)=,则f(6)=8B.命题“对任意的x>1,有x2>1”的否定为“存在x≤1,有x2≤1”C.已知正实数a,b满足a+b=4,则的最小值为D.已知x2﹣5ax+b>0的解集为{x|x>4或x<1},则a+b=511.(5分)关于函数f(x)=,下列结论正确的是()A.f(x)的图象过原点B.f(x)是奇函数C.f(x)在区间(1,+∞)上单调递减D.f(x)是定义域上的增函数12.(5分)德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为D(x)=,关于函数D(x)有以下四个命题,其中真命题是()A.∀x∈R,D(D(x))=1B.∃x,y∈R,D(x+y)=D(x)+D(y)C.函数D(x)是偶函数D.函数D(x)是奇函数三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知函数f(+1)=x﹣2,则f(x)的解析式是.14.(5分)已知函数y=a x﹣2+2(a>0且a≠1)恒过定点(m,n),则m+n=15.(5分)不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是.16.(5分)定义区间[x1,x2]的长度为x2﹣x1,若函数y=|log2x|的定义域为[a,b],值域为[0,3],则区间[a,b]的长度最大值为.四、解答题:本题共6小题,共70分。
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。
2020-2021学年江苏省常州市“教学研究合作联盟”高一(上)期中数学试卷(附答案详解)
2020-2021学年江苏省常州市“教学研究合作联盟”高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1.已知集合A={−3,−2,0,1,2},集合B={x|x+2<0},则A∩(∁R B)=()A. {−3,−2,0}B. {0,1,2}C. {−2,0,1,2}D. {−3,−2,0,1,2}2.已知a=log0.63,b=0.63,c=30.6,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a3.命题“∀x∈R,x2>−1”的否定是()A. ∃x∈R,x2<−1B. ∀x∈R,x2≤−1C. ∃x∈R,x2≤−1D. ∀x∈R,x2<−14.如果a<b<0,那么下面一定成立的是()A. ac2<bc2B. a−b>0C. a2>b2D. 1a <1b5.不等式x−3x−1≤0的解集是()A. {x|1<x≤3}B. {x|1<x<3}C. {x|1≤x≤3}D. {x|x≤3}6.若x,y均大于零,且x+y=2,则1x +4y的最小值为()A. 5B. 4C. 9D. 927.已知定义在[m−5,1−2m]上的奇函数f(x),当x≥0时,f(x)=x2−2x,则f(m)的值为()A. −8B. 8C. −24D. 248.函数f(x)=(x−3)(ax−b)为偶函数,且在(0,+∞)上单调递增,则f(2−x)>0的解集为()A. {x|−2<x<2}B. {x|x>5或x<−1}C. {x|0<x<4}D. {x|x>4或x<0}二、多选题(本大题共4小题,共20.0分)9.设A={x|x2−x−2=0},B={x|ax−1=0},A∩B=B,则实数a的值可以为()A. 1B. 0C. −1D. −1A. 0<x<2B. x<1C. −1<x<0D. x<211.下列四个命题:其中正确的命题是()A. 函数f(x)=2x2+2x+3在[0,+∞)上单调递增B. y=1+x和y=√1+x2表示同一个函数C. 当a>b>c时,则有ab>ac成立D. 若二次函数f(x)=ax2+bx+2图象与x轴没有交点,则b2−8a<0且a>012.设正实数a,b满足a+b=1,则下列选项中,正确的有()A. √ab≤12B. 1a+1b≤4 C. √a+√b≤√2 D. a2+b2≥12三、单空题(本大题共4小题,共20.0分)13.若x>1,则x+1x−1的最小值是.14.若命题:“∀x∈R,ax2−ax−1≤0”是真命题,则实数a的取值范围是.15.已知符号函数sgn(x)={1,x>00,x=0−1,x<0,若函数f(x)=x|x|−1⋅sgn(x),则不等式f(x)>0的解集为.16.若关于x的不等式(2x−5)2≥kx2恰好有三个整数解,则实数k的取值范围是.四、解答题(本大题共6小题,共72.0分)17.化简求值:(1)(0.027)−13−(−78)0+4−0.5;(2)2log1312−log3329+log38−3log35.18.已知条件p:对任意x∈[3,4],不等式2x−2≥m2−3m恒成立;条件q:当x∈[0,1]时,函数m=x2−2x+1+a.(1)若p是真命题,求实数m的取值范围;19.设函数f(x)=ax2−(a+1)x+b(a,b∈R).(1)若不等式f(x)<0的解集为(−1,3),求不等式bx2−ax+4<0的解集;(2)若b=1,a≥0,求不等式f(x)>0的解集.20.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=12x2+20x(万元).当年产量不小于80千件时,C(x)=51x+10000x−600(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?21.已知函数f(x)={x 2+x,x≥02−x,x<0.(1)若f(a)=6,求实数a的值;(2)画出函数的图象并写出函数f(x)在区间[−2,2]上的值域;(3)若函数g(x)=f(x)+(2a−1)x+2,求函数g(x)在[1,4]上最大值.22.已知函数f(x)=|3x−2x|(x>0).(1)当0<a<b且f(a)=f(b)时,①求1a +1b的值;②求b+a2ab的最小值;(2)已知函数g(x)的定义域为D,若存在区间[m,n]⊆D,当x∈[m,n]时,g(x)的值域为[m,n],则称函数g(x)是D上的“保域函数”,区间[m,n]叫做“等域区间”.试判断函数f(x)是否为(0,+∞)上的“保域函数”?若是,求出它的“等域区间”;若不是,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了列举法、描述法的定义,交集和补集的运算,考查了计算能力,属于基础题.可以求出集合B,然后进行交集和补集的运算即可.【解答】解:∵A={−3,−2,0,1,2},B={x|x<−2},∴∁R B={x|x≥−2},A∩(∁R B)={−2,0,1,2}.故选:C.2.【答案】A【解析】【分析】本题考查利用指数函数、对数函数的性质比较大小,属于基础题.分别判断a,b,c与0和1的大小关系,即可求出.【解答】解:a=log0.63<0,0<b=0.63<1,c=30.6>1,故c>b>a,故选:A.3.【答案】C【解析】【分析】本题主要考查含有量词的命题的否定,比较基础.根据含有量词的命题的否定即可得到结论.【解答】4.【答案】C【解析】 【分析】本题考查了不等式的基本性质,属基础题.根据a <b <0,取a =−2,b =−1,c =0则可排除ABD ;由不等式的基本性质,即可判断C . 【解答】解:根据a <b <0,取a =−2,b =−1,c =0则ABD 不成立; 根据a <b <0,由不等式的基本性质,可知a 2>b 2成立. 故选:C .5.【答案】A【解析】 【分析】本题主要考查分式不等式的解法,将分式不等式转化为整式不等式是解决本题的关键,是基础题.将分式不等式转化为整式不等式即可得到结论. 【解答】解:不等式x−3x−1≤0等价为{(x −3)(x −1)≤0x −1≠0,即{1≤x ≤3x ≠1, ∴1<x ≤3,则不等式的解集为:{x|1<x ≤3}. 故选:A .6.【答案】D【解析】本题主要考查基本不等式在求最值问题中的应用,属于基础题. 由题设利用基本不等式求得结果即可. 【解答】解:∵x >0,y >0,x +y =2,∴1x +4y =12(x +y)(1x +4y) =12(5+yx+4xy )≥12(5+2√4)=92,当且仅当{x =23y =43时取“=“,故选:D .7.【答案】A【解析】 【分析】本题考查了奇函数的定义,奇函数定义域的对称性,考查了计算能力,属于基础题. 根据题意即可得出m −5+1−2m =0,解出m ,再根据x ≥0时的f(x)的解析式和奇函数的性质即可求出f(m)的值. 【解答】解:∵f(x)在[m −5,1−2m]上是奇函数, ∴m −5+1−2m =0,解得m =−4, 又x ≥0时,f(x)=x 2−2x ,∴f(m)=f(−4)=−f(4)=−(16−8)=−8. 故选:A .8.【答案】B【解析】 【分析】本题主要考查不等式的求解,函数奇偶性和单调性的综合应用.根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论.解:∵f(x)=(x−3)(ax−b)=ax2−(3a+b)x+3b为偶函数,∴3a+b=0,即b=−3a,则f(x)=(x−3)(ax+3a)=a(x−3)(x+3)=ax2−9a,∵在(0,+∞)上单调递增,∴a>0,则由f(2−x)=a(−x−1)(5−x)>0,得(x+1)(x−5)>0,解得:x<−1或x>5,故不等式的解集为:{x|x<−1或x>5}.故选:B.9.【答案】ABC【解析】【分析】本题考查实数值的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.由题意:A∩B=B,可得B⊆A,分情况讨论即可.【解答】解:∵A={x|x2−x−2=0}={−1,2},当a=0时,B=⌀,满足A∩B=B,当a≠0时,B={x|ax−1=0}={1a},A∩B=B,∴B⊆A,∴B={−1}或B={2},∴1a =−1,或1a=2,解得a=−1,或a=12,∴实数a的值可以为0,−1,12,故选:ABC.10.【答案】BD【解析】本题考查了必要不充分条件,考查集合的包含关系,是一道基础题.解不等式,求出其充要条件,根据集合的包含关系求出答案即可.【解答】解:由x2<1,解得:−1<x<1,令集合A={x|−1<x<1},设所求的必要不充分条件对应的集合为B,根据题意可得A⫋B,则B,D符合,故选:BD.11.【答案】AD【解析】【分析】本题考查命题的真假的判断与应用,考查二次函数的简单性质的应用,不等式的基本性质等基本知识的考查.利用二次函数的性质判断A;函数是否是相同的函数的判断方法判断B;反例判断C;二次函数的性质判断D即可.【解答】解:函数f(x)=2x2+2x+3的对称轴为x=−1,开口向上,所以函数在[0,+∞)上单2调递增,所以A正确.y=1+x和y=√1+x2,两个函数的对应法则不相同,所以不是同一个函数,所以B不正确;a=0时,C不正确;二次函数f(x)=ax2+bx+2,当x=0时y=2,要使函数的图象与x轴没有交点,必须b2−8a<0且a>0,所以D正确;故选:AD.12.【答案】ACD【解析】【分析】本题考查的知识要点:不等式的性质,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于一般题.直接利用不等式的性质和基本不等式的应用判断A 、B 、C 、D 的结论. 【解答】解:对于A :由于正实数a ,b 满足a +b =1,则a +b ≥2√ab ,所以√ab ≤12,当且仅当a =b =12时等号成立,故A 正确;对于B :1a+1b=(a +b)(1a+1b)=2+b a+a b≥2+2√b a·ab=4,当且仅当ba =ab ,即a =b =12时等号成立,故B 错误;对于C :若√a +√b ≤√2,则a +b +2√ab ≤2,由于a +b =1,所以√ab ≤12,由A 可知正确,故C 正确;对于D :由于2(a 2+b 2)≥(a +b)2,所以a 2+b 2≥12,当且仅当a =b =12时等号成立,故D 正确; 故选:ACD .13.【答案】3【解析】 【分析】本题考查利用基本不等式求最值,属基础题. x +1x−1=x −1+1x−1+1,利用基本不等式即可求解.【解答】 解:∵x >1,∴x +1x−1=x −1+1x−1+1≥2√(x −1)⋅1x−1+1=3, 当且仅当x −1=1x−1即x =2时取等号, ∴x =2时x +1x−1取得最小值3, 故答案为:3.【解析】 【分析】本题主要考查命题的真假应用,结合一元二次不等式的解法是解决本题的关键,同时考查了分类讨论思想,属于基础题.根据全称量词命题的性质及一元二次不等式的性质,分类进行求解即可. 【解答】解:当a =0时,−1≤0成立;当a ≠0时,则{a <0Δ=a 2+4a ≤0⇒−4≤a <0. 综上:实数a 的取值范围是[−4,0] 故答案为[−4,0].15.【答案】{x|x <−1或x >1}【解析】 【分析】本题主要考查了分段函数的应用,考查了解不等式,是基础题.对x 分情况讨论,分别求出函数f(x)的解析式,求出不等式f(x)>0的解集,再求并集即可. 【解答】解:①当x >0时,f(x)=xx−1, 由f(x)>0得:xx−1>0, 又∵x >0,∴x −1>0,即x >1, ②当x =0时,f(x)=0, 此时不等式f(x)>0无解,③当x <0时,f(x)=x−x−1×(−1)=xx+1, 由f(x)>0得:xx+1>0, 又∵x <0,∴x +1<0,即x <−1,综上所述,不等式f(x)>0的解集为{x|x <−1或x >1}. 故答案为:{x|x <−1或x >1}.16.【答案】(1219,814]【解析】 【分析】本题主要考查一元二次不等式的应用,考查学生分析解决问题的能力,解题的关键是确定其整数解的构成,属于拔高题.先由题设求得原不等式的解集,再根据其满足恰好有三个整数解,对解的情况分类研究求得实数k 的取值范围即可. 【解答】解:不等式(2x −5)2≥kx 2可化为(k −4)x 2+20x −25≤0,由题设可得:△=400+100(k −4)=100k >0,且k −4>0,解得:k >4,故当k >4时,不等式的解集为[−10−5√k k−4,−10+5√kk−4],易知:−10−5√kk−4<0,−10+5√k k−4>0,∴原不等式的解集中必有整数0,又∵原不等式的解集中恰好有三个整数解, ∴{−10−5√k k−4>−3−10+5√kk−4<3,解得:k >1219, ∴①{−10−5√kk−4≤−2−10+5√kk−4<1,或②{−10−5√kk−4>−1−10+5√k k−4≥2,或③{−2<−10−5√kk−4≤−11≤−10+5√kk−4<2,结合①②③解得:k ∈(1219,814],∴实数k 的取值范围为(1219,814],故答案为:(1219,814].17.【答案】解:(1)(0.027)−13−(−78)0+4−0.5 =(0.33)−13−1+(22)−12 =0.3−1−1+2−1=103−1+12=176;(2)2log 1312−log 3329+log 38−3log 35=log 34−log 3329+log 38−5 =log 3(4×932×8)−5 =2−5=−3.【解析】本题主要考查了指数与对数的运算性质的简单应用,属于基础试题. 结合指数幂的运算性质及对数的运算性质分别求解即可.18.【答案】解:(1)条件p :对任意x ∈[3,4],不等式2x −2≥m 2−3m 恒成立.若p 真,可得当x ∈[3,4]时,(2x −2)min ≥m 2−3m , 即4≥m 2−3m ,所以−1≤m ≤4.(2)对于条件q ,当x ∈[0,1]时,函数m =x 2−2x +1+a =(x −1)2+a ∈[a,a +1], 记A =[−1,4],B =[a,a +1],因为p 是q 的必要不充分条件,所以B 是A 的真子集, 所以{a ≥−1a +1≤4,且等号不同时取,所以−1≤a ≤3.【解析】本题主要考查命题真假的判断,充分、必要条件,不等式恒成立问题,注意运用转化思想,考查运算能力,属于中档题.(1)由p 是真命题,可得当x ∈[3,4]时,(2x −2)min ≥m 2−3m ,解关于m 的不等式可得所求范围;(2)求出条件q 中函数m =x 2−2x +1+a 的值域,由p 是q 的必要不充分条件,根据集合的包含关系可得关于a 的不等式组,从而得解.19.【答案】解:(1)函数f(x)=ax 2−(a +1)x +b(a,b ∈R),由不等式f(x)<0的解集为(−1,3),得a >0; 且−1和3是方程ax 2−(a +1)x +b =0的两根;则{a+1a=−1+3=2ba=−1×3=−3,解得a =1,b =−3;所以不等式bx 2−ax +4<0可化为−3x 2−x +4<0,即3x2+x−4>0,解得x<−43或x>1;所以该不等式的解集为(−∞,−43)∪(1,+∞).(2)b=1时,不等式为ax2−(a+1)x+1>0,可化为(ax−1)(x−1)>0,则若a>0,则不等式化为(x−1a)(x−1)>0,令1a=1,得a=1,当a>1时,1a <1,解不等式得x<1a或x>1;当a=1时,不等式为(x−1)2>0,解得x≠1;当0<a<1时,1a >1,解不等式得x<1或x>1a;若a=0,则不等式化为−x+1>0,解得x<1;综上知:当a>1时,不等式的解集为(−∞,1a)∪(1,+∞);当a=1时,不等式的解集为{x|x≠1};当0<a<1时,不等式的解集为(−∞,1)∪(1a,+∞);当a=0时,不等式的解集为(−∞,1).【解析】本题考查了一元二次不等式的解法与应用问题,也考查了分类讨论思想,是中档题.(1)根据一元二次不等式的解集和对应方程的关系,利用根与系数的关系求出a、b的值,代入不等式bx2−ax+4<0中求解集即可.(2)b=1时,不等式化为(ax−1)(x−1)>0,讨论a>0和a=0时,求出对应不等式的解集即可.20.【答案】解:(1)∵每件商品售价为0.05万元,则x千件商品销售额为0.05×1000x万元,依题意得:当0<x<80时,L(x)=(0.05×1000x)−(12x2+20x)−200=−12x2+30x−200,当x≥80时,L(x)=(0.05×1000x)−(51x+10000x −600)−200=400−(x+10000x).∴L(x)={−12x 2+30x −200,0<x <80400−(x +10000x),x ≥80; (2)当0<x <80时,L(x)=−12(x −30)2+250, 此时,当x =30时,即L(x)≤L(30)=250万元; 当x ≥80时,L(x)=400−(x +10000x)≤400−2√x ⋅10000x=400−200=200,当且仅当x =10000x,即x =100时,即L(x)≤L(100)=200万元.由于250>200,∴当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元.【解析】本题考查函数模型的选择及应用,训练了利用配方法与基本不等式求最值,是中档题.(1)求出x 千件商品的销售额,然后分段写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)分段利用配方法与基本不等式求最值,求两段函数最大值中的最大者得结论.21.【答案】解:(1)①当a ≥0时,f(a)=a 2+a =6,解得a =2,②当a <0时,f(a)=2−a =6,解得a =−4 由上知a =2或a =−4. (2)函数f(x)的图象如右图:,∵f(0)=0,f(2)=22+2=6,f(−2)=2−(−2)=4,∴由图象知函数f(x)的值域为[0,6]. (3)当x ∈[1,4]时,g(x)=f(x)+(2a −1)x +2=x 2+2ax +2, 配方得g(x)=(x +a)2+2−a 2,当−a ≤52即a ≥−52时,g(x)max =g(4)=18+8a , 当−a >52即a <−52时,g(x)max =g(1)=3+2a ,综上,g(x)max={18+8a,a ≥−523+2a,a <−52.【解析】本题主要考查了分段函数的应用,考查了二次函数的性质,同时考查了学生的作图能力,是中档题.(1)对a 分情况讨论,分别求出a 的值即可.(2)画出函数f(x)的图象,根据图象即可求出函数f(x)在区间[−2,2]上的值域. (3)由题意可知g(x)=(x +a)2+2−a 2,对称轴为x =−a ,对对称轴的位置分两种情况讨论,在区间[1,4]的中点52的左侧或右侧,分别求出函数g(x)的最大值即可.22.【答案】解:(1)由题意,f(x)={2x −3,0<x <233−2x ,x ≥23,∴f(x)在(0,23)为减函数,在(23,+∞)上为增函数.①∵0<a <b ,且f(a)=f(b),∴0<a <23<b ,且2a −3=3−2b ,∴1a +1b =3. ②由①知,1b =3−1a =3a−1a,∴b+a 2ab=1a+a b=1a+3a −1≥2√3−1当且仅当a =√33时“=”成立, 即b+a 2ab的最小值为2√3−1.(2)假设存在[m,n]⊆(0,+∞),当x ∈[m,n]时,f(x)的值域为[m,n],则m >0. ∵f(23)=0,∴23∉[m,n].①0<m <n <23,∵f(x)在(0,23)上为减函数, ∴{2m −3=n 2n−3=m,解得m =n 或mn =2不合题意.②若23<m <n ,∵f(x)在(23,+∞)上为增函数, ∴{3−2m =m 3−2n =n,即m ,n 为方程x 2−3x +2=0在(23,+∞)上的两个不等实数根.解得{m =1>23n =2,符合题意.综上,存在实数m =1,n =2,当x ∈[m,n]时,f(x)值域为[m,n], 即f(x)是(0,+∞)上“保域函数”. 其等域区间为[1,2].【解析】本题考查了基本不等式的应用和探索题的求解方法,本题综合性强,能很好锻炼逻辑思维能力以及计算能力,考查分类讨论思想和转化思想,属难题.(1)去掉f(x)中的绝对值,转化为分段函数,由f(a)=f(b)求解①,利用基本不等式求解②;(2)先假设存在,再去求解需要的条件是否存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选B.
【点睛】
本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.
3.C
解析:C
【解析】
因为对称轴 ,所以
选C.
4.D
解析:D
【解析】
【分析】
根据题意可得函数 的奇偶性以及单调性,据此原不等式转化为 ,求解可得x的取值范围,即可得出结论.
【详解】
解析:(1)(2)(3)
【解析】
【分析】
根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确,
由函数 的值域是 ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确.
【详解】
解:(1)当 时, , ,
当函数为奇函数时 ,即 ,解得 ,所以 是函数 为奇函数的充要条件,所以(1)正确;
A. B. C. D.
12.已知函数 的定义域为 .当 时, ;当 时, ;当 时, .则 ()
A. B. C. D.
二、填空题
13.如果定义在区间[3+a,5]上的函数f(x)为奇函数,那么a的值为________.
14.若不等式 的解集中的整数有且仅有1,2,3,则 的取值范围是
15.给出下列四个命题:
17.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点
解析:3或
【解析】
【分析】
令 ,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得 .但是要先分类讨论,分 和 求出 的取值范围.
(1)函数 为奇函数的充要条件是 ;
(2)函数 的反函数是 ;
(3)若函数 的值域是 ,则 或 ;
(4)若函数 是偶函数,则函数 的图像关于直线 对称.
其中所有正确命题的序号是______.
16.已知函数 分别是定义在 上的偶函数和奇函数,且它们在 上的图象如图所示,则不等式 在 上的解集是________.
不等式 的解集,与f(x) g(x) 0且g(x) 0的解集相同,观察图象选择函数值同号的部分,再由f(x)是偶函数,g(x)是奇函数,得到f(x) g(x)是奇函数,从而求得对称区间上的部分解集,最后两部分取并集即可.
【详解】
将不等式 转化为f(x) g(x) 0且g(x) 0,
如图所示:满足不等式的解集为:(1,2]
(2)若不等式 在 上恒成立,试求实数a的取值范围;
(3) 的值域为 函数 在 上的最大值为M,最小值为m,若 成立,求正数a的取值范围.
22.已知函数 对任意的实数m,n都有 ,且当 时,有 .
(1)求 ;
(2)求证: 在R上为增函数;
(3)若 ,且关于x的不等式 对任意的 恒成立,求实数a的取值范围.
14.【解析】【分析】【详解】由得由整数有且仅有123知解得
解析:
【解析】
【分析】
【详解】
由 得
由整数有且仅有1,2,3知 ,解得
15.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确
(1)求 的值;
(2)判断函数 的单调性并证明;
(2)若关于 的不等式 在 有解,求实数 的取值范围.
26.计算下列各式的值:
( ) .
( ) .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.
详解:由并集的定义可得: ,
考点:函数的周期性和奇偶性.
二、填空题
13.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a=-5∴a=-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于
解析:-8
【解析】∵f(x)定义域为[3+a,5],且为奇函数,
11.D
解析:D
【解析】
【分析】
由题意结合函数的性质整理计算即可求得最终结果.
【详解】
由题意可得: ,
则 ,且 ,
由于 ,故 ,
据此可得: , .
本题选择D选项.
【点睛】
本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.
12.D
解析:D
【解析】
试题分析:当 时, ,所以当 时,函数 是周期为 的周期函数,所以 ,又函数 是奇函数,所以 ,故选D.
9.A
解析:A
【解析】
【分析】
根据函数f(x)=ax2+bx+a﹣2b是定义在[a﹣3,2a]上的偶函数,即可求出a,b,从而得出f(x)的解析式,进而求出f(a)+f(b)的值.
【详解】
∵f(x)=ax2+bx+a﹣2b是定义在[a﹣3,2a]上的偶函数;
∴ ;
∴a=1,b=0;
∴f(x)=x2+2;
A. B. C. D.
5.设奇函数 在 上为增函数,且 ,则不等式 的解集为()
A. B.
C. D.
6.设 是定义在 上的偶函数,且当 时, ,若对任意的 ,不等式 恒成立,则实数 的最大值是( )
A. B. C. D.
7.若函数 且 )在R上既是奇函数,又是减函数,则 的图象是()
A. B.
C. D.
【详解】
设 ,则 ,对称轴方程为 .
若 ,则 ,
∴当 时, ,解得 或 (舍去).
若 , ,则
∴当 时,
解得 或 (舍去)
答案:3或
6.B
解析:B
【解析】
【分析】
由题意,函数 在 上单调递减,又由函数 是定义上的偶函数,得到函数 在 单调递增,把不等式 转化为 ,即可求解.
【详解】
易知函数 在 上单调递减,
又函数 是定义在 上的偶函数,
所以函数 在 上单调递增,
则由 ,
得 ,即 ,
即 在 上恒成立,
则 ,
解得 ,
即 的最大值为 .
【点睛】
本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.
7.A
解析:A
【解析】
【分析】
由题意首先确定函数g(x)的解析式,然后结合函数的解析式即可确定函数的图像.
【详解】
∵函数 (a>0,a≠1)在R上是奇函数,
∴3+a=-5,∴a=-8.
点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.
【点睛】
本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.
16.【解析】【分析】不等式的解集与f(x)g(x)0且g(x)0的解集相同观察图象选择函数值同号的部分再由f(x)是偶函数g(x)是奇函数得到f(x)g(x)是奇函数从而求得对称区间上的部分解集最后两部
解析:
【解析】
【分析】
结合交集的定义可知: .
本题选择C选项.
点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.
2.B
解析:B
【解析】
【分析】
判断函数 单调递增,求出f(0)=-4,f(1)=-1,
f(2)=3>0,即可判断.
【详解】
∵函数 单调递增,
∴f(0)=-4,f(1)=-1,
f(2)=7>0,
23.已知函数 是奇函数.
(1)求实数 的值;
(2)若函数 在区间 上单调递增,求实数 的取值范围.
24.设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(∁UA);(2)若A∪B=A,求实数a的取值范围.
25.已知定义域为 的函数 是奇函数.
2020-2021高一数学上期中试题(附答案)(6)
一、选择题
1.设集合 , , ,则
A. B.
C. D.
2.函数 的零点所在的区间为()
A. B. C. D.
3.f (x)=-x2+4x+a,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( )
A.-1B.0C.1D.2
4.已知函数 ,则不等式 的解集为()
∵y=f(x)是偶函数,y=g(x)是奇函数∴f(x) g(x)是奇函数,
故在y轴左侧,满足不等式的解集为(-3,-2] (-1,0)
故不等式 在 上的解集是(-3,-2] (-1,0) (1,2]
【点睛】
本题考查了函数的奇偶性在解不等式中的应用,考查了数形结合,转化,分类讨论等思想方法,根据函数奇偶性的性质以及数形结合是解决本题的关键.
20.2017年国庆期间,一个小朋友买了一个体积为 的彩色大气球,放在自己房间内,由于气球密封不好,经过 天后气球体积变为 .若经过25天后,气球体积变为原来的 ,则至少经过__________天后,气球体积小于原来的 . ( ,结果保留整数)
三、解答题