排列组合中的加法原理即列举法的运用
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合问题之—加法原理和乘法原理
排列组合问题之—加法原理和乘法原理华图教育梁维维加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。
1.加法原理加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。
例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。
加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成⑴多少个数字不重复的三位数?⑵多少个数字不重复的三位偶数?【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。
【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。
在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。
例如如下的两道题:【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( )A.7种B.12种C.15种D.21种【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。
所以每个同学有4+6+4+1=15种订报方式。
对于加法原理大家要掌握的是分类思想,对于分类问题要掌握加法原理。
总的情况数等于每类的情况数加和。
完整版)排列组合的二十种解法(最全的排列组合方法总结)
完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合知识点总结+典型例题及答案解析资料
排列组合知识点总结+ 典型例题及答案解析排列组合知识点总结+典型例题及答案解析'•基本原理1加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2. 乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m( m< n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出 m 个元素的一个排列,所 有排列的个数记为A^1. 1.公式:1. A ! n n 1 n n! n m ! 2 V m 刚三为(於■ 1)3 ■ 2) (2)规定:0!(1) n ! n (n 1)!,( n 1) n! (n 1)!n! [(n 1) 1] n! (n 1) n! n! (n 1)! n!; ⑶(n 1)! (n 1)! (n 1)! (n 1)! n! 1(n 1)! 三.组合:从n 个不同元素中任取 m(m <n )个元素并组成一组,叫做从n 个不同的m 元素中任取m 个元素的组合数,记作 Cn 。
1公式:c m A m n n 1……n m 1A m m! m! n n! J 人 m ! 规定:C ° 12.组合数性质:c_m c :m , c m c m 1 Cm , c n C ;C : 2n rr 「 r 「「;「 「 「 「「;「 r 「「;注: c r c r 1 c r 2 L c n 1 c n c r 1 c r 1 c r 2 L c n 1 c nc r 2 c r 2 L c n 1 c n c n 1 若 C 「1四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序③分步还是分类。
2. 解排列、组合题的基本策略(1) 两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
排列组合训练 知识点归纳、例题讲解、相应习题
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一1.公式: 1.2. (1)(2); (3)三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1.公式:①;②;③;④若四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从()()()()!!121m n n m n n n n A mn -=+---=……规定:0!1=!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:组合数性质:.2nn n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++= 注:12m m 1212m =m m +m n nn C C ==则或排列组合训练【知识点归纳】(4)两种途径:①元素分析法;②位置分析法。
(完整版)排列组合知识点总结典型例题及解析
排列组合知识点总结 +典型例题及答案解析一.根根源理1.加法原理:做一件事有n 类方法,那么完成这件事的方法数等于各样方法数相加。
2.乘法原理:做一件事分n 步完成,那么完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或地址赞同重复使用,求方法数常常用根根源理求解。
二.排列:从n 个不相同元素中,任取m〔 m≤ n 〕个元素,依照必然的序次排成一列,叫做从 n个不相同元素中取出m个元素的一个排列,所有排列的个数记为A n m .1. 公式: 1. A n m n n 1 n 2 ⋯⋯ n m 1n!n m !2.规定: 0!1(1) n!n ( n 1)!,( n 1) n! (n 1)!(2)n n! [( n 1) 1] n! (n 1) n! n! (n 1)!n! ;(3)n n 1 1n1111(n1)!(n1)!( n1)!(n 1)!n!( n 1)!三.组合:从 n 个不相同元素中任取m〔m≤n〕个元素并组成一组,叫做从n 个不相同的 m 元素中任取 m 个元素的组合数,记作Cn 。
1. 公式:C n m A n m n n 1 ⋯⋯ n m1n!定: C n01A m m m!m! n m !2.组合数性质: C n m C n n m,C n m C n m 1 C n m1, C n0 C n1⋯⋯ C n n2n①;②;③;④注: C r r C r r1C r r2L C n r1C n r C r r11C r r1C r r2 L C n r1C n r C r r21C r r2L C n r1 C n r C n r11假设C n m1C n m2 m1 =m 2或 m1+m 2n四.办理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕②有序还是无序③分步还是分类。
2.解排列、组合题的根本策略〔1〕两种思路:①直接法;②间接法:对有限制条件的问题,先从整体考虑,再把不吻合条件的全部状况去掉。
排列组合问题2:加法原理和乘法原理
加法原理和乘法原理导言:加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。
把握这两个原理,并能正确区分这两个原理,至关重要。
一、概念(一)加法原理如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。
例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?解析:把乘坐不同班次的车、船称为不同的走法。
要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。
而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。
所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法(二)乘法原理如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。
例:用1、2、3、4这四个数字可以组成多少个不同的三位数?解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。
选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数二、加法原理和乘法原理的区别什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。
从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合的二十种解法(最全的排列组合方法总结)
排列组合的二十种解法(最全的排列组合方法总结)教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合方法大全
排
2
名,则不同的安排方案种数为______(
C42C22
A
2 6
/
A
2 2
90
)
十三. 合理分类与分步策略 例 13.在一次演唱会上共 10 名演员,其中 8 人能能唱歌,5 人会跳舞,现要演出一个 2 人唱歌 2 人伴舞的节
数,所取的三个数含有 3 个偶数的取法有 C53 ,只含有 1 个偶数的取法有 C51C52 ,和为偶数的取法共有
C51C52 C53 。再淘汰和小于 10 的偶数共 9 种,符合条件的取法共有 C51C52 C53 9
有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出 它的反面,再从整体中淘汰.
A
4 4
解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?
练习题:一个班有 6 名战士,其中正副班长各 1 人现从中选 4 人完成四种不同的任务,每人完成一种任务, 且正副班长有且只有 1 人参加,则不同的选法有 192 种
九.小集团问题先整体后局部策略 例 9.用 1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹 1,5在两个奇数之间,这样的五位数有
练习题:我们班里有 43 位同学,从中任抽 5 人,正、副班长、团支部书记至少有一人在内的 抽法有多少种?
十二.平均分组问题除法策略
第4页共8页
例 12. 6 本不同的书平均分成 3 堆,每堆 2 本共有多少分法?
解: 分三步取书得 C62C42C22 种方法,但这里出现重复计数的现象,不妨记 6 本书为 ABCDEF,若第一步取
排列组合(加法与乘法原理)
第1讲排列组合(加法与乘法原理)1、加法原理:完成一件工作共有N类方法.在第一类方法中有m1种不同地方法,在第二类方法中有m2种不同地方法,……,在第N类方法中有mn种不同地方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法.运用加法原理计数,关键在于合理分类,不重不漏.要求每一类中地每一种方法都可以独立地完成此任务;两类不同办法中地具体方法,互不相同(即分类不重);完成此任务地任何一种方法,都属于某一类(即分类不漏).合理分类也是运用加法原理解决问题地难点,不同地问题,分类地标准往往不同,需要积累一定地解题经验.2、乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m 1×m2×…×mn种方法.运用乘法原理计数,关键在于合理分步.完成这件工作地N个步骤,各个步骤之间是相互联系地,任何一步地一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取地方法不同,则对应地完成此工作地方法也不同.运用两个原理解决地都是比较复杂地计数问题,在解题时要细心、耐心、有条理地分析问题.计数时要注意区分是分类问题还是分步问题,正确运用两个原理.灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂地计数问题.例1:(1)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中取一本,共有多少种不同地取法?(2)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中各取一本,共有多少种不同地取法?练习:(1)由镇往县城有3条路,由县城往长青山旅游区有4条路,由镇区经县城去长青山有几种不同地走法?(2)某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤.他要各买一样,共有多少种不同地买法?例2:用1角、2角和5角地三种人民币(每种地张数没有限制)组成1元钱,有多少种方法?练习:现有一架天平和1g,3g,9g,27g地砝码各一个,能称出多少种不同地重量?例3:各数位地数字之和是24地三位数共有多少个?练习:在所有四位数中,各位上地数之和等于34地数有种.例4:(1)用1 、2、 3、 4 四个数字,可以组成个不同地四位数;(2)用1、 9 、9 、5 四个数字,可以组成个不同地四位数.练习:(1)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位数?(2)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位偶数?(3)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位数?(4)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位偶数?例5:一本书有235页,打印页码共用了多少个数字码?其中有多少个数字“1”?练习:一本书打印页码共用了6889个数字码,这本书有多少页?例6:下图中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同地走法?练习:(1)如图所示,从甲地到乙地,最近地道路有几条?(2)如果沿图中地线段,以最短地路程,从A点出发到B点,共有多少种不同地走法?巩固练习:1、学生饭堂有主食3种,副食有6种.从主食或副食中挑一种配成盒饭,可以配成()种.2:学生饭堂有主食3种,副食有6种.从主、副食中各挑一种配成盒饭,可以配成()种.3:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果每种颜色取一张,有()种取法.4:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果要取一张画纸,有()种取法.5.从1写到100,一共用了个“5”这个数字.6:小红有不同地上衣4件,下装5种,鞋子3双,问小红能有()种不同地穿着方法?7.数字和是4地三位数有个.8:小芳要买数学、语文、外语地参考书各一本,他看见书架上数学书有3种,语文书有2种,外语书有2种可供选择,她有()种不同地选择方法?9.用一个5分币、四个2分币,八个1分币买一张蛇年8分邮票,共有种付币方式.10.“IMO”是国际数学奥林匹克地缩写,把这三个字母写成三种不同颜色,现有五种不同颜色地笔,按上述要求能写出种不同颜色搭配地“IMO”.11:公园里有小红旗4款,小白旗5款,小蓝旗6款,如果三种颜色地小旗各取一款,有()不同地取法.12.电影院有六个门,其中A、B、C、D门只供退场时作出口,甲、乙门作为入口也作为出口.共有种不同地进出路线.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
排列组合应用题解题技巧
城郊中学信息学奥赛基础(排列与组合)排列与组合3.1 加法原理与乘法原理3.2 排列与组合概念与计算公式3.3 排列与组合的产生算法3.1加法原理与乘法原理1.加法原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1 种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N= m1+m2+...+mn 种不同的方法。
2.乘法原理:做一件事情,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有种mn不同的方法,那么完成这件事有N=m1*m2*...*mn 种不同的方法。
3.两个原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”。
练习:1.由数字1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?② 2.由数字0、1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?③ 3.由数字0,1,2,3,4,5可以组成多少个十位数字大于个位数字的两位数?例 4. 一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成,可以设置多少种三位数的密码(各位上的数字允许重复)?首位数字不为0的密码数是多少种?首位数字是0的密码数又是多少种?5.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?6.某班有22名女生,23名男生.①选一位学生代表班级去领奖,有几种不同选法?②选出男学生与女学生各一名去参加智力竞赛,有几种不同的选法?7.105有多少个约数?并将这些约数写出来.8.从5幅不同的国画、2幅不同的油画、7幅不同的水彩画中选不同画种的两幅画布置房间,有几种选法?9.若x、y可以取1,2,3,4,5中的任一个,则点(x,y)的不同个数有多少?10.一个口袋内装有5个小球另一个口袋内装有4个小球,所有这些小球的颜色各不相同①从两个口袋内任取一个小球,有种不同的取法;11.从两个口袋内各取一个小球,有种不同的取法.12.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开共有个项。
排列组合加法原理和乘法原理
排列组合加法原理和乘法原理
排列组合加法原理:
排列组合加法原理是指当一个事件由几个不同的部分组成时,它的总数可以由每个部分的数量之和来表示。
例如,如果一个事件有三个不同的部分,则可以用每个部分的数量之和来表示总数,即:
总数=部分1的数量+部分2的数量+部分3的数量
乘法原理:
乘法原理是指当一个事件由几个不同的部分组成时,它的总数可以由每个部分的数量之积来表示。
例如,如果一个事件有三个不同的部分,则可以用每个部分的数量之积来表示总数,即:
总数=部分1的数量×部分2的数量×部分3的数量。
排列组合(加法与乘法原理)
第1讲排列组合(加法与乘法原理)1、加法原理:完成一件工作共有N类方法.在第一类方法中有m1种不同地方法,在第二类方法中有m2种不同地方法,……,在第N类方法中有mn种不同地方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法.运用加法原理计数,关键在于合理分类,不重不漏.要求每一类中地每一种方法都可以独立地完成此任务;两类不同办法中地具体方法,互不相同(即分类不重);完成此任务地任何一种方法,都属于某一类(即分类不漏).合理分类也是运用加法原理解决问题地难点,不同地问题,分类地标准往往不同,需要积累一定地解题经验.2、乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m 1×m2×…×mn种方法.运用乘法原理计数,关键在于合理分步.完成这件工作地N个步骤,各个步骤之间是相互联系地,任何一步地一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取地方法不同,则对应地完成此工作地方法也不同.运用两个原理解决地都是比较复杂地计数问题,在解题时要细心、耐心、有条理地分析问题.计数时要注意区分是分类问题还是分步问题,正确运用两个原理.灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂地计数问题.例1:(1)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中取一本,共有多少种不同地取法?(2)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中各取一本,共有多少种不同地取法?练习:(1)由镇往县城有3条路,由县城往长青山旅游区有4条路,由镇区经县城去长青山有几种不同地走法?(2)某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤.他要各买一样,共有多少种不同地买法?例2:用1角、2角和5角地三种人民币(每种地张数没有限制)组成1元钱,有多少种方法?练习:现有一架天平和1g,3g,9g,27g地砝码各一个,能称出多少种不同地重量?例3:各数位地数字之和是24地三位数共有多少个?练习:在所有四位数中,各位上地数之和等于34地数有种.例4:(1)用1 、2、 3、 4 四个数字,可以组成个不同地四位数;(2)用1、 9 、9 、5 四个数字,可以组成个不同地四位数.练习:(1)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位数?(2)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位偶数?(3)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位数?(4)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位偶数?例5:一本书有235页,打印页码共用了多少个数字码?其中有多少个数字“1”?练习:一本书打印页码共用了6889个数字码,这本书有多少页?例6:下图中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同地走法?练习:(1)如图所示,从甲地到乙地,最近地道路有几条?(2)如果沿图中地线段,以最短地路程,从A点出发到B点,共有多少种不同地走法?巩固练习:1、学生饭堂有主食3种,副食有6种.从主食或副食中挑一种配成盒饭,可以配成()种.2:学生饭堂有主食3种,副食有6种.从主、副食中各挑一种配成盒饭,可以配成()种.3:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果每种颜色取一张,有()种取法.4:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果要取一张画纸,有()种取法.5.从1写到100,一共用了个“5”这个数字.6:小红有不同地上衣4件,下装5种,鞋子3双,问小红能有()种不同地穿着方法?7.数字和是4地三位数有个.8:小芳要买数学、语文、外语地参考书各一本,他看见书架上数学书有3种,语文书有2种,外语书有2种可供选择,她有()种不同地选择方法?9.用一个5分币、四个2分币,八个1分币买一张蛇年8分邮票,共有种付币方式.10.“IMO”是国际数学奥林匹克地缩写,把这三个字母写成三种不同颜色,现有五种不同颜色地笔,按上述要求能写出种不同颜色搭配地“IMO”.11:公园里有小红旗4款,小白旗5款,小蓝旗6款,如果三种颜色地小旗各取一款,有()不同地取法.12.电影院有六个门,其中A、B、C、D门只供退场时作出口,甲、乙门作为入口也作为出口.共有种不同地进出路线.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
(新)高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
☆排列组合解题技巧归纳总结
排列组合解题技巧归纳总结教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
排列组合相加定理
《排列组合相加定理》
定理1:在一个非空集合中,任意两个元素都是互不相同的数,且这两个元素的和等于该集合中所有元素的总和.这里也把对象放到了集合上面,因为从二元组角度看来,“二”即是其对应的特例“1”;
例如:某个自然数中,2<>3,那么它就是质数,不会是其他类型的数(1+2+4+5=14);
再比如:12个数字,每个数只能出现一次,且第一个数与最后一个数必须是相邻的.这种情况叫做排列.
注意:用排列时可以作用于一行的每一个元素,即可用序号表示;也可用序号表示一个元素.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合中的加法原理即列举法的运用加法原理:完成一件事情有n类方法可以完成,并且每类方法又分别有
种不同方法,则完成这件事情共有
种方法。
所以用加法原理解排列组合体的关键就是“分类。
”
列举法是排列组合当中最常用的方法,主要是利用加法原理来解题。
列举法是通过读题,把题干中完成这件事的过程分成若干类,分别计算达到解题的目的。
在行测考试中,列举法常见的就是分为两类和三类。
下面我们通过具体的例题来说明例举法解题的技巧与步骤:
例1、有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上表示信号,问共可表示多少种不同的信号?( )
A.24种
B.48种
C.64种
D.72种
【分析】通过题意可知,挂一盏、两盏、三盏或四盏分别表示不同的信号,故可以根据灯的个数进行分类,分类过程中即要做到无重复不交叉,也无遗漏。
【解析】当挂一个灯时有种;当挂两灯时有种;当挂三灯时有
种;当挂四盏灯时有种所以共有4+12+24+24=64种。
答案为C。
例2、抽屉里有黑色小球13只,红色小球7只,现在要选3个球出来,至少要有2只红球的不同选法共有多少种?
A.308
B.378
C.616
D.458
【分析】根据条件“要选3个球出来,至少要有2只红球”的情况可以分为两类:一类是有两个红球一个黑球,另一类是有三个红球;
【解析】两个红球一个黑球的选法是:三个红球的选法是:,由于是分类解题用的是加法原理或列举法,故答案为273+35=308(种),选A。
例3、有3户人家共订了10份日报,每户人家至少2份,最多4份。
问:一共有多少种不同的订法?
A.6
B.12
C.18
D.21
【分析】题干中:“每户人家至少2份,最多4份”所给的限定条件较多,遇到此类题目我们一般考虑列举法。
分类考虑,分给三户的分法如下:2、4、4或3、3、4两种分法。
【解析】2、4、4的分法,日报完全一样,哪个部门都可以分2份,2份固定了,4份也固定了,所以共3种分法,同理3、4、4的分法,4固定了,3就固定了,也是3种分法。
所以把所有种类加起来,共3+3=6种分法。
答案为A。
例4、某单位有老陶和小刘等5名工作人员,需安排在星期一至星期五的中午值班,每人一次,若老陶星期一外出开会不能排,小刘有其他的事不能排在星期五,则不同的排法共有种。
A.36
B.48
C.78
D.96
【分析】此类型题目的难度较大,里面限定条件相互之间有交叉,所以要考虑如何做到无重复不遗漏,是解决此类题目的关键。
【解析】分类:一类老陶去周五,另外一类老陶不去周五。
计算:老陶去周五,其他的人就没有限制了,所以种排法;另外一类老陶不去周五,先排老陶3个位置可以去,再排小刘周五不去,老陶去的位置不能再去,所以只有3个位置可以去,再排其他的人,其他的人还有3个位置可以去,所以共有。
然后把所有种类求得的加起来:54+24=78.所以答案为C
例5、8对夫妻参加舞会,若所有男宾都与除自己夫人外的每个来宾握手,女宾不与女宾握手,则共握手多少次?
A.84次
B.64次
C.56次
D.105次
【答案】A
【解析】根据握手情况分类:①男宾与女宾握手共计8×7=56次;②男宾与男宾握手共
次;男宾不与男宾握手共两类。
故共计握手56+28=84次。
小结:列举法是排列组合中最常考的题型,此类题型一般限定条件较多,所以遇到限定条件较多的排列组合题目我们都用列举法进行解题。
在分类过程中,要做到无重复、全覆盖、不交叉。
(红麒麟2014版强势升级,打造更权威、更智能、更实用的公考学习平台,专属方案、迭代题库、视频课程和配套练习、解析问答、学霸排名、能力测评、申论批改打分、面试语音答题、名师语音点评……一切尽在免费中)。
手机版红麒麟,无需下载,手机浏览器扫一扫
订阅红麒麟官方微信,随时接收每日一常识、面试经典用语、申论材料等精彩内容!
——源自红麒麟定制式公考督学平台。