基于有导向变异算子的GM_EA算法
物流配送中几种路径优化算法
捕食搜索算法 动物学家在研究动物的捕食行为时发现,尽管由于动物物种的不同而造成的身体结构的千差万别,但它们的捕食行为却惊人地相似.动物捕食时,在没有发现猎物和猎物的迹象时在整个捕食空间沿着一定的方向以很快的速度寻找猎物.一旦发现猎物或者发现有猎物的迹象,它们就放慢步伐,在发现猎物或者有猎物迹象的附近区域进行集中的区域搜索,以找到史多的猎物.在搜寻一段时间没有找到猎物后,捕食动物将放弃这种集中的区域,而继续在整个捕食空间寻找猎物。
模拟动物的这种捕食策略,Alexandre于1998提出了一种新的仿生计算方法,即捕食搜索算法(predatory search algorithm, PSA)。
基本思想如下:捕食搜索寻优时,先在整个搜索空间进行全局搜索,直到找到一个较优解;然后在较优解附近的区域(邻域)进行集中搜索,直到搜索很多次也没有找到史优解,从而放弃局域搜索;然后再在整个搜索空间进行全局搜索.如此循环,直到找到最优解(或近似最优解)为止,捕食搜索这种策略很好地协调了局部搜索和全局搜索之间的转换.目前该算法己成功应用于组合优化领域的旅行商问题(traveling salesm an problem )和超大规模集成电路设计问题(very large scale integrated layout)。
捕食搜索算法设计 (1)解的表达 采用顺序编码,将无向图中的,n一1个配送中心和n个顾客一起进行编码.例如,3个配送中心,10个顾客,则编码可为:1一2一3一4一0一5一6一7一0一8一9一10其中0表示配送中心,上述编码表示配送中心1负贡顾客1,2,3,4的配送,配送中心2负贡顾客5,6,7的配送,配送中心3负贡顾客8,9,10的配送.然后对于每个配送中心根据顾客编码中的顺序进行车辆的分配,这里主要考虑车辆的容量约束。
依此编码方案,随机产生初始解。
(2)邻域定义 4 仿真结果与比较分析(Simulation results and comparison analysis) 设某B2C电子商务企业在某时段由3个配送中心为17个顾客配送3类商品,配送网络如图2所示。
遗传算法的研究与进展
遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。
本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。
自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。
遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。
在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。
本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。
遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。
遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。
为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。
这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。
精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。
基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。
遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。
随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。
研究者们在遗传算法的设计和应用方面取得了一系列创新成果。
基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。
基于遗传算法的微分方程求解问题
158EDUCATION FORUM 教育论坛摘要:微分方程在很多领域都有其重要性,为了求得微分方程的近似解,论文介绍了遗传算法思想及操作步骤,并给出了遗传算法求解常微分方程的过程,通过举例说明具体实现遗传算法解微分方程的步骤。
关键词:微分方程;遗传算法;最优化问题;近似解一、 前言实际生活中的各个方面的问题离不开函数关系,利用函数关系可以对客观事物的规律性进行研究,在实践中寻找函数关系至关重要。
很多实际问题在寻求函数关系时可以列出含有要找的函数及其导数的关系式,这样的关系式就是所谓微分方程。
17世纪初,牛顿、莱布尼兹和伯努利等科学家从几何和力学问题中分别建立了简单的微分方程,开创了微分方程的初期研究。
很多物理难题研究到一定程度都需要建立相应的数学模型,比如悬链线、共振现象的研究都归结于微分方程的求解问题,至此微分方程的研究变得很重要。
微分方程求解是微分方程问题中的核心,通过微分方程的解可以分析函数关系,并进行物理解释,从而预测物体发展规律,微分方程应用很广泛,在实际生活中的各个方面都能见到微分方程的应用,很多数学模型需要建立微分方程,设定初值条件,进行求解,研究解的特点和规律,为下一步分析和计划提供依据[1-2]。
微分方程分为常微分方程和偏微分方程,n 阶常微分方程的一般形式是:()(,,,,)n f x y y y ′= 0,[,]x a b ∈其中()n y 为y 的n 阶导数,边界条件由下式给出:()(,,,,)n i x t g x y y y −=′= 10,,,,i n 12其中t i =a 或t i =b 。
常微分方程求解是一个复杂的数学问题,方法虽然多,但实现起来比较困难,即使是一阶微分方程,求其精确解也是比较困难的,高阶微分方程的求解方法更复杂,很多微分方程很难求出其精确解,很多实际问题中我们可以找出它的近似解,在近似解达到一定近似程度的情况下,可以根据微分方程的近似解来分析解的性质和事物发展的规律。
基于有导向变异算子求解多维背包问题
广西师范学院 计算机与信息工程学院 , 宁 5 0 0 南 30 1
Col g f C mp tr a d I f r t n En i e r g Gu n x e c e s E u a i n Un v r i Na n g 5 0 0 , i a l e o o u e n n o mai g n e i , a g i T a h r d c t i e st e o n o y, n i 3 0 1 Ch n n
LU J a i nbo, Yi z u , BI ng ho LO N G Lo ng, t . oli m ulikna ac pr e s e a1S v ng t・ ps k oblm ba e o s d n gu de m ut ton Co pu e Eng - i d ai . m tr i
以用MK P来描述 , 如资金运算 、 货舱装载 、 存储分配等。MK P的 数学模 型可 以叙 述如下 : 定待选项 的集合 , 1 2 …, } 给 =f, , n , 从集合 川p 选出一组 满足所有问题约束 的项 , 使其价值之和最
大 。MK P的数学公式如下 :
遗传算法中交叉算子和变异算子的作用
遗传算法中交叉算子和变异算子的作用全文共四篇示例,供读者参考第一篇示例:遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化原理的优化算法,其主要思想是模拟生物进化的过程,通过模拟遗传、突变和自然选择等操作来寻找问题的最优解。
在遗传算法中,交叉算子和变异算子是两个重要的操作,它们分别负责遗传信息的交换与改变,对算法的性能和收敛速度有着重要的影响。
交叉算子是遗传算法中处理遗传信息的重要操作之一。
它模拟了生物界中的杂交现象,通过交叉操作可以将两个个体的染色体信息重新组合,产生新的个体。
这种重新组合的过程可以带来某种程度上的多样性,从而有利于保持种群的多样性,防止算法过早陷入局部最优解。
交叉算子通常包括单点交叉、多点交叉、均匀交叉等不同的方法,其中单点交叉是最常用的一种。
以一个简单的二进制编码的遗传算法为例,假设染色体长度为5,两个个体分别为10011和01100,进行单点交叉,则可得到如下的交叉结果:父代1:1 0 0 1 1父代2:0 1 1 0 0交叉点:↑交叉后:1 0 0 0 0交叉后:0 1 1 1 1通过交叉算子的作用,可以看到新个体的染色体信息是两个父代的信息进行重新组合得到的,从而带来了新的遗传信息。
这种信息的重新组合可以增加种群的多样性,有助于增加算法的全局搜索能力,使得算法更有可能找到最优解。
相对于交叉算子,变异算子是一种更为局部的操作。
变异算子的作用是在种群中对个体的染色体信息进行随机的变动,以增加种群的多样性。
变异操作可以在一定程度上破坏个体的优势结构,引入新的遗传信息,从而有助于避免陷入局部最优解。
变异算子通常包括比特翻转、基因插入、基因删除等不同的方法。
以前文的例子为例,如果对新个体进行一次比特翻转的变异操作,则可能得到如下的结果:变异前:1 0 0 0 0变异后:1 0 0 1 0通过变异操作,原本的个体信息得到了一定的改变,引入了新的遗传信息。
这种变化有助于增加种群的多样性,使得算法更有可能跳出局部最优解,向全局最优解前进。
motif finding 算法
motif finding 算法在生物信息学中,motif finding 是一种用于识别DNA、RNA或蛋白质序列中的保守模式或“motif”的算法。
这些motif通常与特定的生物功能或过程相关联,因此这种算法在基因组学、转录组学和其他生物学领域的研究中非常重要。
以下是一些常用的motif finding算法:1. Gibbs motif finding (Gibbs Motif Sampler): 这是一个基于概率的算法,通过迭代方式搜索序列中的潜在motif。
它使用一个滑动窗口来评估每个潜在的motif,并使用一个概率模型来计算每个位置属于motif的概率。
2. MEME (Multiple Em for Motif Elicitation): 这是一个基于统计模型的算法,旨在识别DNA或蛋白质序列中的非冗余motif。
它使用EM(期望最大化)算法来估计模型参数,并使用这些参数来识别潜在的motif。
3. Weeder: 这是一个基于窗口的算法,通过在序列中滑动窗口来搜索潜在的motif。
它使用一个启发式方法来评估每个窗口,并选择具有最高得分的前几个窗口作为潜在的motif。
4. MDScan: 这是一个基于频率的算法,通过比较给定序列与其他序列的频率模式来识别潜在的motif。
它使用一个滑动窗口来计算每个位置的频率,并使用这些频率来识别潜在的motif。
5. HMM (Hidden Markov Model): 这是一个基于统计模型的算法,通过将序列视为隐藏状态序列来识别潜在的motif。
它使用一个概率模型来描述状态之间的转移和观察值的生成,并使用Viterbi算法或其他算法来解码隐藏状态序列。
以上都是非常常见的motif finding算法,每个算法都有其特点和适用场景。
选择适合的算法需要考虑数据的性质、计算资源和所需精度等因素。
AI人工智能的几种常用算法概念
一、粒子群算法粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为PSO,是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。
PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover) 和变异(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。
这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题.为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度.爬山法精度较高,但是易于陷入局部极小.遗传算法属于进化算法(EvolutionaryAlgorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(ParticalSwarmOptimization-PSO)算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(ParticalSwarmOptimization-PSO)算法是近年来发展起来的一种新的进化算法(Evolu2tionaryAlgorithm-EA).PSO算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质.但是它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover)和变异(Mutation)操作.它通过追随当前搜索到的最优值来寻找全局最优二、遗传算法遗传算法是计算数学中用于解决最佳化的,是进化算法的一种。
遗传算法编码及算子简介
遗传算法编码及算子简介遗传算法主要是通过遗传操作对群体中具有某种结构形式的个体施加结构重组处理,从而不断地搜索出群体中个体间的结构相似性,形成并优化积木块以逐渐逼近最优解。
由此可见,必须把群体中的个体转化成按一定基因结构组成的染色体或个体,即编码。
编码原则包括两条:1.有积极积木块编码规则,即所定编码应当易于生成所求问题相关的短距和低阶的积木块。
2.最小字符集编码规则,即所定编码应用最小字符集以使问题得到自然的表示或描述。
规则一是基于模式定理和积木块假设;规则二提供了一种更为实用的编码规则。
评估编码策略常采用的规范有:1.完备性:问题空间中的所有点都能作为GA空间的点表现。
2.健全性:GA空间中的染色体能对应所有问题空间中的候选解。
3.非冗余性:染色体和候选解一一对应。
这些评估规范是独立于问题领域的普遍准则。
对某个具体的应用领域而言,应该客观化地比较和评估该问题领域中所用的编码方法。
应用遗传算法进行优化,首先将问题描述成串的形式,以模拟染色体。
选择何种编码方式对算法的运行有很大的影响。
现在,流行的观点认为二进制编码能在相同的范围内表示最多的模式,能充分地体现所谓的隐含并行性。
但是,二进制编码方式的精度依赖于染色体的基因位数及设计变量的范围。
因而对于高精度、多变量问题,n值需很大,降低遗传算法的收敛速度。
另外,二进制编码不直接反映真实的设计空间。
其它的编码方式还有:格雷码编码、浮点编码、树结构编码、参数动态编码和多维编码等。
遗传算法主要有选择、交叉和突变算子选择算子遗传算法使用选择算子或称复制算子来对种群中的个体进行优胜劣汰操作:选择算子使适应性高的个体在后代中生存的概率较大,而适应度低的个体生存的概率很小甚至被淘汰。
遗传算法中的选择操作就是来确定如何从父代群体中按某种方法选取那些个体以传到下一代群体的一种遗传算法。
选择操作是建立在群体中个体的适应度评价基础上的。
选择操作的主要目的是为了避免基因缺失、提高全局收敛性和计算效率。
AI人工智能的几种常用算法概念
一、粒子群算法粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为PSO,是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。
PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover) 和变异(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。
这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题.为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度.爬山法精度较高,但是易于陷入局部极小.遗传算法属于进化算法(EvolutionaryAlgorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(ParticalSwarmOptimization-PSO)算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(ParticalSwarmOptimization-PSO)算法是近年来发展起来的一种新的进化算法(Evolu2tionaryAlgorithm-EA).PSO算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质.但是它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover)和变异(Mutation)操作.它通过追随当前搜索到的最优值来寻找全局最优二、遗传算法遗传算法是计算数学中用于解决最佳化的,是进化算法的一种。
ACMG遗传变异分类标准与指南
ACMG遗传变异分类标准与指南1. 术语在描述孟德尔疾病相关的基因变异时,建议使用如下五级术语:①致病性,②可能致病性,③意义不明确,④可能良性,⑤良性建议所有致病性(包括可能致病)的结论需要注明疾病及相应的遗传模式(如c.1521_1523delCTT (p.Phe508del),致病性,囊性纤维化,常染色体隐性遗传)。
2. 命名基因变异命名依据人类基因组变异协会(the Human GenomeVariation Society, HGVS (https:///mutnomen)制定的命名规则,可利用工具提供正确的HGVS命名来描述变异(http://mutalyzer.nl)。
参考序列应该是完整的,并来源于具有版本号的美国生物技术信息参考序列数据库(/Refseq/)或LRG数据库()。
基因组坐标应根据标准基因组版本(如hg19)或覆盖整个基因(包括5'和3'非翻译区以及启动子)的基因组参考序列来界定。
当描述编码变异时,应该在报告中使用和提供每个基因的一个参考转录本。
该转录本应该是最长的已知转录本或者是最具临床相关性的转录本。
协会支持的参考转录本通常可以通过LRG数据库()、CDS共识数据库(https:///CCDS/CcdsBrowse.cgi)、人类基因突变数据库()、ClinVar (/clinvar)或特异基因座数据库来确定。
3. 文献及数据库使用当临床实验室需要对某一变异进行分类并出具报告时,可在已有的数据库及发表的文献中寻找到有价值的参考信息。
数据库主要包括两大类:(1)人群数据库,适用于获取某变异在大规模人群中发生频率的相关信息;(2)疾病数据库,主要包含病患中发现的变异以及对其致病性的评估。
4. 生物信息学计算预测程序可以辅助解读序列变异工具主要分为两类:一类可以预测错义改变是否会毁坏其所产生的蛋白质的功能或结构;另一种可以预测是否影响剪接。
在序列解读中,不同软件工具组合的预测结果被视为单一证据而不是相互独立的证据,软件分析结果只是预测,他们在序列变异解读中的应该慎用,不建议仅使用这些预测结果作为唯一证据来源去做临床判断。
920087-人工智能导论(第4版)-第6章 智能计算及其应用(导论)
二进制串 12...n
Gray 1 2... n
二进制编码 Gray编码
k
k
1
1
k
k k
1 1
Gray编码 二进制编码
k
k i (mod 2) i 1
17
6.2.3 编码
2. 实数编码
采用实数表达法不必进行数制转换,可直接在解的表 现型上进行遗传操作。
多参数映射编码的基本思想:把每个参数先进行二进 制编码得到子串,再把这些子串连成一个完整的染色体。
Introduction of Artificial Intelligence
第 6 章 智能计算及其应用
教材:
王万良《人工智能导论》(第4版) 高等教育出版社,2017.7
第6章 智能计算及其应用
受自然界和生物界规律的启迪,人们根据其原理模 仿设计了许多求解问题的算法,包括人工神经网络、 模糊逻辑、遗传算法、DNA计算、模拟退火算法、 禁忌搜索算法、免疫算法、膜计算、量子计算、粒 子群优化算法、蚁群算法、人工蜂群算法、人工鱼 群算法以及细菌群体优化算法等,这些算法称为智 能 计 算 也 称 为 计 算 智 能 (computational intelligence, CI)。
(4)稳定性原则: 指算法对其控制参数及问题的数 据的敏感度。
(5)生物类比原则:在生物界被认为是有效的方法
及操作可以通过类比的方法引入到算法中,有时会带
来较好的结果。
9
第6章 智能计算及其应用
6.1 进化算法的产生与发展
6.2 基本遗传算法
6.3 遗传算法的改进算法
6.4 遗传算法的应用
19
6.2.4 群体设定
2. 种群规模的确定 群体规模太小,遗传算法的优化性能不太好,易陷
基于Matlab的遗传算法程序设计及优化问题求解
曲靖师范学院学生毕业论文(设计)题目:基于Matlab的遗传算法程序设计及优化问题求解院(系):数学与信息科学学院专业:信息与计算科学班级:20051121班学号:2005112104论文作者:沈秀娟指导教师:刘俊指导教师职称:教授2009年 5月基于Matlab的遗传算法程序设计及优化问题求解摘要遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用. 本文介绍了遗传算法的发展、原理、特点、应用和改进方法,以及基本操作和求解步骤,再基于Matlab编写程序实现遗传算法并求解函数的优化问题. 程序设计过程表明,用Matlab语言进行优化计算,具有编程语句简单,用法灵活,编程效率高等优点. 经仿真验证,该算法是正确可行的.关键词:遗传算法;Matlab;优化Matlab-based genetic algorithm design and optimization of procedures forproblem solvingAbstract:As a new optimizated method,genetic algorithm is widely used in co mputational science,pattern recognition,intelligent fault diagnosisandsoon. It is suitable to solve complex non-linear and multi-dimensionaloptimizatio n problem.And it has been more widely used in recentyears.This paper descri bes the development of genetic algorithms,principle,features,application an d improvement of methods.At the same time,it in-troduces basic operation and solution steps.And then,it achievesgeneticalgorithm on the matlab programmi ng andsolves the function optimization problem.The program design process sh ows that this optimization calculation has advantages of simple programming language,flexible usage and high efficiency in Matlab language.The algorith m iscorrect and feasible by simulated authentication.Keywords: Genetic algorithm; Matlab;Optimization目录1 引言 (1)2 文献综述 (1)2.1国内外研究现状及评价 (1)2.2提出问题 (2)3 遗传算法的理论研究 (2)3.1遗传算法的产生背景 (2)3.2遗传算法的起源与发展 (3)3.2.1 遗传算法的起源 (3)3.2.2 遗传算法的发展 (3)3.3遗传算法的数学基础研究 (4)3.4遗传算法的组成要素 (6)3.5遗传算法的基本原理 (7)3.6遗传算法在实际应用时采取的一般步骤 (8)3.7遗传算法的基本流程描述 (9)3.8遗传算法的特点 (10)3.9遗传算法的改进 (11)3.10遗传算法的应用领域 (12)4 基于MATLAB的遗传算法实现 (14)5 遗传算法的函数优化的应用举例 (17)6 结论 (18)6.1主要发现 (18)6.2启示 (18)6.3局限性 (19)6.4努力的方向 (19)参考文献 (20)致谢 (21)附录 (22)1引言遗传算法(Genetic Algorithm)是模拟自然界生物进化机制的一种算法即遵循适者生存、优胜劣汰的法则也就是寻优过程中有用的保留无用的则去除. 在科学和生产实践中表现为在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法即找出一个最优解. 这种算法是1960年由Holland提出来的其最初的目的是研究自然系统的自适应行为并设计具有自适应功能的软件系统. 它的特点是对参数进行编码运算不需要有关体系的任何先验知识沿多种路线进行平行搜索不会落入局部较优的陷阱,能在许多局部较优中找到全局最优点是一种全局最优化方法[1-3]. 近年来,遗传算法已经在国际上许多领域得到了应用. 该文将从遗传算法的理论和技术两方面概述目前的研究现状描述遗传算法的主要特点、基本原理以及改进算法,介绍遗传算法的应用领域,并用MATLAB 实现了遗传算法及最优解的求解.2文献综述2.1国内外研究现状及评价国内外有不少的专家和学者对遗传算法的进行研究与改进. 比如:1991年D.WHITEY 在他的论文中提出了基于领域交叉的交叉算子(ADJACENCY BASED CROSSOVER),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证. 2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题. 国内外很多文献都对遗传算法进行了研究. 现查阅到的国内参考文献[1-19]中, 周勇、周明分别在文献[1]、[2]中介绍了遗传算法的基本原理;徐宗本在文献[3]中探讨了包括遗传算法在内的解全局优化问题的各类算法,文本次论文写作提出了明确的思路;张文修、王小平、张铃分别在文献[4]、[5]、[6]从遗传算法的理论和技术两方面概述目前的研究现状;李敏强、吉根林、玄光南分别在文献[7]、[8]、[9]中都不同程度的介绍了遗传算法的特点以及改进算法但未进行深入研究;马玉明、张丽萍、戴晓辉、柴天佑分别在文献[10]、[11]、[12]、[13]中探讨了遗传算法产生的背景、起源和发展;李敏强、徐小龙、林丹、张文修分别在文献[14]、[15]、[16]、[17]探讨了遗传算法的发展现状及以后的发展动向;李敏强,寇纪凇,林丹,李书全在文献[18]中主要论述了遗传算法的具体的实施步1骤、应用领域及特点;孙祥,徐流美在文献[19]中主要介绍了Matlab的编程语句及基本用法.所有的参考文献都从不同角度不同程度的介绍了遗传算法但都不够系统化不够详细和深入.2.2提出问题随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 很多人构造出了各种各样的复杂形式的测试函数,有连续函数,有离散函数,有凸函数,也有凹函数,人们用这些几何特性各异的函数来评价遗传算法的性能. 而对于一些非线性、多模型、多目标的函数优化问题用其他优化方法较难求解遗传算法却可以方便地得到较好的结果. 鉴于遗传算法在函数优化方面的重要性,该文在参考文献[1-19]的基础上,用Matlab语言编写了遗传算法程序, 并通过了调试用一个实际例子来对问题进行了验证,这对在Matlab环境下用遗传算法来解决优化问题有一定的意义.3遗传算法的理论研究3.1遗传算法的产生背景科学研究、工程实际与国民经济发展中的众多问题可归结作“极大化效益、极小化代价”这类典型模型. 求解这类模型导致寻求某个目标函数(有解析表达式或无解析表达式)在特定区域上的最优解. 而为解决最优化问题目标函数和约束条件种类繁多,有的是线性的,有的是非线性的;有的是连续的,有的是离散的;有的是单峰值的,有的是多峰值的. 随着研究的深入,人们逐渐认识到:在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 总的来说,求最优解或近似最优解的方法有三种: 枚举法、启发式算法和搜索算法.(1)枚举法. 枚举出可行解集合内的所有可行解以求出精确最优解. 对于连续函数,该方法要求先对其进行离散化处理,这样就有可能产生离散误差而永远达不到最优解. 另外,当枚举空间比较大时该方法的求解效率比较低,有时甚至在目前最先进的计算工具上都无法求解.(2)启发式算法. 寻求一种能产生可行解的启发式规则以找到一个最优解或近似最优解. 该方法的求解效率虽然比较高,但对每一个需要求解的问题都必须找出其特有的2启发式规则,这个启发式规则无通用性不适合于其它问题.(3)搜索算法. 寻求一种搜索算法,该算法在可行解集合的一个子集内进行搜索操作以找到问题的最优解或近似最优解. 该方法虽然保证了一定能够得到问题的最优解,但若适当地利用一些启发知识就可在近似解的质量和求解效率上达到一种较好的平衡.随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决上述最优化问题的通用方法仍是一个难题. 而遗传算法却为我们解决这类问题提供了一个有效的途径和通用框架开创了一种新的全局优化搜索算法.3.2遗传算法的起源与发展3.2.1 遗传算法的起源50年代末到60年代初,自然界生物进化的理论被广泛接受生物学家Fraser,试图通过计算的方法来模拟生物界“遗传与选择”的进化过程,这是遗传算法的最早雏形. 受一些生物学家用计算机对生物系统进行模拟的启发,Holland开始应用模拟遗传算子研究适应性. 在1967年,Bagley关于自适应下棋程序的论文中,他应用遗传算法搜索下棋游戏评价函数的参数集并首次提出了遗传算法这一术语. 1975年,Holland出版了遗传算法历史上的经典著作《自然和人工系统中的适应性》,首次明确提出遗传算法的概念. 该著作中系统阐述了遗传算法的基本理论和方法,并提出了模式(schemat atheorem)[4],证明在遗传算子选择、交叉和变异的作用下具有低阶、短定义距以及平均适应度高于群体平均适应度的模式在子代中将以指数级增长. Holand创建的遗传算法,是基于二进制表达的概率搜索方法. 在种群中通过信息交换重新组合新串;根据评价条件概率选择适应性好的串进入下一代;经过多代进化种群最后稳定在适应性好的串上. Holand最初提出的遗传算法被认为是简单遗传算法的基础,也称为标准遗传算法.3.2.2 遗传算法的发展(1)20世纪60年代,John Holland教授和他的数位博士受到生物模拟技术的启发,认识到自然遗传可以转化为人工遗传算法. 1962年,John Holland提出了利用群体进化模拟适应性系统的思想,引进了群体、适应值、选择、变异、交叉等基本概念.(2)1967年,J.D.Bagely在其博士论文中首次提出了“遗传算法”的概念.(3)1975年,Holland出版了《自然与人工系统中的适应性行为》(Adaptation in Natural and Artificial System).该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础. 同年De Jong3在其博士论文中,首次把遗传算法应用于函数优化问题对遗传算法的机理与参数进行了较为系统地研究并建立了著名的五函数测试平台.(4)20世纪80年代初,Holland教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier System简称CS),开创了基于遗传算法的机器学习的新概念.(5)1989年,David Goldberg出版了《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search Optimization and Machine Learning).该书全面系统地总结了当时关于遗传算法的研究成果,结合大量的实例完整的论述了遗传算法的基本原理及应用,奠定了现代遗传算法的基础.(6)1992年,John R.Koza出版了专著《遗传编程》(Genetic Programming)提出了遗传编程的概念,并成功地把遗传编程的方法应用于人工智能、机器学习、符号处理等方面. 随着遗传算法的不断深入和发展,关于遗传算法的国际学术活动越来越多,遗传算法已成为一个多学科、多领域的重要研究方向.今天遗传算法的研究已经成为国际学术界跨学科的热门话题之一. 遗传算法是一种有广泛应用前景的算法,但是它的研究和应用在国内尚处于起步阶段. 近年来遗传算法已被成功地应用于工业、经济管理、交通运输、工业设计等不同领域解决了许多问题.例如可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等.3.3 遗传算法的数学基础研究模式定理及隐含并行性原理被看作遗传算法的两大基石,后来又提出了建筑块假设,但是模式定理无法解释遗传算法实际操作中的许多现象,隐性并行性的论证存在严重漏洞,而建筑块假设却从未得到过证明. 对遗传算法的基础理论的研究主要分三个方面:模式定理的拓广和深入、遗传算法的新模型、遗传算法的收敛性理论.(1)模式定理的拓广和深入. Holland给出模式定理:具有短的定义长度、低阶、并且模式采样的平均适应值在种群平均适应值以上的模式在遗传迭代过程中将按指数增长率被采样模式定理可表达为:m(H,t+1)≥m(H,t).()fHf.()⎪⎭⎫⎝⎛---PHOlP mHc.1.1δ(1)其中m(Ht):在t代群体中存在模式H 的串的个数.4()Hf:在t 代群体中包含模式H 的串的平均适应值. f:t代群体中所有串的平均适应值.l表示串的长度pc 表示交换概率pm表示变异概率.Holland的模式定理奠定了遗传算法的数学基础根据隐性并行性得出每一代处理有效模式的下限值是()l c n2113.其中n是种群的大小c1是小整数. Bertoui和Dorigo进行了深入的研究获得当2βln=,β为任意值时处理多少有效模式的表达式. 上海交通大学的恽为民等获得每次至少产生()21-no数量级的结果. 模式定理中模式适应度难以计算和分析A.D.Berthke首次提出应用Walsh函数进行遗传算法的模式处理并引入模式变换的概念采用Walsh函数的离散形式有效地计算出模式的平均适应度并对遗传算法进行了有效的分析. 1972年Frantz首先发现一种常使GA从全局最优解发散出去的问题,称为GA-欺骗题[5]. Goldberg最早运用Walsh模式转换设计出最小的GA-欺骗问题并进行了详细分析.(2)遗传算法的新模型. 由于遗传算法中的模式定理和隐性并行性存在不足之处,为了搞清楚遗传算法的机理,近几年来人们建立了各种形式的新模型最为典型的是马氏链模型遗传算法的马氏链模型[6-7],主要由三种分别是种群马氏链模型、Vose模型和Cerf 扰动马氏链模型. 种群马氏链模型将遗传算法的种群迭代序列视为一个有限状态马氏链来加以研究,运用种群马氏链模型转移概率矩阵的某些一般性质分析遗传算法的极限行为,但转移概率的具体形式难以表达妨碍了对遗传算法的有限时间行为的研究;Vose 模型是在无限种群假设下利用相对频率导出,表示种群的概率的向量的迭代方程,通过这一迭代方程的研究,可以讨论种群概率的不动点及其稳定性,从而导致对遗传算法的极限行为的刻画,但对解释有限种群遗传算法的行为的能力相对差一些. Cerf扰动模型是法国学者Cerf将遗传算法看成一种特殊形式的广义模拟退火模型,利用了动力系统的随机扰动理论,对遗传算法的极限行为及收敛速度进行了研究. 还有其它改进模型,例如张铃、张钹等人提出的理想浓度模型,它首先引入浓度和家族的概念,通过浓度计算建立理想浓度模型[8-10],其浓度变化的规律为:5c(Hi,t +1)=c(H,t).()()()t ftOHfi,(2)c(Hi,t+1)表示模式Hi在t时刻的浓度,并对其进行分析,得出结论:遗传算法本质上是一个具有定向制导的随机搜索技术,其定向制导原则是导向适应度高的模式为祖先的染色体“家族”方向.(3)遗传算法的收敛性理论. 对于遗传算法的马氏链分析本身就是建立遗传算法的收敛性理论[11-12], Eiben等用马尔可夫链证明了保留最优个体的遗传算法的概率性全局收敛,Rudolph用齐次有限马尔可夫链证明了具有复制、交换、突变操作的标准遗传算法收敛不到全局最优解,不适合于静态函数的优化问题,建议改变复制策略以达到全局收敛,Back和Muhlenbein研究了达到全局最优解的算法的时间复杂性问题,近几年,徐宗本等人建立起鞅序列模型,利用鞅序列收敛定理证明了遗传算法的收敛性.3.4遗传算法的组成要素遗传算法所涉及的五大要素:参数编码、初始群体的设定、适应度函数的设计、遗传操作的设计和控制参数的设定,其具体内容如下:(1)参数编码. 遗传算法中常用的编码方法是二进制编码,它将问题空间的参数用字符集{0,1}构成染色体位串,符合最小字符集原则,操作简单,便于用模式定理分析.(2)适应度函数的设计. 适应度函数是评价个体适应环境的能力,使选择操作的依据,是由目标函数变换而成. 对适应度函数唯一的要求是其结果为非负值. 适应度的尺度变换是对目标函数值域的某种映射变换,可克服未成熟收敛和随机漫游现象. 常用的适应度函数尺度变化方法主要有线性变换、幂函数变换和指数变换.[13](3)遗传操作的设计. 包括选择、交叉、变异.①选择(Selection). 选择是用来确定交叉个体,以及被选个体将产生多少个子代个体. 其主要思想是个体的复制概率正比于其适应值,但按比例选择不一定能达到好的效果. 选择操作从早期的轮盘赌选择发展到现在最佳个体保存法、排序选择法、联赛选择法、随机遍历抽样法、局部选择法、柔性分段复制、稳态复制、最优串复制、最优串保留等.②交叉(Crossover). 交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作,其作用是组合出新的个体,在串空间进行有效搜索,同时降低对有效模式的破坏概率. 各种交叉算子均包含两个基本内容:确定交叉点的位置和进行部分基因的6交换. 常用的交叉操作方法有单点交叉、双点交叉、一致交叉、均匀交叉、算术交叉、二维交叉、树结构交叉、部分匹配交叉、顺序交叉和周期交叉等等.③变异(Mutation). 变异是指将个体编码串中的某些基因值用其它基因值来替换,形成一个新的个体. 遗传算法中的变异运算是产生新个体的辅助方法,其目的是使遗传算法具有局部的随机搜索能力和保持群体的多样性. 变异算法包括确定变异点的位置和进行基因值替换. 常见的变异算子有基本位变异、均匀变异、高斯变异、二元变异、逆转变异、自适应变异等.(4) 控制参数设定. 遗传算法中需要确定一些参数取值,主要有串长l,群体大小n,交叉概率pc、变异概率pm等,对遗传算法性能影响很大. 目前对参数根据情况进行调整变化研究比较多,而一般确定的参数范围是:n=20~200,pc = 015 ~110,pm =0~0105.3.5遗传算法的基本原理在自然界,由于组成生物群体中各个体之间的差异,对所处环境有不同的适应和生存能力,遵照自然界生物进化的基本原则,适者生存、优胜劣汰,将要淘汰那些最差个体,通过交配将父本优秀的染色体和基因遗传给子代,通过染色体核基因的重新组合产生生命力更强的新的个体与由它们组成的新群体. 在特定的条件下,基因会发生突变,产生新基因和生命力更强的新个体;但突变是非遗传的,随着个体不断更新,群体不断朝着最优方向进化,遗传算法是真实模拟自然界生物进化机制进行寻优的. 在此算法中,被研究的体系的响应曲面看作为一个群体,相应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵和向量的参数相应于生物种组成染色体的基因,染色体用固定长度的二进制串表述,通过交换、突变等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究的不同的解,目标函数值较优的点被保留,目标函数值较差的点被淘汰.[14]由于遗传操作可以越过位垒,能跳出局部较优点,到达全局最优点.遗传算法是一种迭代算法,它在每一次迭代时都拥有一组解,这组解最初是随机生成的,在每次迭代时又有一组新的解由模拟进化和继承的遗传操作生成,每个解都有一目标函数给与评判,一次迭代成为一代. 经典的遗传算法结构图如下:图1 遗传算法的结构图3.6遗传算法在实际应用时采取的一般步骤(1)根据求解精度的要求,确定使用二进制的长度. 设值域的取值范围为[a i ,b i ],若要求精确到小数点后6位,则由(b i -a i )×106<2m i -1求得m i 的最小长度,进而可求出位于区间的任一数:x i =a i +decimal(1001...0012)×12--m i a b i i [15] (3)其中,i=1,2, ..., Popsize ;Popsize 为种群中染色体的个数;(2)利用随机数发生器产生种群;(3)对种群中每一染色体v i ,计算其对应适应度eval(v i ),i=1,2,… ,Popsize ;(4)计算种群适应度之和F :F=()v eval iPopsizei ∑=1(4) (5)计算每个染色体选择概率Pi :()F v eval p i i =(5) i=1,2, ... ,Popsize ;(6)计算每个染色体的累加概率qi:q i =∑=ijjp1(6)i=1, 2, ...,Popsize ;(7)产生一个位于[0,1]区间的随机数序列,其长度为N,如果其中任意一数r<q1,则选择第一个染色体,若qi1-<r<qi,则选择第i个染色体,i=1,2, ... Popsize,这样可以获得新一代种群;(8)对新一代种群进行交叉运算:设交叉概率为pc,首先产生一个位于区间[0,1]内的随机数序列,其长度为N,如果其中任意一数r<pc,则对应染色体被选中(如果选中奇数个,则可以去掉一个),然后在[1,m-1]区间中产生随机数,个数为选中的染色体数的一半,然后根据随机数在对应位置进行交换操作,从而构成新的染色体;(9)变异操作:设变异概率为pm,产生m×N个位于区间[0,1]上的随机数.如果某一随机数r<pm,则选中对应位变异,构成新的种群;(10)第一代计算完毕,返回③继续计算,直到达到满意的结果为止.3.7遗传算法的基本流程描述随机初始化种群p(0)={x1,x2,...,xn};t=0;计算p(0)中个体的适应值;while(不满足终止条件){ 根据个体的适应值及选择策略从p(t)中选择下一代生成的父体p(t);执行交叉,变异和再生成新的种群p(t+1) ;计算p(t+1)中个体的适应值;t=t+1;}伪代码为:BEGIN:I=0;Initialize P(I);Fitness P(I);While (not Terminate2Condition){I++;GA2Operation P(I);Fitness P(I);}END.3.8遗传算法的特点遗传算法不同于传统的搜索和优化方法. 主要区别在于:(1)自组织、自适应和自学习性(智能性). 应用遗传算法求解问题时,在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索. 由于基于自然的选择策略“适者生存、不适者被淘汰”,因而适应度大的个体具有较高的生存概率. 通常适应度大的个体具有更适应环境的基因结构,再通过基因重组和基因突变等遗传操作,就可能产生更适应环境的后代. 进化算法的这种自组织、自适应特征,使它同时具有能根据环境变化来自动发现环境的特性和规律的能力. 自然选择消除了算法设计过程中的一个最大障碍,即需要事先描述问题的全部特点,并要说明针对问题的不同特点算法应采取的措施.因此,利用遗传算法,我们可以解决那些复杂的非结构化问题.(2)遗传算法的本质并行性. 遗传算法按并行方式搜索一个种群数目的点,而不是单点. 它的并行性表现在两个方面,一是遗传算法是内在并行的( inherent paralleli sm),即遗传算法本身非常适合大规模并行. 最简单的并行方式是让几百甚至数千台计算机各自进行独立种群的演化计算,运行过程中甚至不进行任何通信(独立的种群之间若有少量的通信一般会带来更好的结果),等到运算结束时才通信比较,选取最佳个体.这种并行处理方式对并行系统结构没有什么限制和要求,可以说,遗传算法适合在目前所有的并行机或分布式系统上进行并行处理,而且对并行效率没有太大影响. 二是遗传算法的内含并行性. 由于遗传算法采用种群的方式组织搜索,因而可同时搜索解空间内的多个区域,并相互交流信息. 使用这种搜索方式,虽然每次只执行与种群规模N成比例的计算,但实质上已进行了大约O(N3)次有效搜索,这就使遗传算法能以较少的计算。
第6章 智能计算及其应用(导论5)
满足
f f ,
avg
avg
f m ax Cmult f avg
a (Cmult 1) f avg f max f avg
满足最小适应度值非负
a
f avg
f avg f min
b ( f max Cmult f avg ) f avg f max f avg
b f min f avg f avg f min
7
6.1.2 进化算法的生物学背景
适者生存:最适合自然环境的群体往往产生了更大的后代群 体。
生物进化的基本过程:
染色体(chromosome):生物 的遗传物质的主要载体。
基因(gene):扩展生物性状 的遗传物质的功能单元和结 构单位。
基 因 座 ( locus ) : 染 色 体 中基因的位置。
6.3 遗传算法的改进算法
6.4 遗传算法的应用
6.5 群智能算法产生的背景
6.6 粒子群优化算法及其应用
6.7 蚁群算法及其应用
5
6.1 进化算法的产生与发展
6.1.1 进化算法的概念 6.1.2 进化算法的生物学背景 6.1.3 进化算法的设计原则
6
6.1.1 进化算法的概念
进化算法(evolutionary algorithms,EA)是基于自然 选择和自然遗传等生物进化机制的一种搜索算法。
③ 求解高维优化问题的二进制编码串长,算法的搜索效率低。
20
6.2.3 编码
1. 位串编码 (2) Gray 编码
Gray编码:将二进制编码通过一个变换进行转换得到的编码。
二进制串 12...n
Gray 1 2... n
二进制编码 Gray编码
k
清洁能源示范省建设背景下青海能源需求预测及清洁化发展对策
加其他可行解的信息,调整和平衡收敛速度与种
群多样性之间的矛盾。因此通过 DMDE 优化
BPNN 可以避免陷入局部点,使 BPNN 模型的预
测 结 果 具 有 较 低 误 差 [19-20]。
DE 的核心是变异算子,当前应用最多的变异
算子有 3 种类型,分别如式(1)~(3)所示,都
存在适用性不强的问题。 (
)
vGi = xGΓ0 + F xGΓ1 − xGΓ2
(
)
vGi = xGbest + F xGΓ1 − xGΓ2
(
)(
)
vGi = xGi + F xGbest − xGi + F xGΓ1 − xGΓ2
(1) (2) (3)
式 中 : Γ0 、Γ1、Γ2 为 3 个 彼 此 不 相 等 的 数 ; xGi 、 xGΓ0、 xGΓ1、 xGΓ2为 父 代 种 群 中 不 同 的 个 体 ; ViG 为 变 异个体; xGbest为当前种群中的最优个体;F 为缩放
均个体,种群是分散的处在随机搜索阶段;接近
于 0 时,说明个体与个体间都相互靠近,处于聚
集 的 状 态 , 可 以 得 出 δ2 与 种 群 的 聚 集 程 度 成 反 比 。
双变异策略的具体实现过程可表示为
{ vGi =
xGi
+
F
((xbBeFsSt G
−
) x)Gi +
F
( xGΓ1
−
) xGΓ2
收稿日期:2020−08−26; 修回日期:2021−01−30。 基金项目:国家自然科学基金资助项目 (我国减少清洁能源 发电弃能的机制设计及其模拟模型研究,71573084)。
acmg变异位点致病等级分类案例解读
《acmg变异位点致病等级分类案例解读》随着基因组学的迅速发展,人们对遗传变异的识别和解释变得越来越复杂和深入。
在这一过程中,ACMG(美国人类遗传学和基因组医学学会)提出了一套标准化的遗传变异分类系统,以帮助医生和研究人员对遗传变异进行准确、客观的评估。
本文将针对ACMG变异位点致病等级分类进行案例解读,深入探讨其意义和应用。
1. 了解ACMG变异位点致病等级分类的背景和意义ACMG变异位点致病等级分类系统是基于一系列标准化的证据和证据等级,将遗传变异分为五个等级:致病(P)、可能致病(LP)、变通(VUS)、可能无害(BP)和无害(B)。
这一系统的提出,标志着遗传变异评估的标准化和规范化,有助于医生和研究人员更好地理解遗传变异的致病性和临床意义。
2. 案例解读:利用ACMG变异位点致病等级分类系统进行遗传变异评估举例说明一个患者进行基因检测,发现一处未知的遗传变异。
在这种情况下,医生可以根据ACMG标准对这一遗传变异进行评估。
医生需要收集临床资料、分析遗传变异的频率、功能和已知致病变异的相关信息。
根据不同的证据等级,将这一遗传变异分类到不同的致病等级中。
医生可以根据这一分类结果,为患者提供更精准的诊断和治疗建议。
3. 总结和回顾通过对ACMG变异位点致病等级分类系统的案例解读,我们不仅更清晰地理解了这一评估系统的运作机制,也意识到了它在临床和研究中的重要性。
ACMG变异分类系统的出现,为遗传变异的解释和评估提供了科学、客观的方法,有助于提高遗传病的诊断准确性和治疗效果。
我们也应该认识到,这一系统的发展和应用是一个不断演进的过程,我们需要在实践中不断验证和完善其准确性和适用性。
4. 个人观点和理解作为一名基因组学研究人员,我对ACMG变异位点致病等级分类系统充满信心。
这一系统的出现,为基因检测和遗传病研究提供了更为客观和标准的准则,有助于推动遗传病的精准诊断和治疗。
然而,我们也需要明白,这一系统只是一个工具,其准确性和适用性还需要在实践中不断验证和完善。
简单多智能体进化算法求解高维数值优化问题
简单多智能体进化算法求解高维数值优化问题【摘要】为解决高维无约束数值优化问题,提出了一种新的利用智能体寻优的进化算法:简单多智能体进化算法(Simple Multi-Agent Evolutionary Algorithm, SMAEA)。
算法在各世代中均从单个智能体出发进行进化,该智能体代表了待优化函数的一个候选解,它通过自翻转算子加速寻优,并通过自学习过程进化为更好的智能体。
在自学习过程中,对原有智能体执行局部搜索算子以产生一个环状多智能体系统,并通过交叉翻转、正交交叉、变异等操作使智能体不断改进。
对标准测试函数的仿真实验表明,当问题维数从20增至1,000时,该算法能以较少的评价次数收敛到全局最优值。
【关键词】优化;数值优化;进化算法;智能体;多智能体Simple Multi-agent Evolutionary Algorithm for High Dimensional Numerical Optimization ProblemsLIU Yi1,2MU Cai-hong2KOU Wei-dong1(1.School of Telecommunications Engineering, Xidian University, Xi’an Shaanxi,710071, China;2.School of Electronic Engineering, Xidian University, Xi’an Shaanxi,710071, China)【Abstract】An evolutionary algorithm (Simple Multi-agent Evolutionary Algorithm, SMAEA) is proposed for high dimensional unconstrained numerical optimization problems. During the every generation of SMAEA, the evolution always starts from one agent, which represents a candidate solution to the optimization problem in hand. The agent accelerates the optimization process by using self-flipping operator, and subsequently evolves into a better one through a self-learning process, where a multi-agent system with ring topology is produced after the local search operator is executed on the original agent and the agent is then improved through operators including cross-flipping, orthogonal crossover and mutation. Tests on benchmark problems show that when the dimensions are increased from 20 to 1,000, the algorithm can find the good solutions with a small number of function evaluations.【Key words】Optimization;Numerical optimization;Evolutionary algorithm;Agent;Multi-agent0引言进化算法是模拟生物进化过程与机制的自适应人工智能技术,能够解决许多复杂的问题,例如数值优化、组合优化等。
遗传算法选择算子的类型和具体操作步骤
一、概述遗传算法是一种模拟生物进化过程的优化算法,其本质是通过模拟自然选择、交叉和变异等遗传机制来搜索问题的最优解。
在遗传算法的求解过程中,选择算子是其中非常重要的一部分,它直接影响着算法的搜索能力和收敛速度。
选择算子的类型和具体操作步骤对算法的性能有着重要的影响,因此选择合适的选择算子对于遗传算法的应用至关重要。
二、选择算子的类型在遗传算法中,选择算子主要分为两种类型:比例选择和锦标赛选择。
1. 比例选择比例选择是一种按照个体适应度来选择的算子,其选择概率与个体的适应度成正比。
常见的比例选择算子有轮盘赌选择和排名选择两种方式。
(1) 轮盘赌选择轮盘赌选择是一种按照个体适应度来选择的方式,其核心思想是将适应度较高的个体分配一个较大的选择概率,适应度较低的个体分配一个较小的选择概率。
具体操作步骤如下:a. 对每个个体计算其适应度值;b. 根据适应度值计算每个个体被选择的概率;c. 生成一个0到1之间的随机数,根据随机数的大小选择相应的个体。
(2) 排名选择排名选择是一种根据个体的适应度排名来选择的方式,它不直接使用个体的适应度值,而是将个体按照适应度大小进行排序,然后按照一定概率选择排名较高的个体。
具体操作步骤如下:a. 将个体按照适应度大小进行排序;b. 根据个体的排名分配选择概率;c. 根据选择概率选择个体。
2. 锦标赛选择锦标赛选择是一种通过在候选个体中进行比较来选择出最优个体的方式,它不考虑个体的具体适应度值,而是通过比较选择出最优的个体。
具体操作步骤如下:a. 随机选择一定数量的个体作为候选个体;b. 从候选个体中选择出适应度最优的个体。
三、选择算子的具体操作步骤选择算子的具体操作步骤对于遗传算法的性能有着重要的影响,下面分别介绍比例选择和锦标赛选择的具体操作步骤。
1. 比例选择的具体操作步骤比例选择是一种按照个体适应度来选择的方式,其具体操作步骤如下:a. 对每个个体计算其适应度值:根据问题的具体要求,计算每个个体的适应度值,该值可以是问题的目标函数值。
多目标优化问题的研究综述
多目标优化问题的研究概述摘要:本文在查阅相矢资料的基础上对多目标优化冋题进行了一般性描述,详细介绍了实际生活中存在的多目标优化冋题以及解决多目标优化题的几种典型算法,讨论了各个算法存在的优缺点。
费词:多目标优化;进化算法;粒子群算法;蚁群算法;模拟退火生活中,许多冋题都是由相互冲突和影响的多个目标组成。
人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化冋题,也就是多目标优化冋题。
优化问题春在的优化目标超过一个并需要同时处理,就成为多目标优化冋题(mult i-object ive opt imizat ion-problem, MOP)。
多目标优化问题在工程应用等现实生活中非常普遍并且处于非常重要的地位,这些实际问题通常非常复杂、困难,是主要研究领域之一。
自20世纪60 年代早期以来多目标优化冋题吸引了越来越多不同背景研究入员的注意力。
因此,解决多目标优化问题具有非常重要的科研价值和实际意义。
实际中优化冋题大多数是多目标优化问题,一般情况下,多目标优化冋题的各个子目标之间是矛管的,一个子目标的改善有可能会引起号一个或者另几个子目标的性能降低,也就是要同时使多个子目标一起达到最优值是不可能的,而只能在它们中间逬行协调和折中处理,使各个子目标都尽可能地达到最优化。
其与单目标优化冋题的本质区别在于,它的解并非唯一,而是存在一组由众多Pareto最优解组成的最优解集合,集合中的各个元素称为Pareto最优解或非劣最优解。
1多目标优化冋题的描述多目标优化I’可题用文字描述为D个决策变量参数、N个目标函数、m+n个约束条件组成一个优化冋题,决策变量与目标函数、约束条件是函数尖系。
在非劣解集中决策者只能根据具体冋题要求选择令其满意的一个非劣解作为最终解。
多目标优化冋题的数学形式可以如下描述:min y=f (x) =[fl (x), f2(x),…,fn(x)]n=l, 2, —, NstgO < 0 i = 1,2,…,m彳(兀)=0 J = l92t... fkx= [xitX2fXdf…fXD]d = 1,2,DA d min其中:x为D维决策向量,y为目标向量,N为优化目标总数;人(%)<0为第i个不等式约束,y%) = 0为第j个等式约束,fn(x)为第n个目标函数;X是决策向量形成的决定空间,Y是目标向量形成的目标空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 27卷第 4期 2010年 4月
计算机应用研究 App lication Research of Computers
Vol. 27 No. 4 Ap r. 2010
基于有导向变异算子的 GM 2EA算法 3
闭应洲 1, 2 , 陆建波 1 , 丁立新 2 , 元昌安 1
(1. 广西师范学院 计算机与信息工程学院 , 南宁 530004; 2. 武汉大学 软件工程国家重点实验室 , 武汉 430072)
t
第
t代种群中的个体 m, 它的目标函数值为
f
(
Pm ,
t
)
,
Om ,
为对
t
Pm
,
施加有导向
t
的变异后得到
的
新个体
,
相
应的目标函数值为 f (Om, t ) 。对于求最小值优化问题来说 , 若
f (Om, t ) < f ( Pm, t ) ,则变异后的新个体更好 , 用新个体取代旧
个体 , Pm, t + 1 = Om, t;否则计算概率
基于这些认识 ,本文提出应用 PSO 改进郭涛算法 ,设计具 有更强导向性的变异算子 ,并将搜索过程分为探索与开采阶 段 。但在早期探索阶段只允许新个体有改进时才能取代旧个 体 ,通过高的选择压力来加速探索过程 ;在后期开采阶段 ,基于
收稿日期 : 2009209202; 修回日期 : 2009210229 基金项目 : 国家自然科学基金资助项目 ( 60763012, 40761027) ;广西自然科学基金资助 项目 ( 0991104) 作者简介 :闭应洲 (19672) ,男 ,副教授 ,博士 ,主要研究方向为智能计算 、智能信息处理 ( byzhou@163. com ) ;陆建波 ,男 ,讲师 ,硕士 ,主要研究 方向为智能信息处理 ;丁立新 ,教授 ,博士 ,主要研究方向为智能计算 ;元昌安 ,男 ,教授 ,博士 ,主要研究方向为智能计算.
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
1250
计算机应用研究
第 27卷
模拟退火算法决定是否用新个体取代旧个体 ,允许以一定的小 概率接受差解 ,尽可能克服早熟收敛问题 。
基于有导向变异算子的演化算法
为了设计更有效的变异算子加速搜索进程 ,本文提出结合
粒子群优化算法的思想 ,改进郭涛算法 。但强调对历史最优解
的利用 ,加速向局部最优靠拢往往会导致“早熟 ”收敛 ,为此本
文提出 :在算法的后期阶段结合模拟退火算法的特点 ,以较小
的概率允许新个体作小的后退 。
记
Pm
,
为
交叉算子与变异算子的作用比较
由模式定理可知 ,具有低阶 、短定义距以及平均适应度高 于种群平均适应度的模式在子代中将以指数增长 , Holland将 这类模式称为建筑块 ( building blocks) , Goldberg提出了建筑块 假设 ,认为建筑块在遗传算子的作用下相互结合产生适应度更 高的个体 ,从而找到更优的可行解 。Harrik也指出 [9 ] ,遗传算 法能够超越随机搜索 ( random search)的根本原因在于新解的 生成不是随机的 ,在产生新种群时 ,它有效地利用当代种群包 含的建筑块信息 。
引言
变异算子作用在一个个体上 ,然后产生一个新的与父代不 一致的子代个体 ,它实现了演化搜索的基本步骤 :生成一个后 代就相当于在搜索空间中从一点搜索到另一点 。由于变异算 子的作用一般是使得某些位以小的概率产生变化 ,或者是个体 的一小部分产生变化 ,在变异算子的作用下 ,父代个体与子代 个体变化不大 。从这个角度看 ,变异算子有其理论意义 ,它可 以保证搜索空间是连接的 ,即搜索空间中任意点在变异算子的 作用下是可达的 。在给定充足时间的前提下 ,演化算法找到最 优解的关键在于表示潜在解的基因型在变化算子的作用下是 可达的 [1 ] 。
摘 要 : 为了进一步提高演化算法的效率 ,提出基于有导向变异算子的 GM 2EA 算法 ( guided mutation evolutio2 nary algorithm ) 。通过结合粒子群优化的方法改进郭涛算法 ,更好地利用当前最优解指导变异 ,并将算法分为探 索与开采两个阶段 ;在开采阶段基于模拟退火方法决定是否用新个体取代旧个体 ,在巩固所获取的建筑块成分 的同时 ,尽可能克服早熟收敛问题 。实验结果证明了新算法的有效性 。 关键词 : 有导向的变异 ; 郭涛算法 ; 粒子群优化 ; 模拟退火 中图分类号 : TP30116 文献标志码 : A 文章编号 : 100123695 (2010) 0421249203 doi: 10. 3969 / j. issn. 100123695. 2010. 04. 012
粒子群算法 ( PSO )是模拟鸟群觅食过程的一种仿生算法 。 在 PSO中 , 只有当前全局最优解或局部最优解影响粒子的搜 索行为 。与遗传算法比较 , 在大多数的情况下 , PSO 搜索更强 调利用已有的最优解 [6 ] 。近似最优原理 [7 ]认为 : 好的解是相 似的 ,因此围绕已知最优解来产生新的解是合理的 。但需要注 意的是 ,强调对已知最优解的利用在加快搜索进程向较优解靠 拢的同时 , 往往导致早熟收敛 。在探索 ( exp loration) 与 开 采 ( exp loitation)之间找到平衡是各种启发式算法需要面对的难 题 ,为了解决这个难题 ,文献 [ 8 ]提出将搜索过程分为探索阶 段与开采阶段 。
满足这个条件的最简单方法就是 ,允许变异算子将任 意位上的等位基因以非零概率转换为任意的等位基因 ,但 实际应用中很少采 用 这 种 策 略 。因 为 面 对“爆 炸 性 ”的 组 合空间 ,这种完全随机的变异算子会严重影响算法的性能 。 为了提高 算 法 的 性 能 , 一 系 列 有 导 向 的 变 异 算 子 ( guided m u ta tion ope rato r) [ 2 ]被提出 :文献 [ 3 ]提 出 一 个 带 导 向 的 变 异算子 ,它通过从当前种群中获取线索来指导倒序 ; 文献 [ 4 ]通过应用免疫原理设计有导向的变异算子取代经典演
基于对交叉算子和变异算子的建设性和破坏性作用的分 析 ,笔者认为 ,在演化搜索的早期阶段 ,个体所包含的模式的阶 较低 、定义距较短 ,交叉算子和变异算子的建设性大于破坏性 , 因此 ,算法的适应值提高很快 ;而在演化搜索的后期 ,个体所包 含的模式的阶较高 、定义距较长 ,因此交叉算子和变异算子的 破坏性远大于建设性 。所以 ,算法的适应值很难提高 ,甚至 “早熟 ”收敛 。为了解决这个问题 ,有导向的变异算子逐步成 为研究热点 。
p = exp [ f ( pm, t ) - f ( om, t ) / T ]
(1)
若 p > random [ 0, 1 ) ,用新个体取代旧个体 , Pm, t +1 = Om, t;
对于演化算法中交叉和变异算子的破坏性和建设性行为 , 文献 [ 10 ]作了系统的分析 ,并得到以下结果 : a)模式的阶越 高 ,模式的长度越长 ,交叉算子的破坏性越大 ,但随着种群的个 体趋于相似 ,交叉算子的破坏性趋于下降 ; b)交叉算子的破坏 性越大 ,它的建设性越强 ,通过比较交叉算子的破坏性与建设 性 ,进一步证实了“没有免费的午餐 ”理论 ( no2free2lunch theo2 rem ) ; c)模式的阶越高 ,变异算子的破坏性越大 ,而且变异的 水平 (概率 )越大破坏性越大 ; d)高水平的变异并没有带来高 的建设性 ; e)由于交叉能够将低阶的建筑块 (模式 )组合成高 阶的建筑块 ,从建设性的角度来说 ,交叉算子具有更高的建设 性 ,但笔者认为 ,得出这个结论的原因在于变异算子是完全随 机ion evolutionary algorithm
B I Ying2zhou1, 2 , LU J ian2bo1 , D ING L i2xin2 , YUAN Chang2an1
( 1. College of Com pu ter & Inform a tion Engineer, Guangxi Teachers Educa tion U niversity, N ann ing 530004, China; 2. S ta te Key L abora tory of S oftw a re Engineering, W uhan U n iversity, W uhan 430072, China)