四川成都棕北中学八年级上期末考试数学试卷
四川省成都市武侯区棕北中学2023-2024学年八年级上学期期末数学试题
四川省成都市武侯区棕北中学2023-2024学年八年级上学期
期末数学试题
学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.
A .0.8×(1+40%)x =15
B .0.8×(1+40%)x ﹣x =15
C .0.8×40%x =15
D .0.8×40%x ﹣x =15
二、填空题
9.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为. 10.1004724︒'''=.若8m a =,2n a =,则m n a +=.
11.如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,则2x y z -+=.
12.有一位工人师傅将底面直径为10cm ,高为80cm 的圆柱体,锻造成底面直径为40cm 的圆柱体,锻造过程中体积不变,则锻造后的圆柱体的高是.
13.在直线AB 上任取一点O ,过点O 作射线OC ,OD ,使90COD ∠=︒,当50AOC ∠=︒时,BOD ∠的度数是.
三、解答题
(1)这次调查共抽取了______名学生,表中m=______;
四、填空题
3五、解答题。
成都市八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,属于无理数是()A. B. C. D. 0.22.一次函数y=x-4的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列各点中,在直线y=-2x+1上的点是()A. (1,-1)B. (-1,1)C. (2,3)D. (-2,-3)4.如图,在平行四边形ABCD中,下列说法一定正确的是()A. AB=CDB. AC⊥BDC. AB=BCD. AC=BD5.在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A. (-1,2)B. (2,-1)C. (-1,-2)D. (1,-2)6.我区今年6月某一周的最高气温如下(单位C°):32,29,30,32,30,32,31,则最高气温的众数和中位数分别是()A. 30,32B. 32,30C. 32,31D. 32,327.已知2x m+n y2与-3x4y m-n是同类项,则m,n的值分别是()A. B. C. D.8.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=2,若∠C=45°,则BC的长为()A. 6B. 4C. 2+3D. 59.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A. 10B. 12C. 16D. 18二、填空题(本大题共9小题,共36.0分)11.甲、乙两名同学投掷实心球,每人投10次,平均成绩为7米,方差分别为S=0.1,S=0.04,成绩比较稳定的是______.12.A(-1,y1),B(3,y2)是直线y=-2x+b上的两点,则y1______y2(填>或<)13.已知a<3,则=______.14.如图,矩形ABCD中,DE⊥AC于E,且∠ADE=70°,则∠BDE的度数为______.15.如果y=+﹣5,那么y的值是____.16.如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点)过P分别作两坐标的垂线与两坐标轴围成的矩形的周长______.17.在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,点P是对角线BD上一个动点,则PA+PE的最小值是______.18.如图y=-x+2向上平移m个单位后,与直线y=-2x+6的交点在第一象限,则m的取值范围是______.19.在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=10,点E在AB上,BE=6且∠DCE=45°,则DE 的长为______.三、计算题(本大题共1小题,共10.0分)20.解方程:(1)(2)四、解答题(本大题共8小题,共74.0分)21.(1)-3×+(2)(3+)(3-)-(-1)222.已知:如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.23.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?24.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=3x-9相交于点A,直线l2交y轴负半轴与点B.(1)求点A坐标;(2)在x轴上取一点C(10,0),求△ABC面积.25.如图1,在Rt△ABC中,∠ACB=90°,D是AB边上任意一点,E是BC边上的中点,过点C作CF∥AB交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)如图2,若D为AB中点,求证:四边形CDBF是菱形;(3)若∠FDB=30°,∠ABC=45°,BE=4,求的△BDE面积.26.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升10微克,接着逐步衰减,8小时时血液中含药量为每毫升6微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示,当成人按规定剂量服药后,(1)求y与x之间的解析式;(2)如果每毫升血液中含药量不低于5微克时,在治疗疾病时是有效的,那么该要的有效时间是多少?27.如图,点B在线段AF上,AB=8,BF=4,分别以AB,BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF,DE.(1)求证:CF=DE;(2)连接DG,若H是DG的中点,求BH的长;(3)在(2)的条件下延长BH交CD于M,求CM的长.28.如图,直线y=kx+6分别交x轴,y轴于点A,C,直线BC过点C交x轴于B,且OA=OC,∠CBA=45°.(1)求直线BC的解析式;(2)若点G是线段BC上一点,连结AG,将△ABC分成面积相等的两部分,求点G的坐标:(3)已知D为AC的中点,点M是x轴上的一个动点,点N是线段BC上的一个动点,当点D,M,N为顶点的三角形为等腰直角三角形时,直接写出点M的坐标.答案和解析1.【答案】A【解析】解:是无理数,故A正确;是一个分数,是有理数,故B错误;=3是有理数,故C错误;0.2是有限小数,是有理数,故D错误.故选:A.根据无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,可得答案.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:由题意,得:k>0,b<0,故直线经过第一、三、四象限.即不经过第二象限.故选:B.根据k,b的符号判断一次函数y=x-4的图象所经过的象限.此题考查一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.3.【答案】A【解析】解:A.把(1,-1)代入y=-2x+1,等式成立,故本选项正确;B.把(-1,1)代入y=-2x+1,等式不成立,故本选项错误;C.把(2,3)代入y=-2x+1,等式不成立,故本选项错误;D.把(-2,-3)代入y=-2x+1,等式不成立,故本选项错误;故选:A.直线上任意一点的坐标都满足函数关系式y=kx+b,把各点代入计算即可判断.本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.4.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AB=CD;故选:A.由平行四边形的性质容易得出结论.本题考查了平行四边形的性质;熟记平行四边形的对边相等是解决问题的关键.5.【答案】D【解析】解:点M(1,2)关于x轴对称的点的坐标为:(1,-2).故选:D.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.此题主要考查了关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.6.【答案】C【解析】解:∵这组数据中32出现的次数最多,是3次,∴每天的最高气温的众数是32;把3月份某一周的气温由高到低排列是:29、30、30、31、32、32、32,∴每天的最高气温的中位数是31;∴每天的最高气温的众数和中位数分别是32、31.故选:C.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.7.【答案】B【解析】解:∵2x m+n y2与-3x4y m-n是同类项,∴,解得:,故选:B.利用同类项的定义列出方程组,求出方程组的解即可得到m与n的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【答案】D【解析】解:过点D作DE⊥BC于E,∵AD∥BC,∠B=90°,∴∠A=∠B=∠DEB=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=3,∠DEC=90°,∵∠C=45°,∴∠EDC=∠C=45°,∴EC=DE=3,∴BC=BE+CE=2+3=5.故选:D.首先过点D作DE⊥BC于E,由AD∥BC,∠B=90°,易证得四边形ABED是矩形,可得BE=AD=2,DE=AB=3,又由∠C=45°,则可求得EC的长,继而求得BC的长.此题考查了直角梯形的性质,矩形的性质,等腰三角形的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.9.【答案】A【解析】【分析】本题考查了一次函数与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象经过一、三、四象限;k<0,b>0⇔y=kx+b的图象经过一、二、四象限;k<0,b<0⇔y=kx+b的图象经过二、三、四象限.【解答】解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴函数y=-bx+k的图象经过第一、二、三象限.故选:A.10.【答案】C【解析】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:C.先证明四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11.【答案】乙【解析】解:∵平均成绩为7米,方差分别为S=0.1,S=0.04,∴S>S,∴成绩比较稳定的是乙;故答案为:乙.根据方差的定义,方差越小数据越稳定,即可得出答案.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.【答案】>【解析】解:在一次函数y=-2x+b中,∵k=-2<0,∴y随x的增大而减小,∵-1<3,∴y1>y2,故答案为:>.利用一次函数的增减性判断即可.本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b 中,当k>0时y随x的而增大,当k<0时,y随x的增大而减小.13.【答案】3-a【解析】解:∵a<3,∴=|a-3|=3-a.故答案为:3-a.根据二次根式的性质得出|a-3|,去掉绝对值符号即可.本题考查了二次根式的性质和绝对值,注意:当a≥0时,=a,当a≤0时,=-a.14.【答案】50°【解析】解:∵DE⊥AC,∠ADE=70°,∴∠DAE=20°,∵四边形ABCD是矩形,∴AO=DO,∴∠DAE=∠ADO=20°,∴∠DOC=40°,且DE⊥AC,∴∠BDE=50°,故答案为:50°.由矩形的性质可求∠DAE=∠ADO=20°,可得∠DOC=40°,即可求解.本题考查了矩形的性质,直角三角形的性质,熟练运用矩形的性质是本题的关键.15.【答案】-5【解析】解:依题意得:x-2≥0且4-2x≥0.解得x=2,所以y=-5.故答案是:-5.根据二次根式的被开方数是非负数解答.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.16.【答案】10【解析】解:∵A(5,0),B(0,5),∴直线AB的解析式为y=-x+5,∵P是线段AB上任意一点(不包括端点),∴设P点坐标为(m,-m+5),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=-m+5,PC=m,∴矩形PDOC的周长为:2(m-m+5)=10,故答案为:10.根据待定系数法求得直线AB的解析式y=-x+5,设P点坐标为(m,-m+5),然后根据周长公式可得出答案.本题主要考查矩形的性质及一次函数图象上点的坐标特征,根据待定系数法求得直线AB的关系是解题的关键.17.【答案】2【解析】解:连接DE,∵在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,∴∠DAB=60°,AE=BE=2,∴△ABD是等边三角形,∴AD=BD,∴DE⊥AB,∵AB∥CD,∴DE⊥CD,连接EC,与BD交于点P,连接AC,此时PA+PE=CP+EP=CE值最小,∵DE=AD=2,∴CE===2,∴PA+PE的最小值是2,故答案为:2.连接DE,根据菱形的性质得到∠DAB=60°,AE=BE=2,推出△ABD是等边三角形,得到AD=BD,推出DE⊥CD,连接EC,与BD交于点P,连接AC,此时PA+PE=CP+EP=CE 值最小,根据勾股定理即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,轴对称的性质,等边三角形的判定,难度适中,确定点P的位置是解题的关键.18.【答案】1<m<4【解析】【分析】本题考查了两条直线相交问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.正确利用数形结合思想得出m的取值范围是解题关键.解方程组,可得直线y=-x+2+m与直线y=-2x+6的交点坐标为(4-m,2m-2),依据交点在第一象限,即可得出1<m<4.【解答】解:y=-x+2向上平移m个单位后,可得y=-x+2+m,解方程组,可得,∴直线y=-x+2+m与直线y=-2x+6的交点坐标为(4-m,2m-2),∵交点在第一象限,∴,解得1<m<4,故答案为:1<m<4.19.【答案】8.5【解析】解:如图,∵AD∥BC(BC>AD),∠B=90°,∴∠A=90°,过点C作CG⊥AD,交AD的延长线于点G,∵AB=BC=10,∴四边形ABCG是正方形,∴∠BCG=90°,BC=CG,∵∠DCE=45°,∴∠DCG+∠BCE=45°,延长AB到BH使BH=DG,在△CDG与△CHB中,,∴△CDG≌△CHB(SAS),∴CH=CD,∠BCH=∠GCD,∴∠DCE=∠HCE,∵CE=CE,∴△CEH≌△CED(SAS),∴DE=EH=BE+DG,在过点C作CG⊥AD,交AD的延长线于点G,∵DE=DG+BE,设DG=x,则AD=10-x,DE=x+6,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(10-x)2+42=(x+6)2,解得x=2.5.∴DE=2.5+6=8.5.故答案是:8.5.过点C作CG⊥AD,交AD的延长线于点G,推出四边形ABCG是正方形,得到∠BCG=90°,BC=CG延长AB到BH使BH=DG,根据全等三角形的性质得到DE=EH=BE+DG,利用勾股定理求得DE的长.本题考查了正方形的判定和性质,勾股定理、全等三角形的判定和性质,解决问题的关键是在直角三角形中运用勾股定理列方程求解.20.【答案】解:(1),①×3+②得:10x=20,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),②-①得:y=-7,解得:y=-3,把y=-3代入②得:x=1,则方程组的解为.【解析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】解:(1)原式=2-+2=2+;(2)原式=9-6-(2-2+1)=3-(3-2)=2;【解析】(1)根据二次根式的运算法则即可求出答案.(2)根据平方差公式以及完全平方公式即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD=BCAD∥BC,∵E、F分别是AD、BC的中点,∴,∴DE=BF,DE∥BF,∴四边形BFDE是平行四边形,∴BE=DF.【解析】要证明BE=DF,可以证明它们所在的两个三角形全等,也可以通过证明四边形BEDF是平行四边形,再根据平行四边形的对边相等进行证明.本题考查了平行四边形的判定与性质,通过此题可以发现:证明两条线段相等,除了通过证明全等三角形的方法,也可通过特殊四边形的性质进行证明.23.【答案】解:(1)甲组的平均成绩为=83(分)、乙组的平均成绩为=84(分),所以乙组第一名、甲组第二名;(2)甲组的平均成绩为=83.8(分),乙组的平均成绩为=83.5(分),所以甲组成绩最高.【解析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.24.【答案】解:(1)∵直线l1:y=x与直线l2:y=3x-9相交于点A,解方程组,可得,∴点A坐标为(4,3);(2)∵直线l2:y=3x-9交y轴负半轴于点B,∴B(0,-9),∴△ABC面积=S△AOC+S△BOC-S△AOB=×10×3+×10×9-×9×4=15+45-18=42.【解析】(1)依据直线l1:y=x与直线l2:y=3x-9相交于点A,即可得到点A坐标;(2)依据直线l2:y=3x-9交y轴负半轴于点B,即可得到B(0,-9),再根据△ABC面积=S△AOC+S△BOC-S△AOB进行计算即可.本题考查了两直线相交的问题,待定系数法求直线的解析式,三角形的面积,求出点A、B的坐标是解题的关键.25.【答案】(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA),∴CF=BD,且CF∥AB,∴四边形CDBF是平行四边形.(2)∵D为AB中点,∠ACB=90°,∴AD=CD=BD,且四边形CDBF是平行四边形,∴四边形CDBF是菱形,(3)如图,作EM⊥DB于点M,在Rt△EMB中,EM=BE•sin∠ABC=2,∴BM=2在Rt△EMD中,∵∠EDM=30°,∴DM=ME=2,∴BD=2+2∴△BDE面积=×BD×ME=×2×(2+2)=4+4【解析】(1)欲证明四边形CDBF是平行四边形只要证明CF∥DB,CF=DB即可;(2)由直角三角形的性质可得AD=CD=DB,即可证四边形CDBF是菱形;(3)如图,作EM⊥DB于点M,解直角三角形即可;本题考查菱形的判定和性质,平行四边形的性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【答案】解:(1)当x≤2时,设y=k1x,把(2,10)代入上式,得k1=5,∴x≤2时,y=5x;当x>2时,设y=k2x+b,把(2,10),(8,6)代入上式,,解得,∴;(2)把y=5代入y=5x,得x1=1;把y=5代入,得x2=,则x2-x1=小时.答:这个有效时间为6小时.【解析】(1)直接根据图象上的点的坐标利用待定系数法解得;(2)根据图象可知每毫升血液中含药量为5微克是在两个函数图象上都有,所以把y=5,分别代入y=5x,,求出x的值即可解决问题.本题主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.27.【答案】(1)证明:∵四边形ABCD与四边形BFGE都是正方形,∴AD=AB=CD=BC=8,BE=BF=FG=4,∠DCE=∠CBF=90°,∴CE=BC-BE=8-4=4,∴CE=BF,在△DCE和△CBF中,,∴△DCE≌△CBF(SAS),∴CF=DE;(2)解:过点H作HN⊥AB于N,如图1所示:则HN∥AD∥GF,∵H是DG的中点,∴HN是梯形ADGF的中位线,∴NH=(AD+FG)=×(8+4)=6,NF=(AB+BF)=×(8+4)=6,∴BN=NF-BF=6-4=2,∴BH===2;(3)解:过点H作HN⊥AB于N,延长NH交CD于Q,如图2所示:则HQ⊥CD,四边形CBNQ是矩形,∴BN=CQ=2,NQ=BC=8,∴QH=NQ-NH=8-6=2,∵∠HNB=∠HQM=90°,∠BHN=∠MHQ,∴△HNB∽△HQM,∴=,即:=,∴QM=,∴CM=CQ+QM=2+=.【解析】(1)由正方形的性质得出AD=AB=CD=BC=8,BE=BF=FG=4,∠DCE=∠CBF=90°,则CE=BC-BE=4,推出CE=BF,由SAS证得△DCE≌△CBF,即可得出结论;(2)过点H作HN⊥AB于N,则HN∥AD∥GF,由H是DG的中点,则HN是梯形ADGF 的中位线,得出NH=(AD+FG)=6,NF=(AB+BF)=6,求出BN,由勾股定理即可得出结果;(3)过点H作HN⊥AB于N,延长NH交CD于Q,则HQ⊥CD,四边形CBNQ是矩形,得出BN=CQ=2,NQ=BC=8,求得QH=NQ-NH=2,由∠HNB=∠HQM=90°,∠BHN=∠MHQ,证得△HNB∽△HQM,得出=,求得QM=,即可得出结果.本题考查了正方形的性质、梯形中位线的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质、梯形中位线的判定与性质,证明三角形相似是解题的关键.28.【答案】解:(1)直线y=kx+6分别交y轴于点C,则点C(0,6),OA=OC=3,则点A(-3,0),将点A的坐标代入y=kx+6,解得:k=2,故直线AC的表达式为:y=2x+6;∵∠CBA=45°,∴OB=OC=6,故直线BC的表达式为:y=-x+6;(2)AG将△ABC分成面积相等的两部分,则点G是BC的中点,则点G(3,3);(3)点D(-,3),设点M(m,0),点N(n,-n+6),①当顶角∠MDN=90°时,DM=DN,如图1,过点N作NG⊥x轴于点G,过点D作DH⊥x轴于点H、作DK⊥NG于点K,则△DKN≌△DHM(AAS),则DH=DK,HM=KN,即3=n+,m+=6-n-3,解得:n=,m=0;②当∠DNM=90°时,DN=MN,过点N作NG⊥x轴于点G,过点D作DH⊥NG于点H,同理可得:m=3;③当∠DMN=90°时,DM=MN,同理可得:m=;故点M(0,0)或(3,0)或(,0).【解析】(1)∠CBA=45°,则OB=OC=6,即可求解;(2)AG将△ABC分成面积相等的两部分,则点G是BC的中点,即可求解;(3)分∠MDN=90°时,DM=DN,;∠DNM=90°时,DN=MN;∠DMN=90°时,DM=MN,三种情况分别求解即可.本题考查的是一次函数综合运用,涉及到中点的和等腰直角三角形的性质等,其中(3),要注意分类求解,避免遗漏.。
四川成都棕北中学校09-10学年八上期末考试
四川省成都市棕北中学校2021-2021学年度〔上〕期末八年级数学卷班级 姓名学号试卷说明:1.练习时间120分钟;2.试卷分A 、B 卷,总分值150分.A 卷 〔100分〕一、选择题〔此题有10个小题,每题3分,共30分.以下每题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在题后括号内〕1. 如果一个数的算术平方根等于它本身,那么这个数是……………………………〔 〕 (A) 0 (B) 1 (C) 0或1 (D) -1或0或12. 以下五个图形中,是中心对称的图形共有………………………………………〔 〕(A) 2个 (B) 3个 (C) 4个 (D) 5个3.将直角三角形的三边都扩大一样的倍数后,得到的三角形一定是………………〔 〕(A) 直角三角形 (B)锐角三角形 (C) 钝角三角形 (D) 以上三种情况都有可能 4.将△ABC 的三个顶点的横坐标乘以-1,纵坐标不变,那么所得图形………………〔 〕(A) 与原图形关于y 轴对称 (B) 与原图形关于x 轴对称 (C) 与原图形关于原点对称 (D) 向x 轴的负方向平移了一个单位 5、甲、乙两根绳共长17米,如果甲绳减去它的51,乙绳增加1米,两根绳长相等,假设设甲绳长x 米,乙绳长y 米,那么可列方程组 〔 〕A. ⎪⎩⎪⎨⎧+=-=+15117y x x y xB. ⎪⎩⎪⎨⎧-=+=+15117y x y x C. ⎪⎩⎪⎨⎧+=-=+15117y x y x D. ⎪⎩⎪⎨⎧-=-=+15117y x x y x6.一组数据1,7,10,8,x ,6,0,3,假设5=x ,那么x 应等于 〔 〕 A. 6 B.5 C.4 D.27、四边形ABCD 的对角线AC 和BD 相交于点O ,设有以下条件:①AB=AD ;②∠ DAB=900;③AO=CO ,BO=DO ;④矩形ABCD ;⑤菱形ABCD ,⑥正方形ABCD ,那么在以下推理不成立的是 ( )A 、①④⇒⑥B 、①③⇒⑤C 、①②⇒⑥D 、②③⇒④8、菱形的一个内角是60º,边长是5cm ,那么这个菱形的较短的对角线长是 〔 〕 A 、cm 25B 、cm 5C 、cm 35D 、cm 310 9、函数y=x 图象向下平移2个单位长度后,对应函数关系式是〔 〕 〔A 〕y=2x 〔B 〕y=21x 〔C 〕y=x +2 〔D 〕y=x -2 10正比例函数y=(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,那么m 的取值范围是( ) A. m <0 B. m >0 C.m <21 D.21>m 二、填空题:〔每题3分,共15分〕 11、 64的平方根是 .12、一个多边形每个外角都等于45,那么其边数为 ,内角和为 。
成都市棕北中学(桐梓林校区)八年级上册期末数学模拟试卷及答案
成都市棕北中学(桐梓林校区)八年级上册期末数学模拟试卷及答案一、选择题1.新型冠状病毒“COVID ﹣19”的平均半径约为50纳米(1纳米=10﹣9米),这一数据用科学记数法表示,正确的是( )A .50×10﹣9米B .5.0×10﹣9米C .5.0×10﹣8米D .0.5×10﹣7米2.已知点P 在∠AOB 的平分线上,点P 到OA 的距离为10,点Q 是OB 边上的任意一点,则下列结论正确的是( )A .PQ >10B .PQ≥10C .PQ <10D .PQ≤103.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .233m m m m ⎛⎫-=- ⎪⎝⎭C .243(4)3a a a a --=--D .22()()a b a b a b -=+-4.如图,已知AB =AC ,AD ⊥BC ,AE =AF ,图中共有( )对全等三角形.A .5B .6C .7D .85.如图,AB =AC ,若要使△ABE ≌△ACD ,则添加的一个条件不能是( )A .∠B =∠CB .BE =CDC .BD =CE D .∠ADC =∠AEB6.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )A .90°B .120°C .270°D .360°7.已知:如图,下列三角形中,AB AC =,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的有( )A .1个B .2个C .3个D .4个8.下列说法中,正确的个数有( )(1)相等的角是对顶角;(2)两直线被第三条直线所截,同位角相等;(3)平面内,过一点有且只有一条直线与已知直线垂直;(4)等边三角形的三条中线、角平分线、高线都交于一点;(5)如果1∠与3∠互余,2∠与3∠的余角互补,那么1∠和2∠互补.A .1个B .2个C .3个D .4个9.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,则下列说法中:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的垂直平分线上;④:1:3DAC ABC SS =.其中正确的个数是( )A .1B .2C .3D .410.如图,在ABC ∆中,,,,AB AC BD CD E F ==是AD 上的任意两点.若8,6BC AD ==,则图中阴影部分的面积为( )A .12B .20C .24D .48 二、填空题 11.已知2235,310m n ==,则19m n -+的值是_______________________.12.如图,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =1cm 2,则S △BEF =_____cm 2.13.已知多项式x 2+mx+25是完全平方式,且m <0,则m 的值为_____.14.若分式221x x -+的值为零,则x 的值等于_____. 15.()()()243232121211++⋯++计算结果的个位数字是______________.16.a 与2b 互为相反数,则2244a ab b ++=____.17.计算:()32a a a -÷=__________.18.如图,在△ABC 中,∠ABC =90°,AB =6,BC =4,P 是△ABC 的重心,连结BP ,CP ,则△BPC 的面积为_____.19.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.20.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________. 三、解答题21.已知:如图,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,(1)作B 的平分线BD ,交AC 于点D ;作AB 的中点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)连接DE ,求证:ADE BDE ∆≅∆.22.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ;(2)若AB =BC +AD ,求证:BE ⊥AF .23.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 24.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.25.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,BE=CF .试说明: (1)ABC DEF ≅;(2)A EGC ∠=∠.26.如图,在△A BC 中,已知AB =AC ,∠BAC=90°,AH 是△ABC 的高,AH =4 cm ,BC =8 cm ,直线CM⊥BC,动点D 从点C 开始沿射线CB 方向以每秒3厘米的速度运动,动点E 也同时从点C 开始在直线CM 上以每秒1厘米的速度向远离C 点的方向运动,连接AD 、AE ,设运动时间为t (t >0)秒.(1)请直接写出CD 、CE 的长度(用含有t 的代数式表示):CD = cm ,CE = cm ;(2)当t 为多少时,△ABD 的面积为12 cm 2?(3)请利用备用图探究,当t 为多少时,△ABD≌△ACE?并简要说明理由.27.如图,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,过点A作∠GAB=∠FAD,且点G在CB的延长线上.(1)△GAB与△FAD全等吗?为什么?(2)若DF=2,BE=3,求EF的长.28.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=32 .29.如图,如果AD∥BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.30.如图,在平面直角坐标系中,点 A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.(1)图1中,点C的坐标为;(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B作BF⊥BE交y轴于点F.①当点E为线段CD的中点时,求点F的坐标;②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:50纳米=50×10﹣9米=5.0×10﹣8米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.B解析:B【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为10,再根据垂线段最短解答.【详解】解:∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于10,∴点P 到OB 的距离为10,∵点Q 是OB 边上的任意一点,∴PQ≥10.故选B .【点睛】本题考查角平分线的性质;垂线段最短.3.D解析:D【解析】【分析】直接利用因式分解的定义得出答案.【详解】A 、2(3)(3)9a a a +-=-,是整式乘法,故此选项不合题意;B 、233m m m m ⎛⎫-=- ⎪⎝⎭,不符合因式分解的定义,故此选项不合题意; C 、243(4)3a a a a --=--,不符合因式分解的定义,故此选项不合题意;D 、22()()a b a b a b -=+-是分解因式,符合题意;故选:D .此题主要考查了因式分解的意义,正确分解因式是解题关键.4.C解析:C【解析】【分析】本题主要考查两个三角形全等的条件:两边夹一角(SAS),两角夹一边(ASA),两角对一边(AAS),三条边(SSS),HL.【详解】7对.理由:根据全等三角形判定可知:△ABE≌△ACF;△ABD≌△ACD;△ABO≌△ACO;△AEO≌△AFO;△COE≌△BOF;△DCO≌△DBO;△BCE≌△CBF.故选C.【点睛】本题考查全等三角形的判定,学生们熟练掌握判定的方法即可.5.B解析:B【解析】【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选B.6.B解析:B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.7.C解析:C【解析】【分析】顶角为:36°,90°,108°的等腰三角形都可以用一条直线把等腰三角形分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【详解】由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能; ②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能; ④中的为36°,72,72°和36°,36°,108°,能.故选:C .【点睛】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.8.C解析:C【解析】【分析】(1)中相等的角不一定是对顶角,例如等腰三角形的两个底角;(2)中必须是两条平行线被第三条直线所截,同位角才相等;(3)中在一个平面内,过一点有且只有一条直线与已知直线垂直;(4)属于等腰三角形的性质;(5)中根据余角补角的定义列得算式,根据等量代换即可得到12180∠+∠=︒,所以(3)(4)(5)正确.【详解】(1)中对顶角相等但是相等的角不一定是对顶角,例如等腰三角形的两个底角,此项错误;(2)中必须是两条平行线被第三条直线所截,同位角才相等,此项错误;(3)中在一个平面内,过一点有且只有一条直线与已知直线垂直,此项正确; (4)属于等边三角形三线合一的性质,此项正确;(5)中根据余角和补角的定义列得算式139********∠+∠=︒∠+︒-∠=︒,,根据等量代换即可得到12180∠+∠=︒,此项正确.故选C .【点睛】考查几何相关知识,属于综合考查,学生需要熟练掌握对顶角性质,平行线性质,直线间的位置关系,等边三角形性质以及余角补角定义才能解对本题.9.D解析:D【解析】【分析】①连接NP ,MP ,根据SSS 定理可得ANP AMP ≌,故可得出结论;②根据三角形的外角的性质即可得出结论;③先根据三角形内角和定理求出CAB ∠的度数,再由AD 是BAC ∠的平分线得出30BAD CAD ∠=∠=︒,根据BAD B =∠∠可知AD BD =,故可得出结论;④先根据直角三角形的性质得出30CAD ∠=︒,12CD AD =,再由三角形的面积公式即可得出结论.【详解】解:①证明:连接NP ,MP ,在ANP 与AMP 中,AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩, ()ANP AMP SSS ∴△≌△,则CAD BAD ∠=∠,故AD 是BAC ∠的平分线,故此结论正确;②在ABC 中,90C ∠=︒,30B ∠=︒,60CAB ∴∠=︒.AD 是BAC ∠的平分线,1302BAD CAD CAB ∴∠=∠=∠=︒, ∴60ADC BAD B ∠=∠+∠=︒,故此结论正确;③1302BAD CAD CAB ∠=∠=∠=︒, 30BAD B ∴∠=∠=︒,AD BD ∴=,∴点D 在AB 的垂直平分线上,故此结论正确;④在Rt ACD △中,30CAD ∠=︒,12CD AD ∴=,1322BC BD CD AD AD AD ∴=+=+=,1124DAC S AC CD AC AD =⋅=⋅△, 11332224ABC S AC BC AC AD AC AD ∴=⋅=⋅=⋅△, :1:3DAC ABC S S ∴=△△,故此结论正确;综上,正确的是①②③④.故选:D .【点睛】本题考查的是角平分线的性质,线段垂直平分线的性质,作图-基本作图等,熟知角平分线的作法是解答此题的关键.10.A解析:A【解析】【分析】利用SSS 证明△ADC ≌△ADB ,可得S △ADC =S △ADB ,通过拼接可得S 阴影=S △ADB ,再利用三角形的面积公式可求解.【详解】∵AB=AC ,BD=CD ,AD=AD ,∴△ADC ≌△ADB (SSS ),AD ⊥BC∴S △ADC =S △ADB ,BD=12BC , ∵BC=8,∴BD=4,∵S △BEF =S △CEF ,AD=6,∴S 阴影=S △ADB =12BD•AD 12=×4×6=12. 故选:A .【点睛】本题主要考查了全等三角形的性质与判定,三角形的面积,理解S 阴影=S △ADB 是解题的关键. 二、填空题11.【解析】【分析】先逆用幂的乘方法则,把32m 、32n 转化为9m 、9n 的形式,再逆用同底数幂的乘除法法则,把9m-n+1转化为同底数幂的乘除法的形式后代入求值.【详解】∵32m=(32)m=解析:9 2【解析】【分析】先逆用幂的乘方法则,把32m、32n转化为9m、9n的形式,再逆用同底数幂的乘除法法则,把9m-n+1转化为同底数幂的乘除法的形式后代入求值.【详解】∵32m=(32)m=9m=5,32n=(32)n=9n=10,∴9m-n+1=9m÷9n×9=5÷10×992.故答案为:92.【点睛】本题考查了同底数幂的乘除法法则、幂的乘方法则,掌握同底数幂的乘除法、幂的乘方法则及逆用是解决本题的关键.12.【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从解析:1 4【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从而完成解答.【详解】∵由于D、E、F分别为BC、AD、CE的中点∴△ABE、△DBE、△DCE、△AEC的面积相等S△BEC=12S△ABC=12S△BEF=12S△BEC=12×12=14故答案为:14.【点睛】本题考察了三角形中线的知识;求解的关键是熟练掌握三角形中线的性质,从而完成求解.13.-10【解析】【分析】根据完全平方公式得到x2+mx+25=(x+5)2或x2+mx+25=(k-5)2,然后展开即可得到m的值.【详解】∵x2+mx+25是一个完全平方式,∴x2+mx解析:-10【解析】【分析】根据完全平方公式得到x2+mx+25=(x+5)2或x2+mx+25=(k-5)2,然后展开即可得到m的值.【详解】∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.【点睛】本题考查了完全平方公式,掌握(a±b)2=a2±2ab+b2是解答此题的关键.14.2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.解析:2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.15.6【解析】【分析】根据平方差公式化简所求,再根据2的n次幂的变化规律即可求解.【详解】=====∵21=2,22=4,23=8,24=16,25=32,26=64,27=128解析:6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】()()24323212121(1++⋯++)=()()()()22432212121211-++⋯++ =()()()44322121211-+⋯++ =323221)2((1)1-++=64211-+=642∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴64÷4=16∴个位数为6故答案为:6.【点睛】本题考查了平方差公式的应用,解此题的关键是熟知平方差公式的特点,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.16.0【解析】【分析】根据互为相反数的定义得出a+2b=0,再把a2+4ab+4b2变形为(a+2b )2代入求值即可.【详解】解:∵a 与2b 互为相反数,∴a+2b=0,∴a2+4ab+4b解析:0【解析】【分析】根据互为相反数的定义得出a+2b=0,再把a 2+4ab+4b 2变形为(a+2b )2代入求值即可.【详解】解:∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b2=(a+2b)2=0故答案为:0【点睛】此题主要考查了互为相反数以及完全平方公式,正确把握互为相反数的定义是解题关键.17.【解析】【分析】根据整式的除法计算即可得答案,【详解】==,故答案为:【点睛】此题主要考查整式的除法,解题的关键是熟知多项式除单项式的运算法则.解析:2-a a【解析】【分析】根据整式的除法计算即可得答案,【详解】()32-÷a a a=32÷-÷a a a a=2-a a,故答案为:2-a a【点睛】此题主要考查整式的除法,解题的关键是熟知多项式除单项式的运算法则.18.4【解析】【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于解析:4【解析】【分析】△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,即可求解.【详解】解:△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,(证明见备注)△BEC的面积=12S=6,BP=23 BE,则△BPC的面积=23△BEC的面积=4,故答案为:4.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=12CG 证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=12 AF,又∵AF=CF,∴HF=12 CF,∴HF:CF=12,∵EH∥BF,∴EG:CG=HF:CF=12,∴EG=12 CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.19.58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12(180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°,故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.三、解答题21.(1)见解析;(2)见解析【解析】【分析】(1)①以B 为圆心,任意长为半径画弧,交AB 、BC 于F 、N ,再以F 、N 为圆心,大于12FN 长为半径画弧,两弧交于点M ,过B 、M 画射线,交AC 于D ,线段BD 就是∠B 的平分线;②分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧交于X 、Y ,过X 、Y 画直线与AB 交于点E ,点E 就是AB 的中点;(2)首先根据角平分线的性质可得∠ABD 的度数,进而得到∠ABD =∠A ,根据等角对等边可得AD =BD ,再加上条件AE =BE ,ED =ED ,即可利用SSS 证明△ADE ≌△BDE .【详解】解:(1)作出B 的平分线BD ; 作出AB 的中点E .(2)证明:160302ABD ∠=⨯︒=︒,30A ∠=︒, ABD A ∴∠=∠,AD BD ∴=,在ADE ∆和BDE ∆中,ED ED AD BD ⎪=⎨⎪=⎩()ADE BDE SSS ∴∆≅∆.【点睛】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.(1)见解析;(2)见解析【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ; (2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AE EF BE BE ⎪=⎨⎪=⎩,∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质. 23.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭=a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键. 24.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.25.(1)见解析;(2)见解析【解析】【分析】(1)根据等式性质,由BE=CF 得BC=EF ,再根据SSS 定理得△ABC ≌△DEF 即可;(2)由全等三角形得∠B=∠DEF ,由平行线的判定定理得AB ∥DE ,再根据平行线的性质得∠A=∠EGC .【详解】(1)∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在△ABC 与△DEF 中, AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴(SSS)ABC DEF ≅△△;(2)∵△ABC ≌△DEF ,∴∠B=∠DEF ,∴AB ∥DE ,∴∠A=∠EGC .【点睛】本题考查了全等三角形的判定和性质,平行线的性质与判定,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.26.(1)3t ,t ;(2)t 为23s 或143s ;(3)见解析. 【解析】【分析】(1)根据路程=速度×时间,即可得出结果;(2)首先求出△ABD 中BD 边上的高,然后根据面积公式列出方程,求出BD 的值,分两种情况分别求出t 的值即可;(3)假设△ABD ≌△ACE ,根据全等三角形的对应边相等得出BD=CE ,分别用含t 的代数式表示CE 和BD ,得到关于t 的方程,从而求出t 的值.【详解】(1)根据题意得:CD=3tcm,CE=tcm;故答案为3t,t;(2)∵S△ABD12=BD•AH=12,AH=4,∴AH×BD=24,∴BD=6.若D在B点右侧,则CD=BC﹣BD=2,t23 =;若D在B点左侧,则CD=BC+BD=14,t143 =;综上所述:当t为23s或143s时,△ABD的面积为12 cm2;(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动4秒时,△ABD≌△ACE.理由如下:①当E在射线CM上时,D必在CB上,则需BD=CE.如图所示,∵CE=t,BD=8﹣3t∴t=8﹣3t,∴t=2,∵在△ABD和△ACE中,AB AC{B ACE45BD CE=∠=∠=︒=,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.如图,∵CE=t,BD=3t﹣8,∴t=3t﹣8,∵在△ABD 和△ACE 中,AB AC{ABD ACE 135BD CE=∠=∠=︒=,∴△ABD ≌△ACE (SAS ).【点睛】 本题是三角形综合题目,考查了等腰直角三角形的性质、全等三角形的判定与性质及面积的计算;本题综合性强,有一定难度,熟练掌握等腰直角三角形的性质,注意分类讨论.27.(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得∠ABG =90°=∠D ,然后问题可求证;(2)由(1)及题意易得△GAE ≌△FAE ,GB =DF ,进而问题可求解.【详解】解:(1)全等.理由如下∵∠D =∠ABE =90°,∴∠ABG =90°=∠D ,在△ABG 和△ADF 中,GAB FAD AB ADABG D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△GAB ≌△FAD (ASA );(2)∵∠BAD =90°,∠EAF =45°,∴∠DAF +∠BAE =45°,∵△GAB ≌△FAD ,∴∠GAB =∠FAD ,AG =AF ,∴∠GAB +∠BAE =45°,∴∠GAE =45°,∴∠GAE =∠EAF ,在△GAE 和△FAE 中,AG AF GAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAE ≌△FAE (SAS )∴EF =GE∵△GAB ≌△FAD ,∴GB =DF ,∴EF =GE =GB +BE =FD +BE =2+3=5.本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.-1.【解析】分析:原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.详解:原式=a2+4a+4﹣a2+1=4a+5当a=32-时,原式=﹣6+5=﹣1.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.29.AD是∠EAC的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC,可得出结论.【详解】AD是∠EAC的平分线,∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,又∵∠B=∠C,∴∠EAD=∠DAC,∴AD是∠EAC的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.30.(1 ) C(4,1);(2)①F( 0 , 1 ),②1y<-【解析】试题分析:()1过点C向x轴作垂线,通过三角形全等,即可求出点C坐标.()2过点E作EM⊥x轴于点M,根据,C D的坐标求出点E的坐标,OM=2,得到1OB BM EM===,BE BF⊥,得到△OBF为等腰直角三角形,即可求出点F的坐标. ()3直接写出F点纵坐标y的取值范围.试题解析:(1 ) C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,()21E∴,,∴OM=2,()10.B,1OB BM EM∴===,45EBM∴∠=︒,BE BF⊥,∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.()0,1.F∴法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90° .∠ABO+∠BAO =90°.∴∠BAO=∠CBM .∵C(4,1).D(0,1).又∵CD∥OM ,CD=4.∴∠DCB=∠CBM.∴∠BAO=∠ECB.∵∠ABC=∠FBE=90°.∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE=12CD=2,∵A(0,3), OA=3,∴OF=1.∴F(0,1) , (3) 1y<-.。
成都市棕北中学(桐梓林校区)八年级上册期末数学模拟试卷含详细答案
成都市棕北中学(桐梓林校区)八年级上册期末数学模拟试卷含详细答案一、选择题1.分式方程3111x x x =-+-的解是( ) A .4 B .2 C .1 D .-22.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数.解:在ABC 和△ADC 中,AB AD CB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =※.则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC 3.下列变形是分解因式的是( )A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+-- 4.关于x 的分式方程22x m x +-=3的解是正数,则负整数m 的个数为( ) A .3 B .4 C .5 D .65.如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°6.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 7.下列式子从左到右变形是因式分解的是( ) A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)8.如图,点A,B,C 在一条直线上,△ABD,△BCE 均为等边三角形,连接AE 和CD,AE 分别交CD,BD 于点M,P ,CD 交BE 于点Q,连接PQ,BM,下面的结论:①△ABE ≌△DBC;②∠DMA=60°;③△BPQ 为等边三角形;④MB 平分∠AMC,其中结论正确的有( )A .1个B .2个C .3个D .4个 9.以下列各组线段的长度为边,能组成三角形的是( )A .2,3,6B .10,10,1C .4,5,1D .4,6,11 10.如图,EB 交AC 于点M ,交FC 于点D ,AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:其中正确的结论有( )①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN ;⑤△AFN ≌△AEM .A .2个B .3个C .4个D .5个二、填空题11.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长为_____________.12.若m+n=1,mn=-6,则22m n mn +代数式的值是____________________;13.Rt △ABC 中,∠C 是直角,O 是角平分线的交点,AC=3,BC=4,AB=5,O 到三边的距离r=______.14.如图,DE 是ABC ∆的AB 边的垂直平分线,分别交AB 、BC 于D 、E ,AE 平分BAC ∠.若32B =︒∠,则C ∠=__________.15.将一副三角板(30A ∠=︒)按如图所示方式摆放,使得AB EF ,则1∠等于______度.16.若2a x =,3b x =,4c x =,则2a b c x +-=__________.17.如图,在△ABC 中,∠ABC =90°,AB =6,BC =4,P 是△ABC 的重心,连结BP ,CP ,则△BPC 的面积为_____.18.若多项式2x px q -+(p ,q 是常数)分解因式后,有一个因式是x +3,则3p +q 的值为________.19.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________. 20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .22.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若AB=BC+AD,求证:BE⊥AF.23.如图,已知直线y=13x+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90o、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S.(1)求点C的坐标;(2)求S关于x的函数解析式,并写出x的的取值范围;(3)△OPA的面积能于92吗,如果能,求出此时点P坐标,如果不能,说明理由.24.如图所示,在不等边ABC 中,2AB =,3AC =,AB 的垂直平分线交BC 边于点E ,交AB 边于点D ,AC 垂直平分线交BC 边于点N ,交AC 边于点M .(1)若100BAC ∠=︒,求EAN ∠的度数;(2)若BC 边长为整数,求AEN △的周长.25.先化简,再求值:22(4)(4)516ab ab a b ab ⎡⎤+--+÷⎣⎦,其中10a =,34b =. 26.如图,如果AD ∥BC ,∠B =∠C ,那么AD 是∠EAC 的平分线吗?请说明你判别的理由.27.如图,四边形ABCD 是长方形,E 是边CD 的中点,连接AE 并延长交边BC 的延长线于F ,过点E 作AF 的垂线交边BC 于M ,连接AM .(1)请说明 ΔADE ≌ ΔFCE ;(2)试说明AM = BC + MC ;(3)设S △AEM = S 1,S △ECM = S 2,S △ABM = S 3,试探究S 1,S 2,S 3三者之间的等量关系,并说明理由.28.先化简,再求值:2212(1)11x x x x x -÷-+--,其中x 满足x 2+7x=0. 29.如图,直角坐标系中,点A 的坐标为(3,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >3),连结BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)证明∠ACB=∠ADB ;(2)若以A ,E ,C 为顶点的三角形是等腰三角形,求此时C 点的坐标;(3)随着点C 位置的变化,OA AE的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由. 30.观察下列等式:第1个等式:1111(1)1323a ==⨯-⨯; 第2个等式:21111()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279a ==⨯-⨯;…… 请回答下列问题:(1)按以上规律,用含n 的式子表示第n 个等式:n a = = (n 为正整数) (2)求1234100•••a a a a a +++++ 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解.【详解】解:去分母得:22331x x x x -=+-+,移项、合并得:24=x ,解得:2x =,经检验2x =是分式方程的解,故选:B .【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.2.B【解析】【分析】证△ABC≌△ADC,得出∠B=∠D=30°,∠BAC=∠DAC=12∠BAD=25°,根据三角形内角和定理求出即可.【详解】解:在ABC和△ADC中,AB ADCB CDAC AC=⎧⎪=⎨⎪=⎩(已知)(已知),所以△ABC≌△ADC,(SSS)所以∠BCA=∠DCA.(全等三角形的对应角相等)因为∠B=30°,∠BAC=25°,所以∠BCA=180°﹣∠B﹣∠BAC=125°,所以∠BCD=360°﹣2∠BCA=110°.故可得:@代表SSS;◎代表∠DCA;★代表对应角;※代表110°,故选:B.【点睛】此题考查三角形全等的判定及性质,证明过程的填写,正确掌握全等三角形的判定定理是解题的关键.3.B解析:B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C和D不是积的形式,应排除;A中,不是对多项式的变形,应排除.故选B.【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.4.B解析:B【解析】【分析】首先解分式方程2=32x mx+-,然后根据方程的解为正数,可得x>0,据此求出满足条件的负整数m的值为多少即可.解:2=32x mx+-,2x+m=3(x﹣2),2x﹣3x=﹣m﹣6,﹣x=﹣m﹣6,x=m+6,∵关于x的分式方程2=32x mx+-的解是正数,∴m+6>0,解得m>﹣6,∴满足条件的负整数m的值为﹣5,﹣4,﹣3,﹣2,﹣1,当m=﹣4时,解得x=2,不符合题意;∴满足条件的负整数m的值为﹣5,﹣3,﹣2,﹣1共4个.故选:B.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.5.C解析:C【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE,问题得解.【详解】在△ABC中,∵∠ABC=34°,∠ACB=64°,∴∠BAC=180°−∠B−∠C=82°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=41°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°.【点睛】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.6.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.7.D解析:D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8.D解析:D【解析】试题分析:∵△ABD、△BCE为等边三角形,∴AB=DB,∠ABD=∠CBE=60°,BE=BC,∴∠ABE=∠DBC,∠PBQ=60°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴BP BQ,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选D.考点:等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理.9.B解析:B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、2+3<6,不能组成三角形;B、1+10>10,能组成三角形;C、1+4=5,不能组成三角形;D、4+6<11,不能组成三角形.故选:B.【点睛】本题考查三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10.C解析:C【解析】①正确.可以证明△ABE≌△ACF可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【点睛】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.二、填空题11.【解析】【分析】由等腰三角形的定义,对腰长进行分类讨论,结合三角形的三边关系,即可得到答案.【详解】解:∵等腰三角形的其中两边长分别为,,当4为腰长时,,不能构成三角形;当9为腰长时,解析:22【解析】【分析】由等腰三角形的定义,对腰长进行分类讨论,结合三角形的三边关系,即可得到答案.解:∵等腰三角形的其中两边长分别为4,9,当4为腰长时,4489,不能构成三角形;当9为腰长时,能构成三角形,++=;∴这个等腰三角形的周长为:49922故答案为:22.【点睛】本题考查了等腰三角形的定义,以及三角形的三边关系,解题的关键是熟练掌握等腰三角形的定义进行解题.注意运用分类讨论的思想.12.-6【解析】【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为解析:-6【解析】【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为:-6.【点睛】本题主要考查了因式分解的应用,熟练掌握提公因式法因式分解是解答本题的关键.13.1【解析】【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=AC•BC=(AC+BC+AB)•r,继而可求得答案.【详解】解:∵Rt△解析:1【解析】【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=12AC•BC=12(AC+BC+AB)•r,继而可求得答案.【详解】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,∴S△ABC=12AC•BC=12(AC+BC+AB)•r,∴3×4=(3+4+5)×r,解得:r=1.故答案为1.【点睛】本题考查了角平分线的性质.此题难度适中,注意掌握S△ABC=12AC•BC=12(AC+BC+AB)•r.14.84°【解析】【分析】根据垂直平分线的性质,可以得到BE=AE,可以得到∠BAE的度数,就可以求出∠BAC.根据三角形内角和定理就可以求出∠C的度数.【详解】解:∵DE是AB边的垂直平分线解析:84°【解析】【分析】根据垂直平分线的性质,可以得到BE=AE,可以得到∠BAE的度数,就可以求出∠BAC.根据三角形内角和定理就可以求出∠C的度数.【详解】解:∵DE是AB边的垂直平分线,∴EA=EB,∴∠ABE=∠BAE,∵∠B=32°,∴∠BAE=32°.又AE平分∠BAC,∴∠BAC=2∠BAE =64°.∴∠C=180°-∠BAC-∠B=84°,故答案为: 84°.【点睛】本题主要考查了垂直平分线的性质、三角形内角和定理和等边对等角.理解垂直平分线上的点到线段两端的距离相等是解题关键.15.105°【解析】【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF解析:105°【解析】【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.16.【解析】【分析】利用同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算即可求解.【详解】解:故答案为:3.【点睛】此题主要考查求代数式的值,熟练掌握同底数幂的乘法逆运算解析:3【解析】【分析】利用同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算即可求解.【详解】解:22a b c a b c x x x x +-=•÷a 2xbc x x =÷()2234=⨯÷3=故答案为:3.【点睛】此题主要考查求代数式的值,熟练掌握同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算是解题关键.17.4【解析】【分析】△ABC 的面积S =AB×BC==12,延长BP 交AC 于点E ,则E 是AC 的中点,且BP =BE ,即可求解.【详解】解:△ABC 的面积S =AB×BC==12,延长BP 交AC 于解析:4【解析】【分析】△ABC 的面积S =12AB×BC =1642⨯⨯=12,延长BP 交AC 于点E ,则E 是AC 的中点,且BP =23BE ,即可求解. 【详解】 解:△ABC 的面积S =12AB×BC =1642⨯⨯=12, 延长BP 交AC 于点E ,则E 是AC 的中点,且BP =23BE ,(证明见备注)△BEC 的面积=12S =6, BP =23BE , 则△BPC 的面积=23△BEC 的面积=4,故答案为:4.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=12CG 证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=12 AF,又∵AF=CF,∴HF=12 CF,∴HF:CF=12,∵EH∥BF,∴EG:CG=HF:CF=12,∴EG=12 CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.18.-9【解析】【分析】设另一个因式为,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得,根据各项系数相等列式,计算可得3p+q的值.【详解】因为多项式中二次项的系数为1,则设另一解析:-9【解析】【分析】设另一个因式为x a+,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得2x px q-+,根据各项系数相等列式,计算可得3p+q的值.【详解】因为多项式2x px q -+中二次项的系数为1,则设另一个因式为x a +,则()()()22233333x px q x x a x ax x a x a x a -+=++=+++=+++, 由此可得33a p a q +=-⎧⎨=⎩①②, 由①得:3a p =--③,把③代入②得:39p q --=,∴39p q +=-,故答案为:9-.【点睛】本题考查了因式分解的意义.解题的关键是掌握因式分解的意义,因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式;因此具体作法是:按多项式法则将分解的两个因式相乘,列等式或方程组即可求解.19.10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.12【解析】【分析】根据题意利用翻折不变性可得AE =AC ,CD =DE 进而利用DE+BD+BE =CD+BD+E =BC+BE 即可解决问题.【详解】解:由翻折的性质可知:AE =AC ,CD =DE ,解析:12【解析】【分析】根据题意利用翻折不变性可得AE =AC ,CD =DE 进而利用DE+BD+BE =CD+BD+E =BC+BE 即可解决问题.【详解】解:由翻折的性质可知:AE =AC ,CD =DE ,且AB =10,AC =6,BC =8,∴BE =AB-AE=10-6=4,∴△BDE 的周长=DE+BD+BE =CD+BD+E =BC+BE =8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D线段AB上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB,∴∠ADB′=∠CB′D,由翻折可知,∠B=∠DB′E=80°,∴∠CB′E+80°=∠CB′D=∠ADB′.如图2-1中,当点D在AB的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.故答案为:∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)见解析;(2)见解析【解析】【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE;(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.23.(1)(4,3);(2)S=3342x +, 0<x <4;(3)不存在. 【解析】【分析】(1)直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,可得点A 、B 的坐标,过点C 作CH ⊥x 轴于点H ,如图1,易证△AOB ≌△CHA ,从而得到AH =OB 、CH =AO ,就可得到点C 的坐标;(2)易求直线BC 解析式,过P 点作PG 垂直x 轴,由△OPA 的面积=1OA PG 2即可求出S 关于x 的函数解析式.(3)当S =92求出对应的x 即可. 【详解】解:(1)∵直线y =13x -+1与x 轴、y 轴分别交于点A 、B , ∴A 点(3,0),B 点为(0,1),如图:过点C 作CH ⊥x 轴于点H ,则∠AHC =90°.∴∠AOB =∠BAC =∠AHC =90°,∴∠OAB =180°-90°-∠HAC =90°-∠HAC =∠HC A .在△AOB 和△CHA 中,AOB CHA OAB HCA AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△CHA (AAS ),∴AO =CH =3,OB =HA =1,∴OH =OA +AH =4∴点C 的坐标为(4,3);(2)设直线BC 解析式为y =kx +b ,由B (0,1),C (4,3)得:143b k b =⎧⎨+=⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线BC 解析式为112y x =+, 过P 点作PG 垂直x 轴,△OPA 的面积=12OA PG ,∵PG =112y x =+,OA =3, ∴S =113(1)22x +=3342x +; 点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),∴0<x <4.∴S 关于x 的函数解析式为S =3342x +, x 的的取值范围是0<x <4;(3)当s =92时,即339422x +=,解得x =4,不合题意,故P 点不存在. 【点睛】 本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.24.(1)20°;(2)4【解析】【分析】(1)根据垂直平分线的性质得到EBA EAB ∠=∠和NAC NCA ∠=∠,再根据三角形内角和去算出角EAN ∠的度数;(2)根据三角形三边关系求出BC 长,再根据垂直平分线的性质证明AEN △的周长等于BC 的长.【详解】解:(1)∵DE 、MN 分别是线段AB 和线段AC 的垂直平分线,∴AE=BE ,AN=CN ,∴EBA EAB ∠=∠,NAC NCA ∠=∠,∵EAN BAC EAB NAC ∠=∠-∠-∠,∴()100EAN EBA NCA ∠=︒-∠+∠,∴()()10018010018010020EAN BAC ∠=︒-︒-∠=︒-︒-︒=︒;(2)在ABC 中,AC AB BC AC AB -<<+,即15BC <<,∵BC 边长是整数,∴BC 的长度可以取2、3、4,∵ABC 是不等边的,∴BC=4,由(1)知AE=BE ,AN=CN ,∴4AEN C AE EN AN BE EN NC BC =++=++==.【点睛】本题考查垂直平分线的性质,三角形三边关系和内角和,解题的关键是掌握垂直平分线的性质.25.4ab -;﹣30【解析】【分析】原式括号内先根据平方差公式计算,再合并同类项,然后计算除法,最后把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=222216516a b a b ab ⎡⎤--+÷⎣⎦=224a b ab -÷=4ab -;当10a =,34b =时,原式=3410304-⨯⨯=-. 【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握整式的混合运算法则是解题的关键.26.AD 是∠EAC 的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC ,可得出结论.【详解】AD 是∠EAC 的平分线,∵AD ∥BC ,∴∠EAD =∠B ,∠DAC =∠C ,又∵∠B =∠C ,∴∠EAD =∠DAC ,∴AD 是∠EAC 的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.27.(1)见解析;(2)见解析;(3)S 3=2S 1-4S 2,理由见解析.【解析】【分析】(1)根据ASA 可证得 ΔADE ≌ ΔFCE ;(2)由(1)可得AE=EF ,AD=CF ,根据垂直平分线的性质可得再由线段等量关系即可说明AM = BC + MC ;(3)由AE=EF 得出S △ECF =S 1-S 2,再由底和高的倍数关系得到S △ABF =4S △ECF =4S 1-4S 2,从而根据S 3=S △ABF -S △MAF 得到结果.【详解】解:(1)∵E 是边CD 的中点,∴DE=CE ,∵∠D=∠DCF=90°,∠DEA=∠ECF ,∴△ADE ≌△FCE (ASA );(2)由(1)得AE=EF ,AD=CF ,∴点E 为AF 中点,∵ME ⊥AF ,∴AM=MF ,∵MF=CF+MC ,∵AD=BC=CF ,∴MF=BC+MC ,即AM=BC+MC ;(3)S 3=2S 1-4S 2,理由是:由(2)可知:AE=EF ,AD=BC=CF ,∴S 1=S △MEF =S 2+S △ECF ,∴S △ECF =S 1-S 2,∵AB=2EC ,BF=2CF ,∠B=∠ECF=90°,∴S △ABF =4S △ECF =4S 1-4S 2,∴S 3=S △ABF -S △MAF =S △ABF -2S 1=2S 1-4S 2.【点睛】本题考查了长方形的性质,全等三角形的判定与性质,线段垂直平分线的性质,勾股定理。
成都市棕北中学(科院校区)八年级上册期末数学模拟试卷含详细答案
成都市棕北中学(科院校区)八年级上册期末数学模拟试卷含详细答案一、选择题1.如图,有A ,B 两个正方形,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为5和16,则正方形A ,B 的面积之和为( )A .11B .9C .21D .232.将下列分式中x ,y (xy ≠0)的值都扩大为原来的2倍后,分式的值一定不变的是( )A .312x y+ B .232x y C .232x xy D .3232x y 3.若分式3x x +有意义,则实数x 的取值范围是( ) A .3x >- B .0x > C .3x ≠-D .0x ≠ 4.钝角三角形三条高所在的直线交于( )A .三角形内B .三角形外C .三角形的边上D .不能确定 5.如图,在四边形ABCD 中,AB =AD ,BC =DC ,AC 与BD 相交于点O ,则①CA 平分∠BCD ;②AC ⊥BD ;③∠ABC =∠ADC =90°;④四边形ABCD 的面积为AC •BD .上述结论正确的个数是( )A .1个B .2个C .3个D .4个6.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于O ,连结AO ,则图中共有全等三角形的对数为( )A .2对B .3对C .4对D .5对 7.已知:如图,AB ⊥CD 于O ,EF 为经过点O 的一条直线,那么∠1与∠2的关系是( )A .互为对顶角B .互补C .互余D .相等 8.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有( ).A .7条B .8条C .9条D .10条 9.如图:△ABC 是等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于Q ,PQ =4,PE =1,则AD 的长是( )A .9B .8C .7D .610.如图, 已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,则下列等式不正确的是( )A .AB=ACB .BE=DC C .AD=DED .∠BAE= ∠CAD二、填空题11.若2320a a --=,则2625a a --=______.12.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.13.若关于x 的分式方程211k x x x =---的解为正数,则满足条件的非负整数k 的值为____. 14.如图,直线a 平移后得到直线b ,若170∠=,则23∠-∠=______.15.在ABC 中,:2:1A B ∠∠=,其中C ∠的外角等于120度,则B ∠=_______.16.等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为__________.17.等腰三角形的底边长为6cm ,一腰上的中线把三角形分成的两部分周长之差为4cm ,则这个等腰三角形周长为_____cm .18.因式分解:2a 4-=________19.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.20.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).三、解答题21.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件:①AB DE =;②AC DF =;③//AB DE ;④BE CF =.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:____________________________________________;求证:___________.(注:不能只填序号)证明如下:22.问题情景:如图1,在同一平面内,点B 和点C 分别位于一块直角三角板PMN 的两条直角边PM ,PN 上,点A 与点P 在直线BC 的同侧,若点P 在ABC ∆内部,试问ABP ∠,ACP ∠与A ∠的大小是否满足某种确定的数量关系?(1)特殊探究:若55A ∠=︒,则ABC ACB ∠+∠=_________度,PBC PCB ∠+∠=________度,ABP ACP ∠+∠=_________度;(2)类比探索:请猜想ABP ACP ∠+∠与A ∠的关系,并说明理由;(3)类比延伸:改变点A 的位置,使点P 在ABC ∆外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出ABP ∠,ACP ∠与A ∠满足的数量关系式.23.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .24.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .25.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BF 平分∠ABC 交AD 于点E ,交AC 于点F .(1)求证:AE =AF ;(2)过点E 作EG ∥DC ,交AC 于点G ,试比较AF 与GC 的大小关系,并说明理由.26.如图,ABC ∆中,30A ∠=︒,70B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥,求CDF ∠的度数.27.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.28.先化简,再求值:(a +2)2-(a +1)(a -1),其中a =32-. 29.已知x =3+1,y =3﹣1,求:(1)代数式xy 的值;(2)代数式x 3+x 2y +xy 2+y 3的值.30.已知:如图,ABC 中,∠ABC=45°,CD AB ⊥于D ,BE 平分∠ABC ,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G (1)求证:BF=AC ;(2)判断CE 与BF 的数量关系,并说明理由【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设A 正方形的边长为a ,B 正方形的边长为b ,根据图形得到a 2+b 2=5+2ab ,ab =8,得到答案.【详解】解:设A 正方形的边长为a ,B 正方形的边长为b ,由图甲可知,a 2﹣b 2﹣b (a ﹣b )×2=5,即a 2﹣2ab +b 2=5,∴a 2+b 2=5+2ab ,由图乙可知,(a +b )2﹣a 2﹣b 2=16,即ab =8,∴a 2+b 2=5+2ab =21,故选:C .【点睛】本题考查的是完全平方公式的几何背景,掌握平方差公式和完全平方公式是解题的关键.2.C解析:C【解析】【分析】根据分式的基本性质解答.【详解】解:∵分式中x ,y (xy ≠0)的值都扩大为原来的2倍,∴A.23161224x x y y ⨯++=⨯,分式的值发生改变; B. 222332(2)4x x y y ⨯=⨯,分式的值发生改变; C. 223(2)32222x x x y xy⨯=⨯⨯,分式的值一定不变; D. 33223(2)32(2)x x y y⨯=⨯,分式的值发生改变; 故选:C .【点睛】本题考查了分式的基本性质:分式的分子和分母都乘以或除以同一个不为0的数(或式子),分式的值不变.3.C解析:C【解析】【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+3≠0,解得x≠-3.故选:C.【点睛】本题考查了分式有意义的条件,利用分式有意义得出不等式是解题关键.4.B解析:B【解析】【分析】由图形可知:钝角三角形三条高所在的直线交于三角形外.【详解】解:如图可知:钝角△ABC三边的高交于三角形外部一点D,即钝角三角形三条高所在的直线交于三角形外,故选:B.【点睛】本题考查三角形的高线的交点问题,解答的关键是会画三角形的高线,并能根据三角形的形状得出三条高线所在的直线的交点与三角形的关系.5.B解析:B【解析】【分析】证明△ABC与△ADC全等,即可解决问题.【详解】解:在△ABC与△ADC中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC (SSS ),∴∠ACB =∠ACD ,故①正确,∵AB =AD ,BC =DC∴AC 是BD 的垂直平分线,即AC ⊥DB ,故②正确;无法判断∠ABC =∠ADC =90°,故③错误,四边形ABCD 的面积=S △ADB +S △BCD =12DB ×OA +12DB ×OC =12AC •BD , 故④错误;故选B .【点睛】此题考查全等三角形的判定和性质,关键是根据SSS 证明△ABC 与△ADC 全等. 6.C解析:C【解析】【分析】先根据条件,利用AAS 可知△ADB ≌△AEC ,然后再利用HL 、ASA 即可判断△AOE ≌△AOD ,△BOE ≌△COD ,△AOC ≌△AOB.【详解】∵AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,∴∠ADB=∠AEC=90°,∵∠A 为公共角,∴△ADB ≌△AEC ,(AAS )∴AE=AD ,∠B=∠C∴BE=CD ,∵AE=AD ,OA=OA ,∠ADB=∠AEC=90°,∴△AOE ≌△AOD (HL ),∴∠OAC=∠OAB ,∵∠B=∠C ,AB=AC ,∠OAC=∠OAB ,∴△AOC ≌△AOB.(ASA )∵∠B=∠C ,BE=CD ,∠ODC=∠OEB=90°,∴△BOE ≌△COD (ASA ).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.7.C解析:C【解析】【分析】根据垂线的定义得出∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【详解】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即:∠1与∠2互余,故选:C.【点睛】本题考查了垂线的定义、平角的定义、角的互余关系;熟练掌握垂线的定义和平角的定义是解题的关键.8.C解析:C【解析】【分析】根据邻补角的定义可求出每个外角的度数,根据多边形外角和定理即可得出多边形的边数,根据多边形从一个顶点出发的对角线共有n-3条,即可求得对角线的条数.【详解】∵此多边形的每一个内角都等于150°,∴此多边形的每一个外角都等于180°-150°=30°,∵多边形的外角和为360°,∴此多边形的边数为:360°÷30°=12,∴从一个顶点出发的对角线共有12-3=9条.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n-3条.9.A解析:A【解析】【分析】在Rt△BPQ,易求∠PBQ=30°,于是可求BP,进而可求BE,而△BAE≌△ACD,那么有AD=BE=9.【详解】解:∵BQ⊥AD,∴∠BQP=90°,又∵∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,又∵AE=CD,∴△BAE≌△ACD,∴AD=BE=9,故选A.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.10.C解析:C【解析】【分析】由全等三角形的性质可得到对应边、对应角相等,结合条件逐项判断即可.【详解】∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=DC,∠BAE=∠CAD,∴A、B、D正确,AD与DE没有条件能够说明相等,∴C不正确,故选:C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.二、填空题11.-1【解析】【分析】由可得,然后整体代入求解即可.【详解】解:由可得,所以;故答案为.【点睛】本题主要考查代数式求值,关键是根据题意得到,然后整体代入求解即可. 解析:-1【解析】【分析】由2320a a --=可得23=2a a -,然后整体代入求解即可.【详解】解:由2320a a --=可得23=2a a -,所以()226252352251a a a a --=--=⨯-=-;故答案为1-.【点睛】本题主要考查代数式求值,关键是根据题意得到23=2a a -,然后整体代入求解即可. 12.90°【解析】【分析】由平行线性质可得到,再由角平分线定义可得到.【详解】解:∵AB∥CD∴∠BGH+∠GHD=180(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH、∠GHD解析:90°【解析】【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.13.【解析】【分析】首先解分式方程,然后根据方程的解为正数,可得x >0,据此求出满足条件的非负整数K 的值为多少即可.【详解】∵,∴.∵x >0,∴,∴,∴满足条件的非负整数的值为0、1解析:【解析】【分析】 首先解分式方程211k x x x =---,然后根据方程的解为正数,可得x >0,据此求出满足条件的非负整数K 的值为多少即可.【详解】 ∵211k x x x =---, ∴2x k =-.∵x >0,∴20k ->,∴2k <,∴满足条件的非负整数k 的值为0、1,0k =时,解得:x =2,符合题意;1k =时,解得:x =1,不符合题意;∴满足条件的非负整数k 的值为0.故答案为:0.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.14.110°.【解析】【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.【详解】延长直线,如图:∵直线a平移后得到直线b,∴a∥b,∴∠5=180°−∠1=180°−70°解析:110°.【解析】【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.【详解】延长直线,如图:∵直线a平移后得到直线b,∴a∥b,∴∠5=180°−∠1=180°−70°=110°,∵∠2=∠4+∠5,∠3=∠4,∴∠2−∠3=∠5=110°,故答案为110°.【点睛】此题考查平移的性质,解题关键在于作辅助线.15.【解析】【分析】先根据比例关系可得,再根据三角形的外角性质可得,由此即可得出答案.【详解】,,在中,的外角等于120度,,,解得,故答案为:.【点睛】本题考查了角的和差倍分解析:40︒【解析】【分析】先根据比例关系可得2A B ∠=∠,再根据三角形的外角性质可得120A B ∠+∠=︒,由此即可得出答案.【详解】:2:1A B ∠∠=,2A B ∴∠=∠,在ABC 中,C ∠的外角等于120度,120A B ∴∠+∠=︒,2120B B ∴∠+∠=︒,解得40B ∠=︒,故答案为:40︒.【点睛】本题考查了角的和差倍分、三角形的外角性质,掌握理解三角形的外角性质是解题关键.16.或【解析】【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB=AC ,BD⊥AC,如图(1),∠ABD=60°,则∠A=3解析:75︒或15︒【解析】【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB=AC ,BD ⊥AC ,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=12∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75︒或15︒.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.17.26【解析】【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【详解】解:设腰长为xcm,根据解析:26【解析】【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【详解】解:设腰长为xcm,根据题意得:x﹣6=4或6﹣x=4,解得:x=10或x=2(舍去),∴这个等腰三角形的周长为10+10+6=26cm.故答案为:26.考核知识点:等腰三角形.理解三角形中线的意义是关键.18.=(a+2)(a-2)【解析】【分析】直接利用平方差公式分解因式得出即可.【详解】a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).【点睛】此题主要考查了公式法分解因式解析:2a4=(a+2)(a-2)【解析】【分析】直接利用平方差公式分解因式得出即可.【详解】a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).【点睛】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.19.40【解析】【分析】根据三角形的内角和得出,再利用角平分线得出,利用三角形内角和解答即可.【详解】是高,,,,是角平分线,,.故答案为40.【点睛】本题考查了三角形的内角和解析:40【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可.【详解】 AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=, AE 是角平分线,68BAC ∴∠=,180726840C ∴∠=--=.故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.20.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.三、解答题21.已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF.求证:AB∥DE.证明见解析.或已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.证明见解析.【解析】【分析】由BE=CF⇒BC=EF,所以,由①②④,可用SSS⇒△ABC≌△DEF⇒∠ABC=∠DEF⇒ AB∥DE;由①③④,可用SAS⇒△ABC≌△DEF⇒AC=DF;由于不存在ASS的证明全等三角形的方法,故由其它三个条件不能得到1或4.【详解】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:AB∥DE.证明:在△ABC和△DEF中,∵BE=CF,∴BC=EF.又∵AB=DE,AC=DF,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF.∴ AB∥DE.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.证明:∵AB∥DE,∴∠ABC=∠DEF.在△ABC和△DEF中∵BE=CF,∴BC=EF.又∵AB=DE,∠ABC=∠DEF,∴△ABC≌△DEF(SAS),∴AC=DF.【点睛】本题考查命题与定理、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.22.(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.【解析】【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB -(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.(3)判断:(2)中的结论不成立.证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.【点睛】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.∠=︒;(2)证明见解析;23.(1)248【解析】【分析】(1)先求六边形ABCDEF的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.24.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB,再利用等腰三角形的性质得到AD是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD垂直平分BC,∴AC=AB,即ABC是等腰三角形,∴AD平分∠BAC,∵DM⊥AB,DN⊥AC,∴DM=DN.【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.25.(1)见解析;(2)AF=GC,理由见解析.【解析】【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED=∠AFB,然后根据对顶角的性质和等量代换可得∠AEF=∠AFB,进一步即可推出结论;(2)如图,过F作FH⊥BC于点H,根据角平分线的性质可得AF=FH,进而可得AE=FH,易得FH∥AE,然后根据平行线的性质可得∠EAG=∠HFC,∠AGE=∠C,进而可根据AAS证明△AEG≌△FHC,再根据全等三角形的性质和线段的和差即可得出结论.【详解】(1)证明:∵∠BAC=90°,∴∠ABF+∠AFB=90°,∵AD⊥BC,∴∠EBD+∠BED=90°,∵BF平分∠ABC,∴∠ABF=∠EBD,∴∠BED=∠AFB,∵∠BED=∠AEF,∴∠AEF=∠AFB,∴AE =AF ;(2)AF =GC ;理由如下:如图,过F 作FH ⊥BC 于点H ,∵BF 平分∠ABC ,且FH ⊥BC ,AF ⊥BA ,∴AF =FH ,∵AE =AF ,∴AE =FH ,∵FH ⊥BC ,AD ⊥BC ,∴FH ∥AE ,∴∠EAG=∠HFC ,∵EG ∥BC ,∴∠AGE=∠C ,∴△AEG ≌△FHC (AAS ),∴AG =FC ,∴AF =GC .【点睛】本题考查了直角三角形的性质、角平分线的性质、全等三角形的判定和性质、平行线的性质以及等腰三角形的判定等知识,涉及的知识点多,但难度不大,熟练掌握上述知识、灵活应用全等三角形的判定和性质是解题的关键.26.70CDF ∠=︒【解析】【分析】首先根据三角形的内角和定理求得∠ACB 的度数,以及∠BCD 的度数,根据角的平分线的定义求得∠BCE 的度数,则∠ECD 可以求解,然后在△CDF 中,利用内角和定理即可求得∠CDF 的度数.【详解】解:∵30A ∠=︒,70B ∠=︒,∴18080ACB A B ∠=︒-∠-∠=︒.∵CE 平分ACB ∠,∴1402ACE ACB ∠=∠=︒. ∵CD AB ⊥于D ,∴90CDA ∠=︒,18060ACD A CDA ∠=︒-∠-∠=︒.∴20ECD ACD ACE ∠=∠-∠=︒.∵DF CE ⊥,∴90CFD ∠=︒,∴18070CDF CFD ECD ∠=︒-∠-∠=︒.【点睛】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键.27.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.28.-1.【解析】分析:原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.详解:原式=a2+4a+4﹣a2+1=4a+5当a=32-时,原式=﹣6+5=﹣1.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.29.(1)2;(2)【解析】【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;【详解】(1)xy=)=2-1=2;(2)∵x,y1,xy=2,∴∴x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3= x2(x+y)+y2(x+y)=(x2+y2)(x+y)【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.30.(1)证明见解析;(2)12CE BF=,理由见解析【解析】【分析】(1)由题意可以得到Rt⊿DFB≅Rt⊿DAC,从而得到BF=AC;(2)由题意可以得到Rt⊿BEA≅Rt⊿BEC,所以1122CE AE AC BF ===.【详解】证明:∵CD⊥AB,∠ABC=45°,∴BCD是等腰直角三角形,∠DBF=90°-∠BFD,∠A=90°-∠DCA,又BE AC⊥,∴∠EFC =90°-∠DCA,∴∠A=∠EFC∵∠BFD=∠EFC,∴∠A=∠DFB,∴在Rt⊿DFB和Rt⊿DAC中,∠BDF=∠CDA,∠A=∠DFB,BD=DC,∴Rt⊿DFB≅Rt⊿DAC,∴BF=AC;(2)12 CE BF=理由是:∵BE平分ABC,∴∠ABE=∠CBE,在Rt⊿BEA和Rt⊿BEC中,∠AEB=∠CEB,BE=BE,∠ABE=∠CBE,∴Rt⊿BEA≅Rt⊿BEC,∴12 CE AE AC ==由(1)得:12CE BF=.【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.。
成都市八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.3的平方根是A. B. C. D.2.如果点与点关于y轴对称,则A. 4B.C. 5D.3.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、64.下列命题是真命题的是A. 同位角相等B. 三角形的一个外角等于它的两个内角之和C. 相等的角都是对顶角D. 如果,,那么5.一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择A. 甲B. 乙C. 丙D. 丁7.估计的大小在A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间8.如图,沿直角边BC所在的直线向右平移得到,下列结论中错误的是A. ≌B.C. D.9.已知函数和的图象交于点,则关于x,y的二元一次方程组的解是A. B. C. D.10.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程千米随时间分变化的函数图象,则每分钟乙比甲多行驶的路程是A. 千米B. 1千米C. 千米D. 2千米二、填空题(本大题共9小题,共36.0分)11.36的算术平方根为______;的相反数为______.12.在平面直角坐标系中,点在直线上,则______.13.若,化简______.14.等腰三角形底边长为10,底边上的中线为3,则它的腰长为______.15.若实数x,y满足,则______.16.若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为______.17.用表示一种运算,它的含义是:如果,则______;______.18.如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点作x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点作x轴的垂线,垂足为,交直线l于点,以为边作正方形,,按此规律操作下所得到的正方形的面积是______.19.如图,,点M、点C在射线OA上,点P、点D在射线OB上,且,则的最小值是______.三、计算题(本大题共2小题,共16.0分)20.2台大型收割机和5台小型收割机均工作2小时共收割小麦公顷,3台大型收割机和2台小型收割机均工作5小时共收割小麦8公顷.1台大型收割机和一台小型收割机每小时各收割小麦多少公顷?21.已知:,求的值若x的整数部分是m,y的小数部分是n,求的值.四、解答题(本大题共7小题,共68.0分)22.计算:.解方程组.23.某校八年级甲、乙两班各有学生50人,为了了解这两个学生身体素质情况,进行了抽样调査,过程如下,请补充完整.收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩百分制如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70整理描述数据按如下分数段整理、描述这两组样本数据:分析数据两组样本数据的平均数、中位数、众数如表所示:在表中:______,______;若规定测试成绩在80分含80分以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有______人.24.如图:已知在直角坐标系中的位置.写出各顶点的坐标;若把向上平移3个单位再向右平移2个单位得到,画出,并写出,,的坐标;求出的面积.25.如图,在长方形ABCD中,,,将长方形ABCD沿AC折叠,得到,与AB交于点F.求AF的长;重叠部分的面积为多少?26.如图,一次函数的图象分别与x轴,y轴交于A、B两点,正比例函数的图象与交于点求m的值及的解析式;求得的值为______;一次函数的图象为且,,可以围成三角形,直接写出k的取值范围.27.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲.乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B 地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲.乙两车之间的距离与他们出发后的时间之间函数关系的部分图象.由图象可知,甲车速度为______ ;乙车速度为______ .已知最终乙车比甲车早到B地,求甲车出发后直至到达B地的过程中,S 与x的函数关系式及x的取值范围,并在图2中补全函数图象.28.如图,在平面直角坐标系中,直线:和直线:相交于y轴上的点B,且分别交x轴于点A和点C.求的面积;点E坐标为,点F为直线上一个动点,点P为y轴上一个动点,求当最小时,点F的坐标,并求出此时的最小值;将沿直线平移,平移后记为,直线交于点M,直线交x轴于点N,当为等腰三角形时,请直接写出点的横坐标.答案和解析1.【答案】D【解析】解:,的平方根是.故选:D.直接根据平方根的概念即可求解.本题主要考查了平方根的概念,比较简单.2.【答案】B【解析】解:点与点关于y轴对称,,解得.故选:B.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.【答案】C【解析】解:A、,不能组成直角三角形,故A选项错误;B、,不能组成直角三角形,故B选项错误;C、,组成直角三角形,故C选项正确;D、,不能组成直角三角形,故D选项错误.故选:C.判断是否能组成直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.此题考查了勾股定理的逆定理:已知的三边满足,则是直角三角形.4.【答案】D【解析】解:A、两直线平行,同位角相等,本说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角之和,本说法是假命题;C、相等的角不一定都是对顶角,本说法是假命题;D、如果,,那么,是真命题;故选:D.根据平行线的性质、三角形的外角性质、对顶角的概念判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】C【解析】解:一次函数,该函数图象经过第一、二、四象限,不经过第三象限,故选:C.根据一次函数的性质和题目中的一次函数解析式,可以得到该函数图象经过哪几个象限,不经过哪个象限,本题得以解决.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.【答案】A【解析】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.根据平均数和方差的意义解答.本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.【答案】B【解析】解:,在3到4之间,故选:B.求出的范围,即可得出答案.本题考查了估算无理数的大小的应用,解此题的关键是估算出的范围.8.【答案】D【解析】解:由平移的性质可知: ≌ ,,,,,故A,B,C正确,故选:D.利用平移的性质解决问题即可.本题考查平移变换,全等三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】B【解析】解:函数和的图象交于点,则关于x,y的二元一次方程组的解是,故选:B.根据函数图象可以得到两个函数交点坐标,从而可以得到两个函数联立的二元一次方程组的解.本题考查一次函数与二元一次方程组,解题的关键是明确题意,利用数形结合的思想解答问题.10.【答案】A【解析】解:由甲的图象可知甲的速度为:千米分,由乙的图象可知乙的速度为:千米分,所以每分钟乙比甲多行驶的路程是千米.故选:A.分别根据甲、乙的图象计算出各自的速度即可求出每分钟乙比甲多行驶的路程.本题考查了一次函数的图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.11.【答案】6【解析】解:36的算术平方根为6;的相反数为.故答案为:6;.根据算术平方根和相反数的定义即可求解.本题考查了相反数、算术平方根,一个正数的正的平方根,叫做这个正数的算术平方根,0的算术平方根是算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.12.【答案】【解析】解:当时,.故答案为:.代入求出a值,此题得解.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式是解题的关键.13.【答案】【解析】解:由题意可知:,原式,故答案为:根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是二次根式的性质,本题属于基础题型.14.【答案】【解析】解:如图所示:,AD为BC边的中线,,,,,在中,,,根据勾股定理得:,则等腰三角形的腰长为.故答案为:.根据题意画出图形,如图所示:,AD为BC边的中线,,,利用三线合一得到AD垂直与BC,在直角三角形ABD中,由AD与BD的长,利用勾股定理求出AB的长,即为腰长.此题考查了勾股定理,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.15.【答案】8【解析】解:根据题意得,且,解得且,,,.故答案为:8.根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.本题考查了二次根式.解题的关键是明确二次根式的被开方数是非负数.16.【答案】2【解析】解:根据题意,得由,得即由,得即将、代入,得,解得据题意得知,二元一次方程组的解也是二元一次方程的解,也就是说,它们有共同的解,及它们是同一方程组的解,故将其列出方程组解答即可.在解答该题时,运用了加减消元法和代入消元法.通过“消元”,使其转化为二元一次方程组来解.17.【答案】8【解析】解:,,,解得,,,故答案为:8;.根据和,可以求得x的值,从而可以求得的值,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】【解析】解:直线l为正比例函数的图象,,,正方形的面积,由勾股定理得,,,,正方形的面积,同理,,正方形的面积,由规律可知,正方形的面积,故答案为:.根据正比例函数的性质得到,分别求出正方形的面积、正方形的面积,总结规律解答.本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到,正确找出规律是解题的关键.19.【答案】【解析】解:如图,作点C关于OB的对称点,作点D关于OA的对称点,连接,,,,,则,,,,,,当仅当,P,M,三点共线时,最小为,作于点T,则,,,的最小值是.故答案为:.如图,作点C关于OB的对称点,作点D关于OA的对称点,连接,,,,,根据轴对称的性质得到,,,,,于是得到,当仅当,P,M,三点共线时,最小为,作于点T,于是得到结论.本题考查了轴对称最短路线问题,两点之间线段最短的性质.得出动点所在的位置是解题的关键.20.【答案】解:设1台大型收割机和1台小型收割机工作1小时各收割小麦x公顷和y 公顷,根据题意可得,解得.答:1台大型收割机工作1小时收割小麦公顷,1台小型收割机工作1小时收割小麦公顷.【解析】此题可设1台大型收割机和1台小型收割机工作1小时各收割小麦x公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可.本题主要考查二元一次方程的实际应用,解题关键是弄清题意,找到合适的等量关系.21.【答案】解:,,,,;,,,的整数部分为m,y的小数部分为n,,,.【解析】先分母有理化求出x、y的值,求出和xy的值,变形后代入求出即可;求出m、n的值,代入求出即可.本题考查了估算无理数的大小,二次根式的混合运算的应用,能灵活运用知识点进行计算和化简是解此题的关键.22.【答案】解:原式;,得,解得,把代入得,解得,所以方程组的解为.【解析】根据负整数指数幂、零指数幂和平方差公式计算;利用加减消元法解方程组.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.也考查了解二元一次方程组.23.【答案】3 2 75 70 20【解析】解:由收集的数据得知:,,故答案为:3,2;甲班成绩为:50、60、65、65、75、75、75、80、85、90,甲班成绩的中位数,乙班成绩70分出现次数最多,所以的众数,故答案为:75,70;估计乙班50名学生中身体素质为优秀的学生有人;故答案为:20.由收集的数据即可得;根据众数和中位数的定义求解可得;用总人数乘以乙班样本中优秀人数所占比例可得.本题考查了众数、中位数以及样本估计总体,熟练掌握众数、中位数以及用样本估计总体是解题的关键.24.【答案】解:,,;如图所示:,即为所求,,,;的面积为:.【解析】直接利用已知坐标系得出各点坐标;直接利用平移的性质得出对应点位置进而得出答案;直接利用所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了平移变换,正确得出对应点位置是解题关键.25.【答案】解:由折叠可得,,四边形ABCD是矩形,,,,,,设,则,,在中,,即,解得:,;,,,.【解析】设,则有,在中利用勾股定理列方程,即可求出BF、AF的长;利用三角形的面积公式即可得出结论.本题考查的是翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解题的关键.26.【答案】【解析】解:把代入一次函数,可得,,解得,设的解析式为,将点代入,得,解得,的解析式为;如图,过C作于D,于E,则,,,令,则;令,则,,,,,.故答案为;一次函数的图象为,如果,,不能围成三角形,那么可分三种情况:经过点时,,解得;,平行时,;,平行时,;故,,可以围成三角形时,k的取值范围是且且.先求得点C的坐标,再运用待定系数法即可得到的解析式;过C作于D,于E,则,,再根据,,可得,,进而得出的值;先讨论,,不能围成三角形时分三种情况:经过点时,;,平行时,;,平行时,进而得出,,可以围成三角形时k的取值范围.本题考查了待定系数法求正比例函数的解析式,一次函数图象上点的坐标特征,三角形的面积,三条直线能够围成三角形的条件,难度适中.利用了数形结合及分类讨论的思想.27.【答案】40;80【解析】解:乙在A地用1h配货,小时~小时为甲独自行驶,甲的速度,乙的速度为:;故答案为:40,80;设从小时后两车相遇的时间为t小时,由题意得,,解得,,此过程中,,设甲车到达B地的时间为m,由题意得,,解得,小时,小时,乙车到达B地前,,乙车到达B地后,,综上所述,,补全函数图形如图所示.根据乙车在A地用1h配货可知到小时的距离变化为甲车的变化,利用速度路程时间计算即可;再根据前小时甲乙两车向北而行列式求解乙车的速度;设从小时后两车相遇的时间为t小时,然后根据追及问题求出相遇的时间,设甲车到达B地的时间为m,根据乙车比甲车早到B地求出甲车到达B地的时间,再求出乙车到达B地的时间,然后求出乙车到达B地时两车的距离,再补全函数图象即可.本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题,追及问题的等量关系,读懂题目信息并找出等量关系列出方程是解题的关键.28.【答案】解:由题意知:直线:当时,直线:当时,,;在中,在中,在中,是直角三角形,作C点关于直线AB的对称点,连接交直线于F,直线:解得:作二、四象限的角平分线,过点P作于Q,则,,当F,P,Q三点共线时最小,即过F作于Q交y轴于P,作交直线于G.此时为等腰直角三角形,斜边,的最小值为:如图2中,当时,点中直线上运动,设,交x轴于E,则,,,,把点M坐标代入直线,得到:,解得.如图3中当时,同法可得,把点M代入得到,,解得,.如图4中,当时,同法可得,把点M代入得到,,解得.如图5中,当时,同法可得,把点M代入得到,,解得舍弃,综上所述,的横坐标为:或或.【解析】根据题意分别求出A,C点的坐标,.作C点关于直线AB的对称点,连接交直线于F,作二、四象限的角平分线,过点P作于Q,则,可得,推出当F,P,Q三点共线时最小,即过F作于Q交y轴于P,作交直线于求出FQ即可;分四种情形分别求解即可解决问题;本题考查一次函数综合题、轴对称最短问题、垂线段最短、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,学会用轴对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2020-2021学年四川省成都八年级(上)期末数学测试卷
2020-2021学年四川省成都八年级(上)期末数学测试卷第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.在实数√5、3.1415、π、√144、√63、2.123122312223……(1和3之间的2逐次加1个)中,无理数的个数为()A. 2个B. 3个C. 4个D. 5个2.下列各组数中,不能构成直角三角形的一组是()A. 1,2,√5B. 1,2,√3C. 6,7,10D. 9,40,413.点P(−2,5)在第()象限A. 一B. 二C. 三D. 四4.下列命题是假命题的是()A. 内错角相等B. 邻补角互补C. 对顶角相等D. 垂线段最短5.使得函数y=x+2()A. x≥−2B. x≥−2且x≠0C. x≠0D. x>−26.在四边形ABCD中,AB//CD,要使其是平行四边形,可添加的条件不正确的是()A. BC=ADB. AB=CDC. ∠A=∠CD. AD//BC7.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,则下列说法正确的是()A. 乙同学的成绩更稳定B. 甲同学的成绩更稳定C. 甲、乙两位同学的成绩一样稳定D. 不能确定8.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是()A. −13B. 13C. −1D. 49. 一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列说法中错误的是( )A. 客车比出租车晚4小时到达目的地B. 客车速度为60千米/时,出租车速度为100千米/时C. 两车出发后3.75小时相遇D. 两车相遇时客车距乙地还有225千米10. 在△ABC 中,∠A =90°,AB =6,AC =8,AD 是BC 边上的高,CD 的长是( )A. 6.4B. 6C. 5.6D. 10第II 卷(非选择题) 二、填空题(本大题共9小题,共36.0分)11. 8的算术平方根是______;8的立方根是______.12. 比较大小:√4−1______√3(填“>”、“=”或“<”).13. 如图,已知一次函数y =ax +b(a ≠0)和y =kx(k ≠0)的图象交于点P ,则二元一次方程组{y −ax =b y −kx =0的解是 .14. 在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE =4,AF =6,平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积为______.15. 已知(a −2)x a 2−3+y =1是一个二元一次方程,则a 的值为______ .16. 设m 是√5的整数部分,n 是√5的小数部分,则m −n =______ .17. 函数y =kx +b(k ≠0)的图象可以由直线y =−2x 平移得到,且与y 轴交于点(0,3),则k =________,b =________.18. 在平面直角坐标系xOy 中,正方形A 1B 1C 1O 、A 2B 2C 2B 1、A 3B 3C 3B 2,…,按如图所示的方式放置、点A 1、A 2、A 3,…和点B 1、B 2、B 3,…分别在直线y =kx +b 和x 轴上、已知C 1(1,−1),C 2(72,−32),则点A 3的坐标是______;点A n 的坐标是______.19.如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN的长为______.三、解答题(本大题共9小题,共84.0分)20.计算:√18−(12)−1−|−√2|.21.已知x=√5−√2,y=√5+√2.(1)求x+y与x−y的值;(2)求x2+xy+y2的值.22.在平面直角坐标系中,已知A(1,−5),B(4,2),C(−1,0)三点.(1)点B关于x轴的对称点B′的坐标为__________,点C关于y轴的对称点C′的坐标为__________.(2)求第(1)题中△AB′C′的面积.23.某校对九年级全体学生进行了一次数学学业水平模拟测试,成绩评定分为A,B,C,D四个等级(A、B、C、D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了______名学生的成绩;(2)请将条形统计图补充完整,写出等级C的百分比______%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是______分,众数是______分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.24.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC的周长.25.如图,在平面直角坐标系中,直线l的解析式为y=−x,直线l2与l1交于点A(a,−a)与y轴交于点B(0,b),其中a,b满足(a+2)2+√b−3=0(1)求直线l2的解析式;(2)若在第二象限中有一点P(m,5)使得S△AOP=S△AOB,请求出点P的坐标;(3)已知直线y=2x−2分别交x轴、y轴于E、F两点,M、N分别是直线l1、l2上的动点,请直接写出能使E、F、M、N四点构成平行四边形的点M的坐标.26.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价之和为231元,2件甲种玩具的进价与3件乙种玩具的进价之和为141元.(1)求甲、乙两种玩具每件的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可享受7折优惠,若购进n件甲种玩具需要花费w元,请写出w与n的函数关系式.27.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD//BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.28.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了无理数的定义.根据无理数的定义直接判断即可.【解答】解:3.1415是有理数,√144=12,是有理数,3,2.123122312223……(1和3之间的2逐次加1个),共4个,无理数有√5、π、√6故选:C.2.【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.12+22=(√5)2,能构成直角三角形,故此选项错误;B.12+(√3)2=22,能构成直角三角形,故此选项错误;C.62+72≠102,不能构成直角三角形,故此选项正确;D.92+402=412,能构成直角三角形,故此选项错误.故选C.3.【答案】B【解析】【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的点的坐标符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征解答即可.【解答】解:点P(−2,5)在第二象限.故选B.4.【答案】A【解析】【分析】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.根据邻补角的定义对A解析判断;根据平行线的性质对B解析判断;根据对顶角的性质对C 解析判断;根据垂线段的性质对D解析判断.【解答】解:A.两直线平行,内错角相等,所以A选项为假命题;B.邻补角互补,所以B选项为真命题;C.对顶角相等,所以C选项为真命题;D.垂线段最短,所以D选项为真命题.故选A.5.【答案】D【解析】【分析】此题主要考查了确定函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.根据二次根式和分式的有意义的条件可知,被开方式大于或等于0,分母不等于0.【解答】解:由题意得,x+2>0,解得:x>−2,故选D.6.【答案】A【解析】【解答】解:∵AB//CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;故B 正确,当BC//AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;故D正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;故C正确当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故A错误,故选:A.【分析】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.根据平行四边形的判定方法,逐项判断即可.7.【答案】A【解析】【分析】本题考查方差的意义,属于基础题.根据方差的定义,方差越小越稳定即可判断.【解答】解:因为1.2>0.5,方差小的为乙,所以本题中成绩比较稳定的是乙.故选A.8.【答案】C【解析】【分析】本题考查了二元一次方程的解的应用,主要考查学生的计算能力,把x=4代入方程x+ 3y=1求出y即可.【解答】解:把x=4代入方程x+3y=1得:4+3y=1,y=−1.故选C.9.【答案】D【解析】【分析】本题考查了一次函数的应用,本题中正确求得一次函数解析式是解题的关键.观察图形可发现客车出租车行驶路程均为600千米,客车行驶了10小时,出租车行驶了6小时,即可求得客车和出租车行驶时间和速度;易求得直线AC和直线OD的解析式,即可求得交点横坐标x,即可求得相遇时间,和客车行驶距离,即可解题.【解答】解:(1)∵客车行驶了10小时,出租车行驶了6小时,∴客车比出租车晚4小时到达目的地,故A正确;(2)∵客车行驶了10小时,出租车行驶了6小时,∴客车速度为60千米/时,出租车速度为100千米/时,故B正确;(3)∵设出租车行驶时间为x,距离目的地距离为y,则y=−100x+600,设客车行驶时间为x,距离目的地距离为y,则y=60x;当两车相遇时即60x=−100x+600时,x=3.75ℎ,故C正确;∵3.75小时客车行驶了60×3.75=225千米,∴距离乙地600−225=375千米,故D错误;故选:D.10.【答案】A【解析】【分析】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.先根据勾股定理求出BC的长,再由三角形的面积公式求得AD,利用勾股定理即可得出结论.【解答】解:∵在△ABC中,∠A=90°,AB=6,AC=8,∴BC=√AB2+AC2=√62+82=10,=4.8,∴BC边上的高AD=6×810∴CD=√AC2−AD2=√82−4.82=6.4.故选A.11.【答案】2√2;2【解析】【分析】依据算术平方根的性质和立方根的性质解答即可.本题主要考查的是算术平方根、立方根的性质,熟练掌握算术平方根、立方根的性质是解题的关键.【解答】解:8的算术平方根是2√2;8的立方根是2.故答案为:2√2;2.12.【答案】<【解析】【分析】此题主要考查了实数大小比较的方法,要熟练掌握.首先求出√4−1的值是多少;然后根据实数大小比较的方法判断即可.【解答】解:√4−1=2−1=1,∵1<√3,∴√4−1<√3.故答案为<.13.【答案】{x =−4y =−2【解析】【分析】本题考查了一次函数与二元一次方程组的联系,方程组整理出两个函数解析式的形式,然后根据交点坐标就是方程组的解进行解答.【解答】解:∵二元一次方程{y −ax =b y −kx =0等价于{y =ax +b y =kx, ∴方程组的解是{x =−4y =−2, 故答案为{x =−4y =−2. 14.【答案】48【解析】解:∵平行四边形ABCD 的周长为40,∴BC +CD =20,设BC 为x ,∵S 平行四边形ABCD =BC ⋅AE =CD ⋅AF ,∴4x =(20−x)×6,解得x =12,∴平行四边形ABCD 的面积为12×4=48.故答案为48.由平行四边形的对边相等可得一组对边的和为20,设BC 为未知数,利用两种方法得到的平行四边形的面积相等,可得BC 长,乘以4即为平行四边形的面积.本题主要考查了平行四边形的性质,平行四边形的对边相等,面积等于底×高. 15.【答案】−2【解析】【分析】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.根据方程中只含有2个未知数和含未知数项的最高次数为一次以及方程是整式方程这三个条件可得答案.【解答】解:由题意得a2−3=1且a−2≠0,解得a=−2,故答案为−2.16.【答案】4−√5【解析】解:∵m是√5的整数部分,∴m=2,∵n是√5的小数部分,∴n=√5−2,∴m−n=2−(√5−2)=2−√5+2=4−√5;故答案为:4−√5.根据m是√5的整数部分,求出m的值,再根据n是√5的小数部分,求出n的值,然后代入计算即可.此题考查了估算无理数的大小,关键是估算出√5的整数部分,表示出小数部分.17.【答案】−2;3【解析】【分析】本题考查了两直线平行的问题,属于基础题.根据y=kx+b的图象由直线y=−2x平移得到求出k=−2,再把与y轴的交点坐标代入求出b的值,从而得解.【解答】解:∵y=kx+b的图象由直线y=−2x平移得到,∴k=−2,则直线y=kx+b的解析式为y=−2x+b,将点(0,3)代入得:b=3,故答案为−2;3.18.【答案】(294,94);(5×(32)n−1−4,(32)n−1)【解析】解:连接A 1C 1,A 2C 2,A 3C 3,分别交x 轴于点E 、F 、G ,∵正方形A 1B 1C 1O 、A 2B 2C 2B 1、A 3B 3C 3B 2,∴A 1与C 1关于x 轴对称,A 2与C 2关于x 轴对称,A 3与C 3关于x 轴对称,∵C 1(1,−1),C 2(72,−32),∴A 1(1,1),即(5×(32)1−1−4,(32)1−1),A 2(72,32),即(5×(32)2−1−4,(32)2−1), ∴OB 1=2OE =2,OB 2=OB 1+2B 1F =2+2×(72−2)=5,将A 1与A 2的坐标代入y =kx +b 中得:{k +b =172k +b =32,解得:{b =45k=15, ∴直线解析式为y =15x +45,设B 2G =A 3G =b ,则有A 3坐标为(5+b,b),代入直线解析式得:b =15(5+b)+45,解得:b =94,∴A 3坐标为(294,94),即(5×(32)3−1−4,(32)3−1),依此类推A n (5×(32)n−1−4,(32)n−1).故答案为:(294,94);(5×(32)n−1−4,(32)n−1).根据正方形的轴对称性,由C 1、C 2的坐标可求A 1、A 2的坐标,将A 1、A 2的坐标代入y =kx +b 中,得到关于k 与b 的方程组,求出方程组的解得到k 与b 的值,从而求直线解析式,由正方形的性质求出OB 1,OB 2的长,设B 2G =A 3G =b ,表示出A 3的坐标,代入直线方程中列出关于b 的方程,求出方程的解得到b 的值,确定出A 3的坐标,依此类推寻找规律,即可求出A n 的坐标.此题考查了一次函数的性质,正方形的性质,利用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用正方形的性质是解本题的关键.19.【答案】2【解析】【分析】连接CD,根据勾股定理得到AB=√AC2+BC2=√82+62=10,根据直角三角形的AB=5,根据全等三角形的性质得到AM=CN,推出CM=CD=性质得到CD=AD=125,于是得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,正确的识别图形是解题的关键.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB=√AC2+BC2=√82+62=10,∵点D是AB的中点,∴CD=AD=1AB=5,2∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴CM=CD=5,∴AM=CN=AC−CM=3,∴MN=2.故答案为:2.20.【答案】解:原式=3√2−2−√2=2√2−2.【解析】直接利用负指数幂的性质以及绝对值的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:x =√5−√2=√5+√2(√5−√2)(√5+√2)=√5+√23; y =√5+√2=√5−√2(√5+√2)(√5−√2)=√5−√23. (1)∵x =√5+√23,y =√5−√23, ∴x +y =√5+√23+√5−√23=23√5, x −y =√5+√23−√5−√23=23√2; (2)∵x =√5+√23,y =√5−√23, ∴x +y =23√5,xy =√5+√23×√5−√23=13, ∴x 2+xy +y 2=(x +y)2−xy=(23√5)2−13=179.【解析】本题考查了二次根式的化简求值,分母有理化,正确进行分母有理化是解题的关键.(1)首先对x 和y 的值进行分母有理化,把化简后的x 和y 的值代入计算即可;(2)把所求的式子化成(x +y)2−xy 的形式,然后x +y 与xy 的值代入计算即可. 22.【答案】解:(1)(4,−2);(1,0)(2)∵A(1,−5),C′(1,0),∴AC′⊥x 轴且AC′=0−(−5)=5,点B′到AC′的距离为4−1=3,所以,△AB′C′的面积=12×5×3=152.【解析】【分析】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”和“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求解;(2)先判断出AC′⊥x轴,再根据三角形的面积公式列式计算即可得解.【解答】解:(1)B(4,2)关于x轴对称点B′的坐标为(4,−2);C(−1,0)关于y轴对称点C′的坐标为(1,0);故答案为:(4,−2);(1,0);(2)见答案.23.【答案】(1)50;(2)30;补全图形如下:(3)55,55;(4)500×20%=100,答:估计在这次测试中成绩达到优秀的人数为100人.【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据等级B中男女人数之和除以所占的百分比即可得到调查的总学生数;(2)根据总学生数乘以A占的百分比求出等级A中男女的学生总数,进而求出等级A男生的人数,总人数减去其余各组人数求出等级C的男女之和人数,进而求出等级C的女生人数,补全条形统计图即可;(3)将等级D的五人成绩按照从小到大的顺序排列,找出最中间的数字即为中位数,找出出现次数最多的数字为众数;(4)用500乘以等级A所占的百分比,即可得到结果.【解答】解:(1)本次调查抽取的学生人数为(12+8)÷40%=50(人),故答案为:50;(2)∵A等级人数为50×20%=10(人),则A等级男生有10−6=4(人),C等级女生有50−(10+12+8+8+3+2)=7(人),补充条形图见答案,×100%=30%,C等级的百分比为8+750故答案为:30;(3)这5个数据重新排列为48、51、55、55、57,则这5个数据的中位数是55,众数为55,故答案为:55,55;(4)见答案.24.【答案】解:在△BCD中,BC=20cm,CD=16cm,BD=12cm,∵BD2+DC2=BC2,∴△BCD中是直角三角形,∠BDC=90°,设AD=x,则AC=x+12,在Rt△ADC中,∵AC2=AD2+DC2,∴x2+162=(x+12)2,.解得:x=143∴△ABC 的周长为:(143+12)×2+20=1603cm .【解析】先判断CD ⊥AB ,在Rt △ACD 中,利用勾股定理求出x ,得出AC ,继而可得出△ABC 的周长.本题考查了勾股定理的知识,解答本题的关键是利用勾股定理求出AD 的长度,得出腰的长度,难度一般.25.【答案】解:(1)(a +2)2+√b −3=0,则a =−2,b =3,即点A 、B 的坐标分别为(−2,2)、(0,3),将点A 、B 的坐标代入一次函数表达式:y =mx +n 得:{2=−2m +n n =3,解得:{m =12n =3, 故直线l 2的表达式为:y =12x +3;(2)S △AOP =S △AOB ,则点P 在过点B 且平行于OA 的直线上,该直线的表达式为:y =−x +3,将点P 坐标代入上式得:5=−m +3,解得:m =−2,故点P(−2,5);(3)直线y =2x −2分别交x 轴、y 轴于E 、F 两点,则点E 、F 的坐标分别为:(1,0)、(0,−2),设点M(m,−m),点N(n,12n +3),①当EF 是平行四边形的一条边时,当点M 在点N 的上方时,点E 向左平移1个单位向下平移2个单位得到F ,则点M 左平移1个单位向下平移2个单位得到N ,即:m =n −1,−m =12n +1,解得:m =1,故点M(1,−1);当点M 在点N 的下方时,同理可得:点M(−3,3);②当EF 是平行四边形的对角线时,由中点公式得:m +n =1,−m +12n +3=−2,解得:m =113,则点M(113,−113); 综上,点M 坐标为:(1,−1)或(3,−3)或(113,−113).【解析】(1)(a +2)2+√b −3=0,则a =−2,b =3,即点A 、B 的坐标分别为(−2,2)、(0,3),即可求解;(2)S △AOP =S △AOB ,则点P 在过点B 且平行于OA 的直线上,即可求解;(3)分EF 是平行四边形的一条边、EF 是平行四边形的对角线两种情况,分别求解即可.本题考查的是一次函数综合运用,涉及到平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.【答案】解:(1)设甲、乙两种玩具每件的进价分别是x 元、y 元,{5x +3y =2312x +3y =141, 解得,{x =30y =27, 答:甲、乙两种玩具每件的进价分别是30元、27元;(2)由题意可得,当0<n ≤20时,w =30n ,当n >20时,w =30×20+(n −20)×30×0.7=21n +180,即w 与n 的函数关系式是w ={30n (0<n ≤20)21n +180(n >20).【解析】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用一次函数的性质和二元一次方程组的知识解答.(1)根据题意可以列出相应的二元一次方程组,从而可以求得甲、乙两种玩具每件的进价分别是多少元;(2)根据题意可以写出w 与n 的函数关系式,本题得以解决.27.【答案】证明:(1)①∵∠BAC =∠EDF =60°,AB =AC ,DE =DF , ∴△ABC ,△DEF 为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,{BC=AC,∠BCE=∠ACD, CE=CD,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD//BC;(2)如图2,在FA上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,{AE=MF,∠AED=∠MFD, ED=FD,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC 和△DAM 中,{AB =DA,∠BAC =∠ADM,AC =DM,∴△ABC≌△DAM(SAS),∴AM =BC ,∴AE +BC =FM +AM =AF .即 AF =AE +BC .【解析】(1)①由“SAS ”可证△BCE≌△ACD ,可得AD =BE ,可得结论; ②由全等三角形的性质可得∠DAC =∠EBC ,由平行线的判定可得结论;(2)如图2,在 FA 上截取 FM =AE ,连接 DM ,由“SAS ”可证△AED≌△MFD ,可得DA =DM =AB =AC ,∠ADE =∠MDF ,可证∠ADM =∠BAC ,由“SAS ”可证△ABC≌△DAM ,可得AM =BC ,可得结论.本题是三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.28.【答案】解:(1)设直线AB 的解析式为y =kx +b ,把A(4,2),B(6,0)代入得:{2=4k +b 0=6k +b ,解得:{k =−1b =6, ∴直线AB 的表达式为y =−x +6;(2)作点B(6,0)关于y 轴的对称点B′,∴B′(−6,0),连接AB′交y 轴于M ,此时MA +MB 最小,设直线AB′的解析式为y =mx +n ,将A(4,2),B′(−6,0)代入得:{2=4m +n 0=−6m +n ,解得:{m =15n =65, ∴直线AB′的解析式为:y =15x +65,当x =0时,y =65,∴M(0,65);(3)存在,理由:设:点N(m,0),点A(4,2),点O(0,0),则AO2=20,AN2=(m−4)2+4,ON2=m2,①当AO=AN时,20=(m−4)2+4,解得:m=8或0(舍去0);②当AO=ON时,同理可得:m=±2√5;③当AN=ON时,同理可得:m=5;2,0).故符合条件的点N坐标为:(−2√5,0)或(2√5,0)或(8,0)或(52【解析】(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入即可求解;(2)点B(6,0)关于y轴的对称点B′,∴B′(−6,0),连接AB′交y轴于M,此时MA+MB最小,即可求解;(3)分AO=AN、AO=ON、AN=ON三种情况,分别求解即可.本题考查的是一次函数综合运用,涉及到等腰三角形的性质、点的对称性等,其中(3),要注意分类求解,避免遗漏.。
2020-2021成都市棕北中学(科院校区)初二数学上期末一模试题带答案
2020-2021成都市棕北中学(科院校区)初二数学上期末一模试题带答案一、选择题1.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.45 dm B.22 dm C.25 dm D.42 dm2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)3.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5〫4.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12 AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC5.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b27.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.8.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ9.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.1010.23x可以表示为( )A .x 3+x 3B .2x 4-xC .x 3·x 3D .62x ÷x 211.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市棕北中学校2009-2010学年度(上)期末八年级数学卷班级 姓名 学号试卷说明:1.练习时间120分钟;2.试卷分A 、B 卷,满分150分.A 卷 (100分)一、选择题(本题有10个小题,每小题3分,共30分.以下每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在题后括号内)1. 如果一个数的算术平方根等于它本身,那么这个数是……………………………( ) (A) 0 (B) 1 (C) 0或1 (D) -1或0或12. 以下五个图形中,是中心对称的图形共有………………………………………( )(A) 2个 (B) 3个 (C) 4个 (D) 5个3.将直角三角形的三边都扩大相同的倍数后,得到的三角形一定是………………( )(A) 直角三角形 (B)锐角三角形 (C) 钝角三角形 (D) 以上三种情况都有可能 4.将△ABC 的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形………………( )(A) 与原图形关于y 轴对称 (B) 与原图形关于x 轴对称 (C) 与原图形关于原点对称 (D) 向x 轴的负方向平移了一个单位 5、甲、乙两根绳共长17米,如果甲绳减去它的51,乙绳增加1米,两根绳长相等,若设甲绳长x 米,乙绳长y 米,那么可列方程组 ( )A. ⎪⎩⎪⎨⎧+=-=+15117y x x y xB. ⎪⎩⎪⎨⎧-=+=+15117y x y x C. ⎪⎩⎪⎨⎧+=-=+15117y x y x D. ⎪⎩⎪⎨⎧-=-=+15117y x x y x6.已知一组数据1,7,10,8,x ,6,0,3,若5=x ,则x 应等于 ( ) A. 6 B.5 C.4 D.27、四边形ABCD 的对角线AC 和BD 相交于点O ,设有下列条件:①AB=AD ;②∠ DAB=900;③AO=CO ,BO=DO ;④矩形ABCD ;⑤菱形ABCD ,⑥正方形ABCD ,则在下列推理不成立的是( )A 、①④⇒⑥B 、①③⇒⑤C 、①②⇒⑥D 、②③⇒④8、菱形的一个内角是60º,边长是5cm ,则这个菱形的较短的对角线长是 ( ) A 、cm 25B 、cm 5C 、cm 35D 、cm 310 9、函数y=x 图象向下平移2个单位长度后,对应函数关系式是( ) (A )y=2x (B )y=21x (C )y=x +2 (D )y=x -2 10正比例函数y=(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A. m <0 B. m >0 C.m <21 D.21>m 二、填空题:(每小题3分,共15分) 11、 64的平方根是 .12、一个多边形每个外角都等于45,则其边数为 ,内角和为 。
13、如图,点O 是口ABCD 的对角线交点,AC =38mm ,BD =24mm ,AD =14mm ,那么△OBC 的周长等于 mm .14、若单项式y x b a -22与43b a y x +-是同类项,则=x ,=y .15、菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______. 三、(第16题10分,第17题6分,共16分) 16、本题有2个小题,每小题5分,共10分(1)计算:2)23()322)(1848(---+ (2)17、(本题满分6分)某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:⎩⎨⎧=-=+52483y x y x(1)这32名学生培训前考分的中位数所在的等级 是 ,培训后考分的中位数所在的等级 是 .(2)这32名学生经过培训,考分等级“不合格” 的百分比由 下降到 . (3)估计该校整个八年级中,培训后考分等级为 “合格”与“优秀”的学生共有 名. (4)你认为上述估计合理吗:理由是什么?答: ,理由: .四、(第18题9分,第19题10分,共19分)18、在平面直角坐标系中(如图每格一个单位),⑴出下列各点(-2,-1),(2,-1),(2,2),(3,2)(0,3),(-3,2),(-2,2), (-2,-1)并依次将各点连结起来(说说所连图形象什么),⑵所得图形整体向右平移2个单位,说出对应点的坐标发生了怎样的变化? (9分) 19、如图,在矩形ABCD 中,EF 垂直平分BD.(1) 判断四边形BEDF 的形状,并说明理由.(2) 已知 BD=20,EF=15,求矩形ABCD 的周长.(10分)不合格合格 优秀 等第ACDEFO五、(每小题10分,共20分)20 、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =;(3)CE 与BG 的大小关系如何?试证明你的结论.21.如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直.(1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?(10分)B 卷(50分)一、填空题:(每小题4分,共20分)22、函数x 的取值范围是_________. 23、如图,在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,且AC ⊥BD ,AF 是梯 形的 高,梯形面积是49cm 2,则AF= ;组 的解满足方程5231=-y x ,那么k 的值为24、二元一次方程 25、若一次函数时,当62,≤≤-+=x b kx y 函数值的范围为911≤≤-y ,则此一次函数的解析式为 ;26、如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______。
二、解答题27、(8分) 甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元。
现两家商店搞促销活动。
甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。
某班级需购球拍4付,乒乓球若干盒(不少于4盒)。
(1)设购买乒乓球盒数为x (盒),在甲店购买的付款数为y 甲(元),在乙店购买的付款数为y 乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x 之间的函数关系式。
(2)就乒乓球盒数讨论去哪家商店买合算?⎩⎨⎧=-=+ky x k y x 7252A BC D EF GHIJ28、(10分)如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°, BD 平分∠ABC求证:(1) DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求BFBE的值.29、(12分)如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A<OB) 是方程组⎩⎨⎧=+-=632y x yx 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD=52(1)求点C 的坐标; (2)求直线AD 的解析式;(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.四川省成都市棕北中学校2009-2010学年度(上)期末八年级数学卷参考答案A 卷:(100分)一、选择题(本题有10个小题,每小题3分,共30分)CBAAA BCBDD二、填空题:(每小题3分,共15分) 11、2±12、8 1080 13、45 14、3 , -1 15、25三、(第16题10分,第17题6分,共16分) 16、(1)计算:2)23()322)(1848(---+(2)解:由①得y=8-3x , ③……1分将③代入②得 4x-2(8-3x)=5,……1分 化简得10x=21, 所以1021=x ,……1分(3224529=--+-=++=)2(分 )2(分 )1(分将上式代入③得1017102138=⨯-=y ,……1分故原方程组的解为 ⎪⎪⎩⎪⎪⎨⎧==10171021y x ……1分17题、(6分)(1)不合格,合格 (每空1分) (2)75%,25% (每空1分) (3)240 …………1分(4)不合理,因为该估计不能准确反映320名学生的成绩…………1分四、(第18题9分,第19题10分,共19分)18:顺次连接上述各点得图形1.…………………2分 (如图ABCDEFG );………………………3分 图形象一个房子的图案;…………………5分 把所得图形整体向右平移2个单位后得图形2 (如右图ABCDEFG ');……7分 图形1每个点的纵坐标不变,横坐标增加2得到图形2.………………………9分 19、解:(1)四边形BEDF 是菱形。
在DOF ∆和BOE ∆中,∠FDO=∠EBO=90°, OD=OB , ∠DOF=∠BOE ,所以DOF ∆≌BOE ∆,所以OE=OF ,又因为EF ⊥BD ,OD=OB , 所以四边形BEDF 为菱形.…………………………………………5分 (2)如图在菱形EBFD 中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S 菱形EBFD =AD EB BD EF ⋅=⋅21, 即AD ⨯=⨯⨯225152021,所以得AD=12, 根据勾股定理可得 AE=3.5,有AB=AE+EB=16.AB CDEFO由2(AB+AD )=2(16+12)=56.故矩形ABCD 的周长为56.……………………………………10分五、(每小题10分,共20分)20.(1)证明:CD AB ⊥∵,45ABC ∠=°,BCD ∴△是等腰直角三角形. BD CD =∴.在Rt DFB △和Rt DAC △中,90DBF BFD ∠=-∠∵°,90DCA EFC ∠=-∠°,且BFD EFC ∠=∠,DBF DCA ∠=∠∴.又90BDF CDA ∠=∠=∵°,BD CD =,Rt Rt DFB DAC ∴△≌△.BF AC =∴. ……4分(2)证明:在Rt BEA △和Rt BEC △中BE ∵平分ABC ∠,ABE CBE ∠=∠∴.又90BE BE BEA BEC =∠=∠=∵,°,Rt Rt BEA BEC ∴△≌△.12CE AE AC ==∴. 又由(1),知BF AC =,1122CE AC BF ==∴. ……3分(3)CE BG <. 证明:连结CG .BCD ∵△是等腰直角三角形, BD CD =∴.又H 是BC 边的中点,DH ∴垂直平分BC .BG CG =∴.在Rt CEG △中,CG ∵是斜边,CE 是直角边, CE CG <∴.CE BG <∴. ……3分21题:(1)解方程组26y x y x =⎧⎨=-+⎩ 得22x y =⎧⎨=⎩∴C 点坐标为(2,2); ……3分 (2)作CD ⊥x 轴于点D ,则D (2,0).①s=12x 2(0<x ≤2); ②s=-x 2+6x-6(2<x<3); ……3分 (3)直线m 平分△AOB 的面积, 则点P 只能在线段OD ,即0<x<2. 又△COB•的面积等于3,故12x 2=3×12,解之得……4分 B 卷答案一、填空题(20分,每题4分) 22、53≤<x ; 23、7 24、35=k ; 25、425625+-=-=x y x y 或; 26、128 二、解答题27题、(1) 甲 y 甲=60+5x (x≥4) 乙 y 乙=4.5x+72(x≥4)……4分 (2) y 甲 =y 乙 时, x=24, 到两店一样合算……2分 y 甲 > y 乙 时, x>24, 到乙店合算……1分y 甲 < y 乙 时, 4≤x<24, 到甲店合算……1分28.(1)证明:因为BD 平分∠ABC所以∠ABD=∠DBC=∠BDC,即DC=BC. ……2分 (2)等腰直角三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒即△ECF 是等腰直角三角形. ……4分(3)设BE k =,则2CE CF k ==,所以EF =.因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒.所以3BF k == 所以31=BF BE ……4分29题:(本题12分)解:(1)OA=6,OB=12 ……………………………………………………………1分 直线AB 122:+-=x y ……………………………………1分 联立⎩⎨⎧==⎩⎨⎧=+-=632122y x x y x y 解之……………………………………2分 ∴ 点C 的坐标为(3,6)……………………………………………………1分(2)点D 的坐标为(2,4)……………………………………………………1分 设直线AD 的解析式为y=kx+b .把A(6,0),D(2,4)代人得6024k b k b +=⎧⎨+=⎩……………………………………1分解得16k b =-⎧⎨=⎩∴ 直线AD 的解析式为y=-x +6 ………………………………………1分(3)存在.Q 1(-32,32)……………………………………………………………1分 Q 2(32,-32)………………………………………………………………1分 Q 3(3,-3) …………………………………………………………………1分 Q 4(6,6) ……………………………………………………………………1分 说明:如果学生有不同的解题方法。