图形平移与旋转专题

合集下载

专题05 图形的平移与旋转五种考法(学生版)

专题05 图形的平移与旋转五种考法(学生版)

专题05图形的平移与旋转五种考法【考法一利用平移的性质求解】例题:(2022·浙江·义乌市绣湖中学教育集团七年级阶段练习)在直角三角形ABC中,∠ACB=90°,AC=6.将三角形ABC沿射线BC方向平移至三角形DEF处.若AG=2,BE=83,则EC=_____【变式训练】1.(2022·广东·汕头市龙湖实验中学七年级期中)如图,把一个三角形纸板的一边紧靠数轴平移,点P平移的距离PP′为()A.2B.3C.4D.52.(2021·浙江省衢州市衢江区实验中学七年级开学考试)如图,直角△ABC沿射线BC的方向平移3个单位长度,得到△DEF,线段DE交AC于点H,已知AB=5,DH=2,则图中阴影部分的面积为()A.12B.24C.48D.不能确定3.(2022·湖北黄石·七年级阶段练习)如图,在直角△ABC 中,90BAC ∠=︒,3AB =,4AC =,5BC =,将ABC 沿直线BC 向右平移2个单位长度得到△DEF ,连接AD 、AE ,则下列结论:①AC DF ∥,AC DF =;②ED DF ⊥;③四边形ABFD 的周长是16;④点D 到线段BF 的距离是2.4.其中正确的有()A .1个B .2个C .3个D .4个4.(2022·广东·惠东县多祝中学七年级阶段练习)如图,三角形DEF 是由三角形ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上,若BF =10,EC =4,则BE 的长度是________.5.(2021·广东·珠海市凤凰中学七年级期中)如图,点A (-4,0),B (-1,0),将线段AB 平移后得到线段CD ,点A 的对应点C 恰好落在y 轴上,且四边形ABDC 的面积为9,则D 点坐标为_________.6.(2022·山东烟台·八年级期末)如图,己知△ABC 的面积是12,将ABC 沿BC 平移到A B C '''V ,使B '和C 重合,连接AC 交A C '于点D ,则C DC '的面积是___________.7.(2021·河北唐山·七年级期中)如图,在平面直角坐标系中,△DEF 是由△ABC 平移得到的.若()1,4A t -,()3,0E ,()5,0C .(1)指出图中线段AD 的长以及与线段AD 相等的线段;(2)若点A 到y 轴的距离为1,直接写出t 的值与点D 的坐标;(3)求△ABC 的面积;(4)如果将点A 平移到点(),0P m ,直接写出点P 所在位置以及满足条件的点P 的个数.【考法二利用平移解决实际问题】例题:(2022·福建·龙岩二中七年级阶段练习)某宾馆在重新装修后,考虑在大厅内的主楼梯铺设地毯,已知楼梯m的地毯.宽3m,如图,请计算一下,铺此楼梯需购______2【变式训练】1.(2021·山东烟台·模拟预测)如图是一块矩形ABCD的场地,长AB=99米,宽AD=41米,从A,B两处入口的路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为()A.3783米2B.3880米2C.3920米2D.4000米22.(2022·山东泰安·八年级期末)如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折的小路,则这块草地的绿地面积是______.3.(2021·湖北武汉·七年级期中)如图,在长方形地块内修筑同样宽的两条“相交”的道路,余下部分作绿化,当道路宽为2米时,绿化的面积为_____平方米.4.(2022·浙江金华·七年级阶段练习)如图,在一块长AB=15m,宽BC=11m的长方形草地上,修建三条宽均为1m的长方形小路,则这块草地的绿地面积(图中空白部分)为_____m2.5.(2022·山东烟台·八年级期末)在边长为8cm的正方形ABCD底座中,放置两张大小相同的正方形纸板,边EF 在AB上,点K,I分别在BC,CD上,若区域Ⅰ的周长比区域Ⅱ与区域Ⅲ的周长之和还大4cm,则正方形纸板的边长为______cm.6.(2022·安徽·合肥市五十中学西校七年级期中)如图,有一长方形空地,其长为a、宽为b,现要在该空地种植两条防风带(图中阴影部分),防风带一边长为c,其中横向防风带为长方形,纵向防风带为平行四边形.(1)用代数式表示剩余空地的面积;(2)若a=2b、c=2,且防风带的面积为116,求原长方形空地的长和宽.【考法三平移、中心对称作图】例题:(2022·重庆市第十一中学校八年级期中)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状,并说明理由.【变式训练】1.(2020·四川泸州·九年级期末)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.2.(2022·广东·平洲一中八年级期中)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别为A (2,﹣2),B (0,﹣5),C (0,﹣2).(1)画△A 1B 1C 1,使它与△ABC 关于点C 成中心对称.(2)平移△ABC ,使点B 的对应点B 2的坐标为(2,3),画出平移后对应的△A 2B 2C 2.(3)若将△A 1B 1C 1绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为.3.(2022·江苏·靖江市实验学校八年级阶段练习)如图,在平面直角坐标系中,即△ABC 的三个顶点分别是()3,2A -,()1,4B -,()0,2C .(1)将△ABC 以点O 为旋转中心旋转180︒,画出旋转后对应的111A B C △;(2)平移△ABC ,若点A 的对应点2A 的坐标为()5,2--,画出平移后对应的222A B C △,求线段BC 在平移过程中扫过的面积;(3)若将111A B C △绕某一点旋转可以得到222A B C △,请直接写出旋转中心的坐标为______.【考法四图形的旋转综合】例题:(2022·湖北·房县教学研究中心一模)把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角()0360a α︒<<︒.(1)当DE AC ⊥时,旋转角α=______度,AD 与BC 的位置关系是______,AE 与BC 的位置关系是______;(2)当点D 在线段BE 上时,请画出图形并求BEC ∠的度数;(3)当旋转角α是多少时,ABD △的面积最大?(直接写出答案,不用推理和证明).【变式训练】1.(2022·广东·佛山市南海区狮山镇罗村第二初级中学八年级阶段练习)如图,在△ABC 中,∠CAB =70°,将△ABC 绕点A 逆时针旋转到△A B C ''的位置,使得CC AB '∥.(1)请判断△ACC '的形状,并说明理由.(2)求∠BAB '的度数.2.(2022·江西赣州·九年级期末)已知△ABC中,∠ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.3.(2022·河南·罗山县实验中学三模)(1)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.求证:△ABD≌△ACE;(2)如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC DE,BD,CD之间满足的数量关系,并证明你的结论;(3)如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=6,CD=2,则AD=.4.(2022·湖北武汉·八年级期末)如图,在等边△ABC中,D为BC上一点,DE∥AB,且DE=BD.(1)如图1,若点E在AC边上,求证:AE=CE;(2)如图2,若点E在△ABC内,连接CE,F为CE的中点,连接AF、DF,求证:AF⊥DF;(3)如图3,点N为AB边上一点,连接BE,AN=BE.若CN+CE的值最小时,∠NCE的度数为___________°(直接写出结果).5.(2022·重庆一中九年级阶段练习)如图,在等边ABC中,点D为BC的中点,连接AD,点E为AD上一点,连接EB、CE,将线段EB绕点E顺时针旋转至EF,使点F落在BA的延长线上.(1)如图1,求∠CEF的度数:(2)如图1,探宄线段AB,AE,AF之间的数量关系,并加以证明;(3)如图2,若AB=4,点G为AC的中点,连DG,将△CDG绕点C顺时针旋转得到△CMN,直线BM、AN交于点P,连CP,在△CDG旋转一周过程中,请直接写出△BCP的面积的最大值.6.(2021·浙江温州·一模)如图,在△ABC 中,AB =AC ,∠BAC =135°,E 为BC 边上一点,连结AE ,将点E 绕点A 逆时针旋转135°至点,连结AD ,DE ,CD .(1)求证:CD =BE .(2)若DE ⊥BC ,BE =,求BC 的长.7.(2022·湖南邵阳·八年级期末)如图,在ABC ∆和DCE ∆中,,,90AC BC DC EC ACB DCE ==∠=∠=︒,将DCE ∆绕点C 旋转(其中0180ACD ︒<∠<︒),连接BD 和AE ,BD 与AE AC 、分别交于点O 和点H .(1)求证:BCD ACE ∆≅∆;(2)试确定线段BD 和AE 的数量关系和位置关系;(3)连接AD 和BE ,在旋转过程中,ACD ∆的面积记为1S ,BCE ∆的面积记为2S ,试判断1S 和2S 的大小,并给予证明.8.(2022·四川成都·八年级期末)如图,AB=AC=,∠BAC=α,连接BC,点D在边BC上(点D不与B,C 重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接CE,DE.(1)求证:△ABD≌△ACE;(2)若α=90°,且AD与BD的数量关系满足AD=BD+2,求△DCE的面积;(3)若α=60°,连接BE,试说明△ABE的面积是一个定值,并求出该定值.9.(2021·四川成都·八年级阶段练习)已知,在△ABC中,∠BAC=90°,AB=AC,点D是BC边上的一点(不与点B,C重合),连接AD.(1)如图1,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE;(2)如图2,点D,F都在线段BC上,且∠DAF=45°.①试猜想线段DF,BD,CF之间满足的数量关系,井证明结论.②BD=4,CF=3,求△ADF的周长.【考法五轴对称图形与中心对称图形】例题:(2021·四川·渠县崇德实验学校一模)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.【变式训练】1.(2022·山西晋中·一模)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2022·广东·平洲二中八年级阶段练习)如图所示的图中,既是轴对称又是中心对称图形的是()A.B.C.D.3.(2022·黑龙江哈尔滨·)A.B.C.D.4.(2022·江苏苏州·一模)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(2022·安徽铜陵·九年级期末)下列图形中,即是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个6.(2022·湖北·前川三中一模)把“武汉加油”的首字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(2022·广东江门·模拟预测)如图,既是轴对称图形又是中心对称图形的是()A.B.C.D.。

图形的平移,对称与旋转的专项训练及答案

图形的平移,对称与旋转的专项训练及答案

图形的平移,对称与旋转的专项训练及答案一、选择题1.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.3.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A .0B .4C .8D .16【答案】B【解析】【分析】 作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM ,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM . ∵正方形ABCD 1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.4.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.5.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.6.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.9.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C.2D【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=AE.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E【答案】C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.,若将△ABO绕点O沿顺时针方向旋转90°15.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.16.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.17.如图,点E是正方形ABCD的边DC上一点,把ADE∆绕点A顺时针旋转90︒到ABF∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==2DE=Q,Rt ADE∴∆中,2226AE AD DE=+=故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.。

图形的平移,对称与旋转的真题汇编含答案

图形的平移,对称与旋转的真题汇编含答案
图形的平移,对称与旋转的真题汇编含答案
一、选择题
1.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.
故选D.
边关系是解题关键.
16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
【答案】BAB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,

专题 图形的平移与旋转章末重难点题型(举一反三)(原卷版)

专题  图形的平移与旋转章末重难点题型(举一反三)(原卷版)

A.9B.8C.6D.4上移加,下移减.)则a+b的值为()C.4D.5【变式2-1】(江岸区期中)已知AABC内任意一点P(a,b)经过平移后对应点P1(c,d), 在经过此次平移后对应点A1(2,-3+m).则a+b-c-d的值为()已知A(-1,2+m)章末重难点题型专题图形的平移与旋转【考点1平移的性质】【方法点拨】经过平移,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

【例1】(济宁校级期末)如图,把周长为10的△ABC沿BC方向平移1个单位得到ADEF,贝四边形ABFD的周长为()A.14B.12C.10D.8【变式1-1】(西湖区校级月考)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到ADEF 的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40B.42C.45D.48【变式1-2】(江西校级期末)如图,将AABC沿直线AB向右平移后到达ABDE的位置,连接CD、CE,若A ACD 的面积为10,则ABCE的面积为()A.5B.6C.10D.4【变式1-3】(碑林区校级期末)如图,点I为A ABC角平分线交点,AB=8,AC=6,BC=4,将ZACB平移使其顶点C与I重合,则图中阴影部分的周长为()【考点2坐标系中的平移规律】【方法点拨】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,【例2】(武汉校级期末)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,A.8+mB.-8+mC.2D.-2【变式2-2】(江岸区期中)如图,在平面直角坐标系中,已知A(-2,0),B(5,0),C(0,3),平移线段AC至线段BD,点P在四边形OBDC内,满足S^PCD=S^PBD,S“POB:S^POC=5:6,则点P的坐标为()【变式2-3】(江岸区校级月考)如图,在平面直角坐标系中,已知A(0,4),B(6,0),C(0,-10),平移线段AB至线段CD,点Q在四边形OCDB内,满足S“QOC:S^QOB=5:6,S^QCD=S^QBD,则点Q的坐标为()A.(2,-4)B.(3,-5)C.(3,-6)D.(4,-8)【考点3旋转的性质】【方法点拨】一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等。

第24讲 平移与旋转专题

第24讲  平移与旋转专题

第24讲平移与旋转专题知识回顾】1.图形的平移(1)平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移可以不是水平的。

①经过平移,对应线段,对应角分别相等, 对应点所连的线段平行且相等(或共线且相等)。

②平移变换不改变图形的形状、大小和方向..,平移前后的两个图形是全等形。

2.图形的旋转(1)旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角。

①对应点到旋转中心的距离相等。

②对应点与旋转中心所连线段的夹角等于旋转角。

③旋转前、后的图形全等。

③旋转三要素:旋转的中心、方向、角度。

(3)中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

(4)中心对称图形:把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。

这个点就是它的对称中心。

①中心对称图形中对应点的连线经过对称中心,且被对称中心平分。

②成中心对称的两个图形是全等图形。

3.图形的轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。

(2)轴对称图形:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。

对称轴:折痕所在的这条直线叫做对称轴。

①对应点的连线被对称轴垂直平分②成轴对称的两个图形全等。

4.位似图形:如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段相互平行,那么这样的两个图形叫做位似图形,位似图形对应点连线的交点是位似中心。

①位似图形对应点连线的交点是位似中心;②两个图形是相似图形。

平移旋转题目大全

平移旋转题目大全

平移旋转题目大全以下是一些平移旋转题目的示例:1. 一个矩形在坐标平面上,顶点为A(1,1),B(1,5),C(4,5),D(4,1),逆时针旋转30度后的新坐标是多少?2. 一个正方形的中心点为O(0,0),边长为2个单位,顺时针旋转45度后,边和对角线的新坐标是多少?3. 已知一个三角形ABC,顶点坐标分别为A(1,2),B(4,5),C(7,2),如果将该三角形绕(0,0)点逆时针旋转60度后,顶点的新坐标是多少?4. 一个平面图形,顶点坐标分别为A(2,2),B(5,2),C(5,4),D(2,4),将该图形沿着x轴正方向平移3个单位,再沿着y轴正方向平移2个单位,新的顶点坐标是多少?5. 一个矩形的对角线上的两个顶点坐标分别为A(1,2),B(5,6),将该矩形逆时针旋转90度后,对角线的新坐标是多少?6. 一个圆心坐标为O(0,0),半径为3个单位,逆时针旋转60度后,圆上一点的新坐标是多少?7. 一个正方形的中心点为O(-2,1),边长为2个单位,将该正方形逆时针旋转180度,新的对角线坐标是多少?8. 一个三角形ABC的顶点坐标分别为A(1,2),B(4,5),C(7,2),将该三角形绕(2,2)点逆时针旋转45度后,顶点的新坐标是多少?9. 已知一个矩形的对角线上两个顶点的坐标分别为A(0,0),B(4,4),将该矩形沿着x轴负方向平移2个单位,再沿着y轴负方向平移3个单位,新的顶点坐标是多少?10. 一个平面图形,顶点的坐标分别为A(1,1),B(2,1),C(2,2),D(1,2),如果将该图形绕(2,2)点顺时针旋转90度,新的顶点坐标是多少?请注意,这只是一小部分平移旋转题目的示例,还有很多其他类型的题目可以设计。

您可以根据具体的要求和难度级别来设计自己的题目。

专题9:平移、旋转和轴对称-2022—2023年三年级数学下册暑假专项提升

专题9:平移、旋转和轴对称-2022—2023年三年级数学下册暑假专项提升

专题9:平移、旋转和轴对称2022—2023年三年级数学暑假专项提升(西师大版)本专题主要针对平移、旋转和轴对称的内容进行逐层巩固拔高拓展,包括:1、平移和旋转的意义2、平移和旋转的判断3、轴对称的认识和特点4、平移、旋转和轴对称的应用一、选择题1.下面属于平移现象的是()。

A.秒针的转动B.行驶中的汽车轮子C.起重机吊起货物2.下列图形哪一个不是轴对称图形?()A.B.C.D.3.下面现象不属于旋转的是().A.B.C.4.下列物体只做旋转的是()。

A.钟表的指针B.坠落的铁球C.吊车把货物吊到高空5.下面不是旋转现象的是()A.抽陀螺B.玩风车C.吹风扇D.写字6.小汽车在平直的马路上行驶时,车身的运动属于()。

A.平移B.旋转C.对称7.把一张圆形的纸对折,再对折,再对折,所形成的角是()度。

A.30B.45C.908.下列图形一定是轴对称图形的()A.锐角三角形B.平行四边形C.圆形D.梯形9.图形绕点O顺时针旋转180°得到的图形是()。

A.B.C.D.10.一个正方形最多可以画()条对称轴.A.1B.4C.2二、填空题11.下面现象中,_____是平移,_____是旋转.12.一个正方形最多可以画________条对称轴.13.看图填空(1)上图中点A和点________到对称轴的距离都是2格.(2)点B和点B′到对称轴的距离都是________格.(3)点________和点________到对称轴的距离都是5格14.欣赏下面美丽的图形,你知道它们分别是由哪个图形通过旋转或平移形成的?这个图形是由________。

一、填空题1.升国旗时,国旗上升是_______现象;钟面上时针沿顺时针方向走动是_______现象。

(填“平移”或“旋转”)2.⑴蜡烛向_________平移了________格.⑴小鱼向________平移了________格.3.升旗时红旗的上升是_______现象;汽车行驶时车轮的转动是_______ 现象。

几何图形平移、对称与旋转题型归纳

几何图形平移、对称与旋转题型归纳

几何图形的平移、旋转与对称题型归纳图形变换之平移题型一、简单平移【例1】 如图,已知ABC △的面积为16,8BC =.现将ABC △沿直线BC 向右平移a 个单位到DEF △的位置.(1)当4a =时,求ABC △所扫过的面积;(2)连结AE 、AD ,设5AB =,当ADE △是以DE 为一腰的等腰三角形时,求a 的值.FE DCBA【答案】(1)设AC 与DE 交于点G ,∵AB DE ∥,E 为BC 中点⇒G 为AC 中点. 又∵AD EC ∥,∴AGD CGE S S =△△.∴ABC △所扫过面积232ABC ACFD ABC S S S =+==△△. (2)①当AD DE =时,5a =.②当AE DE =时,取BE 中点M ,则AM BC ⊥.∵16ABC S =△,∴1162BC AM ⨯⨯=.∴18162AM ⨯⨯=.∴4AM =.在Rt AMB △中,2222543BM AB AM =--.此时,26a BM ==,综上可知,5a =或6a =.【例2】 如图,一个横截面为Rt ABC ∆的物体,90ACB ∠=︒,30CAB ∠=︒,1BC =米,师傅要把此物体搬到墙边,先将AB 边放在地面(直线m 上),再按顺时针方向绕点B 翻转到11A BC △的位置(1BC 在m 上),最后沿射线1BC 的方向平移到222A B C △的位置,其平移距离为线段AC 的长度(此时,22A C 恰好靠在墙边). (1)直接写出AB 、AC 的长;(2)画出在搬动此物体的整个过程中A 点所经过的路径,并求出该路径的长度.2A 221A 1Cm2A 221A 1Cm【答案】(1)2AB =米,3AC =米.(2)A 点的路径如图中的粗线所示,路径长为4(3)3π+米.题型三、平移与几何证明【例3】 AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =. FA DE CBFA DE G CB【答案】取EC 的中点G ,连接DG易得DG BE ∥,F 为AD 的中点,所以AE EG =,从而可证得:13AE AC =. 【例4】 如图,已知ABC ∆(1)请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形; (2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.CB A⑴DE CB A【答案】(1)如图(1)相应的条件是:BD CE DE =≠;两对面积相等的三角形分别是:ABD ∆和ACE ∆,ABE ∆和ACD ∆.(2)(方法1):如图(2),分别过点D 、B 作CA 、EA 平行线,两线交于F 点,DF 与AB 交于G 点.⑵DF EG CBA所以ACE FDB ∠=∠,AEC FBD ∠=∠在AEC ∆和FBD ∆中,又CE BD =,可证AEC FBD ∆∆≌,所以AC FD =,AE FB = 在AGD ∆中,AG DG AD +>在BFG ∆中,BG FG FB +>,所以AG DG BG FG AD FB +++>+ 即AB FD AD FB +>+,所以AB AC AD AE +>+【例5】 如图所示,两条长度为1的线段AB 和CD 相交于O 点,且60AOC ∠=,求证:1AC BD +≥.ODCBAODB‘CBA【答案】考虑将AC 、BD 和AB 集中到同一个三角形中,以便运用三角形的不等关系 作CB AB '∥且CB AB '=,则四边形ABB C '是平行四边形,从而AC BB '= 在BB D '∆中可得BB BD B D ''+≥,即AC BD B D '+≥. 由于1CD AB CB '===,60B CD AOC '∠=∠=,所以B CD '∆是等边三角形,故1B D '=,所以1AC BD +≥.【例6】 已知:矩形ABCD 内有定点M ,试证:2222AM CM BM DM +=+.MDCB AMF EDCB A【答案】过点B 、点M 分别作AM 、AB 的平行线,交于点E ,连接CE ,ME ,BC 交ME 于点F . ∵AB ∥EM ,AM ∥BE (根据定义可知其为平行四边形),∴AM BE =,AB EM = ∵AB CD =,AB CD ∥,∴EM CD ∥,EM CD = ,∴ECDM 为平行四边形 ,∴CE DM = ∵EM BC ⊥ ,∴222BM BF FM =+,222CE EF CF =+,222CM CF FM =+,222BE BF EF =+ ∴2222AM CM BM DM +=+【例7】 如图所示,在六边形ABCDEF 中,AB ED ∥,AF CD ∥,BC FE ∥,AB ED =,AF CD =,BC FE =.又知对角线FD BD ⊥,24FD =厘米,18BD =厘米.请你回答:六边形ABCDEF 的面积是多少平方厘米?FABCDE【答案】本题初看似乎无法下手求解,但仔细观察,题中彼此平行且相等的线段有三组,于是我们可将图形平移,使其拼成一个长方形,且FD BD ⊥、24FD =厘米、18BD =厘米的条件可以得到利用.为此,如图所示,将DEF ∆平移到BAG ∆的位置;将BCD ∆平移到GAF ∆的位置,FABCDEG则长方形BDFG 的面积等于六边形ABCDEF 的面积.易知长方形BDFG 的面积等于2418432⨯=(平方厘米),所以,六边形ABCDEF 的面积是432平方厘米.【例8】 如图,在等腰△ABC 中,延长边AB 到点D ,延长边CA 到点E ,连接DE ,恰有AD BC CE DE ===.求证:100BAC ∠=︒.【答案】平移BC 使B 的对应点为D .【例9】 如图所示,在ABC ∆中,90B ∠=︒,M 为AB 上的一点,且AM BC =;N 为BC 上的一点,且CN BM =.连接AN 、CM 交于点P ,求证:45APM ∠=︒.PN M CB A KPNM CBA【答案】如图所示,过点C 作CK MA ∥且使CK MA =.连接AK ,则AKCM 为平行四边形, 所以90KCN B ∠=∠=︒,CK AM BC ==.又因为CN BM =,连接KN ,则NCK MBC ∆∆≌, 故KN CM KA ==.而MCB NKC ∠=∠,因此90NKC MCK MCB MCK ∠+∠=∠+∠=︒, 则KN CM ⊥,KN KA ⊥,所以KAN ∆为等腰直角三角形. 因为45KAP ∠=︒,故45APM KAP ∠=∠=︒.【例10】 在ABC △中,AB AC =,30A ∠=︒,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,再将线段BD平移到EF ,使点E 在AB 上,点F 在AC 上.(1)如图1,直接写出ABD ∠和CFE ∠的度数; (2)在图1中,证明:AE CF =;(3)如图2,连接CE ,判断CEF △的形状并加以证明.图1B图2B【答案】(1)15ABD ∠=︒,45CFE ∠=︒. (2)证明:连结CD 、DF .∵线段BC 绕点B 逆时针旋转60︒得到线段 BD ,∴BD BC =,60CBD ∠=︒. ∴BCD △是等边三角形.∴CD BD =. ∵线段BD 平移到EF ,∴EF BD ∥,EF BD =. ∴四边形BDFE 是平行四边形,EF CD =. ∵AB AC =,30A ∠=︒,∴75ABC ACB ∠=∠=︒. ∴15ABD ABC CBD ACD ∠=∠-∠=︒=∠∴15DFE ABD ∠=∠=︒,15AEF ABD ∠=∠=︒.∴15AEF ACD ∠=∠=︒. ∵301545CFE A AEF ∠=∠+∠=︒+︒=︒,∴451530CFD CFE DFE ∠=∠-∠=︒-︒=︒.∴30A CFD ∠=∠=︒. ∴AEF FCD ≅△△.∴AE CF =. (3)解:CEF △是等腰直角三角形. 证明:过点E 作EG CF ⊥于G ,∵45CFE ∠=︒,∴45FEG ∠=︒.∴EG FG =. ∵30A ∠=︒,90AGE ∠=︒,∴12EG AE =. ∵AE CF =,∴12EG CF =.∴12FG CF =.∴G 为CF 的中点.∴EG 为CF 的垂直平分线.∴EF EC =.∴290CEF FEG ∠=∠=︒.∴CEF △是等腰直角三角形.图形变换之对称一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

专题 图形的轴对称、平移与旋转 中考数学

专题 图形的轴对称、平移与旋转 中考数学

专题 图形的轴对称、平移与旋转目录一、考情分析二、知识建构考点图形的轴对称、平移与旋转题型01 图形的识别题型02 与图形变化有关的作图问题题型03 几何图形的平移变化题型04 与函数图象有关的平移变化题型05 几何图形的折叠问题题型06 与函数图象有关的轴对称变化题型07 几何图形的旋转变化题型08 与函数图象有关的旋转变化题型09 利用平移、轴对称、旋转的性质解决多结论问题题型10 与图形变化有关的最值问题【核心提炼·查漏补缺】【好题必刷·强化落实】考点图形的轴对称、平移与旋转题型01 图形的识别平移的概念:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.轴对称图形定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.中心对称图形定义:如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形.在判断一个图形是否为轴对称图形、中心对称图形时,要明确以下两点:1)如果能找到一条直线(对称轴)把一个图形分成两部分,且直线两旁的部分完全重合,那么这个图形就是轴对称图形;2)把一个平面图形绕某一点旋转 180°,如果旋转后的图形能和原图形重合,那么这个图形就是中心对称图形.1.(2023·湖南郴州·中考真题)下列图形中,能由图形a通过平移得到的是( )A.B.C.D.2.(2023·黑龙江大庆·中考真题)搭载神舟十六号载人飞船的长征二号F遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度.下列图标中,其文字上方的图案是中心对称图形的是()A.B.C.D.3.(2023·湖北荆州·中考真题)观察如图所示的几何体,下列关于其三视图的说法正确的是( )A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形4.(2022·宁夏·中考真题)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换()A.平移B.轴对称C.旋转D.位似题型02与图形变化有关的作图问题解决图形变化有关的作图问题方法:1)平移与旋转作图都应抓住两个要点:一是平移、旋转的方向;二是平移的距离及旋转的角度.2)基本的作图方法是先选取已知图形的几个关键点,再根据平移或旋转的性质作它们的对应点,然后以“局部带动整体”的思想方法作变换后的图形.3)无论是平移、轴对称与旋转,都不改变图形的大小和形状.1.(2023·黑龙江·中考真题)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,−1),B (1,−2),C(3,−3).(1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1.(2)请画出△ABC关于y轴对称的△A2B2C2.(3)将△A2B2C2着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).2.(2023·四川达州·中考真题)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.3.(2022·广西河池·中考真题)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B (2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.题型03 几何图形的平移变化平移变换问题:分几何图形平移变换和函数图像平移变换. 平移是将一个图形沿某一方向移动一段距离,不会改变图形的大小和形状,只改变图形的位置.在图形的变化过程中,解决此类问题的方法很多,而关键在于解决问题的着眼点,从恰当的着眼点出发,再根据具体图形变换的特点确定其变化.1.(2023·山东潍坊·中考真题)如图,在直角坐标系中,菱形OABC的顶点A的坐标为(−2,0),∠AOC=60°.将菱形OABC沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形OA′B′C′,其中点B′的坐标为()A.(−2,3−1)B.(−2,1)C.(−3,1)D.(−3,3−1)2.(2023·河南·中考真题)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1 C1,再分别作△A1B1C1关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC 绕点O顺时针旋转得到的,旋转角的度数为______;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:①若∠PAP2=β,请判断β与α的数量关系,并说明理由;②若AD=m,求P,P3两点间的距离.(3)拓展应用:在(2)的条件下,若α=60°,AD=23,∠PAB=15°,连接P2P3.当P2P3与▱ABCD的边平行时,请直接写出AP的长.3.(2023·吉林·中考真题)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形其中判定的依据是__________.【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC或CB平移,且EF始终在边BC 上.当MD =MG 时,延长CD ,HG 交于点P ,得到图③.若四边形ECPH 的周长为40,sin ∠EFG =45(∠EFG 为锐角),则四边形ECPH 的面积为_________.4.(2023·天津·中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A(3,0),B(0,1),D(23,1),矩形EFGH 的顶点E 0,−3,0,(1)填空:如图①,点C 的坐标为________,点G 的坐标为________;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E ′F ′G ′H ′,点E ,F ,G ,H 的对应点分别为E ′,F ′,G ′,H ′.设EE ′=t ,矩形E ′F ′G ′H ′与菱形ABCD 重叠部分的面积为S .①如图②,当边E ′F ′与AB 相交于点M 、边G ′H ′与BC 相交于点N ,且矩形E ′F ′G ′H ′与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).题型04 与函数图象有关的平移变化1.(2023·湖南益阳·中考真题)我们在学习一次函数、二次函数图象的平移时知道:将一次函数y =2x 的图象向上平移1个单位得到y =2x +1的图象;将二次函数y =x 2+1的图象向左平移2个单位得到y =(x +2)2+1的图象.若将反比例函数y =6x 的图象向下平移3个单位,如图所示,则得到的图象对应的函数表达式是 .2.(2023·山东青岛·中考真题)许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y 轴上,坐标原点O为伞骨OA,OB的交点.点C为抛物线的顶点,点A,B在抛物线上,OA,OB关于y轴对称.OC=1分米,点A到x轴的距离是0.6分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长AO,BO交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为S1,将抛物线向右平移m(m>0)个单位,得到一条新S1,求m的值.抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为S2.若S2=35x2+bx−4的图像与x轴相交于点A(−2,0)、B,其顶点是3.(2023·江苏·中考真题)如图,二次函数y=12C.(1)b=_______;(2)D是第三象限抛物线上的一点,连接OD,tan∠AOD=5;将原抛物线向左平移,使得平移后的抛物线经过2点D,过点(k,0)作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知△PCQ是直角三角形,求点P的坐标.4.(2023·黑龙江绥化·中考真题)如图,抛物线y1=ax2+bx+c的图象经过A(−6,0),B(−2,0),C(0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为m.过点P作PD有最大值,最大值是多少?PD⊥NC于点D.求m为何值时,CD+12题型05 几何图形的折叠问题【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B′,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B′与点D重合时,四边形BEDF是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A′,B′,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A′B′与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B′D,EF之间满足的等量关系,并说明理由.2.(2023·辽宁沈阳·中考真题)如图1,在▱ABCD纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将▱ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C′、D′,射线C′E与射线AD交于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______ ;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM交C′D′于点N,连接AN、EN,求△ANE的面积.3.(2023·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2022·河南·中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.题型06 与函数图象有关的轴对称变化1.(2022·四川巴中·中考真题)函数y=|ax2+bx+c|(a>0,b2−4ac>0)的图象是由函数y=ax2+bx+c (a>0,b2−4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是()①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①②B.①③C.②③④D.①③④2.(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(−4,0),B(2,0),与y轴交于点C(0,−4).(1)求抛物线的解析式;(2)如图1,如果把抛物线x轴下方的部分沿x轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=kx+6与新图象有三个公共点时,求k的值;(3)如图2,如果把直线AB沿y轴向上平移至经过点D,与抛物线的交点分别是E,F,直线BC交EF于点H,过=25.求点F的坐标.点F作FG⊥CH于点G,若DFHG3.(2023·山东日照·中考真题)在平面直角坐标系xOy内,抛物线y=−ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=1时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上3一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点+1,F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为5时,求a的值.24.(2022·辽宁沈阳·中考真题)如图,平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx−3经过点B(6,0)和点D(4,−3)与x轴另一个交点A.抛物线与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式②并直接写出直线AD的函数表达式.(2)点E是直线AD下方抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF 的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方部分沿x轴向上翻折,与抛物线剩下部分组成新的曲线为C1,点C的对应点C′,点G的对应点G′,将曲线C1,沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点作点P和点Q,若四边形C′G′QP是平行四边形,直接写出P的坐标.题型07几何图形的旋转变化旋转变换问题:分为几何图形旋转变换和与函数图象有关的旋转变化.在实际解题中,若我们能恰当地运用图形的旋转变换,往往能起到集中条件、开阔思路、化难为易的效果,图形的旋转变换,既要借助于推理,但更要借助于直觉和观察,变换的意识与变换的视角,会使这种直觉更敏锐,使这种观察更具眼力. 1.(2023·内蒙古赤峰·中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM,CN 始终与正方形的边AD,AB所在直线分别相交于点M,N,连接MN,可得△CMN.【探究一】如图②,把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上.求证:∠CNM=∠CNH;【探究二】在图②中,连接BD,分别交CM,CN于点E,F.求证:△CEF∽△CNM;【探究三】把三角尺旋转到如图③所示位置,直线BD与三角尺45°角两边CM,CN分别交于点E,F.连接AC 的值.交BD于点O,求EFNM2.(2023·湖南·中考真题)如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平行线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.(1)证明:在点P的运动过程中,总有∠PEQ=120°.(2)当AP为何值时,△AQF是直角三角形?DP3.(2022·山东济南·中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD 绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD 与CE 的数量关系并给出证明;(2)延长ED 交直线BC 于点F .①如图2,当点F 与点B 重合时,直接用等式表示线段AE ,BE 和CE 的数量关系为_______;②如图3,当点F 为线段BC 中点,且ED =EC 时,猜想∠BAD 的度数,并说明理由.题型08 与函数图象有关的旋转变化1.(2021·青海西宁·中考真题)如图,正比例函数y =12x 与反比例函数y =k x (x >0)的图象交于点A ,AB ⊥x 轴于点B ,延长AB 至点C ,连接OC .若cos ∠BOC =23,OC =3.(1)求OB 的长和反比例函数的解析式;(2)将△AOB 绕点О旋转90°,请直接写出旋转后点A 的对应点A '的坐标.2.(2022·四川资阳·中考真题)已知二次函数图象的顶点坐标为A(1,4),且与x 轴交于点B(−1,0).(1)求二次函数的表达式;(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.x2+bx+c的图象经过点A(0,2),3.(2023·辽宁沈阳·中考真题)如图,在平面直角坐标系中,二次函数y=13与x轴的交点为点B(3,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=3OE.以线段OD,OE为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F 按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′4.(2023·江苏徐州·中考真题)如图,在平而直角坐标系中,二次函数y=−3x2+23x的图象与x轴分别交于点O,A,顶点为B.连接OB,AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D,E分别在线段OB,BC上,连接AD,DE,EA,DE与AB交于点F,∠DEA=60°.(1)求点A,B的坐标;(2)随着点E在线段BC上运动.①∠EDA的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为 .题型09 利用平移、轴对称、旋转的性质解决多结论问题1.(2023·内蒙古赤峰·中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB 于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是( )A .①②③B .②④C .①③④D .①②③④2.(2022·四川宜宾·中考真题)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD =CE ;②∠DAC =∠CED ;③若BD =2CD ,则CF AF =45;④在△ABC 内存在唯一一点P ,使得PA +PB +PC 的值最小,若点D 在AP 的延长线上,且AP 的长为2,则CE =2+3.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④3.(2022·四川眉山·中考真题)如图,四边形ABCD 为正方形,将△EDC 绕点C 逆时针旋转90°至△HBC ,点D ,B ,H 在同一直线上,HE 与AB 交于点G ,延长HE 与CD 的延长线交于点F ,HB =2,HG =3.以下结论:①∠EDC =135°;②EC 2=CD ⋅CF ;③HG =EF ;④sin ∠CED =23.其中正确结论的个数为( )A.1个B.2个C.3个D.4个4.(2023·山东日照·中考真题)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;;④BM+MN+ND的最小值是20.其中所②四边形MBND的面积不变;③当AM:MD=1:2时,S△MPE=9625有正确结论的序号是.题型10 与图形变化有关的最值问题1.(2023·辽宁盘锦·中考真题)如图,四边形ABCD是矩形,AB=10,AD=42,点P是边AD上一点(不与点A,D重合),连接PB,PC.点M,N分别是PB,PC的中点,连接MN,AM,DN,点E在边AD上,ME ∥DN,则AM+ME的最小值是()A.23B.3C.32D.422.(2023·湖北十堰·中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC(∠A=90°)硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.3.(2023·黑龙江绥化·中考真题)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是.4.(2023·四川自贡·中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB 的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.5.(2023·湖北随州·中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A′P′C,连接PP′,由PC =P ′C ,∠PCP ′=60°,可知△PCP ′为 ① 三角形,故PP ′=PC ,又P ′A ′=PA ,故PA +PB +PC =PA ′+PB +PP ′≥A ′B ,由 ② 可知,当B ,P ,P ′,A 在同一条直线上时,PA +PB +PC 取最小值,如图2,最小值为A ′B ,此时的P 点为该三角形的“费马点”,且有∠APC =∠BPC =∠APB = ③ ;已知当△ABC 有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC ≥120°,则该三角形的“费马点”为 ④ 点.(2)如图4,在△ABC 中,三个内角均小于120°,且AC =3,BC =4,∠ACB =30°,已知点P 为△ABC 的“费马点”,求PA +PB +PC 的值;(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知AC =4km ,BC =23km ,∠ACB =60°.现欲建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄A ,B ,C 的铺设成本分别为a 元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)轴对称与轴对称图形定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.区别1)轴对称是指两个图形折叠重合.2)轴对称对称点在两个图形上.3)轴对称只有一条对称轴.1)轴对称图形是指本身折叠重合.2)轴对称图形对称点在一个图形上.3)轴对称图形至少有一条对称轴.联系1) 定义中都有一条直线,都要沿着这条直线折叠重合.2) 如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;反过来, 如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称.性质1)关于某条直线对称的两个图形是全等形.2)两个图形关于某直线对称那么对称轴是对应点连线的垂直平分线.判定1)两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.2)两个图形关于某条直线成轴对称,那么对称轴是对折重合的折痕线.常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形等.这个点叫做它的对称中心.区别中心对称是指两个图形的关系中心对称图形是指具有某种特性的一个图形联系两者可以相互转化,如果把中心对称的两个图形看成一个整体(一个图形),那么这“一个图形”就是中心对称图形;反过来,如果把一个中心对称图形相互对称的两部分看成两个图形,那么这“两个图形”中心对称.中心对称的性质:1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;2)中心对称的两个图形是全等图形.找对称中心的方法和步骤:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.平移的三大要素:1)平移的起点,2)平移的方向,3)平移的距离.平移的性质:1)平移不改变图形的大小、形状,只改变图形的位置,因此平移前后的两个图形全等.2)平移前后对应线段平行且相等、对应角相等.3)任意两组对应点的连线平行(或在同一条直线上)且相等,对应点之间的距离就是平移的距离.旋转的三大要素:旋转中心、旋转方向和旋转角度.旋转的性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.1. 图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2. 旋转中心可以是图形外的一点,也可以是图形上的一点,还可以是图形内的一点.3. 对应点之间的运动轨迹是一段圆弧,对应点到旋转中心的线段就是这段圆弧所在圆的半径.4. 旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.一、单选题1.(2023·山西吕梁·模拟预测)在我国“福禄寿喜”一般是指对人的祝福,代表健康长命幸福快活和吉祥如。

图形的平移与旋转专项练习(含答案)

图形的平移与旋转专项练习(含答案)

图形的平移与旋转专项练习(含答案)一、选择题(本大题共34小题,共102.0分)1.如图,在正方形网格中有△ABC,△ABC绕点O逆时针旋转90°后的图案应该是()A. B. C. D.2.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个3.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O()A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°4.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A. 30°B. 60°C. 90°D. 120°5.在平面直角坐标系中,将点A(−1,2)先向左平移2个单位长度,再向下平移3个单位长度后,得到的点的坐标为()A. (1,−1)B. (−1,5)C. (−3,−1)D. (−3,5)6.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO的方向平移后得到△O′A′B′,平移后点A′的横坐标为6√3,则点B′的坐标为()A. (8√3,−4√3)B. (8,−4√3)C. (8√3,−4)D. (8,−4)7.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字是()A.B.C.D.8.如图,将△ABC绕点A逆时针旋转90∘得到△ADE,点B,C的对应点分别为点D,E,AB=1,则BD的长为()A. 1B. √2C. 2D. 2√29.下列四个图形中,可以由下图通过平移得到的是()A. B. C. D.10.下列宣传图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m212.如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC方向平移BE距离得到此图形,其中AB=6,BE=5,DH=3,则四边形DHCF的面积为()A. 35B. 652C. 452D. 3113.如图,由△ABC平移得到的三角形有()A. 15个B. 5个C. 10个D. 8个14.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)15.如图的四个图形中,由基础图形通过平移、旋转或轴对称这三种变换都能得到的是()A. B.C. D.16.如图,点A,B的坐标分别是(−3,1),(−1,−2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A. 18B. 20C. 36D. 无法确定17.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)18.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)19.将△ABC各顶点的纵坐标加“−3”,连接这三点所成的三角形是由△ABC()A. 向上平移3个单位长度得到的B. 向下平移3个单位长度得到的C. 向左平移3个单位长度得到的D. 向右平移3个单位长度得到的20.如图,将△OAB绕点O逆时针旋转70°,得到△OCD,若∠A=2∠D=100°,则α的度数是()A. 50°B. 60°C. 40°D. 30°21.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A. πcm2B. 4cm2)cm2C. (π−π2)cm2D. (π+π222.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个23.如图,在△ABC中,AB=12,将△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,则阴影部分的面积为()A. 24B. 48C. 36D. 7224.如图,P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A. 2√2B. 3√2C. 3D. 无法确定25.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是()A. 12B. 1 C. √3 D. √3226.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A. 2(√33+1)B. √33+1C. √3−1D. √3+127.如图,△ABC绕点A旋转至△ADE,则旋转角是()A. ∠BADB. ∠BACC. ∠BAED. ∠CAD28.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB//DE,AB=DE;②AD//BE//CF,AD=BE=CF;③AC//DF,AC=DF;④BC//EF,BC=EF.A. 1个B. 2个C. 3个D. 4个29.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.30.如图,∠A=80∘,O是AB上一点,直线OD与AB所夹的∠AOD=82∘,要使OD//AC,直线OD绕点O按逆时针方向至少旋转()A. 8∘B. 10∘C. 12∘D. 18∘31.下列说法中,不正确的是()A. 图形平移是由移动的方向和距离所决定的B. 图形旋转是由旋转中心和旋转角度所决定的C. 任意两条相等的线段都成中心对称D. 任意两点都成中心对称32.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A. 向左平移了5个单位长度B. 向下平移了5个单位长度C. 向上平移了5个单位长度D. 向右平移了5个单位长度33.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有()A. ①②B. ①③C. ②③D. ①②③34.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共25小题,共75.0分)35.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45∘,将△ADC绕点A顺时针旋转90∘后,得到△AFB,连接EF,下列结论: ①△AED≌△AEF; ②BE+DC=DE; ③BE2+DC2=DE2,其中正确的是.(填序号)36.如图,在平面直角坐标系中,已知点A(−3,−1),点B(−2,1),平移线段AB,使点A落在A1(0,−1),点B落在点B1,则点B1的坐标为37.如图,在△ABC中,∠C=90°,AC=8,BC=6,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为.38.在平面直角坐标系中,将点A(−1,2)向上平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是39.如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为.40.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.41.已知平面直角坐标内的点A(−2,5),如果将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.42.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.43.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=.44.有下列图形:①线段;②三角形;③平行四边形;④正方形;⑤圆.其中不是中心对称图形的是(填序号).45.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.46.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着__点_______旋转__度可得到△____.47.已知点A(1,−2),B(−1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.48.钟表上的时针走1小时旋转了度.49.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”“B”或“C”).50.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.51.如图,将△ABC绕点A旋转一定角度后得到△ADE.若∠CAE=60∘,∠E=65∘,且AD⊥BC,则∠BAC=°.52.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.53.如图,四边形ABCD与四边形FGHE关于某一点成中心对称,则这个点是.54.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.55.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.56.点P(−4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,−1),则x=,y=.57.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.58.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5cm,BC=8cm,∠BAC=130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.59.如图,在△ABC中,∠ACB=90∘,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.三、解答题(本大题共23小题,共184.0分)60.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.61.如图,已知BC与CD重合,∠B=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.62.如图,在4×3的网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.63.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.64.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)平移△ABC,使得点A与点O重合,画出平移后的△A′B′C′;(2)画出△ABC关于点O成中心对称的△DEF;(3)判断△A′B′C′与△DEF是否成中心对称.65.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(−3,5),B(−2,1),C(−1,3).(1)若点C1的坐标为(4,0),画出△ABC经过平移后得到的△A1B1C1,并写出点B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称,画出△A2B2C2,并写出点B2的坐标;(3)若△ABC绕着坐标原点O按逆时针方向旋转90°得到△A3B3C3,画出△A3B3C3,并写出点B3的坐标.66.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.67.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;(2)若EF//CD,求∠BDC的度数.68.如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图: ①画出△ABC向左平移5个单位长度后得到的△A1B1C1; ②画出△ABC绕着原点O顺时针旋转90∘后得到的△A2B2C2;(2)请写出直线B1C1与直线B2C2的交点坐标.69.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.(1)旋转中心是点,旋转角是度;(2)连接EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.70.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.71.如图,△ABC各顶点的坐标分别为A(−2,6),B(−3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)在(1)中,若△ABC内有一点M(a,b),则其在△DEF中的对应点M′的坐标为______________;(3)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.72.如图 ①,在△ABC中,∠A=90∘,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0∘<α<360∘),如图 ②,连接CE,BD,CD.(1)当0∘<α<180∘时,求证:CE=BD;(2)如图 ③,当α=90∘时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.73.如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.74.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.75.操作与探究如图,在平面直角坐标系中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.76.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(−6,−2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3______________;(2)写出点A n的坐标:____________________________(用含n的代数式表示).77.在如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,−2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.78.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图 ①中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系(不要求证明);(2)当△DEF沿直线m向左平移到图 ②所示的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合.请证明你的猜想.79.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.80.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.81.如图,在Rt△ABC中,∠C=90°,BC=AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′重叠部分的面积;(2)若平移距离为x(0≤x≤4),用含x的代数式表示△ABC与△A′B′C′重叠部分的面积.82.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC向下平移2个单位长度后得到的△A1B1C1,并写出点A1,B1,C1的坐标;(2)作出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出点C2的坐标.答案和解析1.【答案】A【解析】【分析】本题考查了旋转的性质,知道想要确定旋转后的图形①要确定旋转的方向②要确定旋转的大小是解题的关键.根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可.【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.2.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.3.【答案】C【解析】【分析】本题考查了图形的旋转,解题时注意旋转三要素:①旋转中心;②旋转方向;③旋转角度.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,据此即可解答.解:将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,这时如果使图形回到原来的位置,需要将图形绕着点O顺时针旋转110°.故选:C.4.【答案】C【解析】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.5.【答案】C【解析】将点(−1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是(−1−2,2−3),即(−3,−1),故选C.6.【答案】C【解析】∵等边三角形OAB的边长为4,点A在第二象限内,∴易得点A的坐标为(−2√3,2),B(0,4),∵平移后点A′的横坐标为6√3,∠AOB=60∘,∴平移规律为向右平移8√3个单位,向下平移8个单位,∴点B′的坐标为(8√3,−4),7.【答案】C【解析】原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有C 符合.故选C.8.【答案】B【解析】解:由旋转的性质可知AD=AB=1,∠BAD=90∘,∴BD=√AB2+AD2=√12+12=√2,故选B.9.【答案】D【解析】略10.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形;B、D不是轴对称图形,也不是中心对称图形;只有C选项符合题意,故选C.11.【答案】B【解析】略12.【答案】C【解析】略13.【答案】B14.【答案】A【解析】【分析】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1−3=−2;纵坐标为−1+2=1,∴点B的坐标是(−2,1).故选:A.15.【答案】B【解析】略16.【答案】A【解析】略17.【答案】C【解析】解:∵A(1,3)的对应点的坐标为(−2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(−1,−1).故选:C.根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.18.【答案】D【解析】解:由题图可知点A的坐标为(4,2),向上平移一个单位后对应点的坐标为(4,3),再绕点P按逆时针方向旋转90∘后对应点的坐标为(−1,4),如图所示.19.【答案】B【解析】略20.【答案】C【解析】【分析】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于70°,则可以利用三角形内角和定理列出等式进行求解.【解答】解:∵将△OAB绕点O逆时针旋转70°,∴∠A=∠C,∠AOC=70°,∴∠DOC=70°−α,∵∠A=2∠D=100°,∴∠D=50°,∵∠C+∠D+∠DOC=180°,∴100°+50°+70°−α=180°,解得α=40°,故选:C.21.【答案】B【解析】略22.【答案】B【解析】略23.【答案】C【解析】解:∵△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,∴S△ABC=S△AB1C1,AB=AB1=12,∠BAB1=30∘,∴S阴影=S△ABB1+SΔAB1C1−S△ABC=SΔABB1,作BD⊥AB1于D,在Rt△ABD中,∵∠BAB1=30∘,∴BD=12AB=6,∴SΔABB1=12AB1⋅BD=12×12×6=36.故选C.24.【答案】B【解析】【分析】本题考查了旋转的性质,利用了旋转的性质:对应点到旋转中心的距离相等,旋转角相等,又利用了勾股定理,根据旋转的性质,可得BP′的长,∠PBP′的度数,根据勾股定理,可得答案.【解答】解:由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2.故选B.25.【答案】B【解析】由旋转的性质可知BM=BN,又∵∠MBN=60∘,∴△BMN为等边三角形,∴MN=BM,∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,BM的长取得最小值,即MN 的长取得最小值,此时点M与点H重合.又∵等边三角形ABC的边长是2,∴AB=BC=CA=2,AB=1.∵CH⊥AB,∴BH=12∴线段MN长度的最小值是1.故选B.26.【答案】D【解析】略27.【答案】A【解析】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选A.28.【答案】D【解析】略29.【答案】B【解析】解:A中的图形既不是轴对称图形也不是中心对称图形;C中的图形为轴对称图形,但不是中心对称图形;D中的图形为中心对称图形,但不是轴对称图形,故选B.30.【答案】D【解析】如图,当OD绕点O旋转至OD′时,OD′//AC,则∠A+∠AOD′=180∘,∴∠AOD′= 180∘−∠A=100∘,∴∠DOD′=∠AOD′−∠AOD=100∘−82∘=18∘,故选D.31.【答案】C【解析】略32.【答案】D【解析】略33.【答案】A【解析】略34.【答案】C【解析】略35.【答案】 ① ③【解析】如图,由已知得,∠BAC=90∘,又∠DAE=45∘,∴∠1+∠2=45∘,由旋转的性质得,∠2=∠3,AD=AF,∴∠FAE=∠1+∠3=45∘=∠DAE,又∵AE=AE,∴△AED≌△AEF,故 ①正确.∵AB=AC,∠BAC=90∘,∴∠ABC+∠C=90∘,由旋转的性质知∠4=∠C,∴∠EBF=∠4+∠ABC=90∘,在Rt△EBF中,BE2+BF2=EF2,由△AED≌△AEF,得EF=ED,由旋转的性质得BF=DC,∴BE2+DC2=DE2,故 ③正确, ②不正确.综上, ① ③正确.36.【答案】(1,1)【解析】【分析】本题考查了坐标与图形变化−平移,熟练掌握网格结构准确找出点的位置是解题的关键.根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【解答】解:通过平移线段AB,点A(−3,−1)落在(0,−1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为(1,1).37.【答案】2√10【解析】【分析】本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.由旋转的性质可求得AE、DE,由勾股定理可求得AB,则可求得BE,连接BD,在Rt△BDE 中可求得BD的长.【解答】解:如图所示:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AE=AC=8,DE=BC=6,∴BE=AB−AE=10−8=2,连接BD,在Rt△BDE中,由勾股定理可得BD=√DE2+BE2=√62+22=2√10,即B、D两点间的距离为2√10,故答案为2√10.38.【答案】(−1,−5)【解析】略39.【答案】12【解析】略40.【答案】14+4√3【解析】解:如图,将△ABP绕点B顺时针旋转90∘得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90∘,∴PM=√2PB=2,∵PC=4,PA=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90∘,∵∠BPM=∠BMP=45∘,∴∠CMB=∠APB=135∘,∴∠APB+∠BPM=180∘,∴A,P,M三点共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.41.【答案】(−5,1)【解析】略42.【答案】16【解析】【分析】本题考查了平移变换的性质,通过平移,把不规则图形的周长转化为规则图形矩形的周长进行求解是解题的关键.根据平移的性质,不规则图形的周长正好等于长为5,宽为3的矩形的周长,再根据矩形的周长公式进行计算即可.【解答】解:如图所示,封闭图形的周长是:2×(5+3)=2×8=16.故答案为:16.43.【答案】−344.【答案】②【解析】略45.【答案】点B【解析】略46.【答案】C;逆时针方向;60;BCD【解析】【分析】本题考查了旋转的定义,等边三角形的性质和三角形全等的判定定理,难度适中.先根据等边三角形的性质,运用SAS证明△ACE≌△BCD,再由旋转的定义即可求解.【解答】解:∵△ABC和△DCE是等边三角形,∴CA=CB,CE=CD,∠DCE=∠ACB=60°,∴∠ACE=∠BCD=60°+∠ACD.∵在△ACE与△BCD中,{CA=CB∠ACE=∠BCDCE=CD,∴△ACE≌△BCD(SAS),∴△ACE绕点C逆时针方向旋转60度可得到△BCD.故答案为C;逆时针方向;60;BCD.47.【答案】−1【解析】【分析】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.解决本题的关键是通过点的坐标之间的关系确定线段平移的方向和距离.利用A点与E点的横坐标,B点与F点的纵坐标坐标可判定线段AB先向右平移1个单位,再向上平移1个单位得到EF,然后根据此平移规律得到−2+1=a,−1+1=b,则可求出a和b的值,从而得到a+b的值.解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,−2),B(−1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴−2+1=a,−1+1=b,∴a=−1,b=0,∴a+b=−1+0=−1.故答案为−1.48.【答案】30【解析】略49.【答案】平移;A【解析】【分析】本题考查平移、旋转的性质.平移前后,对应边平行,故由①到②属于平移;旋转中心的确定方法是,两组对应点连线的垂直平分线的交点,即为旋转中心.【解答】解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为平移,A.50.【答案】(7,0)【解析】解:∵点A(3,√3)的对应点D的坐标为(6,√3),∴平移的距离为6−3=3,∴BE=3,∵B(4,0),∴E(7,0).51.【答案】 85【解析】由旋转的性质可知,∠BAD=∠CAE=60∘,∠C=∠E=65∘,∵AD⊥BC,∴∠CAD=90∘−65∘=25∘,∴∠BAC=∠BAD+∠CAD=85∘,故答案为85.52.【答案】方块5【解析】略53.【答案】O1【解析】略54.【答案】2√2【解析】略55.【答案】46【解析】【分析】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°−∠ACD−∠BCE=180°−67°−67°=46°.故答案为:46.56.【答案】−6 2【解析】略57.【答案】AC,E线段AC,CE,EA∠ACE60°【解析】略58.【答案】AB5 BC 8 BAD30°100°【解析】略59.【答案】272【解析】在△ABC中,∠ACB=90∘,AC=4,BC=3,∴AB=5.∵将△ABC绕点A顺时针旋转,使点B落在AC延长线上点D处,∴AD=AB=5,∴CD=AD−AC=1,∴S四边形AEDB =2×12×4×3+12×1×3=272.60.【答案】解:图略【解析】略61.【答案】解:如图示,旋转角为:90°.【解析】【分析】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转中心即为对应点连线的垂直平分线的交点,旋转角度是90°.故答案为90°.62.【答案】解:图略(答案不唯一).【解析】略63.【答案】解:如图,连接P′P,∵△ABC是正三角形,∴∠BAC=60∘,由旋转的性质得P′A=PA=5,P′B=PC=13,∠P′AP=∠CAB=60∘,∴△PAP′为等边三角形,∴PP′=PA=5,即点P与点P′之间的距离为5.在△PP′B中,PP′=5,PB=12,P′B=13,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠P′PB=90∘,又∵∠P′PA=60∘,∴∠APB=∠P′PB+∠P′PA=90∘+60∘=150∘.【解析】略64.【答案】解:(1)如图,△A′B′C′即为所求作.(2)如图,△DEF即为所求作.(3)△A′B′C′与△DEF成中心对称,对称中心是线段A′D与线段FC′的交点.【解析】略65.【答案】解:(1)如图,△A1B1C1即为所求作的图形.B1(3,−2).(2)如图,△A2B2C2即为所求作的图形.B2(2,−1).(3)如图,△A3B3C3即为所求作的图形.B3(−1,−2).【解析】略66.【答案】(1)∵将△ADF绕点A顺时针旋转90∘后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF.∵∠EAF=45∘,∴∠DAF+∠BAE=∠BAQ+∠BAE=45∘,∴∠QAE=45∘,∴∠QAE=∠FAE.在△AQE和△AFE中,{AQ=AF,∠QAE=∠FAE, AE=AE,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线.(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转知∠ADF=∠ABQ,又∠ABD+∠ADF=90∘,∴∠ABD+∠ABQ=90∘,即∠QBE=90∘.在Rt△QBE中,QE2=BE2+QB2,则EF2=BE2+DF2.【解析】略67.【答案】解:(1)∠CEF+∠ADC=180°.证明:∵线段CD绕点C按顺时针方向旋转90°后得CE,∴CE=CD,∠DCE=90°,∵∠ACB=90°,∴∠ECF=∠BCD,在△BCD和△FCE中,{CB=CF∠BCD=∠FCE CD=CE,∴△BCD≌△FCE,∴∠CDB=∠CEF,而∠CDB+∠ADC=180°,∴∠CEF+∠ADC=180°;(2)∵EF//CD,∴∠CEF+∠DCE=180°,而∠DCE=90°,∴∠CEF=90°,∴∠BDC=90°.【解析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.(1)根据旋转的性质得CE=CD,∠DCE=90°,则利用等角的余角相等可得∠ECF=∠BCD,于是可根据“SAS”判断△BCD≌△FCE,则∠CDB=∠CEF,然后利用邻补角的定义可得到∠CDB+∠ADC=180°,所以∠CEF+∠ADC=180°;(2)根据平行线的性质得∠CEF+∠DCE=180°,又∠DCE=90°,所以∠CEF=90°,于是得到∠BDC=90°.68.【答案】(1) ①如图所示,△A1B1C1即为所求作. ②如图所示,△A2B2C2即为所求作.。

图形的平移与旋转练习题

图形的平移与旋转练习题

图形的平移与旋转练习题在几何学中,平移和旋转是两个基本的变形操作。

平移是指将图形沿着给定的方向移动一定的距离,而旋转则是指将图形绕着一个固定的点旋转一定的角度。

这两种操作在解决几何问题以及设计和建筑领域中都起着至关重要的作用。

为了更好地理解和掌握图形的平移和旋转,下面将给出一些练习题,通过实践来提高我们的技巧和思维能力。

练习题1:平移给定一个图形ABC,其中A(-1, 2),B(2, 4),C(4, 1)。

请将该图形沿x轴平移3个单位和沿y轴平移-1个单位,然后画出平移后的图形。

解答:首先,我们需要将原始图形ABC的坐标分别进行平移操作。

沿x轴平移3个单位后,A的坐标变为A'(-1+3, 2),即A'(2, 2);同理,B的坐标变为B'(2+3, 4),即B'(5, 4);C的坐标变为C'(4+3, 1),即C'(7, 1)。

然后,我们将平移后的坐标连接起来,得到平移后的图形A'B'C'。

详细计算过程如下:A' = (2, 2)B' = (5, 4)C' = (7, 1)接下来,我们将平移后的图形绘制出来:(在此处绘制图形A'B'C',具体形状可根据自己的判断和计算结果进行绘制)练习题2:旋转给定一个图形PQR,其中P(1, 1),Q(3, 3),R(5, 1)。

请将该图形绕点P逆时针旋转45度,并画出旋转后的图形P'Q'R'。

解答:首先,我们需要将原始图形PQR的坐标进行旋转操作。

绕点P逆时针旋转45度后,Q和R的坐标分别为:Q' = (1 + (3-1)*cos(45度) - (3-1)*sin(45度), 1 + (3-1)*cos(45度) + (3-1)*sin(45度))R' = (1 + (5-1)*cos(45度) - (1-1)*sin(45度), 1 + (5-1)*cos(45度) + (1-1)*sin(45度))计算结果如下:Q' = (1 + (3-1)*√2/2 - (3-1)*√2/2, 1 + (3-1)*√2/2 + (3-1)*√2/2)= (1, 3)R' = (1 + (5-1)*√2/2 - (1-1)*√2/2, 1 + (5-1)*√2/2 + (1-1)*√2/2)= (5, 1)然后,我们将旋转后的坐标连接起来,得到旋转后的图形P'Q'R'。

图形的平移与旋转练习题及答案全套

图形的平移与旋转练习题及答案全套

情景再现:你对以上图片熟悉吗?请你答复以下几个问题:〔1〕汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?〔2〕传送带上的物品,比方带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?〔3〕以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,〔2〕〔3〕〔4〕〔5〕〔6〕中的图案_________可以通过平移图案〔1〕得到的.图2“小鱼〞向左平移5格.图34.请欣赏下面的图形4,它是由假设干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§图形的平移与旋转一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,那么平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,那么线段AC与BC的关系为〔〕3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.〔在两个三角形的内角中找〕4、如下左图,四边形ABCD平移后得到四边形EFGH,那么:①画出平移方向,平移距离是_______;〔准确到0.1cm〕②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,〔1〕假设∠A=28º,∠E=72º,BC=2,那么∠1=____º,∠F=____º,EF=____º;〔2〕在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,假设把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,那么以下说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有〔〕8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,那么△AFE经过平移可以得到〔〕A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如以下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,那么草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如以下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在以下四张图中不能看成由一个平面图形旋转而产生的是〔〕4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,假设△ABC经旋转后能与△BDE重合,那么旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:〔1〕旋转中心是哪一点?〔2〕旋转角是什么?〔3〕如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察以下图形,它可以看作是什么“根本图形〞通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?§图形的平移与旋转一、选择题1.平面图形的旋转一般情况下改变图形的〔 〕° ° ° °ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,以下结论错误的选项是〔 〕A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',那么四边形D C B A ''''是________. 6.△ABC 绕一点旋转到△A ′B ′C ′,那么△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.以下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?△ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,〔1〕试作出Rt △ABC 旋转后的三角形; 〔2〕将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转以下角度后的图形: 〔1〕90°;〔2〕180°;〔3〕270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.§图形的平移与旋转看一看:以下三幅图案分别是由什么“根本图形〞经过平移或旋转而得到的?1.2.3.试一试:怎样将以下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , 〔1〕△ABE ≌△ADF .吗?说明理由。

图形的平移与旋转知识点

图形的平移与旋转知识点

图形的平移与旋转知识点第三章图形的平移与旋转复要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每点都绕着旋转中央沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中央的间隔相称。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中央对称的两个图形,对称点连线都经过对称中央,而且被对称中央中分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,而且被这一点中分,那末这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的枢纽点(线段两个端点,三角形三个极点,n边形n个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个枢纽点的对应点,所得的图形就是平移后的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课后作业】
一、选择题(每小题 3 分,共 30 分)
1.已知等腰三角形的两边长分别为 6 ㎝、3 ㎝,则该等腰三角形的周长是( )
A.9 ㎝
B.12 ㎝
C.12 ㎝或 15 ㎝
D.15 ㎝
2.如果 a b ,那么下列各式一定正.确.的是( )
A. a 2 b 2
B. a b 22
3.下列命题中正确的是 ( )
(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)
【例 1】、如图,在△ABC 和△DCE 中,AC=BC,DC=EC,∠ACB=∠DCE=90°,将△DCE 绕点 C 旋转 (0°<∠ACD<180°),连结 BD 和 AE: (1)求证:△BCD≌△ACE; (2)试确定线段 BD 和 AE 的数量关系和位置关系; (3)连接 AD 和 BE,在旋转过程中,△ACD 的面积记为 S1,△BCE 的面积记为 S2,试判断 S1 和 S2 的 大小,并给予证明.
(3)当 AM+BM+CM 的最小值为
时,求正方形的边长。
【费马点问题】
费马点:是指位于三角形内且到三角形三个顶点距离之和最短的点。
1.若三角形 3 个内角均小于 120°,那么 3 条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的 张角相等,均为 120°。所以三角形的费马点也称为三角形的等角中心。
题型五、图形的平移
【例】、如图,∠MAN=45°,点 C 在射线 AM 上,AC=10,过 C 点作 CB⊥AN 交 AN 于点 B,P 为线段 AC 上一个动点,Q 点为线段 AB 上的动点,且始终保持 PQ=PB.
(1)如图 1,若∠BPQ=45°,求证:△ABP 是等腰三角形; (2)如图 2,DQ⊥AP 于点 D,试问:此时 PD 的长度是否变化?若变化,请说明理由;若不变,请计 算其长度; (3)当点 P 运动到 AC 的中点时,将△PBQ 以每秒 1 个单位的速度向右匀速平移,设运动时间为 t 秒, B 点平移后的对应点为 E,求△ABC 和△PQE 的重叠部分的面积.
【变式练习】
【操作发现】如图 1,△ABC 为等边三角形,点 D 为 AB 边上的一点,∠DCE=30°,将线段 CD 绕点 C
顺时针旋转 60°得到线段 CF,连接 AF、EF,请直接写出下列结果:
①∠EAF 的度数为

②DE 与 EF 之间的数量关系为

【类比探究】如图 2,△ABC 为等腰直角三角形,∠ACB=90°,点 D 为 AB 边上的一点,∠DCE=45°,
题型三、半角旋转模型
秘籍:角含半角要旋转:构造两次全等
【例 1】、正方形 ABCD 中,点 E,F 分别在边 BC,CD 上,且∠EAF=45°,AE,AF 与 BD 分别交于 M,N ,(1)求证:BM2+DN2=MN2 (2)求证:△CEF 的周长为定值。
【练习】如图,在四边形 ABCD 中,角 ABC=30°,角 ADC=60°,AD=CD,求证:BD²=AB²+BC²
题型四、旋转与最值问题
【例 1】如图,四边形 ABCD 是正方形,△ABE 是等边三角形,M 为对角线 BD(不含 B 点)上任意一点,将 BM
绕点 B 逆时针旋转 60°得到 BN,连接 EN、AM、CM。 (1)求证:△AMB≌△ENB; (2)①当 M 点在何处时,AM+CM 的值最小; ②当 M 点在何处时,AM+BM+CM 的值最小,并说明理由;
△BCD、△DCE、△ACE 这三个三角形的面积之比.
【变式练习】如图,正方形 OABC 的边 OA,OC 在坐标轴上,点 B 的坐标为(-4,4).点 P 从点 A 出 发,以每秒 1 个单位长度的速度沿 x 轴向点 O 运动;点 Q 从点 O 同时出发,以相同的速度沿 x 轴的正 方向运动,规定点 P 到达点 O 时,点 Q 也停止运动.连接 BP,过 P 点作 BP 的垂线,与过点 Q 平行于 y 轴的直线 l 相交于点 D.BD 与 y 轴交于点 E,连接 PE.设点 P 运动的时间为 t(s). (1)∠PBD 的度数为______,点 D 的坐标为______(用 t 表示); (2)当 t 为何值时,△PBE 为等腰三角形? (3)探索△POE 周长是否随时间 t 的变化而变化?若变化,说明理由;若不变,试求这个定值.
(托里拆利的解法中对这个点的描述是:对于每一个角都小于 120°的三角形 ABC 的每一条边为底边,向外作 正三角形,然后作这三个正三角形的外接圆。托里拆利指出这三个外接圆会有一个共同的交点,而这个交点就是所 要求的点。这个点和当时已知的三角形特殊点都不一样。这个点因此也叫做托里拆利点。)
2.若三角形有一内角大于等于 120°,则此钝角的顶点就是距离和最小的点。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对 称。
4、中心对称图形 把一个图形绕某一个点旋转 180°,如果旋转后的图形能够和原来的图形互相重合,那么这个
图形叫做中心对称图形,这个店就是它的对称中心。 考点四、坐标系中对称点的特征
专点二:图形的旋转 1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定
的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。 2.旋转的性质:
(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。 (2)旋转后的图形与原来的图形的对应线段相等,对应角相等。 (3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。
将线段 CD 绕点 C 顺时针旋转 90°得到线段 CF,连接 AF、EF.
①则∠EAF 的度数为

②线段 AE,ED,DB 之间有什么数量关系?请说明理由;
【实际应用】如图 3,△ABC 是一个三角形的余料,小张同学量得∠ACB=120°,AC=BC,他在边 BC
上取了 D、E 两点,并量得∠BCD=15°、∠DCE=60°,这样 CD、CE 将△ABC 分成三个小三角形,请求
【练习】、如图 1,将两个完全相同的三角形纸片 ABC 和 DEC 重合放置,其中∠C=90°,∠B=∠E=30°. (1)操作发现 如图 2,固定△ABC,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空: ①线段 DE 与 AC 的位置关系是______; ②设△BDC 的面积为 S1,△AEC 的面积为 S2,则 S1 与 S2 的数量关系是______. (2)猜想论证 当△DEC 绕点 C 旋转到如图 3 所示的位置时,小明猜想(1)中 S1 与 S2 的数量关系仍然成立,并尝试 分别作出了△BDC 和△AEC 中 BC、CE 边上的高,请你证明小明的猜想. (3)拓展探究 已知∠ABC=60°,点 D 是角平分线上一点,BD=CD=4,DE∥AB 交 BC 于点 E(如图 4).若在射线 BA 上存在点 F,使 S△DCF=S△BDE,请直接写出相应的 BF 的长.
【例】已知:点 P 是三角形 ABC 内任意一点,连接 PA、PB、PC. (1)如图 1,当△ABC 是等边三角形时,将△PBC 绕点 B 顺时针旋转 60°到△P′BC′的位置.若 AB 的长为 a,BP 的长为 b(b<a),求△PBC 旋转到△P′BC′的过程中边 PC 所扫过区域(图 1 中阴影 部分)的面积.(用 a、b 表示) (2)如图 2,若△ABC 为任意锐角三角形,问:当∠APC、∠APB 和∠BPC 满足什么大小关系时,AP+BP+CP 的和最小,并说明理由.
1.平移作图的一般步骤: (1)确定平移的方向和距离; (2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n 边形 n 个顶点); (3)按照平移的方向和距离平移各个关键点; (4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。 2.旋转作图的一般步骤: (1)确定旋转中心、旋转角及旋转方向; (2)确定原图形的关键点; (3)旋转个关键点,得到对应点; (4)依次连接各关键点的对应点,所得的图形就是旋转后的图形。 3.图形之间的变换关系: 在图形变换中,最常见的变换有轴对称、平移、旋转,它们都是把一个图形变成另外一个图形, 并且这些变换都只是改变图形的位置,不改变图形的形状和大小。 平移、旋转、轴对称的主要区别是: ①三种变换的运动方式不同,具体体现:“平移”、“旋转”、“翻折”; ②三种变换的对应线段、对应角之间和关系不同; ③平移、旋转、轴对称作图需要的条件不同:平移需要确定方向和距离;旋转需要确定旋转方向、 旋转中心、旋转角度;轴对称需要确定对应点到对称轴的距离。
题型二、手牵手旋转模型
包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残
缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)
(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)
(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)
【例 2】在正方形网格中建立如图所示的平面直角坐标系 xoy,△ABC 的三个顶点都在格点上, 点 A 的坐标是(4,4 ),请解答下列问题: (1)将△ABC 向下平移 5 个单位长度,画出平移后的 A1B1C1,并写出点 A 的对应点 A1 的坐标; (2)画出△A1B1C1 关于 y 轴对称的△A2B2C2; (3)将△ABC 绕点 C 逆时针旋转 90°,画出旋转后的△A3B3C3。 (4)△A3B3C3 沿直线折叠,刚好和△A2B2C2 重合,请直接写出直线的解析式为
【练习】如图,△ABC 三个顶点的坐标分别为 A(1,1),B(4,2),C(3,4) (1)请画出将△ABC 向左平移 4 个单位长度后得到的图形△A1B1C1; (2)请画出△ABC 关于原点 O 成中心对称的图形△A2B2C2; (3)在 x 轴上找一点 P,使 PA+PB 的值最小,请直接写出点 P 的坐标.
相关文档
最新文档