高考物理二轮小题狂做专练 九 圆周运动规律的应用 Word版含解析

合集下载

圆周运动规律及应用+答案

圆周运动规律及应用+答案

圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。

2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。

3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。

角速度:Tt πθω2== 描述物体转动的快慢。

转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。

向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。

二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。

当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。

2021届高考物理二轮复习热点排查练:圆周运动规律的应用

2021届高考物理二轮复习热点排查练:圆周运动规律的应用

热点8 圆周运动规律的应用(建议用时:20分钟)1. (多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R2.(多选)(2020·深圳市第二次统测)某同学使用小型电动打夯机平整自家房前的场地,电动打夯机的结构示意图如图所示。

质量为m 的摆锤通过轻杆与总质量为M 的底座(含电动机)上的转轴相连。

电动机带动摆锤绕转轴O 在竖直面内匀速转动,转动半径为R ,重力加速度为g 。

下列说法正确的是( )A .转到最低点时摆锤处于超重状态B .摆锤在最低点和最高点,杆给摆锤的弹力大小之差为6mgC .若打夯机底座刚好能离开地面,则摆锤转到最低点时,打夯机对地面的压力为3(mg +Mg )D .若打夯机底座刚好能离开地面,则摆锤转到最低点时,打夯机对地面的压力为2(mg +Mg )3.(2020·淄博市4月第模拟)如图所示,光滑木板长为L ,木板可以绕左端O 点在竖直平面内转动,在木板上距离O点32L 处放有一小物块,开始时木板水平静止。

现让木板突然以π2 rad/s 的恒定角速度顺时针转动,小物块自由下落正好可以砸在木板的末端,已知重力加速度g 取10 m/s 2, 则木板的长度L 为( )A.89 mB .1 m C.109 m D.40327 m4.(2020·浙江1月学业水平考试)如图所示,圆桌桌面中间嵌着一可绕中心轴O转动的圆盘,A是圆盘边缘的一点,B是圆盘内的一点。

分别把A、B的角速度记为ωA、ωB,线速度记为v A、v B,向心加速度记为a A、a B,周期记为T A、T B,则() A.ωA>ωB B.v A>v BC.a A<a B D.T A<T B5.(多选)(2020·河南省实验中学砺锋培卓)如图,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在水平的旋转圆盘上,座椅A离转轴的距离较近。

2019高考物理二轮小题狂做专练 九 圆周运动规律的应用 Word版含解析

 2019高考物理二轮小题狂做专练 九 圆周运动规律的应用 Word版含解析

1.【安徽省皖中名校联盟2019届高三10月联考物理试题】如图所示为一皮带传动装置,右轮的半径为r,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则下列叙述错误的是()A.a点与d点的线速度大小之比为1:2B.a点与b点的角速度大小相等C.a点与c点的线速度大小相等D.a点与d点的向心加速度大小之比为1:12.【浙江省嘉兴市2019届高三普通高校招生选考科目教学测试物理试题】如图所示,餐桌上的水平玻璃转盘匀速转动时,其上的物品相对于转盘静止,则()A.物品所受摩擦力与其运动方向相反B.越靠近圆心的物品摩擦力越小C.越靠近圆心的物品角速度越小D.越靠近圆心的物品加速度越小3.【甘肃省临夏中学2017-2018学年高考模拟】如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和小球B紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,则下列说法中正确的是()A.A球的线速度必定小于B球的线速度B.A球的角速度必定大于B球的角速度C.A球运动的周期必定大于B球的周期D.A球对筒壁的压力必定大于B球对筒壁的压力4.【安徽省2019届高三10月份联考物理】如图所示,质量为m的小球(可看作质点)在竖直放置的半径为R的固定光滑圆环轨道内运动,若小球通过最高点时的速率为v0=√2gR,下列说法中正确的是()A.小球在最高点时只受到重力作用B.小球绕圆环一周的时间等于2πRv0C.小球在最高点对圆环的压力大小为2mgD.小球经过任一直径两端位置时的动能之和是一个恒定值5.【甘肃省师范大学附属中学2018-2019学年高三上学期期中考试】假设人类登上火星后,在火星上进行了如下实验:在固定的半径为r的竖直光滑圆轨道内部,一小球恰好能做完整的圆周运动,小球在最高点的速度大小为v,如图所示。

2024届高考物理二轮专题学案:圆周运动的规律及应用

2024届高考物理二轮专题学案:圆周运动的规律及应用

考点03 圆周运动的规律及应用基础知识一、常见的传动方式及特点同轴转动同缘传动装置图基本特点、、相同轮缘处______相同转动方向相同______【例题1】如图所示,三个齿轮的半径之比为1:3:5,当齿轮转动时,小齿轮边缘的A点和大齿轮边缘的B 点,若A轮顺时针转动,则B轮会_____ 转动,AB两轮的转速之比为______。

【总结】同缘传动,线速度大小相同;同轴转动,角速度、周期、转速相同。

二、圆周运动的多解性问题【例题2】一位同学玩飞镖游戏,已知飞镖距圆盘为L,对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O点的水平轴匀速转动。

若飞镖恰好击中A点,空气阻力忽略不计,重力加速度为g,则飞镖打中A点所需的时间为______;圆盘的半径R为______;圆盘转动的线速度的可能值为______。

【总结】分析思路:1.两个物体运动的有关联性; 2.物体做圆周运动有周期性。

三、匀速圆周运动1.特点:速度与加速度的不变、不断变化。

2.性质:匀速圆周运动是一种___________________________运动。

3.离心运动和近心运动①当时,物体做匀速圆周运动;②当时,物体沿切线飞出;③当时,物体做离心运动; ④当时,物体做近心运动。

四、向心力的来源运动模型汽车转弯水平转台(光滑) 火车转弯图示向心力提供动力学问题【例题3】如图所示,一同学用轻绳拴住一个装有水(未满)的水杯,让水杯在水平面内做匀速圆周运动,不计空气阻力,下列说法中正确的是( )A.水杯匀速转动时,杯中水面呈水平B.水杯转动的角速度越大,轻绳与竖直方向的夹角越大C.水杯转动的周期越小,轻绳在水平方向上的分力越大D.水杯转动的线速度越大,轻绳在竖直方向上的分力越大【总结】思路:1.确定研究对象。

2.确定圆周运动的轨道平面,以及、。

3.对物体进行分析,确定向心力来源。

4.根据牛顿运动定律和圆周运动知识列方程求解。

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析(20211111000408)

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析(20211111000408)

高考物理生活中的圆周运动解题技巧解说及练习题( 含答案 ) 及分析一、高中物理精讲专题测试生活中的圆周运动1.如下图,竖直圆形轨道固定在木板 B 上,木板 B 固定在水平川面上,一个质量为3m 小球 A 静止在木板 B 上圆形轨道的左边.一质量为m 的子弹以速度v0水平射入小球并停留在此中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为 R,木板 B 和圆形轨道总质量为12m,重力加快度为g,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不离开圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.32mv024 2gR 或 45gR v0 8 2gR【答案】 (1)mv0(2) 16mg(3) v084R【分析】本题观察完好非弹性碰撞、机械能与曲线运动相联合的问题.(1)子弹射入小球的过程,由动量守恒定律得:mv0 (m3m)v1由能量守恒定律得:Q 1mv0214mv12 22代入数值解得: Q3mv028(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式(m3m)v12得F1(m3m) gR以木板为对象受力剖析得F212mg F1依据牛顿第三定律得木板对水平的压力大小为F2木板对水平面的压力的大小F216mg mv024R(3)小球不离开圆形轨有两种可能性:① 若小球滑行的高度不超出圆形轨道半径R由机械能守恒定律得:1m 3m v12m 3m gR2解得: v0 4 2gR② 若小球能经过圆形轨道的最高点小球能经过最高点有:(m 3m)v (m 3m) gR22由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v22 22代入数值解得:v0 4 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F312mg(m 3m)v 在最高点有:F3(m 3m)gR 2 3由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v32 22解得:v08 2gR综上所述为保证小球不离开圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是v0 4 2gR 或 4 5gR v08 2gR2.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点 C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【分析】【剖析】【详解】(1)依据机械能守恒定律12E p=mv1 ?①v1=2Ep=7m/s②m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得 W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获取小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小3.圆滑水平面AB 与一圆滑半圆形轨道在 B 点相连,轨道位于竖直面内,其半径为R,一个质量为 m 的物块静止在水平面上,现向左推物块使其压紧弹簧,而后松手,物块在弹力作用下获取一速度,当它经 B 点进入半圆形轨道瞬时,对轨道的压力为其重力的9 倍,之后向上运动经 C 点再落回到水平面,重力加快度为g.求:(1)弹簧弹力对物块做的功;(2)物块走开 C 点后,再落回到水平面上时距 B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不离开轨道,则弹簧弹性势能的取值范围为多少?【答案】 (1)(2)4R(3)或【分析】【详解】(1)由动能定理得W=在 B 点由牛顿第二定律得:9mg- mg= m解得 W = 4mgR(2)设物块经 C 点落回到水平面上时距B 点的距离为 S ,用时为 t ,由平抛规律知S=v c t 2R= gt 2从 B 到 C 由动能定理得联立知, S= 4 R( 3)假定弹簧弹性势能为E P,要使物块在半圆轨道上运动时不离开轨道,则物块可能在圆轨道的上涨高度不超出半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块恰巧经过 C 点,则物块从 B 到 C 由动能定理得物块在 C 点时 mg = m则联立知:E P≥ mgR.综上所述,要使物块在半圆轨道上运动时不离开轨道,则弹簧弹性势能的取值范围为EP≤mgR 或 E P≥ mgR.4. 如下图,水平转盘可绕竖直中心轴转动,盘上放着 A 、 B 两个物块,转盘中心 O 处固定一力传感器,它们之间用细线连结.已知m A m B1kg两组线长均为L0.25m .细线能蒙受的最大拉力均为 F m8 N . A 与转盘间的动摩擦因数为10.5 , B 与转盘间的动摩擦因数为20.1 ,且可以为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线恰巧挺直,传感器的读数为零.当转 盘以不一样的角速度勾速转动时,传感器上就会显示相应的读数F , g 取 10 m/s 2 .求:(1)当 AB 间细线的拉力为零时,物块 B 能随转盘做匀速转动的最大角速度;(2)跟着转盘角速度增添,OA 间细线恰巧产生张力时转盘的角速度;(3)试经过计算写出传感器读数F 随转盘角速度变化的函数关系式,并在图乙的坐标系中作出 F 2图象.【答案】( 1)12rad / s ( 2)22 2rad / s ( 3)m252rad / s 2【分析】关于 B ,由 B 与转盘表面间最大静摩擦力供给向心力,由向心力公式有:2 m B g 2m B 12L代入数据计算得出:12rad / s(2)跟着转盘角速度增添,OA 间细线中恰巧产生张力时,设AB 间细线产生的张力为T ,有:1 m A g T m A22 LT 2 m B g 2m B2 2L代入数据计算得出: 22 2rad / s(3) ①当 28rad 2/ s 2时, F 0②当28rad 2 / s 2 ,且 AB 细线未拉断时,有:F 1m A g T m A2LT2m Bg2m B2LT8N因此: F 3 26 ; 8rad 2 / s 2218rad 2 / s 24③当 2 18 时,细线 AB 断了,此时 A 遇到的静摩擦力供给 A 所需的向心力,则有:1 m A g m A w 2L因此: 18rad 2 / s 2 220rad 2 / s 2 时, F当220 rad 2 / s 2 时,有 F 1m A gm A2LF 8N因此: F1 25 ; 20rad 2 / s 22 52rad 2 / s 24若 F 252rad 2/ s 2F m 8N 时,角速度为: m做出 F2的图象如下图 ;点睛:本题是水平转盘的圆周运动问题,解决本题的重点正确地确立研究对象,搞清向心力的根源,联合临界条件,经过牛顿第二定律进行求解.5. 如下图,一质量M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。

圆周运动高考题含答案推荐文档

圆周运动高考题含答案推荐文档

匀速圆周运动、匀速圆周运动的描述1线速度、角速度、周期和频率的概念⑴线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v J 年 其方向沿轨迹切线,国际单位制中单位符号是m/s ; (2) 角速度①是描述质点绕圆心转动快慢的物理量,是矢量,其大小为在国际单位制中单位符号是rad / s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是 s ;(4) 频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v = r 3. T 1 f ,v 2 T , 2 f o 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比. 、向心力和向心加速度1. 向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2. 向心加速度(1) 向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2) 向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为公式:1. 线速度 V = s/t = 2 n /T2. 角速度3=①/上=2 n T =2 n3. 向心加速度 a = V 2/r = 32r = (2 V T)2r4. 向心力 F 心=mV /r = m 3 r = mr(2 n T) = m 3V=F 合5•周期与频率:T = 1/f6. 角速度与线速度的关系:V = 3r7. 角速度与转速的关系3 = 2 m(此处频率与转速意义相同)Hz ; a n v 22r 48. 主要物理量及单位:弧长s:米(m);角度①:弧度(rad );频率f:赫(Hz );周期T:秒(s );转速n: r/s;半径r:米(m);线速度V: (m/s);角速度3:(rad/s);向心加速度:(m/s2)。

物理二轮小题狂做专练+九+圆周运动规律的应用+Word版含解析

物理二轮小题狂做专练+九+圆周运动规律的应用+Word版含解析

1.【安徽省皖中名校联盟2019届高三10月联考物理试题】如图所示为一皮带传动装置,右轮的半径为r,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则下列叙述错误的是()A.a点与d点的线速度大小之比为1:2B.a点与b点的角速度大小相等C.a点与c点的线速度大小相等D.a点与d点的向心加速度大小之比为1:12.【浙江省嘉兴市2019届高三普通高校招生选考科目教学测试物理试题】如图所示,餐桌上的水平玻璃转盘匀速转动时,其上的物品相对于转盘静止,则()A.物品所受摩擦力与其运动方向相反B.越靠近圆心的物品摩擦力越小C.越靠近圆心的物品角速度越小D.越靠近圆心的物品加速度越小3.【甘肃省临夏中学2017-2018学年高考模拟】如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和小球B紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,则下列说法中正确的是()A.A球的线速度必定小于B球的线速度一、单选题九圆周运动规律的应用B.A球的角速度必定大于B球的角速度C.A球运动的周期必定大于B球的周期D.A球对筒壁的压力必定大于B球对筒壁的压力4.【安徽省2019届高三10月份联考物理】如图所示,质量为m的小球(可看作质点)在竖直放置的半径为R的固定光滑圆环轨道内运动,若小球通过最高点时的速率为v0=,下列说法中正确的是()A.小球在最高点时只受到重力作用B.小球绕圆环一周的时间等于C.小球在最高点对圆环的压力大小为2mgD.小球经过任一直径两端位置时的动能之和是一个恒定值5.【甘肃省师范大学附属中学2018-2019学年高三上学期期中考试】假设人类登上火星后,在火星上进行了如下实验:在固定的半径为r的竖直光滑圆轨道内部,一小球恰好能做完整的圆周运动,小球在最高点的速度大小为v,如图所示。

2025年新高考物理-圆周运动(解析版)

2025年新高考物理-圆周运动(解析版)

圆周运动1.高考真题考点分布题型考点考查考题统计选择题描述圆周运动的基本物理量2024年辽宁卷计算题圆锥摆模型2024年江西卷实验题水平圆盘模型2024年海南卷2.命题规律及备考策略【命题规律】高考对圆周运动基本规律的考查较为频繁,大多联系实际生活。

圆周运动的临界问题的单独考查不是太常见,大多在综合性的计算题中出现的比较频繁,并且会结合有关的功能关系。

【备考策略】1.掌握圆周运动各个物理量之间的关系。

2.能够分析圆周运动的向心力的来源,并会处理有关锥摆模型、转弯模型、圆盘模型的动力学问题。

3.掌握水平面内圆盘模型的动力学分析及临界条件。

4.掌握竖直面内圆周运动的基本规律,并能够联系实际问题做出相应问题的分析。

【命题预测】重点关注竖直面内圆周运动规律在综合性问题中的应用。

一、匀速圆周运动及其描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。

(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。

2.描述匀速圆周运动的物理量及其关系(1)线速度:v=ΔsΔt =2πrT,描述物体圆周运动快慢的物理量。

(2)角速度:ω=ΔθΔt =2πT,描述物体绕圆心转动快慢的物理量。

(3)周期和频率:T=2πrv,T=1f,描述物体绕圆心转动快慢的物理量。

(4)向心加速度:a n=rω2=v2r =ωv=4π2T2r,描述速度方向变化快慢的物理量。

二、匀速圆周运动的向心力1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。

(2)分析物体的受力情况,所有的力沿半径方向指向圆心的合力,就是向心力。

3.向心力的公式:F n=ma n=m v2r =mω2r=m4π2T2r。

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

2022高考物理基础知识综合复习优化集训9圆周运动的规律与应用

2022高考物理基础知识综合复习优化集训9圆周运动的规律与应用

优化集训9 圆周运动的规律与应用基础巩固1.学校举行教工“长杆跑”比赛,如图为比赛过程中的某一瞬间,有A、B等六位老师手握长杆绕着警示桩做圆周运动,下列说法一定正确的是( )A.A、B两位老师的角速度关系为ωA>ωBB.A、B两位老师的周期关系为T A>T BC.A、B两位老师的向心力关系为F A>F BD.A、B两位老师的线速度关系为v A>v B2.如图所示,自行车的大齿轮、小齿轮、后轮的半径之比为4∶1∶16,在用力蹬脚踏板匀速前进的过程中,下列说法正确的是( )A.小齿轮边缘和后轮边缘的线速度大小之比为16∶1B.大齿轮和小齿轮的角速度大小之比为1∶4C.大齿轮边缘和后轮边缘的加速度大小之比为1∶4D.大齿轮和小齿轮轮缘的加速度大小之比为4∶13.如图所示,餐桌上的水平玻璃转盘匀速转动时,其上的物品相对于转盘静止,则( )A.物品所受摩擦力与其运动方向相反B.越靠近圆心的物品摩擦力越大C.越靠近圆心的物品角速度越小D.越靠近圆心的物品加速度越小4.洗衣机脱水时有一件衣物附着在竖直筒壁上,如图所示。

下列判断正确的是( )A.衣物受重力、筒壁对它的弹力及摩擦力作用而处于平衡状态B.衣物受重力、筒壁对它的弹力、摩擦力和向心力四个力作用C.脱水筒转速加快时,衣服上的金属扣受到的向心力大小不变D.脱水筒转速加快时,衣服上的金属扣受到的合力增大5.对于下列图片的说法,正确的是( )A.图甲中,大齿轮、小齿轮、后轮上各点转动时角速度相同B.图乙中,洗衣机脱水时,水受到离心力的作用C.图丙中,汽车转弯半径越大,越容易侧向打滑D.图丁中,砂轮不能转速过高,以防止砂轮破裂而酿成事故6.如图所示,底部装有4个轮子的行李箱a竖立在公交车内,而行李箱b平卧放置在公交车内,箱子四周均有一定空间。

当公交车( )A.缓慢起动过程,a、b均相对于公交车向后运动B.急刹车过程,行李箱a相对于公交车向前运动C.缓慢转弯过程,a、b均相对于公交车向外侧运动D.急转弯过程,行李箱a相对于公交车向内侧运动7.如图所示,一个女孩尝试站着荡秋千。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v0=进入轨道DCB,然后沿着BA运动压缩弹簧,弹簧压缩最短时小滑块处于P点,重力加速度大小为g,求:(1)在D点时轨道对小滑块的作用力大小F N;(2)弹簧压缩到最短时的弹性势能E p;(3)若水平轨道AB粗糙,小滑块从P点静止释放,且PB=5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB间的动摩擦因数μ的范围.【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7【解析】(1)解得(2)根据机械能守恒解得(3)小滑块恰能能运动到B点解得μ=0.7小滑块恰能沿着轨道运动到C点解得μ=0.5所以0.5≤μ≤0.7小滑块恰能沿着轨道运动D点解得μ=0.2所以μ≤0.2综上μ≤0.2或0.5≤μ≤0.74.如图所示,半径为r的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)【答案】g rμ 【解析】要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω= 而f =μN解得圆筒转动的角速度最小值为g rωμ=综上所述本题答案是:g rμ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.5.如图所示倾角45θ=o 的粗糙直导轨与半径0.4R m =的光滑圆(部分)导轨相切,切点为B ,O 为圆心,CE 为竖直直径,整个轨道处在竖直平面内.一质量1m kg =的小滑块从直导轨上的D 点无初速度下滑,小滑块滑上圆环导轨后恰好能从圆环导轨的最高点C 水平飞出.已知滑块与直导轨间的动摩擦因数0.5μ=,重力加速度210/g m s =,不计空气阻力.求:()1滑块在圆导轨最低点E 时受到的支持力大小;()2滑块从D 到B 的运动过程中损失的机械能.(计算结果可保留根式)【答案】(1) 60N F = (2)(622J E =+V 【解析】 【详解】()1滑块在C点时由重力提供向心力,有:2c mvmgR=滑块从E点到C点的运动过程中,由机械能守恒可知:2211222E Cmv mg R mv=⨯+在E点有:2EmvF mgR-=解得:60F N=()2滑块从B点到E点过程,由机械能守恒可知:()22111cos4522B Emv mgR mv+-=o滑块从D点到B点过程有:22Bv ax=根据牛顿第二定律知sin45cos45mg mg mao oμ-=由功能关系可知,损失的机械能cos45E mg xoVμ=⋅解得:()622E J=+V.【点睛】该题的突破口是小滑块滑上圆环导轨后恰好能从圆环导轨的最高点C水平飞出,由重力提供向心力.要分析清楚滑块的运动情况,抓住每个过程的物理规律.6.如图所示,用两根长度均为l的细线将质量为m的小球悬挂在水平的天花板下面,轻绳与天花板的夹角为θ.将细线BO剪断,小球由静止开始运动.不计空气阻力,重力加速度为g.求:(1)剪断细线前OB对小球拉力的大小;(2)剪断细线后小球从开始运动到第一次摆到最高点的位移大小;(3)改变B点位置,剪断BO后小球运动到最低点时细线OA的拉力F2与未剪断前细线的拉力F1之比21FF的最大值.【答案】(1)2sinmgFθ=(2)2cosx lθ=(3)21max94FF=【解析】(1)1sin2F mgθ=得2sin mgF θ=(2)小球运动到左侧最高点时绳与天花板夹角为α mglsin α=mglsin θ 得α=θ X=2lcos θ(3)小球运动到最低点时速度为v21(1sin )2mgl mv θ-=22v F mg m l-=F 1=F得: 2216sin 4sin F F θθ=- 当3sin 4θ=时可得21max 9 =4F F7.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =8.如图所示,一段粗糙的倾斜轨道,在B 点与半径R =0.5m 的光滑圆弧轨道BCD 相切并平滑连接.CD 是圆轨道的竖直直径,OB 与OC 夹角θ=53°.将质量为m =1kg 的小滑块从倾斜轨道上的A 点由静止释放,AB =S ,小滑块与倾斜轨道间的动摩擦因数μ=0.5.sin53°=0.8,cos53°=0.6,g =10m/s 2.求: (1)若S =2m ,小物块第一次经过C 点时的速度大小; (2)若S =2m ,小物块第一次经过C 点时对轨道的压力大小; (3)若物块能沿轨道到达D 点,求AB 的最小值S ’.【答案】(1)26m/s (2)58N (3)S=2.1m 【解析】 【分析】 【详解】(1)对小滑块从A 到C 的过程应用动能定理2c 1sin (1cos )cos 02mgS mgR mgS mv θθμθ+--=-代入数据得c 26m/s v =(2)C 点时对滑块应用向心力公式2CN v F mg m R-=代入数据得58N N F =根据牛顿第三定律得58N N F F ==压(3)小滑块恰能通过最高点D 时,只有重力提供向心力2Dv mg m R=代入数据得5m/s D v =对小滑块从静止释放到D 点全过程应用动能定理''2D 1sin (1cos )cos 02mgS mgR mgS mv θθμθ-+-=- 代入数据得2.1m S '= 【点睛】本题分析清楚物体运动过程是解题的前提与关键,应用动能定理与牛顿第二定律可以解题,解题时注意物体做圆周运动临界条件的应用.9.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件. 【答案】(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-;(3)(32cos )2(sin cos )RL θθμθ+-…【解析】 【分析】 【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1cos cos sin 2R mgR mg mv θθμθθ-= 解得:B v =物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m θ-=在E 点,由牛顿第二定律有22N mv F mg R-= 解得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )N N F F mg θ'==-,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2Dmv mg R= 解得:D v =设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin (1cos )]cos 2D mg L R mg L mv θθμθ-+-=联立解得:0(32cos )2(sin cos )RL θθμθ+=-则:(32cos )2(sin cos )R L θθμθ+-… 答案:(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…10.(2011年南通一模)如图所示,BCDG 是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.(1)若滑块从水平轨道上距离B 点s =3R 的A 点由静止释放,滑块到达与圆心O 等高的C 点时速度为多大?(2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小;(3)改变s 的大小,使滑块恰好始终沿轨道滑行,且从G 点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小. 【答案】(1) (2)(3)【解析】 ①由动能定理有:② 当时,最小。

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

2020届高考物理二轮复习疯狂专练6圆周运动规律的应用(含解析)

2020届高考物理二轮复习疯狂专练6圆周运动规律的应用(含解析)

B.受到的合力大小为F=m 圆周运动规律的应用(1)向心力、向心加速度的理解;(2)竖直平面内圆周运动的问题分析;(3)斜面、悬绳弹力的水平分力提供向心力的实例分析问题;(4)离心现象等。

1.如图所示,运动员以速度v在倾角为θ的倾斜赛道上做匀速圆周运动。

已知运动员及自行车的总质量为m,做圆周运动的半径为r,重力加速度为g,将运动员和自行车看作一个整体,则()A.受重力、支持力、摩擦力、向心力作用v2rC.若运动员加速,则一定沿倾斜赛道上滑D.若运动员减速,则一定沿倾斜赛道下滑2.如图所示,在粗糙水平面上静止放有一个半圆球,将一个很小的物块放在粗糙程度处处相同的球面上,用始终沿球面的力F拉着小物块从A点沿球面匀速率运动到最高点B,半圆球始终静止。

对于该过程下列说法正确的是()A.小物块所受合力始终为0B.半圆球对小物块的支持力一直增大,摩擦力也一直增大C.F大小一直不变D.半圆球对地面的摩擦力始终向右3.在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品。

已知管状模型内壁半径R,支承轮的半径为r,则支承轮转动的最小角速度ω为()A.gRrB.gRRC . 2gRD .gR 2r4.(多选)如图所示为用绞车拖物块的示意图。

拴接物块的细线被缠绕在轮轴上,轮轴逆时针转动从而拖动物块。

已知轮轴的半径 R =0.5 m ,细线始终保持水平;被拖动物块质量 m =1 kg ,与地面间的动摩擦因数 μ =0.5;轮轴的角速度随时间变化的关系是 ω =kt ,k =2 rad/s 2,g 取 10 m/s 2,以下判断正确的是()A .物块做匀速运动B .细线对物块的拉力是 5 NC .细线对物块的拉力是 6 ND .物块做匀加速直线运动,加速度大小是 1 m/s 25.(多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T11s2mg042( H L )L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.2.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω0时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0.(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0g .=l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.3.如下图,高为L 的倾斜直轨道AB、 CD 与水平面的夹角均为53°,分别与竖直平面内的圆滑圆弧轨道相切于B、D 两点,圆弧的半径也为L 。

高中物理生活中的圆周运动解题技巧及题型及练习题含答案及解析.doc

高中物理生活中的圆周运动解题技巧及题型及练习题含答案及解析.doc

速较大时,弹力与摩擦力的合力提供向心力.物体
A 刚开始滑动时,弹簧的弹力为零,静
摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度
ω0 .
(2)当角速度达到 2 ω0 时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定 律求解弹簧的伸长量 △x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提 供向心力.
R
联立解得小物块运动到 B 点时轨道对物块的支持力为: N=160N 由牛顿第三定律可得,小物块运动到 B 点时对圆轨道 B 点的压力大小为: N′=N=160N (2)因为小物块恰能通过 D 点,所以在 D 点小物块所受的重力等于向心力,即:
vD2
mg m R
可得: vD=2m/s 设小物块落地点距 B 点之间的距离为 x,下落时间为 t,根据平抛运动的规律有:
解得: Vx= 3 mgl kl 4 mg
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题 关键是分析物体的受力情况.
2. 如图,光滑轨道 abcd 固定在竖直平面内, ab 水平, bcd 为半圆,在 b 处与 ab 相切.在
直轨道 ab 上放着质量分别为 mA=2kg、 mB=1kg 的物块 A、 B(均可视为质点),用轻质细
mgsin45 mgcos45
a2
m
gsin45 ﹣°μgcos45 °=2 2 m/s 2
设小球沿斜面向上和向下滑动的时间分别为
t 1、 t 2,
由位移关系得:
1
2
11
at
2
9
又因为: t1+t 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【安徽省皖中名校联盟2019届高三10月联考物理试题】如图所示为一皮带传动装置,右轮的半径为r,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则下列叙述错误的是()
A.a点与d点的线速度大小之比为1:2
B.a点与b点的角速度大小相等
C.a点与c点的线速度大小相等
D.a点与d点的向心加速度大小之比为1:1
2.【浙江省嘉兴市2019届高三普通高校招生选考科目教学测试物理试题】如图所示,餐桌上的水平玻璃转盘匀速转动时,其上的物品相对于转盘静止,则()
A.物品所受摩擦力与其运动方向相反
B.越靠近圆心的物品摩擦力越小
C.越靠近圆心的物品角速度越小
D.越靠近圆心的物品加速度越小
3.【甘肃省临夏中学2017-2018学年高考模拟】如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和小球B紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,则下列说法中正确的是()
一、单选题
九圆周运动规律的应用
A.A球的线速度必定小于B球的线速度
B.A球的角速度必定大于B球的角速度
C.A球运动的周期必定大于B球的周期
D.A球对筒壁的压力必定大于B球对筒壁的压力
4.【安徽省2019届高三10月份联考物理】如图所示,质量为m的小球(可看作质点)在竖直放置的半径为R的固定光滑圆环轨道内运动,若小球通过最高点时的速率为v0=)
A.小球在最高点时只受到重力作用
B.小球绕圆环一周的时间等于
C.小球在最高点对圆环的压力大小为2mg
D.小球经过任一直径两端位置时的动能之和是一个恒定值
5.【甘肃省师范大学附属中学2018-2019学年高三上学期期中考试】假设人类登上火星后,在火星上进行了如下实验:在固定的半径为r的竖直光滑圆轨道内部,一小球恰好能做完整的圆周运动,小球在最高点的速度大小为v,如图所示。

若已知火星的半径为R,引力常量为G,则火星的质量为( )
A.B.C.D.
二、多选题
6.【江西省红色七校2019届高三第一次联考物理试题】如图所示,一根不可伸长的轻绳两端各系一个小球a 和b,跨在两根固定在同一高度的光滑水平细杆C和D上,质量为m a的a球置于地面上,质量为m b的b球从水平位置静止释放。

当b球摆过的角度为90°时,a球对地面压力刚好为零,下列结论正确的是( )
A.
B.
C.若只将细杆D水平向左移动少许,则当b球摆过的角度为小于90°的某值时,a球对地面的压力刚好为零D.若只将细杆D水平向左移动少许,则当b球摆过的角度仍为90°时,a球对地面的压力刚好为零
7.【甘肃省武威第一中学2019届高三10月月考物理试题】质量为m的物体沿着半径为r的半球形金属球壳滑到最低点时的速度大小为υ,如图所示,若物体与球壳之间的摩擦因数为μ,则物体在最低点时的()
A.向心加速度为
B.向心力为m(g+)
C.对球壳的压力为
D.受到的摩擦力为μm(g+)
8.【辽宁省大连市2017-2018学年高考模拟】如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥形筒固定不动,有两个质量相等的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是()
A.A球的线速度必定大于B球的线速度
B.A球的角速度必定小于B球的角速度
C.A球的运动周期必定小于B球的运动周期
D.A球对筒壁的压力等于B球对筒壁的压力
三、解答题
9.【河北省邢台市2017-2018学年高考模拟】如图所示,半径的飞轮绕中心轴转动,轴与飞轮平面垂直。

现在飞轮的边缘打进一个质量的螺丝钉视为质点,让飞轮以的转速做匀速圆周运动。


求螺丝钉P所需的向心力大小F;
若不转动飞轮,至少要用1250N的力才能把螺丝钉P拔出,求为使螺丝钉P不被甩出,飞轮转动时的最大角速度。

10.【山西省吕梁市2017-2018高考调研】如图所示,竖直平面内的一半径R=0.50m的光滑圆弧槽BCD,B 点与圆心O等高,一水平面与圆弧槽相接于D点。

质量m=0.10kg的小球从B点正上方H=0.95m高处的A 点自由下落,由B点进入圆弧槽轨道,从D点飞出后落在水平面上的Q点,DQ间的距离s=2.4m,球从D 点飞出后的运动过程中相对水平面上升的最大高度h=0.80m,取g=10m/s2,不计空气阻力,求:
(1)小球经过C点时轨道对它的支持力大小N;
(2)小球经过最高点P的速度大小v P;
(3)D点与圆心O的高度差h OD。

1.【解析】a、c两点靠传送带传动,线速度大小相等,d、c两点共轴转动,角速度相等,根据v=rω知,d的线速度等于c的线速度的2倍,所以d的线速度等于a的线速度的2倍,故A正确;b、c两点的角速度相等,a、c两点的线速度相等,根据v=rω知,因为a、c的半径不等,则a、c的角速度不等,所以a、b两点的角速度不等。

故B错误,C正确。

因v d=2v a,根据a=v2/r知,a、d的加速度之比为1:1,故D正确。

此题选择不正确的选项,故选B。

【答案】B
2.【解析】A项:由于物品有向外甩的趋势,所以物品所受的摩擦力指向圆心提供向心力,故A错误;
B项:由摩擦力提供向心力可知,,由物品的质量大小不知道,所以无关确定摩擦力大小,故B错误;C项:同一转轴转动的物体角速度相同,故C错误;D项:由公式可知,越靠近圆心的物品加速度越小,故D正确。

【答案】D
3.【解析】小球受重力和支持力,靠重力和支持力的合力提供圆周运动的向心力,受力分析如图:
D、两球所受的重力大小相等,支持力方向相同,根据力的合成,知两支持力大小、合力大小相等,故D错误.
A、根据

=,合力、质量相等,得r越大线速度大,所以球A的线速度大于球B的线速度,故A错误.
B、F合=mω2r合力、质量相等,r越大角速度越小,A球的角速度小于B球的角速度。

故B错误.
C、

=,合力、质量相等,r越大,周期越大,A周期大于B周期。

故C正确。

故选C。

【答案】C
4.【解析】AC. 根据牛顿第二定律有:mg+N=,解得N=mg.故小球在最高点受到圆环的压力,压力大小为mg,故A错误,C错误;B. 小球做的运动不是匀速圆周运动,绕圆环一周的时间不等于。

故B错误;
D.小球在运动的过程中机械能守恒,在某一运动的过程中小球的重力势能减小多少,则经过关于圆心对称的位置重力势能就增加多少。

所以小球经过任一直径两端位置时的动能之和是一个恒定值。

故D正确。

故选:D。

答案与解析
一、单选题
5.【解析】设小球的质量为m,火星的质量为M,因小球在最高点恰好完成圆周运动,设最高点时小球速度为v,由牛顿第二定律得:,解得:,对于任一月球表面的物体,万有引力等于其重力,即:,则有:,故选C。

【答案】C
6.【解析】由于b球摆动过程中机械能守恒,则有:m b gl=m b v2,当b球摆过的角度为90°时,根据牛顿运动定律和向心力公式得:T-m b g=m b;联立解得:T=3m b g;据题a球对地面压力刚好为零,说明此时绳子张力为:T=m a g,解得:m a:m b=3:1,故A正确,B错误。

由上述求解过程可以看出T=3m b g,细绳的拉力T与球到悬点的距离无关,只要b球摆到最低点,细绳的拉力都是3m b g,a球对地面的压力刚好为零。

a球不会被拉离地面。

故C错误,D正确。

故选AD。

【答案】AD
7.【解析】物体滑到半球形金属球壳最低点时,速度大小为v,半径为R,向心加速度为a n=,故A正确。

根据牛顿第二定律得知,物体在最低点时的向心力F n=ma n=m,故B错误。

根据牛顿第二定律得N-mg=m,得到金属球壳对小球的支持力N=m(g+),由牛顿第三定律可知,小球对金属球壳的压力大小N′=m(g+),故C错误。

物体在最低点时,受到的摩擦力为f=μN=μm(g+),故D正确。

故选AD。

【答案】AD
8.【解析】对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图
根据牛顿第二定律,有:F=mgtanθ=m;解得。

由于A球的转动半径较大,A线速度较大,故A正确;根据可知,A球的转动半径较大,则A的角速度较小。

故B正确。

周期,因为A的半径较大,则周期较大。

故C错误。

由上分析可知,筒对小球的支持力N=,与轨道半径无关,则由牛顿第三定律得知,小球对筒的压力也与半径无关,即有球A对筒壁的压力等于球B对筒壁的压力。

故D错误。

故选AB。

二、多选题
三、解答题
9.【解析】由向心力公式有:

解得:
由题可知,当螺丝钉P所需要的向心力大于就会被甩出,由向心力公式有:代入数据解得:
10.【解析】(1)设经过C点速度为,由机械能守恒有
由牛顿第二定律有代入数据解得N
(2)P点时速度为,P到Q做平抛运动有
代入数据解得
(3)由机械能守恒定律有
代入数据解得。

相关文档
最新文档