三角函数学考复习卷
2025年高考数学一轮复习课时作业-三角函数【含解析】
2025年高考数学一轮复习课时作业-三角函数【原卷版】(时间:45分钟分值:80分)【基础落实练】1.(5分)下列函数中,是周期函数的为()A.y=sin|x|B.y=cos|x|C.y=tan|x|D.y=(x-1)02.(5分)函数f(x)=ln(cos x)的定义域为()A.{x|kπ-π2<x<kπ+π2,k∈Z}B.{x|kπ<x<kπ+π,k∈Z}C.{x|2kπ-π2<x<2kπ+π2,k∈Z}D.{x|2kπ<x<2kπ+π,k∈Z}3.(5分)函数f(x)=sin(2x-π4)在区间[0,π2]上的最小值为()A.-1B.-22C.22D.04.(5分)函数f(x)=sin + cos + 2在[-π,π]上的图象大致为()5.(5分)(2024·哈尔滨模拟)方程2sin(2x+π3)-1=0在区间[0,4π)上的解的个数为()A.2B.4C.6D.8【6.(5分)(多选题)(2023·长沙模拟)已知函数f(x)=4cos2x,则下列说法中正确的是()A.f(x)为奇函数B.f(x)的最小正周期为πC.f(x)的图象关于直线x=π4对称D.f(x)的值域为[0,4]7.(5分)写出一个最小正周期为3的偶函数为f(x)=.8.(5分)已知函数y=sin(ωx+φ)(ω>0)的图象与直线y=12,距离最近的两点间的距离为π3,那么此函数的最小正周期是.9.(5分)已知f(x)=sin[π3(x+1)]-3cos[π3(x+1)],则f(x)的最小正周期为, f(1)+f(2)+…+f(2025)=.10.(5分)函数f(x)=cos x-cos2x,则f(x)是()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为9811.(10分)已知函数f(x)=sin(2x-π3)+32.(1)求函数f(x)的最小正周期及其图象的对称中心;(2)若f(x0)≤3,求x0的取值范围.即x0的取值范围为[-π2+kπ,π3+kπ](k∈Z).【能力提升练】12.(5分)(多选题)对于函数f(x)=|sin x|+cos2x,下列结论正确的是()A.f(x)的值域为[0,98]B.f(x)在[0,π2]上单调递增C.f(x)的图象关于直线x=π4对称D.f(x)的最小正周期为π13.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象的相邻两条对称轴间的距离为π2,且f(π12)=2,则f(π8)=.14.(10分)(2023·北京高考)设函数f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2).(1)若f(0)=-32,求φ的值.(2)已知f(x)在区间[-π3,2π3]上单调递增,f(2π3)=1,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使函数f(x)存在,求ω,φ的值.条件①:f(π3)=2;条件②:f(-π3)=-1;条件③:f(x)在区间[-π2,-π3]上单调递减.2025年高考数学一轮复习课时作业-三角函数【解析版】(时间:45分钟分值:80分)【基础落实练】1.(5分)下列函数中,是周期函数的为()A.y=sin|x|B.y=cos|x|C.y=tan|x|D.y=(x-1)0【解析】选B.因为cos|x|=cos x,所以y=cos|x|是周期函数.其余函数均不是周期函数.2.(5分)函数f (x )=ln(cos x )的定义域为()A .{x |k π-π2<x <k π+π2,k ∈Z }B .{x |k π<x <k π+π,k ∈Z }C .{x |2k π-π2<x <2k π+π2,k ∈Z }D .{x |2k π<x <2k π+π,k ∈Z }【解析】选C .由cos x >0,解得2k π-π2<x <2k π+π2,k ∈Z .所以函数f (x )=ln(cos x )的定义域为{x |2k π-π2<x <2k π+π2,k ∈Z }.3.(5分)函数f (x )=sin(2x -π4)在区间[0,π2]上的最小值为()A .-1B .-22C .22D .0【解析】选B .由已知x ∈[0,π2],得2x -π4∈[-π4,3π4],所以sin(2x -π4)∈[-22,1],故函数f (x )=sin(2x -π4)在区间[0,π2]上的最小值为-22.4.(5分)函数f (x )=sin + cos + 2在[-π,π]上的图象大致为()【解析】选D .由f (-x )=sin (- )+(- )cos (- )+(- )2=-sin -cos + 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A;又f (π2)=1+π2(π2)2=4+2ππ2>1,f (π)=π-1+π2>0,排除B,C .5.(5分)(2024·哈尔滨模拟)方程2sin(2x +π3)-1=0在区间[0,4π)上的解的个数为()A .2B .4C .6D .8【解析】选D .由2sin(2x +π3)-1=0得sin(2x +π3)=12,x ∈[0,4π),分别画出y 1=sin(2x +π3)和y 2=12在x ∈0,4π上的图象,如图:两函数图象有8个交点,故方程2sin(2x +π3)-1=0在区间0,4π上的解的个数为8.6.(5分)(多选题)(2023·长沙模拟)已知函数f (x )=4cos 2x ,则下列说法中正确的是()A .f (x )为奇函数B .f (x )的最小正周期为πC .f (x )的图象关于直线x =π4对称D .f (x )的值域为[0,4]【解析】选BD .f (x )=4cos 2x =2cos 2x +2,该函数的定义域为R .因为f (-x )=2cos(-2x )+2=2cos 2x +2=f (x ),所以函数f (x )为偶函数,A 错误;函数f (x )的最小正周期为T =2π2=π,B 正确;因为f (π4)=2cos(2×π4)+2=2,所以f (π4)既不是函数f (x )的最大值,也不是该函数的最小值,C 错误;因为-1≤cos 2x ≤1,所以f (x )=2cos 2x +2∈[0,4],D 正确.7.(5分)写出一个最小正周期为3的偶函数为f (x )=.【解析】f (x )=cos(2π3x )为偶函数,且T =2π2π3=3.答案:cos(2π3x)(答案不唯一)8.(5分)已知函数y=sin(ωx+φ)(ω>0)的图象与直线y=12,距离最近的两点间的距离为π3,那么此函数的最小正周期是.【解析】根据正弦型函数的周期性,当sin(ωx+φ)=12时,若ωx1+φ=π6,则最近的另一个值为ωx2+φ=5π6,所以ω(x2-x1)=2π3,而x2-x1=π3,可得ω=2.故此函数的最小正周期是2π =π.答案:π9.(5分)已知f(x)=sin[π3(x+1)]-3cos[π3(x+1)],则f(x)的最小正周期为, f(1)+f(2)+…+f(2025)=.【解析】依题意可得f(x)=sin[π3(x+1)]-3cos[π3(x+1)]=2sinπ3x,其最小正周期T=6,且f(1)+f(2)+…+f(6)=0,故f(1)+f(2)+…+f(2025)=f(1)+f(2)+f(3)=3+3+0=23.答案:62310.(5分)函数f(x)=cos x-cos2x,则f(x)是()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为98【解析】选D.由题意,f(-x)=cos(-x)-cos(-2x)=cos x-cos2x=f(x),所以该函数为偶函数,又f(x)=cos x-cos2x=-2cos2x+cos x+1=-2(cos x-14)2+98,所以当cos x=14时,f(x)取最大值98.11.(10分)已知函数f(x)=sin(2x-π3)+32.(1)求函数f(x)的最小正周期及其图象的对称中心;【解析】(1)f(x)的最小正周期T=π.由2x-π3=kπ,k∈Z得x=π6+ π2,k∈Z,故f(x)图象的对称中心为(π6+ π2,32)(k∈Z).(2)若f(x0)≤3,求x0的取值范围.【解析】(2)因为f(x0)≤3,所以sin(2x0-π3)+32≤3,即sin(2x0-π3)≤32,所以-4π3+2kπ≤2x0-π3≤π3+2kπ,k∈Z,即-π2+kπ≤x0≤π3+kπ,k∈Z.即x0的取值范围为[-π2+kπ,π3+kπ](k∈Z).【能力提升练】12.(5分)(多选题)对于函数f(x)=|sin x|+cos2x,下列结论正确的是()A.f(x)的值域为[0,98]B.f(x)在[0,π2]上单调递增C.f(x)的图象关于直线x=π4对称D.f(x)的最小正周期为π【解析】选AD.f(x)=|sin x|+cos2x=-2|sin x|2+|sin x|+1=-2(|sin x|-14)2+98[0,98],故A正确;当x∈[0,π2]时,|sin x|∈[0,1],|sin x|=sin x在[0,π2]上单调递增,f(x)=-2(|sin x|-14)2+98,故f(x)在[0,π2]上先增后减,故B错误;f(0)=|sin0|+cos(2×0)=1,f(π2)=|sin π2|+cos(2×π2)=0,f(0)≠f(π2),故C错误;易知y=|sin x|和y=cos2x的最小正周期均为π,故f(x)的最小正周期为π,故D正确.13.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象的相邻两条对称轴间的距离为π2,且f(π12)=2,则f(π8)=.【解析】因为函数f(x)图象的相邻两条对称轴的距离为π2,所以 2=π2,得T=π,即2π =π,得ω=2,即f(x)=2sin(2x+φ),因为f(π12)=2,所以f(π12)=2=2sin(π6+φ),即sinπ6+φ)=1,因为0<φ<π2,所以π6+φ=π2,得φ=π2-π6=π3,则f(x)=2sin(2x+π3),则f(π8)=2sin(2×π8+π3)=2sin(π4+π3)=2(sinπ4cosπ3+cosπ4sinπ3)=2(22×12+22×32)=2+62.答案:2+6214.(10分)(2023·北京高考)设函数f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2). (1)若f(0)=-32,求φ的值.【解析】(1)因为f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2)所以f(0)=sin0cosφ+cos0sinφ=sinφ=-32,因为|φ|<π2,所以φ=-π3.(2)已知f(x)在区间[-π3,2π3]上单调递增,f(2π3)=1,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使函数f(x)存在,求ω,φ的值.条件①:f(π3)=2;条件②:f(-π3)=-1;条件③:f(x)在区间[-π2,-π3]上单调递减.【解析】(2)因为f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2)所以f(x)=sin(ωx+φ)(ω>0,|φ|<π2),所以f(x)的最大值为1,最小值为-1.若选条件①:因为f(x)=sin(ωx+φ)的最大值为1,最小值为-1,所以f(π3)=2无解,故条件①不能使函数f(x)存在;若选条件②:因为f(x)在[-π3,2π3]上单调递增,且f(2π3)=1,f(-π3)=-1,所以 2=2π3-(-π3)=π,所以T=2π,ω=2π =1,所以f(x)=sin(x+φ),又因为f(-π3)=-1,所以sin(-π3+φ)=-1,所以-π3+φ=-π2+2kπ,k∈Z,所以φ=-π6+2kπ,k∈Z,因为|φ|<π2,所以ω=1,φ=-π6;若选条件③:因为f(x)在[-π3,2π3]上单调递增,在[-π2,-π3]上单调递减,所以f(x)在x=-π3处取得最小值-1,即f(-π3)=-1.以下与条件②相同.。
中考数学复习之三角函数大题练习
三角函数篇1.在学校组织的实践活动中,某数学兴趣小组决定利用所学知识测量绿博园观光塔的高度.如图,小轩同学先在湖对面的广场A处放置做好的测倾器,测得观光塔的塔尖F的仰角为37°,接下来小轩向前走20m之后到达B处,测得此时观光塔的塔尖F的仰角为45°,已知测倾器的高度为0.8m,点A、B、E在同一直线上,求观光塔的高度.(结果精确到0.1m,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.414)2.如图,海中有一个小岛A,小岛周围8海里范围内有暗礁,轮船在B点测得小岛A在北偏东45°方向上,轮船由西向东航行20海里到达D点,这时测得小岛A在北偏东30°方向上,求继续航行轮船是否有触礁危险?(参考数值:≈1.414,≈1.732).3.如图,在大楼AB的正前方有一斜坡CD,CD=26米,坡度i=1:2.4,小明在斜坡下端C处测得楼顶点B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为30°,DE与地面垂直,垂足为E,其中点A、C、E在同一直线上.(1)求DE的值;(2)求大楼AB的高度(结果保留根号).4.如图,某政府大楼的顶部竖有一块“民族要复兴,乡村要振兴”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)∠BAH=°;点B距水平面AE的高度BH=米;(2)求广告牌CD的高度.(结果精确到0.01米,参考数据:≈1.41,≈1.73.)5.开封铁塔又名“开宝寺塔”,坐落在开封城东北隅铁塔公园内,因塔身全部以褐色琉璃瓦镶嵌,远看酷似铁色,故称为“铁塔”.在一次综合实践活动中,某数学小组对该铁塔进行测量.如图,他们在远处一山坡坡脚P处,测得铁塔顶端M的仰角为60°,沿山坡向上走35m到达D处,测得铁塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算铁塔的高度ME(结果精确到1m,参考数据:≈1.7).6.李老师给班级布置了一个实践活动,测量云南某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑AG设在1.2米的石台DG上,他们先在水平地面点B处测得石碑最高点A的仰角为22°,然后沿水平MN方向前进21米,到达点C处,测得点A的仰角为45°,测角仪MB的高度为1.7米,求纪念碑AG的高度.(结果精确到0.1米,参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)7.2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在海南文昌航天发射场成功发射.天舟五号货运飞船重约13.6吨,长度BD=10.6米,货物仓的直径可达3.35米,是世界现役货物运输能力最大、在轨支持能力最全面的货运飞船,堪称“在职最强快递小哥”.已知飞船发射塔垂直于地面,某人在地面A处测得飞船底部D处的仰角45°,顶部B处的仰角为53°,求此时观测点A到发射塔CD的水平距离(结果精确到0.1米).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)8.如图,塔AD的高度为30m,塔的底部D与桥BC位于同一水平直线上,由塔顶A测得桥两端B和C的俯角分别为45°和30°,求桥BC的长.(参考数据:≈1.41,≈1.73)9.数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=1:2.4,在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)10.为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(∠OBC)为61°,探测最小角(∠OAC)为37°.若该校要求测温区域的宽度AB为1.4米,请你帮助学校确定该设备的安装高度OC.(参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.8,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)11.如图,在小山的东侧A处有一热气球,由于受风力影响,它以20m/min的速度沿着与水平线成75°角的方向飞行,30min后到达C处,此时热气球上的人发现热气球与山顶P及小山西侧的B处在一条直线上,同时测得B处的俯角为30°.在A处测得山顶P的仰角为45°,求A与B间的距离及山高(结果保留根号).12.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB 的坡度,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:,)13.如图,大厅的天花板上挂有一盏吊灯AB.测量人员从C点处测得吊灯顶端A的仰角为37°,吊灯底端B的仰角为30°,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为60°,求吊灯AB的长度.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)14.如图,某商场开业之际,为了美化和宣传,该商场在楼上悬挂一块长为3m的宣传牌,即CD=3m.数学小组的同学要在双休日测量宣传牌的底部点D到地面的距离.根据所学的相关知识,他们分别在点A和点B处放置两个测倾仪,它们的高度是AE=BF=1.5m,站在点A处的同学测得宣传牌底部点D的仰角为31°,站在点B处的同学测得宣传牌顶部点C的仰角为45°,AB=6m.依据他们测量的数据能否求出宣传牌底部点D 到地面的距离DH的长?若能,请求出;若不能,请说明理由.(图中点A,B,C,D,E,F,H在同一平面内.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)15.某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是40m,在A处测得甲楼顶部E处的仰角是37°.(1)求甲楼的高度及彩旗的长度;(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为60°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为30°,求乙楼的高度DG.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)16.为测量底部不能到达的建筑物AB的高度,某数学兴趣小组在山坡的顶端C处测得建筑物顶部A的仰角为20°,在山脚D处测得建筑物顶部A的仰角为60°,若山坡CD的(参考数据:sin50°坡度i=1:,坡长CD=20米,求建筑物AB的高度.(精确到1米)≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.41,≈1.73)17.如图1,图2分别是某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑竿DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB=50cm,点B、F在线段AC上,点C在DE上,支杆DF=30cm.(1)若EC=36cm时,B,D相距48cm,试判定BD与DE的位置关系,并说明理由;(2)当∠DCF=45°,CF=AC时,求CD的长.。
函数、导数、三角函数、数列、极坐标与参数方程考试试卷
,若
A
、
B
都在曲线
C1
上,
求
1 12
+
1 22
的值.
17、已知函数 f x ax2 a 2 x lnx ,其中 a R .
(Ⅰ)当 a 1时,求曲线 y f x 的点 1, f 1 处的切线方程;
(Ⅱ)当 a 0 时,若 f x 在区间1,e 上的最小值为-2,求 a 的取值范围.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
又 c 2a ,
∴ b2 2a2 ,故得 b 2a .
cosB a2 c2 b2 a2 (2a )2 ( 2a )2 3
∴
2ac
2 a (2a)
4.
故选 B. 【点睛】 本题考查余弦定理的应用,解题的关键是根据题意得到三角形中三边间的关系,并用统 一的参数表示,属于基础题. 6、【答案】A
若
S99
1 50
,则
k
__________.
12、在
ABC
中,角
A,B,C
的对边分别为
a,
b,
c
,若
b
cos
C
2a
c
sin
B
2
,
且 b 3 ,记 h 为 AC 边上的高,则 h 的取值范围为
三角函数、解三角形——2024届高考数学试题分类汇编(解析版)
2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
必修四三角函数考前复习题
必修四第一章三角函数考前复习题一、选择题1.将-300o 化为弧度为( )A .-43π; B .-53π; C .-76π; D .-74π;2.如果点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列选项中叙述正确的是 ( ) A .三角形的内角是第一象限角或第二象限B .锐角是第一象限的角C .第二象限的角比第一象限的角大D .终边不同的角同一三角函数值不相等 4.下列函数中为偶函数的是( )A .sin ||y x =B .2sin y x =C .sin y x =-D .sin 1y x =+5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.函数3sin(2)6y x π=+的单调递减区间( )A .5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ B .511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈ C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D .2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈ 7.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 8.)2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos29.若角α的终边落在直线y =2x 上,则sin α的值为( )A. 15±B. 5±C. 5±D. 12±10.函数y=cos 2x –3cosx+2的最小值是 () A .2B .0C .41D .611.如果α在第三象限,则2α必定在()A .第一或第二象限B .第一或第三象限C .第三或第四象限D .第二或第四象12.已知函数)sin(φϖ+=x A y 在同一周期内,当3π=x 时有最大值2,当x=0时有最小值-2,那么函数的解析式为 ( )A .x y 23sin 2= B .)23sin(2π+=x y C .)23sin(2π-=x y D .x y 3sin 21=13.已知函数sin 2y x =,要得到函数sin(2)3y x π=+的图象,只需将(f 的图象( )A .向左平移3π个单位 B .向右平移3π个单位32.已知角α终边上一点P (-4,3),求)29sin()211cos()sin()2cos(απαπαπαπ+---+ 的值33.已知函数y=Asin(ωx+φ)+b(A>0,|φ|<π,b 为常数)的 一段 图象(如图)所示. ①求函数的解析式; ②求这个函数的单调区间.34.已知43tan -=θ,求θθθ2cos cos sin 2-+的值。
高考数学三角函数单选题专题复习题(含答案)
高考数学三角函数单选题专题复习题1.如图,阴影部分的月牙形边缘都是圆弧,两段圆弧分别是ABC △的外接圆和以AB 为直径的圆的一部分,若2π3ACB ∠=,1AC BC ==,则该月牙形的面积为()A.3π424+ B.3π424- C.1π424+ D.33π48-2.已知11sin 22M x x ⎧⎫=-≤≤⎨⎩⎭,πππ,,0,463N ⎧⎫=--⎨⎬⎩⎭,则M N = ()A.π,06⎧⎫-⎨⎬⎩⎭B.π,04⎧⎫-⎨⎬⎩⎭C.ππ,0,63⎧⎫-⎨⎬⎩⎭ D.ππ,,046⎧⎫--⎨⎬⎩⎭3.某海湾的海潮高低水位之差可达到15米,在该海湾某一固定点,大海水深d (单位:m )与午夜后的时间t (单位:h )之间的关系为()104co πs 3d t t =+,则下午5点时刻该固定点的水位变化的速度为()A.3B.6πC.6π-D.π-4.已知π,(0,2αβ∈,且cossin22tan cos sin 22ββαββ+=-,则2αβ-=()A.π8B.π4C.π2D.π5.函数cos y x =和sin y x =在下列哪个区间上都是单调递减的()A.π,π2⎡⎤⎢⎥⎣⎦B.π0,2⎡⎤⎢⎥⎣⎦C.π,02⎡⎤-⎢⎥⎣⎦D.ππ,2⎡⎤--⎢⎥⎣⎦6.若角α的终边在直线y x =上,则角α的取值集合为()A.{}36045,k k αα=⋅︒+︒∈Z ∣ B.{}360135,k k αα=⋅︒+︒∈Z ∣C.{}180135,k k αα=⋅︒-︒∈Z ∣ D.{}18045,k k αα=⋅︒-︒∈Z ∣7.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象与直线y =的相邻两个交点的距离分别为π4和3π4,若π13f ⎛⎫= ⎪⎝⎭,则()f x 解析式为()A.()π2sin 26f x x ⎛⎫=- ⎪⎝⎭ B.()π2sin 3f x x ⎛⎫=- ⎪⎝⎭C.()π2sin 6f x x ⎛⎫=+⎪⎝⎭D.()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭8.函数π32cos 23y x ⎛⎫=--- ⎪⎝⎭的单调递增区间是()A.()2πππ,π36k k k ⎡⎤--∈⎢⎥⎣⎦Z B.()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z C.()π4π2π,2π33k k k ⎡⎤++∈⎢⎥⎣⎦Z D.()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z 9.把函数()y f x =的图象上各点向右平移π6个单位,再把横坐标缩短到原来的12倍,再把纵坐标伸长到原来的32倍,所得图象的解析式是π3sin 23y x ⎛⎫=+ ⎪⎝⎭,则()f x 的解析式是()A.()2cos f x x =-B.()2sin f x x =C.()2cos f x x= D.()2sin f x x=-10.已知4πtan 3a =,2πsin 3b =,17πcos 4c ⎛⎫=- ⎪⎝⎭,则()A.a c b>> B.a b c >> C.b c a>> D.a c b>>11.下列是函数()πtan 214f x x ⎛⎫=++ ⎪⎝⎭的对称中心的是()A.π,08⎛⎫- ⎪⎝⎭B.π,02⎛⎫ ⎪⎝⎭C.()0,1 D.π,18⎛⎫ ⎪⎝⎭12.已知π3sin 35x ⎛⎫+= ⎪⎝⎭,则7πcos 6x ⎛⎫- ⎪⎝⎭等于()A.35-B.45C.35-D.45-13.若tan 2α=,则cos 21sin 2αα=+()A.34B.12C.13-D.35-14.若()sin 20α-︒=,则()sin 250α+︒=()A.18B.18-C.78-D.7815.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点.则a =()A.-1B.12C.1D.216.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是()A.4π B.2π C.34π D.π17.某著名的公式是i e cos x x isinx =+,则3i e 在复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限18.若函数()2sin f x x =存在1x ,2x ,⋅⋅⋅,n x 满足120πn x x x n ≤<<⋅⋅⋅<≤,n +∉N ,且()()()()()()122312024m m f x f x f x f x f x f x --+-+⋅⋅⋅+-=,()2,m m +≥∈N ,则满足条件的实数m 的最小值为()A.506B.507C.508D.50919.已知函数π()sin()(0,06,||2f x A x b A ωϕωϕ=++>≤≤<的部分图象如图所示,则()f x =()A.π2sin(316x ++ B.π3sin(3)6x + C.π2sin(16x ++ D.π2sin(5)13x ++20.已知函数π1()sin(262f x x =--的定义域为[,]()m n m n <,值域为3[,0]2-,则n m-的取值范围是()A.π[,π]3B.π2π[,33C.[π2,2π3D.π[,π]2参考答案题号12345678910答案A A A C A C D B C B 题号11121314151617181920答案DACDDABBAB。
中考数学《三角函数》大题专练
中考数学《三角函数》大题专练(30道) 1.(2019·天津中考模拟)如图,某数学小组在水平空地上对无人机进行测高实验,在E 处测得无人机C 的仰角45CAB ∠=︒,在D 处测得无人机C 的仰角30CBA ∠=︒,已知测角仪的高1m AE BD ==,E 、D两处相距50m ,根据所给数据计算无人机C 的高度.(结果精确到0.1米, 1.41≈ 1.73≈)2.(2019·山东省中考模拟)如图,某风景区内有一瀑布,AB 表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D 处测得瀑布顶端A 的仰角β为45°,沿坡度i =1:3的斜坡向上走100米,到达观景台C ,在C 处测得瀑布顶端A 的仰角α为37°,若点B 、D 、E 在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75≈1.41≈3.16)(1)观景台的高度CE 为 米(结果保留准确值);(2)求瀑布的落差AB (结果保留整数).3.(2019·海南省中考模拟)如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.(1)求坡底C 点到大楼距离AC 的值;(2)求斜坡CD 的长度.4.(2018·贵州省中考模拟)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方点C出发,沿斜面坡度i CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB∠BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)5.(2019·河南省中考模拟)在某飞机场东西方向的地面l 上有一长为1km 的飞机跑道MN(如图),在跑道MN的正西端14.5 千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A 的北偏西30°,且与点A 相距15 千米的B 处;经过1 分钟,又测得该飞机位于点A 的北偏东60°,且与点A 相距 C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN 之间?请说明理由.6.(2019·山东省中考模拟)今年“五一” 假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B 点的海拔;(2)求斜坡AB 的坡度.7.(2019·浙江省中考模拟)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732 1.732≈, 1.414≈)8.(2019·东阿县姚寨镇联合校中考模拟)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)9.(2019·河南省中考模拟)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)10.(2018·辽宁省中考模拟)如图,甲、乙只捕捞船同时从A 港出海捕鱼,甲船以每小时 km 的速度沿北偏西60°方向前进,乙船以每小时15 km 的速度沿东北方向前进.甲船航行2 h 到达C 处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.问:(1)甲船从C 处出发追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?11.(2019·河南省中考模拟)如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM∠AN ).(1)求灯杆CD 的高度;(2)求AB 的长度(结果精确到0.1米)..sin37°≈060,cos37°≈0.80,tan37°≈0.75)12.(2019·天津中考模拟)如图,某学校甲楼的高度AB 是18.6m ,在甲楼楼底A 处测得乙楼楼顶D 处的仰角为40,在甲楼楼顶B 处测得乙楼楼顶D 的仰角为19,求乙楼的高度DC 及甲乙两楼之间的距离AC (结果取整数).参考数据:cos190.95≈,tan190.34≈,cos400.77≈,tan 400.84≈.13.(2019·兴化市顾庄学校中考模拟)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249 1.4142.14.(2019·天津市红光中学中考模拟)某地一人行天桥如图所示,天桥高6 m,坡面BC的坡比为1∠1,为了方便行人推车过天桥,有关部门决定降低坡比,使新坡面AC的坡比为(1)求新坡面的坡角α;(2)原天桥底部正前方8 m处(PB的长)的文化墙PM是否需要拆除.请说明理由.15.(2019·山东省中考模拟)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).16.(2019·江苏省中考模拟)高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC 为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)17.(2018·山东省中考模拟)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG∠HG,CH∠AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)18.(2019·山东省中考模拟)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上 1.732,结果取整数)?19.(2019·山东省中考模拟)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆9m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)20.(2019·江苏省中考模拟)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(2019·天津中考模拟)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∠CD,AM∠BN∠ED,AE∠DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)22.(2019·河南省中考模拟)如图,一艘渔船位于灯塔A的南偏西75°方向的B处,距离A处30海里,渔船沿北偏东30°方向追寻鱼群,航行一段时间后,到达位于A处北偏西20°方向的C处,渔船出现了故障立即向正在灯塔A处的巡逻船发出求救信号.巡逻船收到信号后以40海里每小时的速度前往救助,请问巡逻船多少分钟能够到达C≈1.4,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,最后结果精确到1分钟).23.(2018·上海中考模拟)如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.(1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75≈1.41≈2.24)24.(2018·江苏省中考模拟)如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时,PC=30m,点C与点A恰好在同一水平线上,点A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)25.(2019·山东省中考模拟)某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.26.(2018·湖北省中考模拟)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB∠BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)27.(2018·广西壮族自治区中考模拟)如图,海面上甲、乙两船分别从A,B两处同时出发,由西向东行驶,甲船的速度为24n mile/h,乙船的速度为15n mile/h,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile,经过20分钟后,甲、乙两船分别到达C ,D 两处.(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)(1)求两条航线间的距离;(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)28.(2019·河南省中考模拟)某校数学兴趣小组的同学测量一架无人飞机P 的高度,如图,A ,B 两个观测点相距300m ,在A 处测得P 在北偏东71°方向上,同时在B 处测得P 在北偏东35°方向上.求无人飞机P 离地面的高度.(结果精确到1米,参考数据:sin350.57︒≈,tan350.70︒≈,sin71°≈0.95,tan71°≈2.90)29.(2018·河南省中考模拟)如图,小东在楼AB 的顶部A 处测得该楼正前方旗杆CD 的顶端C 的俯角为42∘,在楼AB 的底部B 处测得旗杆CD 的顶端C 的仰角为30∘,已知旗杆CD 的高度为12m ,根据测得的数据,计算楼AB 的高度.(结果保留整数,参考数据:sin42∘≈0.7,cos42∘≈0.7,tan42∘≈0.9,√3≈1.7)30.(2019·内蒙古自治区中考模拟)如图,旗杆AB 的顶端B 在夕阳的余辉下落在一个斜坡上的点D 处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A 处测得点D 的仰角为15°,AC =10米,又测得∠BDA =45°.已知斜坡CD 的坡度为i =1求旗杆AB 的高度 1.7≈,结果精确到个位).2020中考数学《三角函数》大题专练(30道)参考答案1.(2019·天津中考模拟)如图,某数学小组在水平空地上对无人机进行测高实验,在E 处测得无人机C 的仰角45CAB ∠=︒,在D 处测得无人机C 的仰角30CBA ∠=︒,已知测角仪的高1m AE BD ==,E 、D两处相距50m ,根据所给数据计算无人机C 的高度.(结果精确到0.1米, 1.41≈ 1.73≈)【答案】19.3m.【解析】解:如图,过点C 作点CH AB ⊥于H .∵45CAB ∠=︒,∵AH CH =.设CH x =,则AH x =.∵30CBA ∠=︒,∵BH ==.由题意知:50AB ED ==,∵50 x+=.解得:5018.32.73x=≈.18.3119.3+=.答:计算得到的无人机的高约为19.3m.【点睛】此题主要考察三角函数的应用.2.(2019·山东省中考模拟)如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,沿坡度i=1:3的斜坡向上走100米,到达观景台C,在C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75≈1.41≈3.16)(1)观景台的高度CE为米(结果保留准确值);(2)求瀑布的落差AB(结果保留整数).【答案】(1);(2)瀑布的落差约为411米.【解析】(1)∵tan∵CDE=13 CE CD=∵CD=3CE.又CD=100米,∵100==∵CE=.故答案是:.(2)作CF ∵AB 于F ,则四边形CEBF 是矩形.∵CE =BF =,CF =BE .在直角∵ADB 中,∵DB =45°.设AB =BD =x 米. ∵CE CD =13,∵DE =.在直角∵ACF 中,∵ACF =37°,tan∵ACF 0.75AF CF ==≈ 解得x ≈411.答:瀑布的落差约为411米.【点睛】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.3.(2019·海南省中考模拟)如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.(1)求坡底C 点到大楼距离AC 的值;(2)求斜坡CD 的长度.【答案】(1)坡底C 点到大楼距离AC 的值为(2)斜坡CD 的长度为120米.【解析】(1)在直角∵ABC 中,∵BAC=90°,∵BCA=60°,AB=60米,则AC=60AB tan ==︒(米)答:坡底C 点到大楼距离AC 的值是(2)过点D 作DF∵AB 于点F ,则四边形AEDF 为矩形,∵AF=DE ,DF=AE.设CD=x 米,在Rt∵CDE 中,DE=12x 米,米 在Rt∵BDF 中,∵BDF=45°,∵BF=DF=AB -AF=60-12x (米) ∵DF=AE=AC+CE ,-12x解得:120(米)故斜坡CD 的长度为(120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.4.(2018·贵州省中考模拟)如图,某数学活动小组为测量学校旗杆AB 的高度,沿旗杆正前方点C 出发,沿斜面坡度i =CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米.已知A 、B 、C 、D 、E 在同一平面内,AB∠BC,AB//DE.求旗杆AB 的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)【答案】【解析】如图,延长ED 交BC 延长线于点F ,则∵CFD=90°,,∵∵DCF=30°,∵CD=4,∵DF=12CD=2,过点E 作EG∵AB 于点G ,则GB=EF=ED+DF=1.5+2=3.5,又∵∵AED=37°,,则,故旗杆AB 的高度为()米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题5.(2019·河南省中考模拟)在某飞机场东西方向的地面 l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A .某时刻测得一架匀速直线降落的飞机位于点 A 的北偏西30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道 MN 之间?请说明理由.【答案】(1)km/h ;(2)能,见解析【解析】解:(1)由题意,得90BAC ∠︒=,15,AB AC ==BC ∴=∴飞机航行的速度为:160=km/h )(2)能;作CE l ⊥ 于点 E ,设直线 BC 交 l 于点 F .在Rt ABC 中,BC AC ==,∵30ABC ∠︒=,即60BCA ∠︒=,又∵30CAE ∠︒=,∴60ACE ∠︒= ,18060FCE ACB ACE ∠=∠-∠=︒∴-,即ACE FCE ∠=∠ACE FCE ∴≅AE EF ∴= 又 152AE AC cos CAE =⋅∠= 152AE EF ∴==15AF ∴= 14.5,15.5AM AN ==∴AM AF AN <<∵飞机不改变航向继续航行,可以落在跑道 M N 之间.【点睛】本题主要考查解直角三角形的实际应用,准确理解题意,并且画出辅助线是求解本题的关键.6.(2019·山东省中考模拟)今年“五一” 假期.某数学活动小组组织一次登山活动.他们从山脚下A 点出发沿斜坡AB 到达B 点.再从B 点沿斜坡BC 到达山顶C 点,路线如图所示.斜坡AB 的长为1040米,斜坡BC 的长为400米,在C 点测得B 点的俯角为30°.已知A 点海拔121米.C 点海拔721米. (1)求B 点的海拔;(2)求斜坡AB 的坡度.【答案】(1)521(米);(2)1:2.4.【解析】解:如图,过C 作CF∵AM ,F 为垂足,过B 点作BE∵AM ,BD∵CF ,E 、D 为垂足.在C 点测得B 点的俯角为30°,∵∵CBD=30°,又BC=400米,∵CD=400×sin30°=400×12=200(米). ∵B 点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,=960米,∵AB 的坡度i AB =BE AE =400960=512. 故斜坡AB 的坡度为1:2.4.【点睛】此题将坡度的定义与解直角三角形相结合,考查了同学们应用数学知识解决简单实际问题的能力,是一道中档题.7.(2019·浙江省中考模拟)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732 1.732≈, 1.414≈)【答案】3.05米.【解析】延长FE 交CB 的延长线于M ,过A 作AG∵FM 于G ,在Rt∵ABC 中,tan∵ACB=AB BC, ∵AB=BC•tan75°=0.60×3.732=2.2392,∵GM=AB=2.2392,在Rt∵AGF 中,∵∵FAG=∵FHD=60°,sin∵FAG=FG AF,∵sin60°=2.52FG =, ∵FG=2.165,∵DM=FG+GM ﹣DF≈3.05米.答:篮框D 到地面的距离是3.05米.考点:解直角三角形的应用.8.(2019·东阿县姚寨镇联合校中考模拟)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【答案】1.8米【解析】在Rt∵APN 中,∵NAP =45°,∵P A =PN ,在Rt∵APM 中,tan MP MAP AP∠=, 设P A =PN =x ,∵∵MAP =58°,∵tan MP AP MAP =⋅∠=1.6x ,在Rt∵BPM 中,tan MP MBP BP ∠=, ∵∵MBP =31°,AB =5, ∵ 1.60.65x x =+, ∵ x =3,∵MN=MP -NP =0.6x =1.8(米),答:广告牌的宽MN 的长为1.8米.【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.9.(2019·河南省中考模拟)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)【解析】 过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∵()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∵()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()tan 3029033EF EH cm =︒=⨯=.答:支角钢CD 的长为45cm ,EF .考点:三角函数的应用10.(2018·辽宁省中考模拟)如图,甲、乙只捕捞船同时从A 港出海捕鱼,甲船以每小时 km 的速度沿北偏西60°方向前进,乙船以每小时15 km 的速度沿东北方向前进.甲船航行2 h 到达C 处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.问:(1)甲船从C 处出发追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?【答案】(1) 2 h ;(2) 15(1千米.【解析】(1)如图,过A 作AD∵BC 于点D .作CG∵AE 交AD 于点G .∵乙船沿东北方向前进,∵∵HAB=45°,∵∵EAC=30°,∵∵CAH=90°-30°=60°∵∵CAB=60°+45°=105°.∵CG∵EA,∵∵GCA=∵EAC=30°.∵∵FCD=75°,∵∵BCG=15°,∵BCA=15°+30°=45°,∵∵B=180°-∵BCA-∵CAB=30°.在直角∵ACD中,∵ACD=45°,.=30千米.×2CD=AC•cos45°=30千米.在直角∵ABD中,∵B=30°.则AB=2AD=60千米.则甲船从C处追赶上乙船的时间是:60÷15-2=2小时;(2)千米.则甲船追赶乙船的速度是每小时(千米/小时.答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时千米.【点睛】一般三角形的计算可以通过作高线转化为直角三角形的计算,正确作辅助线是解决本题的关键.11.(2019·河南省中考模拟)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∠AN).(1)求灯杆CD 的高度;(2)求AB 的长度(结果精确到0.1米)..sin37°≈060,cos37°≈0.80,tan37°≈0.75)【答案】(1)10米;(2)11.4米【解析】(1)如图,延长DC 交AN 于H ,∵∵DBH=60°,∵DHB=90°,∵∵BDH=30°,∵∵CBH=30°,∵∵CBD=∵BDC=30°,∵BC=CD=10(米);(2)在Rt∵BCH 中,CH=12BC=5,, ∵DH=15,在Rt∵ADH 中,AH=tan 37DH ≈150.75=20, ∵AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(2019·天津中考模拟)如图,某学校甲楼的高度AB 是18.6m ,在甲楼楼底A 处测得乙楼楼顶D 处的仰角为40,在甲楼楼顶B 处测得乙楼楼顶D 的仰角为19,求乙楼的高度DC 及甲乙两楼之间的距离AC(结果取整数).参考数据:cos190.95≈,tan190.34≈,cos400.77≈,tan 400.84≈.【答案】乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m.【解析】解:过点B 作BE CD ⊥,垂足为点E ,可知BAC ACE BEC 90∠∠∠===︒.∵四边形ACEB 是矩形.∵AB CE =,AC BE =.设甲乙两楼之间的距离为x m.则BE AC x ==,在Rt DBE 中,DBE 19∠=︒,DEtan DBE BE ∠=.∵DE BE tan DBE x tan19∠=⋅=⋅︒.在Rt DAC 中,DAC 40∠=︒,DCtan DAC AC ∠=.∵DC AC tan DAC x tan DAC x tan40∠∠=⋅=⋅=⋅︒.∵DC DE CE -=,∵x tan40x tan1918.6⋅︒-⋅︒=.∵0.84x 0.34x 18.6-≈.解得x 37.2≈.∵AC 37≈.DE x tan4037.2.8431=⋅︒≈⨯≈.答:乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m.【点睛】本题考查了解直角三角形的应用,解题的关键是从复杂的实际问题中整理出直角三角形并选择合适的边角关系列出方程.13.(2019·兴化市顾庄学校中考模拟)如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249 1.4142≈.【答案】塔高AB 约为32.99米.【解析】解:过点D 作DH ∵AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∵ABC =∵AHD = 90°,∵ADH = 32°.设AB = x ,则 AH = x – 3.在Rt∵ABE 中,由 ∵AEB = 45°,得 tan tan451ABAEB EB ∠=︒==.∵ EB = AB = x .∵ HD = BC = BE + EC = x + 15.在Rt∵AHD 中,由 ∵AHD = 90°,得 tan AHADH HD ∠=.即得 3tan3215x x -︒=+.解得15tan32332.991tan32x⋅︒+=≈-︒.∵ 塔高AB约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.(2019·天津市红光中学中考模拟)某地一人行天桥如图所示,天桥高6 m,坡面BC的坡比为1∠1,为了方便行人推车过天桥,有关部门决定降低坡比,使新坡面AC的坡比为(1)求新坡面的坡角α;(2)原天桥底部正前方8 m处(PB的长)的文化墙PM是否需要拆除.请说明理由.【答案】(1)α=30°;(2)文化墙PM不需要拆除,理由见解析.【解析】(1)∵新坡面的坡度为1,∵∵α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD∵AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1∵BD=CD=6,∵AB=AD﹣﹣6<8,∵文化墙PM不需要拆除.【点睛】本题考查解直角三角形的应用.15.(2019·山东省中考模拟)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号).【答案】【解析】解:作AD∵BC 于D ,∵∵EAB=30°,AE∵BF ,∵∵FBA=30°,又∵FBC=75°,∵∵ABD=45°,又AB=60,∵AD=BD=∵∵BAC=∵BAE+∵CAE=75°,∵ABC=45°,∵∵C=60°,在Rt∵ACD 中,∵C=60°,AD=,则tanC=AD CD ,=∵BC=故该船与B 港口之间的距离CB 的长为【点睛】本题考查解直角三角形的应用-方向角问题.16.(2019·江苏省中考模拟)高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC 为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】17【解析】解:设AH的长为x米,则CH的长为(x-2)米.在Rt∵ABH中,AH=BH tan45°,则BH=x,所以DH=BH-BD=x-10在Rt∵CDH中,CH=DH tan65°,即x-2=2.14(x-10),解得:x=17.01≈17.0答:立柱AH的长为17米.【点睛】本题考查了解直角三角形的应用,由三角函数列出关于AH的方程是解题关键.17.(2018·山东省中考模拟)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG∠HG,CH∠AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【答案】63米.【解析】解:如图,作BE∵DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt∵ACH 中,CH=AH tan∵CAH=tan55°•x,∵CE=CH﹣EH=tan55°•x﹣10,∵∵DBE=45°,∵BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∵CH=tan55°•x=1.4×45=63.答:塔杆CH的高为63米.点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.18.(2019·山东省中考模拟)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上 1.732,结果取整数)?【答案】450m.【解析】解:ABD 120∠=︒,D 30∠=︒,AED 1203090∠∴=︒-︒=︒,在Rt ΔBDE 中,BD 520m =,D 30∠=︒,1BE BD 260m 2∴==,()DE 450m ∴==≈.答:另一边开挖点E 离D450m ,正好使A ,C ,E 三点在一直线上.【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.19.(2019·山东省中考模拟)如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆9m 的B 处安置高为1.5m 的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留根号)【答案】拉线CE 的长约为米.【解析】解:过点A 作AH∵CD ,垂足为H ,由题意可知四边形ABDH 为矩形,∵CAH=30°,∵AB=DH=1.5,BD=AH=9,在Rt∵ACH 中,tan∵CAH=CH AH, ∵CH=AH•tan∵CAH ,。
2024年高考数学总复习第四章三角函数与解三角形真题分类18解三角形
(1)求∠A;
(2)求 AC 边上的高. 解:(1)在△ ABC 中,因为 cos B=-17 ,
所以 sin B= 1-cos2B =473 .
由正弦定理,得
sinA=a
sin b
B
=
3 2
.
由题设知π2 <∠B<π,所以 0<∠A<π2 .
所以∠A=π3 .
第12页
返回层目录
返回目录
真题分类18 解三角形
=sin [π-(∠C+∠BDC)]
=sin (∠C+∠BDC)
=sin ∠C·cos ∠BDC+cos ∠C·sin ∠BDC
=45
×
2 2
+35
×
2 2
=7102
.
第8页
高考·数学
返回层目录 返回目录
真题分类18 解三角形
高考·数学
4.(2016·课标全国Ⅱ,13,5分)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=
又 A,B,C 为锐角,则 sin A≠0.
故
sin
B=
3 2
,所以 B=π3
.
第10页
返回层目录 返回目录
真题分类18 解三角形
高考·数学
(2)由 A+B+C=π,得 C=23π -A,
由△ ABC 是锐角三角形,得 A∈(π6 ,π2 ).
由
cos
C=cos
2π (3
-A)=-12
cos A+
3 2
sin A,得
cos
A+cos
B+cos
C=
3 2
sin A+12
cos A+12
=sin (A+π6
高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)
1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。
押第7题 三角函数(新高考)(原卷版)--2023年新高考数学临考题号押题
押新高考卷7题三角函数考点3年考题考情分析三角函数2022年新高考Ⅰ卷第6题2022年新高考Ⅱ卷第6题2021年新高考Ⅰ卷第4、6题三角函数会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度较易或一般,纵观近几年的新高考试题,分别考查三角函数的图象与性质,三角恒等变换,也是高考冲刺的重点复习内容。
可以预测2023年新高考命题方向将继续以三角函数的图象与性质,三角恒等变换等问题展开命题.1.特殊角的三角函数值2.同角三角函数的基本关系平方关系:1cos sin 22=+αα商数关系:αααcos sin tan =3.正弦的和差公式()βαβαβαsin cos cos sin sin +=+,()βαβαβαsin cos cos sin sin -=-4.余弦的和差公式()βαβαβαsin sin cos cos cos -=+,()βαβαβαsin sin cos cos cos +=-5.正切的和差公式()βαβαβαtan tan 1tan tan tan -+=+,()βαβαβαtan tan 1tan tan tan +-=-6.正弦的倍角公式⇒=αααcos sin 22sin ααα2sin 21cos sin =7.余弦的倍角公式()()αααααααsin cos sin cos sin cos 2cos 22-+=-=升幂公式:αα2sin 212cos -=,1cos 22cos 2-=αα降幂公式:22cos 1sin 2αα-=,22cos 1cos 2αα+=8.正切的倍角公式ααα2tan 1tan 22tan -=9.推导公式2)cos (sin )cos (sin 22=-++αααα10.辅助角公式x b x a y cos sin +=,)0(>a )sin(22ϕ++=⇒x b a y ,其中a b =ϕtan ,)2,2(ππϕ-∈1.(2022·新高考Ⅰ卷高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .32.(2022·新高考Ⅱ卷高考真题)若sin()cos()22cos sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-3.(2021·新高考Ⅰ卷高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭4.(2021·新高考Ⅰ卷高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .651.(2023·广东深圳·深圳中学统考模拟预测)已知1cos 23x =-,则22ππcos cos 66x x ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的值为()A .916B .56C .1320D .17242.(2023·重庆·统考模拟预测)已知角α,β满足1tan 3α=,()sin 2cos sin βαβα=+,则tan β=().A .14B .12C .1D .23.(2023·辽宁·新民市第一高级中学校联考一模)已知α,π0,2β⎛⎫∈ ⎪⎝⎭,且()()sin sin sin2αβαββ++-=,则()A .π2αβ+=B .2παβ+=C .2αβ=D .αβ=4.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭5.(2023·广东广州·统考二模)已知函数()()sin 2f x x ϕ=+,若()π3f x f ⎛⎫ ⎪⎝⎭≤恒成立,且()ππ4f f ⎛⎫> ⎪⎝⎭,则()f x 的单调递增区间为()A .π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )B .πππ,π63k k 轾犏-+犏臌(k ∈Z )C .πππ,π36k k ⎡⎤-+⎢⎥⎣⎦(k ∈Z )D .2πππ,π36k k ⎡⎤--⎢⎥⎣⎦(k ∈Z )A .49.25mC .56.74m 11.(2023·河北邯郸·统考二模)已知函数个单位长度后,得到一个偶函数的图象,则函数A .()ππZ 6k k +∈。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
三角函数与数列学考试卷
三角函数与数列学考试卷一选择题 1.=-)320cos(π( ) A .21 B .23 C .-21D .-232.已知△ABC 中,a =2,b =3,B =60°,那么角A 等于 ( )A.135°B.90°C.45°D.30°3已知△ABC 中,125tan -=A ,则cos A = ( ) A .1213 B.513 C. 513- D. 1213-4角α的终边过点(1,2)-,则cos α的值为 ( )C. ]D.5. 等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( ) A.3 B.32 C.916 D.46.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6707等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( ) A.45 B.75 C.180 D.300 8.在等比数列中,首项89,末项31,公比32,求项数 ( ) A.3 B.4 C.5 D.69.等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( ) A.15 B.17 C.19 D.2110.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为 ( ). A .81 B .120 C .168 D .19211.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2= ( ). A .-4B .-6C .-8D . -1012.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S = ( ). A .1B .-1C .2D .2113.在等差数列{n a }中,72=a ,154=a ,则10S = ( ).A .100B .210C .380D .40014.若,lg x ),23lg(-x )23lg(+x 成等差数列,则2log x= ( )A .2B .21C .4D .不存在15.在数列{n a }中,21=a ,1231+-=+n a a n n ,*N n ∈,则4a = ( )A .25B .29C .31D .3316. 在等差数列{n a }中,12642=++a a a ,那么=++++7321a a a a ( )A .28B .29C .31D .32二填空题17.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___ __.18.在ABC ∆中。
数学高职高考专题复习_三角函数问题
高考三角函数问题专题复习一、三角函数基础题1、已知角α的终边通过点P(-3,4),则sinα+cosα+tan α= ( )A.1523-B.1517-C.151-D.15172、π617sin = ( ) A.21 B.23- C.21- D.23-3、x y 2sin 21=的最小正周期是 ( ) A.2π B.π C.2π D. 4π 4、设tan α=2,且sin α<0,则cos α的值等于 ( ) A.55 B.51- C.55- D.51 5、y=cos 2(2x)的最小正周期是 ( )A .2π B. π C.4π D.8π 6、命题甲:sin x=1,命题乙:x=2π,则 ( ) A.甲是乙充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件C.甲是乙的充分必要条件D.甲不是乙的必要条件也不是乙的充分条件7、命题甲:A=B ,命题乙:sinA=sinB,则 ( )A.甲不是乙的必要条件也不是乙的充分条件B.甲是乙的充分必要条件C.甲是乙的必要条件但不是充分条件D.甲是乙的充分条件但不是必要条件8、函数y=sin x 在区间________上是增函数. ( )A.[0,π]B.[π,2π]C.]25,23[ππ D .]87,85[ππ 9、函数)43tan(π+=x y 的最小正周期为 ( )A.3πB.πC.32π D.3π 10、设角α的终边通过点P (-5,12),则cot α+sin α等于 ( ) A.137 B.-137 C.15679 D.- 1567911、函数y=cos3x -3sin3x 的最小正周期和最大值分别是 ( )A.32π, 1B.32π, 2 C.2π, 2 D.2π, 1 12、若23cos ],2,[-=∈x x ππ ,则x 等于 ( ) A.67πB.34πC.35πD.611π13、已知57cos sin ,51cos sin =-=+αααα,则tan α等于( ) A.34- B.-43C.1D.- 114、 150cos =( ) A.21 B.23 C.﹣21D. ﹣2315、在△ABC 中,AB=3,AC=2,BC=1,则sin A 等于 ( ) A.0 B.1 C.23 D.2116、在]2,0[π上满足sinx≤-0.5的x 的取值范围是区间 ( )A.[0,6π] B.[6π,65π] C.]67,65[ππD .]611,67[ππ17、使等式cosx=a -2有意义的a 的取值范围是区间( ) A .[0,2] B.[1,3] C.[0,1] D.[2,3]18、=-+-)690sin(495tan )585cos( ( ) A .22 B.32C.32- D.219、如果51cos sin =+x x ,且0≤x<π,那么tanx= ( ) A .34- B.43- C.43 D.34。
函数导数、三角函数、不等式(二):高考数学一轮复习基础必刷题
函数导数、三角函数、不等式(二):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.函数41y x =-的定义域为()A .[)0,1B .()1,+∞C .()()0,11,+∞ D .[)()0,11,+∞ 2.设a >0,b >0,化简2115113366221()()()3a ab a ⋅-÷的结果是()A .2313a -B .233a -C .13a-D .-3a 3.已知不等式240x ax ++ 的解集为,R 则a 的取值范围是()A .[]4,4-B .()4,4-C .][(),44,∞∞--⋃+D .()(),44,-∞-+∞ 4.曲线31y x =+在点(1,)a -处的切线方程为()A .33y x =+B .31y x =+C .31y x =--D .33y x =--5.下列命题中正确的是()A .若0ab >,a b >,则11a b<B .若a b <,则22ac bc <C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d>6.下列判断正确的是()A .命题“对顶角相等”的逆命题是真命题B .命题“若1x <,则21x >”的否命题是“21x <,则1x <”C .“1a =”是“函数()22cos sin f x ax ax =-的最小正周期是π”的必要不充分条件D .“0b =”是“函数()2f x ax bx c =++是偶函数”的充要条件7.已知集合{lg(2)}A xy x ==-∣,{}2120B x x x =--<∣,则A B = ()A .()2,4B .()3,4-C .()2,3D .()4,3-8.已知函数21()23ln 2f x x x x =+-,则()f x 的单调递减区间是()A .(3,1)-B .(0,1)C .(,3)(1,)-∞-+∞ D .(1,)+∞9.已知函数f (x )=sin (ωx +2φ)﹣2sinφcos (ωx +φ)(ω>0,φ∈R )的图象的相邻两条对称轴相距2π个单位,则ω=()A .1B .12C .13D .210.公元前6世纪,古希腊毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分割数12,其近似值为0.618,这是一个伟大的发现,这一数值也表示为2sin18a =,若24a b +=,则21cos 72a b=-()A .12B .2CD .411.已知不等式5132-≤-x x 的解集为A ,关于x 的不等式2220-+>ax x 的解集为B ,且⊆ A B B ,则实数a 的取值范围为()A .(0,)+∞B .1,16⎛⎫+∞ ⎪⎝⎭C .2,9⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭12.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、填空题13.若1tan 3α=-,则3sin 2cos 2sin cos αααα+=-_______.14.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >,则b 的值为______.15.已知tan 312πα⎛⎫-=- ⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______.16.已知偶函数()f x 在(0,)+∞上是减函数,且(1)0f -=,则()0f x x<的解集__________三、解答题17.已知函数3()395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 在[]3,3-上的最大值和最小值.18.已知312sin ,,,cos ,5213πααπββ⎛⎫=∈=- ⎪⎝⎭是第三象限角,求(1)cos α与sin β的值;(2)cos()αβ-.19.已知函数()()21ln 12f x a x x a x =+-+.(1)求函数f (x )的单调区间;(2)若f (x )≥0对定义域内的任意x 恒成立,求实数a 的取值范围.20.已知函数()ln 2f x x x ax =-+(a 为实数)(1)若2a =,求()f x 在21,e ⎡⎤⎣⎦的最值;(2)若()0f x ≥恒成立,求a 的取值范围.21.在ABC 中,内角,,A B C 的对边分别为,,a b c ,满足cos cos 2cos a B b A c B +=,b .(1)求B ;(2)若2a c -=,求ABC 的面积.22.设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.参考答案:1.D 【解析】【分析】由题意列不等式组求解【详解】由题意得2010x x ≥⎧⎨-≠⎩,解得0x ≥且1x ≠,故选:D 2.D 【解析】【分析】由分数指数幂的运算性质可得结果.【详解】因为0a >,0b >,所以2115211115113366326326221()()()333a b a b b a ba +-+-⋅-÷=-⋅=-.故选:D.3.A 【解析】【分析】利用判别式小于等于零列不等式求解即可.【详解】因为不等式240x ax ++ 的解集为,R 所以2Δ4140a =-⨯⨯ ,解得44a -,所以a 的取值范围是[]4,4-,故选:A.4.A 【解析】【分析】求出导函数,进而利用导数的几何意义得到切线的斜率,再求出a 的值,利用点斜式求出切线方程.【详解】()23f x x '=,所以()13f '-=,又当1x =-时,31110a x =+=-+=,所以31y x =+在点(1,)a -处的切线方程为:()31y x =+,即33y x =+故选:A 5.A 【解析】【分析】利用不等式的基本性质可判断A 选项,利用特殊值法可判断BCD 选项.【详解】因为0ab >,a b >,所以a b ab ab >,即11a b<,所以A 正确;若a b <,0c =,则22ac bc =,所以B 错误;取2a c ==,1b d ==,则a c b d -=-,所以C 错误;取2a =,1b =,2c =-,1d =-,则a bc d=,所以D 错误.故选:A.6.D 【解析】【分析】逐项进行判断,根据逆命题、否命题、充分条件、必要条件的定义进行判断即可.【详解】对A ,命题“对顶角相等”的逆命题为:“相等的两个角为对顶角”,假命题,故错;对B ,命题“若1x >,则21x >”的否命题是“1x ≤,则21x ≤”,故错;对C ,()22cos sin sin 2f x ax ax ax =-=,最小正周期为π,所以212a aππ=⇒=±所以“1a =”是“函数()22cos sin f x ax ax =-的最小正周期是π”的充分不必要条件,故错;对D ,函数()2f x ax bx c =++是偶函数,则函数不含有奇次项,所以0b =故“0b =”是“函数()2f x ax bx c =++是偶函数”的充要条件.7.A 【解析】【分析】求出集合,A B 可得A B .【详解】(2,)A =+∞,(3,4)B =-,故(2,4)A B ⋂=,故选:A.8.B 【解析】【分析】利用导数研究()f x 的单调递减区间.【详解】由题设,2323()2x x f x x x x+-'=-+=,又定义域为(0,)+∞,令()0f x '<,则223(3)(1)0x x x x +-=+-<,解得31x -<<,故01x <<,∴()f x 在(0,1)上递减.故选:B.9.D 【解析】【分析】分析角度的关系将sin(2)x ωϕ+展开,再合一变形求得()f x 的解析式,再根据图象的相邻两条对称轴相距2π个单位求得周期再求ω即可.【详解】()sin(2)2sin cos()sin()cos cos()sin 2sin cos ()f x x x x x x ωϕϕωϕωϕϕωϕϕϕωϕ=+-+=+++-+()sin()cos sin cos()sin sin x x x x ωϕϕϕωϕωϕϕω=+-+=+-=⎡⎤⎣⎦.即()f x =sin xω又图象的相邻两条对称轴相距2π个单位,故()f x 的周期为π.故22ππωω=⇒=.故选:D本题主要考查了三角函数的和差角公式以及周期的求法,属于基础题型.10.B 【解析】【分析】根据同角三角函数平方关系可求得24cos 18b = ,利用二倍角公式化简所求式子即可得到结果.【详解】2sin18a = ,()2222444sin 1841sin 184cos 18b a ∴=-=-=-=,22222216sin 18cos 184sin 3621cos 72112sin 362sin 36a b ===--∴+.故选:B.11.B 【解析】【分析】解出不等式5132-≤-x x 可得集合A ,由⊆ A B B 可得A B ⊆,然后可得2220-+>ax x 在(3,7]x ∈上恒成立,然后分离参数求解即可.【详解】由5132-≤-x x 得51032x x --≤-,()7023x x -≤-,解得37x <≤,因为⊆ A B B ,所以A B⊆所以可得2220-+>ax x 在(3,7]x ∈上恒成立,即222->x a x 在(3,7]x ∈上恒成立,故只需2max 22-⎛⎫> ⎪⎝⎭x a x ,222211111111,,2241673-⎛⎫⎡⎫=-+=--+∈ ⎪⎪⎢⎝⎭⎣⎭x x x x x x ,当114x =时,2max 21216-⎛⎫= ⎪⎝⎭x x ,故116a >.故选:B 12.C 【解析】【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤;当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.13.35-【解析】【分析】利用同角三角函数的基本关系,分子、分母同除以cos α即可求解.【详解】将原式分子、分母同除以cos α3sin 2cos 3tan 212322sin cos 2tan 1513αααααα++-+===-----故答案为:35-【点睛】本题考查了同角三角函数的基本关系、齐次式,属于基础题.14.2【解析】【分析】由题意可得1和b 是方程2320ax x -+=的两个根,由根与系数的关系可得321,1b b a a+=⨯=,从而可求出b 的值【详解】因为关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个根,所以321,1b b a a+=⨯=,解得1,2a b ==,故答案为:215.12-【解析】【分析】tan tan 6124πππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,然后算出即可.【详解】tan tan1124tan tan 612421tan tan 124ππαπππααππα⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭+=-+==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.故答案为:12-【点睛】本题考查正切函数的和差公式,找出已知角与所求角的关系是解题的关键.16.(1,0)(1,)-È+¥【解析】【分析】分0x >和0x <两种情况讨论x 的范围,根据函数的单调性可得到答案.【详解】因为()f x 是偶函数,且(1)0f -=,所以(1)(1)0f f =-=,又()f x 在(0,)+∞上是减函数,所以()f x 在(,0)-∞上是增函数,①当0x >时,由()0f x x<得()0f x <,又由于()f x 在(0,)+∞上为减函数,且(1)0f =,所以()(1)f x f <,得1x >;②当0x <时,由()0f x x<得()>0f x ,又(1)0f -=,()f x 在(,0)-∞上是增函数,所以()>(1)f x f -,所以10x -<<.综上,原不等式的解集为:(1,0)(1,)-È+¥.故答案为:(1,0)(1,)-È+¥.【点睛】方法点睛:本题主要考查函数相关性质,利用函数性质解不等式,运用函数的奇偶性与单调性的关系是进行区间转换的一种有效手段.奇函数在对称区间上的单调性相同,且()() f x f x -=-.偶函数在对称区间上的单调性相反,且()()() f x f x f x =-=..17.(1)()1,1-;(2)最大值为59,最小值为49-【解析】(1)求出()f x ',令()0f x '<,得到函数()f x 的单调递减区间;(2)求出函数在[]3,3-的单调性,根据极值和端点值,求得最值.【详解】(1)()2999(1)(1)f x x x x =-+-'=,x ∈R令()0f x '<,得11x -<<,所以()f x 的减区间为()1,1-.(2)由(1),令()0f x '>,得1x <-或1x >知:[]3,1x ∈--,()f x 为增函数,[]1,1x ∈-,()f x 为减函数,[]1,3x ∈,()f x 为增函数.()349f -=-,()111f -=,()11f =-,()539f =.所以()f x 在区间[]3,3-上的最大值为59,最小值为49-.【点睛】本题考查了利用导数研究函数的单调性和求函数的最值,属于基础题.18.(1)4cos =5α-,5sin 13β=-;(2)3365【解析】【分析】(1)根据平方关系计算即可得出cos α,sin β;(2)由(1)的结果,结合两角差的余弦公式求解即可.【详解】(1)由3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭,得4cos 5α=-.又由12cos 13b =-,β是第三象限角,得5sin 13β===-.(2)由(1)得4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.(1)答案见解析(2)12a ≤-【解析】【分析】(1)求导数,然后对a 进行分类讨论,利用导数的正负,可得函数()f x 的单调区间;(2)利用(1)中函数的单调性,求得函数在1x =处取得最小值,即可求实数的取值范围.(1)解:求导可得()(1)()(0)>'--=x a x f x x x①0a ≤时,令()0f x '<可得1x <,由于0x >知01x <<;令()0f x '>,得1x >∴函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;②01a <<时,令()0f x '<可得1<<a x ;令()0f x '>,得1x >或x a <,由于0x >知0x a <<或1x >;∴函数()f x 在(,1)a 上单调递减,在(0,),(1,)+∞a 上单调递增;③1a =时,()0f x '≥,函数()y f x =在(0,)+∞上单调递增;④1a >时,令()0f x '<可得1x a <<;令()0f x '>,得x a >或1x <,由于0x >知01x <<或x a>∴函数()f x 在(1,)a 上单调递减,在(0,1),(,)+∞a 上单调递增;(2)由(1)0a ≥时,1(1)02f a =--<,(不符合,舍去)当0a <时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故函数在1x =处取得最小值,所以函数()0f x ≥对定义域内的任意x 恒成立时,只需要(1)0f ≥即可∴12a ≤-.综上,12a ≤-.20.(1)最小值为 2e -,最大值为2;(2)(],1ln 2-∞+.【解析】【分析】(1)首先求出函数的导函数,即可得到函数的单调性,从而得到函数的最小值,再求出区间端点的函数值,即可求出函数在区间上的最大值;(2)首先求出函数的定义域,参变分离,即可得到2ln x a x +≥恒成立,令()2 ln =+g x x x ,利用导数研究函数的单调性,即可求出函数的最小值,从而得解;【详解】(1)当2a =时,() ln 22=-+f x x x x ,()ln 1f x x '=-由()0f x '<得0 x e <<,由()0f x '>得x e >,所以()f x 在()0,e 上单调递减,在()e +∞,上单调递增,且() ln 2 2 2=-+=-f e e e e e ,() 1 1ln12 2 0f =-+=,()2222 ln 2 2 2-+==f e e e e 则函数()f x 在区间21,e ⎡⎤⎣⎦上的最小值为 2e -,最大值为2.(2)由题得函数的定义域为()0,∞+,若()0f x ≥恒成立,则ln 20x x ax -+≥,即2ln x a x+≥恒成立,令()2 ln =+g x x x ,则()22122 x g x x x x -'=-=,当02x <<时,()0g x '<;当2x >时,()0g x '>,所以()g x 在()0,2上单调递减,在()2,+∞上单调递增,则()min 21ln 2()==+g x g ,所以1ln 2a ≤+,故a 的取值范围为(],1ln 2-∞+.21.(1)3π;(2【解析】(1)利用正弦定理的边角互化以及两角和的正弦公式可得sin()2sin cos A B C B +=,再利用三角形的内角和性质以及诱导公式即可求解.(2)根据余弦定理求出3ac =,再由三角形的面积公式即可求解.【详解】解:(1)由正弦定理知sin cos sin cos 2sin cos A B B A C B +=,sin()2sin cos A B C B +=,因为,(0,)A B C C ππ+=-∈,所以sin 2sin cos C C B =,由sin 0C ≠,故1cos 2B =.因为(0,)B π∈,所以3B π=.(2)由余弦定理及2a c -=知2222cos b a c ac B =+-.227a c ac ∴+-=,2()7a c ac ∴-+=,47ac ∴+=,3ac ∴=.11sin 32224ABC S ac B ∴==⨯⨯= .22.(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围.【详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>,当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.。
高考复习三角函数学生版
(1)求函数 的最小正周期;(2)已知 中,角 所对的边长分别为 ,若 , ,求 的面积 .
23.设函数 ( ),其图象的两个相邻对称中心的距离为 .
(1)求函数 的解析式;(2)若△ 的内角为 所对的边分别为 (其中 ),且 , , 面积为 ,求 的值.
24.已知 分别为△ABC三个内角A、B、C的对边, .
高考复习---三角函数
2.将函数 的图象向右平移 个单位,再向上平移1个单位,所得函数图象对应的解析式为( )
A. B. C. D.
3.函数 (其中A>0, )的图象如图所示,为了得到 的图象,则只需将g(x)=sin2x的图象()
A.向右平移 个长度单位B.向左平移 个长度单位
C.向右平移 个长度单位D.向左平移 个长度单位
4.若 则 的值是( )
A. B. C. D.
5.已知 ,则 ()A.2 B.1 C.4 D.
6.已知函数 的部分图象如图所示,则函数 的解析式为( )
A. B.
C. D.
7.已知 ,则 的值是()
A. B. C. D.
8.函数 的图象的对称中心是()
A. B.
C. D.
9.若 ,则 的值为()
A. B. C. D.
(1)求A;(2)若 ,△ABC的面积为 ,求 .
25.在 中, 分别是角 的对边, , ;
(Ⅰ)求 的值;
(Ⅱ)若 ,求边 的长.
(1)求角 的大小;(2)若 , ,求 的面积.
20.已知函数 ( ).
(1)求 的单调递增区间;(2)在锐角三角形 中, 、 、 分别是角 、 、 的对边,若 , , 的面积为 ,求 的值.
21.已知函数f(x)=sin cos +cos2 -
高考数学模拟试卷复习试题三角函数同角三角形函数基本关系式及诱导公式
高考数学模拟试卷复习试题三角函数同角三角形函数基本关系式及诱导公式A 基础巩固训练1. 【甘肃天水市模拟】】已知51sin()25πα+=,那么cos α=( ) A .25- B .15- C .25 D .152. 【·江苏南京调研】已知2tan α·sin α=3,-π2<α<0,则cos ⎝⎛⎭⎫α-π6的值是( )A .0 B.32C .1 D.123.cos 300°=( )A .-32B .-12C.12D.324. 【浙江二统】已知31)22015sin(=+απ,则)2cos(a -π的值为( ) A .31 B .31- C .97 D .97-5.【质检】向量()1,tan ,cos ,13a b αα⎛⎫== ⎪⎝⎭,且||a b ,则cos 2πα⎛⎫+⎪⎝⎭= ( ) A .31-B .31C .32-D .322-B 能力提升训练1.【青岛一模】若角α的终边上有一点P(-4,a),且sin α·cos α=34,则a 的值为() A .4 3B .±43C .-43或-433D. 32. 【浙江联考】已知sin cos 2,αα-=(0,)απ∈,则tan α=( )A .1B .1C .12D .2 3.【泉州五中】已知tan 2θ=,则22sin sin cos cos θθθθ=-+.4.【资阳市三模】已知1sin()23πα+=,则cos()πα+=_________.5.在△ABC 中,3sin π2-A =3sin(π-A),且cos A =-3cos(π-B),则C 等于( )A.π3B.π4C.π2D.2π3C 思维扩展训练1.【南通调研】已知1+sin x cos x =-12,那么cos xsin x -1的值是()A.12 B .-12C .2D .-22.【南开中学】已知55sin α=,则44sin cos αα-的值为. 3. 已知32)6sin(=+απ,则=-)3cos(απ. 4.【成都二模】若sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin ⎝⎛⎭⎫3π2-θ=________. 5.【·镇江统考】如图,单位圆(半径为1的圆)的圆心O 为坐标原点,单位圆与y 轴的正半轴交于点A ,与钝角α的终边OB 交于点B(xB ,yB),设∠BAO =β.(1)用β表示α;(2)如果 sin β=45,求点B(xB ,yB)坐标;(3)求xB -yB 的最小值.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作P P′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学考复习 (四) 必修4《三角函数》复习题一一 任意角的概念与弧度制 (一)角的概念的推广 1、角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角。
按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做 ,顺时针方向的叫做 ;当射线没有旋转时,我们把它叫做 。
习惯上将平面直角坐标系x 轴正半轴作为角的 ,射线旋转停止时对应的边叫角的 。
2、特殊命名的角的定义:(1)正角,负角,零角 :见上文。
(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边落在坐标轴上的角终边在x 轴上的角的集合: 终边在y 轴上的角的集合: 终边在坐标轴上的角的集合:(4)终边相同的角:与α终边相同的角x=(5) 终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 注:(1)角的集合表示形式不唯一.(2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1、弧度制的定义:2、角度与弧度的换算公式:360°= π 180°= 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为 数,负角的弧度数为 数,零角的弧度数为 . 一个式子中不能角度,弧度混用. 二 任意角三角函数 (一)三角函数的定义 1、任意角的三角函数定义正弦sin α= ,余弦cos α= ,正切tan α= 2、三角函数的定义域:三角函数 定义域=)(x f sin x =)(x f cos x =)(x f tan x(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1) 表示α角的正弦值,叫做正弦线。
表示α角的余弦值,叫做余弦线。
如图(2) 表示α角的正切值,叫做正切线。
注:线段长度表示三角函数值大小,线段方向表示三角函数值正负(三)同角三角函数的基本关系式同角三角函数关系式 (1) 商数关系: (2) 平方关系: (四)诱导公式 诱导公式(1): 诱导公式(2):诱导公式(3): 诱导公式(4):诱导公式(5):ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-一、选择题:1、下列角中终边与330相同的角是( ) A .30 B .30- C .630 D .630-2、下列各条结论中正确的是( )A .终边相同的角都相等B .钝角是第二象限的角C .第一象限的角是锐角D .第四象限的角是负角 3、若α为锐角,()180k k α⋅+∈Z 所在的象限是( ) A .第一象限B .第一、二象限C .第一、三象限D .第一、四象限4、若α是第一象限的角,则2α所在的象限是( ) A .第一象限B .第一、二象限C .第一、三象限D .第一、四象限5、半径为cm π,中心角为120所对的弧长是( )A .3cm πB .23cm πC .23cm πD .223cm π 6、下列各组中终边相同的是( ) A .()21k π+与()41k π± B .2k π与2k ππ+ C .6k ππ+与26k ππ± D .3k ππ±与3k π 7、若sin 0tan αα<且cos tan 0αα⋅<,则角α是( ) A .第一象限B .第二象限C .第三象限D .第四象限8、函数cos sin cos sin y αααα=+的值域是( ) A .{}2 B .{}2,2- C .{}2,0,2- D .{}2- 9、已知α是第三象限角,则sin cos αα+( ) A .大于0 B .小于0C .有可能等于0D .不能确定其正负10、()4cos ,0,5ααπ=∈,则tan α的值等于( ) A .43 B .43 C .43± D .34±11、若13tan ,32απαπ=<<,则sin cos αα⋅的值为( )A .310±B .310CD. 12、已知cos sin 2αα-=-,则sin cos αα⋅的值为( ) A .18B .18±C .14D .14±13、如果α、β满足αβπ-=,那么下列式子中正确的是( ) A .sin sin αβ= B .cos cos αβ= C .tan tan αβ= D .11cos cos αβ= 14、已知()3cos 5πα+=-,且α是第四象限角,则()sin 2πα-+的值是( ) A .45B .35-C .45-D .3515、()()()2sin cos cos 1πααπα----+的值是( )A .1B .22sin αC .0D .216、若292925sin cos tan 634πππ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭的值是( ) A .1-B .2-C .0D .2二、填空题:17、α是第三象限的角,则4α是第_____象限的角. 18、写出720-到720之间与1050-终边相同的角的集合是 _____________ . 19、半径为()0a a >的圆中,6π弧度圆周角所对的弧长是__________;长为2a 的弧所对的圆周角是___________弧度.20、22sin 270cos902tan315sin180a b ab b ++-=______ ___. 21、已知角α的终边经过点()5,12P -,则sin cos αα+=________________. 22、化简:()()()()cos 2cos tan tan 2θπθππθπθ-+-+-+-=_______________.复习(四)答案1、B2、B3、C4、C5、C6、A7、C8、C9、B 10、B 11、B 12、A 13、C 14、C 15、D 16、C17、一、二、三、四 18、{}690,330,30,390-- 19、6a π220、 22a ab -- 21、713- 22、2tan θ-复习(五)答案1、D2、D3、A4、C5、C6、A7、A8、B9、52± 10、 6 8π 4π- 11、 4 2-12、sin 3y x π⎛⎫=-+ ⎪⎝⎭ 13、2sin 23y x π⎛⎫=+ ⎪⎝⎭ 14、右 2π15、()5,1212k k k ππππ⎡⎤-+∈Z ⎢⎥⎣⎦1、下列各组函数的图象相同的是( ) A .sin y x =与()sin y x π=+ B .sin 2y x π⎛⎫=-⎪⎝⎭与sin 2y x π⎛⎫=-⎪⎝⎭C .sin y x =与()sin y x =-D .()sin 2y x π=+与sin y x =2、sin 3y x π⎛⎫=-⎪⎝⎭的单调减区间是( )A .()5,66k k k ππππ⎡⎤-+∈Z ⎢⎥⎣⎦B .()52,266k k k ππππ⎡⎤-+∈Z ⎢⎥⎣⎦C .()7,66k k k ππππ⎡⎤--∈Z ⎢⎥⎣⎦D .()72,266k k k ππππ⎡⎤--∈Z ⎢⎥⎣⎦3、cos sin y x x =⋅是( ) A .奇函数B .偶函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数4、3tan 4y x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .πB .2πC .1D .2 5、tan 4y x π⎛⎫=+ ⎪⎝⎭的定义域是( )A .,4x x x R π⎧⎫≠∈⎨⎬⎩⎭B .,4x x x R π⎧⎫≠-∈⎨⎬⎩⎭C .(),4x x k x R k ππ⎧⎫≠+∈∈Z ⎨⎬⎩⎭D .()32,4x x k x R k ππ⎧⎫≠+∈∈Z ⎨⎬⎩⎭6、函数3sin 33y x π⎛⎫=+ ⎪⎝⎭的图象可看成3sin3y x =的图象按如下平移变换而得到的( ) A .向左平移9π个单位 B .向右平移9π个单位 C .向左平移3π个单位 D .向右平移3π个单位 7、若函数sin y x =的图象上的每个点的纵坐标不变,将横坐标缩小为原来的13,再将图象沿x 轴向右平移3π个单位,则新图象对应的函数式是( ) A .sin3y x =-B .1sin 33y x π⎛⎫=+⎪⎝⎭ C .sin 33y x π⎛⎫=- ⎪⎝⎭ D .sin 39y x π⎛⎫=- ⎪⎝⎭8、()sin y x ωϕ=A +的曲线最高点为(,离它最近的一个最低点是(10,,则它的解析式为( ) A .()84x f x π⎛⎫=+ ⎪⎝⎭B .()84f x x ππ⎛⎫=+ ⎪⎝⎭C .()84x f x π⎛⎫=- ⎪⎝⎭D .()84f x x ππ⎛⎫=-⎪⎝⎭9、若函数2tan 25y ax π⎛⎫=-⎪⎝⎭的最小正周期是5π,则a =_____________. 10、16sin 44y x π⎛⎫=-⎪⎝⎭的振幅是_______,最小正周期是_________,初相是__________.11、3sin 314y x π⎛⎫=++ ⎪⎝⎭的最大值是_____________,最小值是_____________. 12、将()sin y x =-的图象向右平移3π个单位,所得图象的解析式为___________________. 13、在同一周期内,当12x π=时,函数()sin y x ωϕ=A +取得最大值是2,当712x π=时,取得最小值是2-,则函数的解析式为______________________________________.14、函数4y x π⎛⎫=- ⎪⎝⎭的图象可由函数4y x π⎛⎫=+ ⎪⎝⎭的图象向_____平移_____个单位而得到的.15、函数3sin 213y x π⎛⎫=-+ ⎪⎝⎭的增区间是______________________________.。