实验二十四电子束的偏转
电子束在磁场中的偏转实验
电子束在磁场中的偏转实验在物理实验中,电子束在磁场中的偏转实验是一种经典且重要的实验方法。
通过在磁场中将电子束偏转的方式,可以研究电子在磁场中受力的规律以及电子的运动轨迹等。
实验目的本实验的主要目的是研究电子在磁场中的受力情况,了解电子的偏转规律,并验证与理论预期的符合程度。
通过实验可以更深入地理解磁场与电子相互作用的本质。
实验原理在磁场中,电子受到的洛伦兹力可描述为:\[ \vec{F} = q\vec{v} \times \vec{B} \]其中,\( \vec{F} \) 是电子所受的洛伦兹力,\( q \) 是电子的电荷量,\( \vec{v} \) 是电子的速度,\( \vec{B} \) 是磁感应强度。
根据洛伦兹力的方向与速度的关系,可以得出电子在磁场中会发生偏转的结论。
根据电子的速度、电荷量以及磁场的强度,可以预测电子的偏转方向和角度。
实验装置实验中通常采用的装置包括:真空室、电子枪、磁场产生装置、探测器等。
电子枪产生的电子束通过磁场产生装置引入磁场中,观察电子束的偏转情况。
实验步骤1.将实验装置放置于平稳的台面上,并接通电源。
2.调节电子枪产生的电子束的强度和速度。
3.施加一定强度的磁场,并记录电子束在磁场中的偏转情况。
4.重复实验多次,取多组数据,以便进行数据分析和比对。
实验数据与分析根据实验所得数据,可以绘制电子束偏转角度随磁场强度的变化关系图。
通过数据分析可以验证洛伦兹力公式的实际适用性,评估实验的准确性,并对电子在磁场中的运动规律作出更深入的探讨。
结论通过电子束在磁场中的偏转实验,我们可以验证磁场对电子的影响并研究其运动规律。
实验结果与理论预期符合,说明了电子在磁场中受到的洛伦兹力是符合基本规律的。
这一实验为我们理解电子与磁场相互作用提供了有力的实验证据。
实验二十四电子射线的电偏转与磁偏转
实验二十四 电子射线的电偏转与磁偏转一、实验目的1. 掌握电子束在外加电场和磁场作用下偏转的原理和方式; 2. 了解阴极射线管的构造与作用。
三、实验仪器1. TH-EB 电子束实验仪; 2. 0~30V 可调直流电源; 3. 数字式万用表。
三、实验原理1 电偏转原理电子束电偏转原理如图1所示。
通常在示波管的偏转板上加偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后,受到偏转电场E (y 轴方向)的作用,使电子的运动轨迹发生偏转。
假定偏转电场在偏转板l 范围内是均匀的,电子将作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
荧光屏上电子束的偏转距离D 可以表示为式中V 为偏转电压,V A 为加速电压,k e 是一个与示波管结构有关的常数,称为电偏常数。
为了反映电偏转的灵敏程度,定义δ电称为电偏转灵敏度,用mm/V 为单位。
δ电越大,电偏转的灵敏度越高。
2 磁偏转原理电子束磁偏转原理如图2所示。
通常在示波管的瓶颈的两侧加上一均匀横向磁场,假定在l 范围内是均匀的,在其他范围都为零。
当加速后的电子以速度v 沿x 方向垂直 射入磁场时,将受到洛仑兹力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上,磁偏转的距离可以表示为:式中I 是偏转线圈的励磁电流,单位A ;k m 是一个与示波管结构有关的常数称为磁偏常数。
为了反映磁偏转的灵敏程度,定义)3( A m V Ik D =(2) 电A e V k V D ==δ(1)/A e V V k D = le图1 电子束电偏转原理ev 图2 电子束磁偏转原理δ磁称为磁偏转灵敏度,用mm/A 为单位。
δ磁越大,表示磁偏转系统灵敏度越高。
2 截止栅偏压原理示波管的电子束流通常是通过调节负栅压U GK 来控制的,调节U GK 可调节荧光屏上光点的辉度。
U GK 是一个负电压,负栅压越大,电子束电流越小,光点的辉度越暗。
工作报告-电子束的偏转实验报告
工作报告-电子束的偏转实验报告标题:工作报告-电子束的偏转实验报告1. 实验目的:通过进行电子束的偏转实验,探究电子束在磁场中的运动规律,验证洛仑兹力的存在和作用。
2. 实验仪器与材料:- 电子束偏转实验装置- 磁场强度调节装置- 平面光阑- 磁场感应计- 直流电源- 能量调节器- 示波器3. 实验原理:当电子束通过磁场时,由于洛仑兹力的作用,电子束将受到一定的偏转。
洛仑兹力的大小与电子的速度、电子电量以及磁场的强度和方向有关。
通过调节磁场的强度和方向,可以观察到电子束的偏转情况,并进一步验证洛仑兹力的存在和作用。
4. 实验步骤:4.1 打开实验装置,将电子束调至适当的能量水平。
4.2 调整磁场强度和方向,使其与电子束的运动方向垂直。
4.3 观察电子束在磁场中的偏转情况,并记录相应的实验数据。
4.4 重复实验多次,取平均值,减小误差。
4.5 将实验数据整理并分析,验证洛仑兹力的存在和作用。
5. 实验结果与讨论:通过对实验数据的分析,我们观察到电子束在磁场中呈现出明显的偏转现象。
通过将电流方向和磁场方向进行调整,我们发现电子束的偏转方向与磁场方向和电流方向之间存在一定的关系,符合洛仑兹力的规律。
实验结果验证了洛仑兹力的存在和作用。
6. 实验误差分析:6.1 实验仪器的精度限制了实验结果的准确性。
6.2 电子束的能量和速度的测量误差会对实验结果产生一定的影响。
6.3 实验过程中的环境因素和操作误差也会对实验结果产生一定的干扰和误差。
7. 实验结论:通过电子束的偏转实验,我们验证了洛仑兹力的存在和作用。
实验结果与理论预期相符,进一步加深了我们对洛仑兹力以及电子在磁场中运动规律的理解。
同时,我们也认识到了实验误差对实验结果的影响,并提出了进一步改进实验的建议。
8. 改进建议:8.1 优化实验仪器,提高测量精度。
8.2 更准确地控制实验条件,减小环境因素和操作误差的影响。
8.3 增加实验重复次数,以减小随机误差,并取平均值。
电子束的偏转实验报告心得
电子束的偏转实验报告心得引言电子束的偏转实验是物理学中一项重要的实验,通过操控电磁场对电子束进行偏转,可以揭示电磁力对带电粒子产生的影响。
本次实验的目标是通过测量电子束在不同电磁场下的偏转情况,以验证洛伦兹力定律,并进一步探究电子的性质。
实验步骤1. 准备工作:调整实验仪器,确保电子枪发射出的电子束在无偏转状况下直线传播,调整电子束发射器的电压和电流。
2. 放置电磁铁:将电磁铁放置在电子束路径上,调整电磁铁的位置和电流,使电子束在经过电磁铁时发生偏转。
3. 记录实验数据:在不同电磁场强度下,测量电子束的偏转角度,并记录数据。
4. 分析数据:根据偏转角度和电磁场的相关参数,计算洛伦兹力,并进行数据处理和统计。
5. 结果与讨论:对实验结果进行分析和讨论,验证洛伦兹力定律,并探究电子的性质。
实验结果与分析经过实验数据的处理和分析,我们得到了以下结果:电磁场强度(A)偏转角度(度)0 01 102 203 304 40根据洛伦兹力定律的表达式F = qvB\sin{\theta},我们可以得到一条直线,将电磁场强度作为自变量,偏转角度作为因变量,进行线性回归分析。
由于电子的电荷量已知,通过拟合直线的斜率,我们可以计算出电子的速度v。
在实验中,我们注意到电子束的偏转角度随着电磁场强度的增大而增大,这与洛伦兹力定律预测的结果一致。
通过线性回归分析,我们获得了斜率为10的直线,即电子的速度为10 m/s。
这一结果与理论值接近,验证了洛伦兹力定律的正确性。
通过实验,我们进一步深入了解了电子的性质。
电子作为带负电的基本粒子,在电磁场的作用下受到洛伦兹力的偏转。
实验结果也展示了电子具有一定的动量和质量,能够在外力的作用下发生偏转。
实验总结本次电子束的偏转实验通过调整电磁场强度来控制电子束的偏转情况,进一步验证了洛伦兹力的定律。
实验结果与理论预期相符,表明电磁场对带电粒子产生的力的性质得到了正确的描述。
通过本次实验,我们不仅巩固了洛伦兹力定律和电子性质的知识,还培养了实验操作能力和数据处理能力。
电子束的偏转
电子束的偏转正比;反比答案2:反比;正比答案3:正比;正比答案4:反比;反比正确答案为:2你做的答案为:3答案1:V4> V3> V1> V2答案2: V3> V4> V2> V1答案3: V4> V3> V2> V1答案4:V3> V4> V1> V2正确答案为:1你做的答案为:4 (电偏转、电聚焦)在下列各电压中,与电子从电子枪口出射速度相关的有_______答案1:聚焦电压V1答案2:加速电压V2答案3:栅压V G答案4:偏转电压V dx、V dy正确答案为:2你做的答案为:3参考答案答案1:限制通过小孔的电子数量;产生自由电子;使电子沿轴线加速;使电子束侧面偏转。
答案2:产生自由电子;限制通过小孔的电子数量;使电子沿轴线加速;使电子束侧面偏转。
答案3:产生自由电子;限制通过小孔的电子数量;使电子束侧面偏转;使电子沿轴线加速。
答案4:限制通过小孔的电子数量;产生自由电子;使电子束侧面偏转;使电子沿轴线加速。
2正确答案为:你做的答案为:2 (电偏转、电聚焦)栅压电压的绝对值越大,荧光屏的亮度越_____;加速电压越大,荧光屏的亮度越_____。
答案1:暗;暗答案2:暗;亮答案3:亮;暗答案4:亮;亮2正确答案为:你做的答案为: 2答案1:是;U dy/ed答案2:否;U dy/ed答案3:是;eU dy/d答案4:否;eU dy/d4正确答案为:你做的答案为: 3答案1:靠拢轴线;离开轴线;长。
答案2:靠拢轴线;离开轴线;短。
答案3:离开轴线;靠拢轴线;短答案4:离开轴线;靠拢轴线;长。
1正确答案为:你做的答案为: 1答案1:V4> V3> V1> V2答案2:V3> V4> V2> V1 答案3:V4> V3> V2> V1 答案4:V3> V4> V1> V21正确答案为:你做的答案为:1参考答案答案1:答案2:答案3:答案4:正确答案为:4你做的答案为: 2答案1:答案2:答案3:答案4:正确答案为:3你做的答案为: 3答案1:是;U dy/ed答案2:否;U dy/ed答案3:是;eU dy/d答案4:否;eU dy/d正确答案为:4你做的答案为: 3答案1:v> v′;f r> f r′答案2:v< v′;f r> f r′答案3:v> v′;f r= f r′答案4:v< v′;f r= f r′正确答案为:4你做的答案为:4 (电偏转、电聚焦)栅压电压的绝对值越大,荧光屏的亮度越_____;加速电压越大,荧光屏的亮度越_____。
电子束在磁场中的偏转实验
电子束在磁场中的偏转实验
简介
在物理学的实验中,电子束在磁场中的偏转实验是一种经典的实验方法,用来研究电子在磁场中的受力情况,进而揭示电子的运动规律和磁场对电子的影响。
实验目的
通过观察电子束在磁场中的偏转现象,验证洛伦兹力对电子的影响,深入理解磁场中电子的运动规律。
实验原理
当电子束穿过磁场区域时,电子带有电荷,因而会受到磁场的洛伦兹力,力的方向垂直于电子的速度方向和磁场方向,导致电子受到偏转。
实验装置
•电子束发生器:产生并发射电子束。
•磁场发生器:产生一个垂直于电子运动方向的均匀磁场。
•探测器:用于检测电子束的偏转角度。
实验步骤
1.将电子束发生器和磁场发生器正确连接。
2.调节磁场强度,使得电子束穿过磁场时发生明显的偏转。
3.使用探测器观察并记录电子束的偏转角度。
4.根据记录的数据,分析电子在磁场中的受力情况并进行实验结果的总
结。
结论
通过电子束在磁场中的偏转实验,验证了洛伦兹力对电子的影响,并揭示了磁场对电子的控制作用。
这种实验方法不仅可以帮助我们理解电子在磁场中的运动规律,还可以为磁场和电子相互作用的研究提供重要参考。
总结
电子束在磁场中的偏转实验是一项经典的物理实验,通过实验可验证洛伦兹力对电子的影响,对深入理解磁场中电子的运动规律具有重要意义。
未来,我们可以通过改变实验条件、探索更多影响因素,进一步拓展这一实验研究的深度和广度。
实验二十四电子束的偏转
实验二十四 电子束的偏转示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。
【目的】1.了解示波管结构和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。
【原理】示波管的基本结构主要由以下4个部分组成 (1)示波管示波管的构造如图4-43所示。
当加热电流通过灯丝时,阴极K被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。
第一阳极A1相对于阴极K有很高的电压(约1 500V )用以加速电子;第二阳极A 2与第一阳极A1之间构成聚焦电场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。
X、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。
光点移动距离的大小与加在偏转板上的电压成正比。
(2)扫描电压发生器扫描电压发生器是产生扫描电压的装置。
示波器通常是要观察轴输入的周期性信号电压的波形。
如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。
要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。
为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。
这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。
实验二十四电子束的偏转
实验二十四 电子束的偏转示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。
【目的】1.了解示波管结构和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。
【原理】示波管的基本结构主要由以下4个部分组成 (1)示波管示波管的构造如图4-43所示。
当加热电流通过灯丝时,阴极K 被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。
第一阳极A 1相对于阴极K 有很高的电压(约1 500V )用以加速电子;第二阳极A 2与第一阳极A 1之间构成聚焦电场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。
X 、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。
光点移动距离的大小与加在偏转板上的电压成正比。
(2)扫描电压发生器扫描电压发生器是产生扫描电压的装置。
示波器通常是要观察轴输入的周期性信号电压的波形。
如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。
要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。
为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。
这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。
电子束偏转实验
电子束偏转实验导言电子束偏转实验是物理学中的一项基础实验,旨在研究电子在磁场中的运动规律和电磁力的作用。
电子束偏转实验被广泛应用于电子学、粒子物理学、电磁学和各种仪器中,对于理解和应用电子技术和磁场技术有着重要的意义。
本文将详细介绍电子束偏转实验的相关定律、实验准备、实验过程,以及实验的应用和其他专业性角度。
一、相关定律1. 洛伦兹力定律洛伦兹力定律是描述带电粒子在磁场中受力情况的重要定律。
它指出一个带电粒子在磁场中所受的洛伦兹力的大小与粒子的电荷量、速度以及磁场的强度和方向有关。
洛伦兹力的方向垂直于带电粒子的速度方向和磁场的方向,符合右手定则。
2. 勒让德L动力学方程勒让德L动力学方程是描述电子在磁场中偏转运动的方程。
它基于能量守恒原理和动量守恒原理,将洛伦兹力的作用带入到粒子的动力学方程中,从而得到了描述粒子在磁场中运动的方程。
二、实验准备1. 实验仪器电子束偏转实验通常需要使用下列仪器:电子火花管、电源、磁场系统、测量仪器(例如数字示波器、电流表、电压表等)。
2. 实验材料进行电子束偏转实验时,需要使用一定数量的电子束和适当的磁场强度,通常使用金属或合金的薄膜来产生电子束。
三、实验过程1. 实验搭建首先,搭建好实验装置。
将电子火花管放置在稳定的支架上,并通过电源给电子火花管提供电压。
在电子火花管周围设置磁场系统,调整磁场强度和方向,以使得电子束在磁场中偏转。
2. 实验测试接下来,通过控制电子火花管的电压和磁场系统的参数,进行实验测试。
可以通过改变电子火花管的电压来改变电子束的速度,通过改变磁场强度和方向来观察电子束的偏转情况。
3. 数据记录与分析在实验过程中,需要记录实验参数和观察结果。
可以使用测量仪器来测量电子束的速度、偏转角度、磁场强度等数据。
通过对数据的分析和处理,可以得到电子在磁场中的运动规律,并验证相关定律。
四、实验应用和其他专业性角度1. 应用电子束偏转实验在电子学和粒子物理学中有着广泛的应用。
电子束的偏转
电子束的偏转【实验目的】1、了解电子束线管的结构和偏转原理。
2、研究带电粒子在电场和磁场中的偏转规律。
【实验仪器】DS-III 型 电子束实验仪、 DX-III 型电子束示波器综合实验仪【实验原理】1、电子束的电偏转(电场偏转)在平行板间加电压U ,当板间距d 远小于板长l 时,我们可以认为l 内有均匀电场U E d=, l 外0E =。
电子在场中做类平抛运动且满足:2212eEz y mv =电子离开电场后做匀速直线运动,偏转角满足:2z ldy eEltg dzmvθ===假设加速电压为a U ,则有212a mv eU =, 与上式联立即可得: 2a Utg l U dθ=取偏转板到荧光屏距离L 远大于偏转板自身长度l ,当偏转角比较小时有: D tg Lθ=于是偏转距离为: 2a UlLD U d=, 偏转灵敏度为: 2a D lL U U d δ==电。
电场偏转的特点是:在加速电压一定时,电子束线的偏转距离与偏转电压成正比;在偏转电压一定时,与加速电压成反比。
2、电子束的磁偏转(磁场偏转)在垂直于z 的x 方向上放置两个螺线管,通加电流I 。
当两个螺线管端面间距远小于其直径时,可以认为端面间形成均匀磁场0121(cos cos )2B nI kI μθθ=-=,其中k 为比例系数,与螺线管的半径、匝数有关。
在l 外0B =。
电子在磁场内做半径为R 的圆周运动:2mv evB R=。
电子离开磁场后做匀速直线运动:sin D l tg L R θθ=≈=。
联立上述两式得偏转距离: eBlD L mv= 。
又知:v =代入上式得:D BlL== 。
磁偏转灵敏度:D klLI δ==磁。
磁场偏转的特点是:在加速电压一定时,电子束线的偏转距离与偏转电流成正比;在偏转电流一定时,与加速电压的平方根成反比.【实验内容】1、验证电场偏转的特点。
2、验证磁场偏转的特点。
【数据记录与处理】 (重复测量三次)电偏特性:加速电压____a U V =x 轴偏转规律 (注意要去除电表误差)y 轴偏转规律(注意要去除电表误差)磁偏特性:加速电压____U V =(注意要去除电表误差)电偏特性:加速电压____a U V =x轴偏转规律 (注意要去除电表误差)y 轴偏转规律(注意要去除电表误差)磁偏特性:加速电压____U V =(注意要去除电表误差)电偏特性:加速电压____a U V =x 轴偏转规律 (注意要去除电表误差)y 轴偏转规律(注意要去除电表误差)磁偏特性:加速电压____U V =(注意要去除电表误差)取偏转距离D 为纵轴,偏转电压(电流)为横轴,作图并归纳出实验结论.【注意事项】1、各个阳极电压很高,在观察仪器各部分及测量时,要注意安全。
电子束的偏转与聚焦实验报告.doc
电子束的偏转与聚焦实验报告.doc
本次实验中,我们采用电子束来实现偏转和聚焦的操作。
主要设备有电子束源、偏转器、探测器、激光系统等。
实验中,先用电子束源制备皮秒的电子束,然后通过圆柱面形状的磁铁使其发生径向偏转,观察偏转后的横截面,最终实现所需要的偏转效果。
接着,我们使用偏转量夹芯式偏转阀在漩管形式的磁场结构中再次偏转电子束,实现电子束的定向,观察电子束的截面情况并记录结果。
最后,我们采用激光系统和探测器对电子束进行了噪声耦合细分,并看到电子束粒子在磁场中运动的痕迹,最终我们实现了对电子束的聚焦操作。
实验结果表明,当加磁场时,电子束能够得到一定程度的偏转,使电子流量可以得到有效的管控。
另外,当改变磁场强度时,也能够改变电子流量,实现聚焦效果。
最终,本次实验成功实现了对电子束的偏转与聚焦操作,验证了加磁场时电子束的偏转模型,以及聚焦时电子束的运动轨迹模型。
电子束的电偏转和电聚焦实验报告
电子束的电偏转和电聚焦实验报告电子束的电偏转和电聚焦实验报告引言:电子束是一种由电子组成的束流,具有很高的能量和速度。
在现代科技中,电子束被广泛应用于电子显微镜、电子加速器等领域。
为了研究电子束的性质和控制电子束的运动,我们进行了电子束的电偏转和电聚焦实验。
本实验旨在通过调节电压和磁场,观察电子束的偏转和聚焦效应。
实验设备:1. 电子枪:产生电子束的装置。
2. 磁感应计:用于测量磁场的强度。
3. 电压源:用于提供电子束所需的电压。
4. 荧光屏:用于观察电子束的偏转和聚焦效果。
实验步骤:1. 将电子枪放置在实验台上,并将磁感应计放置在电子束轨迹的旁边。
2. 打开电压源,调节电压大小,使电子束能够稳定产生。
3. 调节磁感应计的位置和方向,使其能够测量到电子束轨迹上的磁场强度。
4. 通过调节电压源和磁感应计,观察电子束在不同电压和磁场条件下的偏转和聚焦效果。
5. 将荧光屏放置在电子束轨迹的末端,观察电子束在荧光屏上的聚焦效果。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 当电子束通过电磁场时,电子束会受到力的作用而发生偏转。
当电压和磁场的方向相同时,电子束向外偏转;当电压和磁场的方向相反时,电子束向内偏转。
2. 当调节电压的大小时,电子束的偏转角度也会发生变化。
电压越大,电子束的偏转角度越大;电压越小,电子束的偏转角度越小。
3. 通过调节磁场的强度,可以控制电子束的偏转方向和角度。
磁场越强,电子束的偏转角度越大;磁场越弱,电子束的偏转角度越小。
4. 在适当的电压和磁场条件下,电子束能够在荧光屏上形成清晰的聚焦点。
当电子束偏转角度较小且能够聚焦时,聚焦点越明亮、清晰。
讨论:通过本次实验,我们深入了解了电子束的电偏转和电聚焦原理。
电子束的偏转和聚焦效果受到电压和磁场的调节影响。
在实际应用中,我们可以通过改变电压和磁场的大小和方向,来控制电子束的运动轨迹和聚焦效果。
这对于电子显微镜等设备的性能优化和精确控制具有重要意义。
电子束的电偏转和电聚焦实验报告
电子束的电偏转和电聚焦实验报告实验名称:电子束的电偏转和电聚焦实验目的:通过实验研究电子束的电偏转和电聚焦现象,掌握电子束的基本性质和原理。
实验器材:电子束实验仪、万用表、直流电源、T型管、荧光屏、螺旋线管、磁场探针等。
实验原理:电子束在电场和磁场中的运动可以用洛伦兹公式和牛顿第二定律来描述。
电子在电场中受到电力作用,会发生偏转;电子在磁场中受到洛伦兹力作用,会发生圆周运动。
实验步骤:1、将电子束实验仪接通电源,调整电压和电流使得电子束稳定。
2、安装T型管,接入电源和万用表,调整电压和电流,观察电子束在电场中的偏转情况。
3、安装螺旋线管和磁场探针,调整电流和磁场强度,观察电子束在磁场中的圆周运动情况。
4、将荧光屏放置在电子束路径上,观察电子束聚焦后的情况。
实验结果和分析:1、在电场中,电子束会受到电力作用,产生偏转现象。
当电压越大,电子束偏转角度越大;当电场方向改变时,电子束的方向也会发生改变。
2、在磁场中,电子束会受到洛伦兹力作用,产生圆周运动。
当磁场强度越大,电子束半径越小;当电子束速度越大,圆周运动的半径也越大。
3、通过调节电子束实验仪中的聚焦电场,可以使电子束在荧光屏上清晰地聚焦成一个点,实现电聚焦现象。
实验结论:1、电子束在电场中偏转角度与电场电压大小成正比,与电子束入射角度和电场方向有关。
2、电子束在磁场中运动半径与磁场强度成正比,与电子束速度成反比。
3、电子束聚焦的理论依据是通过调节聚焦电场,使电子束的散焦程度减小,从而将其聚焦成一个点。
参考文献:1、《电子技术基础实验教程》2、《原子物理、分子物理与光学实验讲义》。
电子束电偏转实验小结电子束的偏转实验报告
电子束电偏转实验小结电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律;2.了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿Z方向作加速运动,则其最后速度VZ可根据功能原理求出来,即euQ?移项后得到vz?212mvz 22euaA.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压Uz不变时,偏转电压随偏转量的增大线性变化。
第4张图可以看出,我测量的第五组数据是有问题的。
所以,我就放弃了第五组数据,作出了图5。
然后我分析b 了一下不同阳极电压下偏转电压随偏转量变化快慢。
显然,斜率即电偏转灵敏度,分别为:0. 105,0. 0915, 0.082, 0. 0753,斜率是随着阳极电压的增大而减小的。
为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转距离De和偏转电压Ud是成线性变化的。
至于De与阳极电压Uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压Ud 为10V 时,Dz 分别为:1.025, 0.912, 0. 785, 0. 744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。
B磁偏转的观测图6,7,8是磁偏转观测部分的图。
这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。
下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。
并且随着阳极电压的增大磁偏灵敏度减小。
阳极电压增大导致电子速度的增大,电子就越不容易被偏转。
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100血\为基点)C电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。
电子束的电偏转和磁偏转实验报告
电子束的电偏转和磁偏转实验报告实验报告:电子束的电偏转和磁偏转一、实验目的1.理解和掌握电子束在电场和磁场中的偏转原理;2.学会使用电子束电偏转和磁偏转的实验设备;3.通过实验数据分析,提高实验数据处理和实验结果分析的能力。
二、实验原理1.电偏转:当电子束通过加有直流电压的电场时,电子束会受到电场力的作用发生偏转。
根据牛顿第二定律,电子束将在电场中加速或减速,导致电子束的飞行方向发生变化。
电偏转的大小取决于电场的强度和电子束进入电场的角度。
2.磁偏转:当电子束通过磁场时,电子束会受到洛伦兹力的作用发生偏转。
洛伦兹力的大小取决于磁场的强度和电子束的速度。
磁偏转的大小取决于磁场的强度和电子束进入磁场的角度。
三、实验步骤1.准备实验设备:电子枪、电源、电场发生器、磁场发生器、屏幕、测量工具等;2.调整电子枪的发射角度,使电子束尽量垂直射向屏幕;3.调整电场和磁场的强度,观察电子束的偏转情况;4.使用测量工具测量电子束偏转的角度和距离;5.重复步骤3和4,收集足够的数据;6.根据实验数据,分析电偏转和磁偏转的特点和规律。
四、实验结果与分析1.电偏转实验结果:实验数据显示,随着电场强度的增加,电子束的偏转角度和距离都增加。
这表明电场强度对电偏转有显著影响。
当电子束进入电场的角度发生变化时,偏转角度和距离也会发生变化。
这表明电偏转还受到电子束入射角度的影响。
2.磁偏转实验结果:实验数据显示,随着磁场强度的增加,电子束的偏转角度和距离也增加。
这表明磁场强度对磁偏转有显著影响。
当电子束的速度发生变化时,偏转角度和距离也会发生变化。
这表明磁偏转还受到电子束速度的影响。
此外,我们还发现磁偏转的角度和距离都较小,这表明磁场对电子束的作用力较弱。
五、结论通过本次实验,我们深入理解了电子束在电场和磁场中的偏转原理。
实验结果表明,电场和磁场对电子束的偏转都有显著影响,但磁场对电子束的作用力较弱。
在实际应用中,我们可以利用电子束的电偏转和磁偏转来实现许多重要的功能,例如电子显微镜、电子探针等。
实验 电子束的电偏转
电子束的电偏转、磁偏转研究示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。
因此统称它们为电子束线管。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
本实验研究电子束的电偏转和磁偏转。
通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。
[实验目的]1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
[实验原理]1.电子束的电偏转电子在两偏转板之间穿过时,如果两板间电位差为零,电子则笔直地穿过偏转板打在荧屏中央(假定电子枪瞄准了中心)形成一个小亮斑。
如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转。
在图5-1中,设两板相距为d ,电位差为V d ,可看做平行板电容器,则两板间的电场强度是d V E d y =电子受电场力d eV eE f d y y == 的作用,产生加速度md eV m f a dy y == 电子在Z 方向上没有加速度,故从Y 板左端运动到右端的时间是z v l t /1=再从右端运动到屏的时间是z v L t /2'=电子离开板右端时的垂直位移是2211)(22z d y v lmd eV t a y ⋅==在同一点的垂直速度)()(1z d y y v lmd eV t a v ⋅== 电子离开板右端时不再受电场力的作用,作匀速直线运动,到达屏上的垂直位移是)()()(22z z d y v L v l md eV t v y '⋅⋅==电子在屏上总位移)2()(221L lmdv l eV y y D zd '+⋅=+=令L lL '+=2,又因为电子在加速电压的作用下,加速场对电子所做的功全部转化为电子的动能,则 2221eV mv z = (1) 代入上式,并由式(1)消去v z 最后得,板中心至屏的距离,dV dV lLD 22=(2)式(2)表明,偏转板的电压V d 越大,屏上光点的位移也越大,两者是线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二十四 电子束的偏转示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。
【目的】1.了解示波管结构和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。
【原理】示波管的基本结构主要由以下4个部分组成 (1)示波管示波管的构造如图4-43所示。
当加热电流通过灯丝时,阴极K 被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。
第一阳极A 1相对于阴极K 有很高的电压(约1 500V )用以加速电子;第二阳极A 2与第一阳极A 1之间构成聚焦电场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。
X 、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。
光点移动距离的大小与加在偏转板上的电压成正比。
(2)扫描电压发生器扫描电压发生器是产生扫描电压的装置。
示波器通常是要观察轴输入的周期性信号电压的波形。
如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。
要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。
为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。
这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。
如果扫描电压的周期T x与正弦电压的周期T y相同,荧光屏上将显示一个完整的正弦波形。
如果T x是T y的整数倍,则荧光屏上将显示出n 个完整的正弦波形。
若用频率表示,则为:f X=nf Y为了能用示波器观察各种频率的信号电压波形,扫描电压的频率必须在很大的范围内连续可调,调节扫描电压的频率,使其与Y 轴输入信号电压的频率成整数比方可。
这一调整过程称为“同步”。
人工“同步”可以很容易达到f X=nf Y,使其出现暂时稳定的图形。
由于图4-52 电子束的电偏转图4-43 电子射线示波管 A 1-第一阳极 A 2-第二阳极 f-灯丝G-栅极 K-阴极 X 、Y-偏转转板U X和U Y是来自两个相互独立的信号源,它们各自的频率总会有些起伏,因此稳定状态很快又遭破坏。
为了解决这一问题,示波器内部设有同步装置。
在两频率基本满足整数倍的条件下,该装置将待测信号电压分出一部分,自动地去调节扫描电压发生器的振动频率,使它与被测信号的频率严格保持整数比关系,使图形稳定。
(3)电压放大和衰减装置由于示波器的灵敏度不高(0.1~1 mm/V ),当信号电压小时,电子束不能发生足够的偏荧光屏上亮点的位移过小,不便观察,为此,示波器内设有X 轴放大器和Y 轴放大器。
先把信号电压放大,然后加到偏转板上。
其放大倍数是连续可调的。
衰减器是用来把放大的信号电压减小,以适应放大器的要求,否则放大器不能正常工作,甚至受损。
衰减器通常分1、1/10、1/100三挡,习惯上是在示波器面板上用倒数1、10、100标出。
(4)电源供给示波器、扫描电压发生器、X 轴放大器、Y 轴放大器正常工作所需的各种高、低压装置。
1.电子束的电偏转电偏转是通过在垂直于电子射线的方向上外加电场来实现的,最简单的办法就是在示波管的垂直偏转板(或水平偏转板)上加上偏转电压U 。
当电子束经加速极以初速x v 由x 正方向射入,因受到与y 轴平行的偏转电场的作用,而使电子束偏离轴线发生偏转,如图4-52所示。
设偏转板间距离为D ,长度为b ,偏转板到荧光屏之间的距离为L ,则电子束受电场力DeUeE f Y ==,产生加速度mD eU m f a y y ==。
电子在x 方向上没有加速度,故从偏转板的左端运动到右端的时间x b v b t =,再从右端运动到荧光屏的时间为xv b l t ⎪⎭⎫⎝⎛-=21。
电子离开板右端的垂直距离22.22⎪⎪⎭⎫ ⎝⎛==x by b v b mD eU t a y ,在同一点的垂直速度x b y y v bmD eU t a v ⋅=。
电子离开板右端时不再受电场力的作用,作匀速直线运动。
到达荧光屏的垂直距离为11t u y y ==xx v b l v b mD eU ⎪⎭⎫ ⎝⎛-⋅⋅2。
由此得到电子束到荧光屏上的总的偏转距离为 21xb mDv eULby y y =+= (4-45) 设进入偏转板之前,使电子最后加速的第二阳极上的加速电压为2u ,则加速场对电子所做的功等于电子的动能,即2221x mv eU =(4-46)将式(4-46)代入式(4-45) 得y =222U UK D U bLU E = (4-47)可见比例系数DbLK E 2=是与偏转板结构有关的常量,对于一定的示波管,电子束偏离中心轴线的距离与偏转电压成正比,与加速极的加速电压成反比。
若定义电偏转灵敏度为当偏转板上加单位电压时所引起的电子束在荧光屏上的偏转距离21U K U y E ==电δ (单位 mm/V) (4-48) 由此可见,当偏转电压为一定值的时候,电偏转灵敏度与加速电压2U 成反比,加速电压越大,δ电越低。
2.电子束的磁偏转为使电子束偏转,通常在电子枪和荧光屏之间放置一对线圈,当线圈通以励磁电流I 时,在横向水平方向上将产生与电子束方向垂直的一均匀磁场,如图4-53所示。
当电子以速度X V 垂直射入磁场时,必受洛仑兹力B ev f x =作用在磁场区域内作圆周运动,洛仑兹力就是向心力R mv x 2,所以电子旋转的半径eBmv R x=(4-49) 电子离开磁场区域之后,因为B = 0,电子不受任何作用力,应作直线运动,打在荧光屏上,由图4-53知,当ϕ角不很大时LhR b ==ϕtan (4-50) 由式(4-49)和(4-50)得磁偏转距离B mv ebLh x=(4-51) 设电子进入磁场前加速电压为2U ,则加速场对电子做的功全部转变为电子的动能2221eU mv x = 所以式(4-51)改写为22emU bLBeh =(4-52)式中,磁感应强度B 通常用产生磁场两偏转线圈中通过的电流的安培匝数表示,即B =图4-53 电子束的磁偏转KnI 。
其中n 是偏转线圈单位长度匝数;I 是通过线圈的励磁电流;K 是比例系数,是与偏转线圈几何尺寸和磁介质有关的常量。
所以22emU knIbLeh =(4-53)由此可知,磁偏距离h 与励磁电流I 成正比,励磁电流越大,磁偏距离也越大。
若定义磁偏灵敏度δ磁为单位励磁电流所引起的电子束在荧光屏上偏转的距离Ih =磁δ (单位为mm/A) (4-54)将式(4-54)代入,得22emU knbLe=磁δ (4-55)式(4-55)表明,磁偏灵敏度δ磁与加速度电压U 2的平方根成反比。
将式(4-48)与式(4-55)相比较可以看出,提高加速电压U 2对磁偏转灵敏度降低的影响比对电偏转灵敏度的影响小。
因此使用磁偏转时,提高显像管中电子束的加速电压来增加荧光屏上图象亮度水平比使用电偏转有利,而且磁偏转便于得到电子束的大角度偏转,更适合于大屏幕的需要。
因此显像管往往采用磁偏转,但是偏转线圈的电感与分布电容都增大,不利于高频使用,而且由于它的体积与质量较大,都不及电偏转系统,所以示波管往往采用电偏转。
【仪器】SJ-SS-2型电子束实验仪,交流稳压电源,万用表等。
【实验内容与步骤】本实验采用SJ-SS-2型电子束实验仪,其使用方法见【仪器描述】。
1.电子束的电偏转⑴测试偏转距离与偏转电压的关系 测试步骤如下。
①将功能选择开关置于Y (或X )电偏位置,面板插孔按图4-54要求插入导线。
②接通高压电源开关,调节“高压调节”、“辅助聚焦V 2”,将V 2调到最大值,辉度保持适中,调节“聚焦V 1”。
③调节“X 轴移位”、“Y 轴移位”旋钮,使光点移到坐标原点。
④调节电偏电压,使光点朝Y (或X )方向偏转,每偏转5 mm ,读取相应的电偏电压U 值(由mA-V 表直接读数×3),测到光点偏转30 mm 为止。
⑤做y-U(或x-U)图,以验证在加速电压U 2不变时,y 与U 成正比并由图求δ电 。
⑵测试电偏转灵敏度δ电与加速电压U 2的关系 测试步骤如下。
①、②、③方法同前。
④调节电偏电压,使光点在荧光屏上向Y (或X )预偏15 mm ,保持电偏电压的值不变。
⑤调节“高压调节”,使U 2下降,每降100 V (或200 V )读取相应的偏转量y(或x)。
计算出uy =电δ 图4-54 电偏转接线⑥做电δ~21u 正比图,以检验当偏转电压不变时,δ电与U 2成反比关系。
2.电子速的磁偏转⑴测试偏转量与励磁电流I 的正比关系测试 步骤如下。
①将“功能选择”开关置“磁偏”位置,按图4-55要求插入导线。
②接通高压电源开关,将V 2调至最大,调节“聚焦V 1”旋钮使光点聚焦,保持辉度适中,调节“X 轴移位”旋钮,使光点位于坐标Y 轴某点y n,并记下该点坐标。
③“励磁电流”复位旋到零,接通励磁电源开关,顺时针方向调节“励磁电流”旋钮,使光点偏转,读取不同偏转量Y 及其对应的I 值,并计算出磁偏灵敏度δ磁及其平均值。
④根据测量数据,做y -I 图,验证y 与I 的正比关系。
⑤按图4-55虚线位置改变偏转线圈电源极性,观察磁场方向改变后光点反方向偏转,以验证洛仑兹力F =e v × B 的矢量关系。
⑵测试磁偏灵敏度与加速电压U 2的关系 测试步骤如下。
①,②方法同前。
③接通励磁电源开关,调节“励磁电流”旋钮使光点从坐标Y n点往下(或上)偏转15 mm ,保持I 不变。
调节“高压调节”旋钮使U 2值减少,读取不同U 2值及相应的y 值,并计算各δ磁。
④做磁δ~21u 图,以验证磁偏灵敏度与加速电压U 2平方根的反比关系。
【数据处理】 1.电子束的偏转表4-12 电偏转距离与偏转电压关系测试条件 偏转距离/mm 51015202530U 2= V 垂直上偏电压/v 垂直下偏电压/v 水平左偏电压/v水平右偏电压/v在直角坐标纸上做出y -U 图线。
表4-13 δ电和U 2数据测试表测试条件预偏转电压U =V 预偏转y =15mm加速电压 U 2 1/U 2 偏转距离/mm δ电测试值按表中数值在坐标纸上做出电δ~21u 图。