极坐标与全参数方程教案设计

合集下载

(极坐标与参数方程)教学案( 4 )

(极坐标与参数方程)教学案( 4 )

高二数学 (极坐标与参数方程)教学案( 4 )常见曲线的极坐标方程一、课前自主预习1.将下列极坐标方程化为直角坐标方程⑴5=ρ, ⑵sin 2ρθ=, ⑶πθ43=,2.写出下列特殊图形的直线方程图3图1_________________ _____________________________________图5图4______________ ________________3.写出下列特殊图形圆的极坐标方程.图3图2图1O____________________ ________________________________________图5图4_____________________ ____________________4. 若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:_____________若圆心为00(,)M ρθ,半径为r 的圆方程为:__________________________________二、课堂合作探究例1:按下列条件写出它的极坐标方程:⑴求过极点,倾角为π/4的射线的极坐标方程.⑵求过极点, 倾角为π/4的直线的极坐标方程.⑶求过极点及⎪⎭⎫ ⎝⎛6,6πA 的直线方程.⑷求过点⎪⎭⎫⎝⎛6,6πA 平行于极轴的直线⑸求过点⎪⎭⎫⎝⎛6,6πA 且倾斜角为32π的直线方程..例2、:按下列条件写出圆的极坐标方程: (1)以()0,3A 为圆心,且过极点的圆(2)以⎪⎭⎫⎝⎛2,8πB 为圆心,且过极点的圆 (3)以极点O 与点()0,4-C 连接的线段为直径的圆(4)圆心在极轴上,且过极点与点⎪⎭⎫ ⎝⎛6,32πD 的圆例3、自极点O 作射线与直线4=θρsos 相交于点M,在OM 上取一点P,使得OM ·OP=12,求点P 的轨迹方程.高二数学解析几何作业 ( 4 )1.求过极点,倾角为π/6的射线的极坐标方程_____________直角坐标方程___________2.求过点A(2, π/6),且垂直于极轴的直线L 的极坐标方程____________3. 求过点A(2, π/2),且平行于极轴的直线L 的极坐标方程____________4 (1)以极点O 与点()4,C π-连接的线段为直径的圆(2)圆心在极轴上,且过极点与点76D π⎛⎫⎪⎝⎭的圆5. 方程26sin =⎪⎭⎫⎝⎛-πθρ的直角坐标方程______________________6. 在极坐标系中,已知圆C 的圆心)6,3(πC ,半径3=r , (1)求圆C 的极坐标方程。

高三数学《参数方程与极坐标系》高级数学方法教案

高三数学《参数方程与极坐标系》高级数学方法教案

高三数学《参数方程与极坐标系》高级数学方法教案引言:《参数方程与极坐标系》是高中数学中的一个重要内容,是数学建模及解决实际问题的重要工具。

通过学习参数方程和极坐标系,我们可以更全面地理解平面上的曲线及其性质,为解决实际问题提供更广阔的思路和方法。

本教案旨在通过合理安排教学内容和方法,培养学生的数学建模能力和问题解决能力。

一、教学目标1. 理解参数方程与极坐标系的概念及其应用;2. 掌握参数方程与极坐标系的转化方法;3. 能够运用参数方程和极坐标系解决实际问题。

二、教学重点和难点1. 参数方程与极坐标系的转化方法;2. 实际问题的建模和求解。

三、教学内容及安排1. 参数方程的引入与概念解释(20分钟)- 通过示例引导学生理解参数方程的概念及作用;- 介绍参数方程与直角坐标系之间的关系。

2. 参数方程的画图与性质(30分钟)- 通过实例演示如何使用参数方程绘制平面曲线;- 引导学生观察与分析参数方程对曲线形状的影响;- 讲解参数方程下函数的周期性、对称性等性质。

3. 参数方程与直角坐标系的转化(30分钟)- 介绍参数方程向直角坐标系的转化方法;- 讲解常见曲线如直线、圆、椭圆等的参数方程与直角坐标系方程的转化。

4. 极坐标系的引入与概念解释(20分钟)- 通过实例引导学生理解极坐标系的概念及作用;- 介绍极坐标系与直角坐标系之间的转化关系。

5. 极坐标系的画图与性质(30分钟)- 通过实例演示如何使用极坐标系绘制平面曲线;- 引导学生观察与分析极坐标方程对曲线形状的影响;- 讲解极坐标方程下函数的周期性、对称性等性质。

6. 参数方程与极坐标系的联系与应用(30分钟)- 引导学生理解参数方程与极坐标系的关系及其应用场景;- 通过实例讲解参数方程与极坐标系在工程、物理等领域的具体应用。

四、教学方法与手段1. 讲授与演示相结合:通过具体实例讲解参数方程与极坐标系的相关概念和性质,以提高学生的直观理解能力。

极坐标与参数方程教案

极坐标与参数方程教案

1
极坐标
极坐标系
1、定义:在平面内取一个定点O ,叫做_____,引一条射线Ox ,叫做____,再选一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的_____,θ叫做点M 的____,有序数对_______就叫做点M 的极坐标。

这样建立的坐标系叫做极坐标系。

2、极坐标有四个要素:①_______②_____;③_________;④__________.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标.
极坐标与直角坐标的不同是,___________________________________________ 3、直线相对于极坐标系的几种不同的位置方程的形式分别为:
ϕ
θ=θ
ρcos a
=
θ
ρcos a -

ρsin a
=
图4
θ
ρsin a -
=图5
)
cos(ϕθρ-=
a 图1
2
4、圆相对于极坐标系的几种不同的位置方程的形式分别为)0(>a :
5、极坐标与直角坐标互化公式:
x

(直极互化 图)
θ
ρcos 2a =
图2
θ
ρsin 2a =图4
θ
ρsin 2
a -=M
图5
θ
ρcos 2a -=a
=ρ图1
)
cos(2ϕθρ-=a 图6。

极坐标与参数方程教案.doc

极坐标与参数方程教案.doc

极坐标与参数方程教案极坐标与参数方程【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合是思想方法.【教学重点】1、极坐标的与一般坐标的转化2、参数方程和一般方程的转化3、几何证明的整体思路【教学难点】极坐标意义和直角坐标的转化【考点分析】坐标系与参数方程和几何证明在广东高考中为二者选一考,一般是5分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立.有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便.高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【基本要点】一、极坐标和参数方程:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.点M的极坐标:设M是平面内一点,极点O与点M的距离叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的∠XOM叫做点M的极角,记为.有序数对叫做点M的极坐标,记为M. 极坐标与表示同一个点.极点O的坐标为.3.极坐标与直角坐标的互化:4.圆的极坐标方程:在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是;在极坐标系中,以(a0)为圆心,a为半径的圆的极坐标方程是;在极坐标系中,以(a0)为圆心,a为半径的圆的极坐标方程是;5.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6.圆的参数方程可表示为. 椭圆(ab0)的参数方程可表示为. 抛物线的参数方程可表示为.经过点,倾斜角为的直线l的参数方程可表示为(t为参数).【典型例题】题型一:极坐标与直角坐标的互化和应用例1、(1)点M的极坐标化为直角坐标为()BA.B.C.D.(2)点M的直角坐标为化为极坐标为()BA.B.C.D.评注:极坐标和直角坐标的互化,注意角度的范围.变式1:(1)点的极坐标为.(2)在极坐标系中,圆心在,半径为1的圆的极坐标方程是___________ .评注:注意曲线极坐标与直角坐标的互化之间的联系.例2、(1)曲线的极坐标方程化成直角坐标方程为()A.x2+(y+2)2=4B.x2+(y-【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合是思想方法.【教学重点】1、极坐标的与一般坐标的转化2、参数方程和一般方程的转化3、几何证明的整体思路【教学难点】极坐标意义和直角坐标的转化【考点分析】坐标系与参数方程和几何证明在广东高考中为二者选一考,一般是5分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立.有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便.高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【基本要点】一、极坐标和参数方程:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.点M的极坐标:设M是平面内一点,极点O与点M的距离叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的∠XOM叫做点M的极角,记为.有序数对叫做点M的极坐标,记为M. 极坐标与表示同一个点.极点O的坐标为.3.极坐标与直角坐标的互化:4.圆的极坐标方程:在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是;在极坐标系中,以(a0)为圆心,a为半径的圆的极坐标方程是;在极坐标系中,以(a0)为圆心,a为半径的圆的极坐标方程是;5.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6.圆的参数方程可表示为. 椭圆(ab0)的参数方程可表示为. 抛物线的参数方程可表示为.经过点,倾斜角为的直线l的参数方程可表示为(t为参数).【典型例题】题型一:极坐标与直角坐标的互化和应用例1、(1)点M的极坐标化为直角坐标为()BA.B.C.D.(2)点M的直角坐标为化为极坐标为()BA.B.C.D.评注:极坐标和直角坐标的互化,注意角度的范围.变式1:(1)点的极坐标为.(2)在极坐标系中,圆心在,半径为1的圆的极坐标方程是___________ .评注:注意曲线极坐标与直角坐标的互化之间的联系.例2、(1)曲线的极坐标方程化成直角坐标方程为()A.x2+(y+2)2=4B.x2+(y:综合运用例1、以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。

(极坐标与参数方程)教学案( 3 )

(极坐标与参数方程)教学案( 3 )

高二数学 (极坐标与参数方程)教学案( 3 )曲线的极坐标方程的意义一、课前自主预习1.________________________________________________________________________________________ 这个方程称为这条曲线的极坐标方程, 这条曲线称为这个极坐标方程的曲线.2. 求曲线极坐标方程步骤:_______________________________________________________ _______________________________________________________________________________在极坐标系中,ρ=r(r 为大于零的常数)表示 θ=α(α为常数)表示3. ⑴过点A(2,0)且垂直于极轴的直线的极坐标方程_________________。

⑵已知点p 的极坐标为(1,π),那么过点p 且垂直于极轴的直线极坐标方程______________二、课堂合作探究例1、⑴求圆心在C (r,π/2), 半径为r 的圆的极坐标方程⑵求圆心在C(r,0),半径为r 的圆的极坐标方程例2.(1)化在直角坐标方程0822=-+x y x 为极坐标方程,(2)化极坐标方程ρ=6cos(θ-π/3) 为直角坐标方程。

三、课堂练习1、把下列下列极坐标方程化为直角坐标方程:(1) ρcos θ=4, (2) ρ=5, (3) ρ=2rsin θ2、化直角坐标方程为极坐标方程:⑴022=++x y x ⑵x y = ⑶x y 42=3.列条件写出圆的极坐标方程,并化成直角坐标方程:(1)以()3,A π为圆心,且过极点的圆 ________________________________________(2)以38,2B π⎛⎫ ⎪⎝⎭为圆心,且过极点的圆 _________________________________________________4.下列极坐标方程转化为直角坐标方程:(1) sin()34πρθ-= (2) 2cos24ρθ=高二数学解析几何作业 ( 3 )1.在极坐标系中,极轴上的点P 和)6A π,则点P 的极坐标为2.(1)求过点A(-2,0)且垂直于极轴的直线的极坐标方程(2)已知点p 的极坐标为(4,π),那么过点p 且垂直于极轴所在直线极坐标方程(3)求圆心在C(2,0),半径为2的圆的极坐标方程(4)求圆心在C (3,π/2), 半径为3的圆的极坐标方程3、化直角坐标方程为极坐标方程(1)228x y x += (2)0x y +=(3)220x y x +-= (4)0x =4、化极坐标方程为直角坐标方程(1) ρcos θ=5 (2)ρ=6(3) ρ=2sin θ (4)ρ=6cos(θ-π/3) 5、已知12F F 、是椭圆22221(0)x y a b a b+=>>的左、右焦点,A 是椭圆上位于第一象限内的点,点B 也在椭圆上,且满足OA OB →→+0→=,212AF F F →→⋅0=.若椭圆的离心率等于2,(1)求直线AB 的方程; (2)若△2ABF 的面积是.。

极坐标与参数方程教学设计

极坐标与参数方程教学设计
教学设计
授课教师
学科
数学
课题
极坐标与参数方程的应用
授课类型
专题课
授课班级
高三5
教学目标
知识与技能:通过本节课教学,使学生掌握极坐标与参数方程中几种常见题型的解法,体会恰当应用极坐标与参数方程解题的优越性。
过程与方法:通过本节课的学习,逐步提高学生逻辑思维能力、运算能力、语言表达能力和发散思维能力。
情感及价值观:培养学生良好的思维品质、严谨的求学态度.
教学重点
化归与转化思想的运用
教学难点
理解极坐标与参数方程在解决弦长、最值、距离之积等问题的应用
教学方法
对比教学法、归纳讨论法
教学手段
多媒体、投影辅助教学
教学过程
教师组织与引导
学生活动
一、课题导入
二、例题解析、学以致用。
例1、例2、例3
三、投影展示练习、提升能力
四、总结归纳、反馈提高
学生分组讨论解题思路
投影展示解题过程
小组间相互补充,完善解题过程
小组补充不同解题方法讨论归纳弦长、距离之积、最值的解题方法、理解感悟、提升应用能力
学生交流讨论本节课收获
板书设计
极坐标与参数方程的应用
一、弦长
二、距离之积
三ቤተ መጻሕፍቲ ባይዱ最值

极坐标与参数方程复习教案

极坐标与参数方程复习教案

极坐标与参数方程复习教案教案:极坐标与参数方程的复习(1200字以上)一、教学目标:1.复习极坐标及参数方程的基本概念和表示法。

2.复习极坐标与参数方程之间的转换关系。

3.复习极坐标和参数方程表示的图形特征。

4.进一步理解和掌握极坐标和参数方程在解决几何问题中的应用。

二、教学内容:1.极坐标表示法的复习1.极坐标系的定义和坐标表示2.极坐标与直角坐标之间的转换关系3.极坐标方程的表示和解析几何意义4.极坐标方程的图形特征2.参数方程表示法的复习1.参数方程的定义和表示方法2.参数方程的图形特征和解析几何意义3.参数方程与直角坐标之间的转换关系3.极坐标与参数方程的相互转换1.极坐标转换为参数方程2.参数方程转换为极坐标4.极坐标和参数方程在几何问题中的应用1.利用极坐标方程和参数方程求曲线的方程2.利用极坐标和参数方程求曲线的长度、面积等几何量3.利用极坐标和参数方程解决几何问题的应用实例三、教学重点和难点:1.极坐标与直角坐标系之间的转换关系及其应用。

2.参数方程与直角坐标系之间的转换关系及其应用。

3.极坐标和参数方程在解决几何问题中的应用实例。

四、教学方法:1.讲授结合演示:通过讲解和示例演示,引导学生理解极坐标与参数方程的基本概念和表示法。

2.练习巩固:通过给予学生一定数量和难度的练习题,巩固学生对极坐标和参数方程的掌握程度。

3.解题指导:针对应用题和难题,给予学生相应的解题指导,帮助学生理解问题的解题思路和方法。

五、教学流程:1.复习极坐标的基本概念和表示法。

2.复习参数方程的基本概念和表示法。

3.复习极坐标与参数方程的相互转换关系。

4.复习极坐标和参数方程表示的图形特征。

5.进一步理解和掌握极坐标和参数方程在解决几何问题中的应用。

6.练习巩固和解题指导。

六、教学资源准备:1.教材教辅资料:教材、习题册、参考书等。

2.多媒体设备:电脑、投影仪等。

3.白板、黑板、彩色粉笔等。

七、教学评价方式:1.观察学生学习的积极程度和参与度。

极坐标与全参数方程复习教案设计【范本模板】

极坐标与全参数方程复习教案设计【范本模板】

精锐教育学科教师辅导教案学员编号: 年 级:高三 课 时 数: 3学员姓名: 辅导科目:数学 学科教师: 刘欢授课类型 C-极坐标与参数方程 C –极坐标与参数方程 C-极坐标与参数方程授课日期及时段教学内容知识点概括一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系.3.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

(其中O 称为极点,射线OX 称为极轴。

) ① 设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。

那么有序数对(,)ρθ称为点M 的极坐标。

其中ρ称为极径,θ称为极角.约定:极点的极坐标是ρ=0,θ可以取任意角。

4.直角坐标与极坐标的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则x = 2ρ=y = tan θ=二、曲线的极坐标方程1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:00sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π且平行于极轴2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为:2220002cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程(1)当圆心位于极点 (2)当圆心位于(,0)M r (3)当圆心位于(,)2M r π3.直线、圆的直角坐标方程与极坐标方程的互化 利用: x = 2ρ=y = tan θ=三、参数方程1.参数方程的意义在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数2.参数方程与普通方程的互化 参数方程化为普通方程常见参数方程化为普通方程,并说明它们各表示什么曲线:⑴cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数); ⑵00(x x at t y y bt=+⎧⎨=+⎩为参数)(3)2sin cos x y θθ=⎧⎨=⎩[0,2)θπ∈ (4)1()21()2ax t t b y t t⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数) (5)cos sin x a r y b r ϕϕ=+⎧⎨=+⎩(ϕ为参数)☆参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围! 二、考点阐述考点1、极坐标与直角坐标互化 例题1、在极坐标中,求两点)4,2(),4,2(ππ-Q P 之间的距离以及过它们的直线的极坐标方程。

参数方程与极坐标教学案

参数方程与极坐标教学案

参数方程与极坐标教学案一、引言参数方程与极坐标是高中数学教学中的重要内容,它们在解决几何问题和计算问题中具有广泛的应用。

本教学案主要介绍参数方程与极坐标的概念、性质和应用,旨在帮助学生深入理解和掌握这两种坐标系的特点和使用方法。

二、参数方程的概念与性质1.1 参数方程的定义参数方程是以参数为自变量,通过参数与变量之间的对应关系描述曲线的一种坐标系表示方法。

1.2 参数方程的性质(1)参数方程可以表示平面曲线上的任意一点。

(2)参数方程描述的曲线不一定是函数图像。

(3)参数方程能够简化一些复杂的曲线方程的求解过程。

三、参数方程与几何图形2.1 直线的参数方程(1)斜率存在时的参数方程:设直线的斜率为k,过点P(x₁, y₁),则直线的参数方程为:x = x₁ + ty = y₁ + kt其中t为参数,表示直线上任意一点的坐标。

(2)斜率不存在时的参数方程:设直线垂直于x轴,交点为(x₀, y₁),则直线的参数方程为:x = x₀y = y₁ + t其中t为参数,表示直线上任意一点的坐标。

2.2 曲线的参数方程(1)椭圆的参数方程:椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中a和b分别为椭圆的两个半轴长度。

(2)抛物线的参数方程:抛物线的参数方程可以表示为:x = at²y = 2at其中a为抛物线的参数和焦点到准线的距离。

四、极坐标的概念与性质3.1 极坐标的定义极坐标是以极径和极角为坐标的一种表示方法,其中极径表示点到原点的距离,极角表示点与正半轴的夹角。

3.2 极坐标的性质(1)极坐标中的极径和极角是有序对,唯一确定一点的。

(2)同一点在极坐标和直角坐标系中的表示不同。

五、极坐标的转化与应用4.1 直角坐标转极坐标已知点P(x, y),其极坐标就可以表示为:r = √(x² + y²)θ = arctan(y/x)4.2 极坐标转直角坐标已知点P(r, θ),其直角坐标可以表示为:x = r*cos(θ)y = r*sin(θ)六、参数方程与极坐标的应用5.1 参数方程在运动学中的应用通过用参数方程描述物体的运动轨迹,可以更方便地计算物体的位置、速度和加速度等运动学问题。

极坐标与参数方程教学设计

极坐标与参数方程教学设计

极坐标与参数方程教学设计教学目标:1.了解极坐标和参数方程的概念和特点。

2.掌握极坐标和参数方程的转换关系。

3.能够利用极坐标和参数方程描述和绘制简单的图形。

教学内容:1.极坐标的引入极坐标是一种用极径和极角表示平面上点的坐标系统。

极坐标中,每个点由它到极点的距离和与极轴的夹角确定。

极点是坐标轴的原点,极轴是一条从极点到无穷远处的射线。

极径通常用正数表示,极角用角度或弧度表示。

2.参数方程的引入参数方程是一种用参数表示物体的坐标方程。

在参数方程中,坐标值都是由参数决定的表达式,用来描述一个曲线或曲面的运动或变化。

3.极坐标和参数方程的转换方法(1)极坐标转参数方程:已知点P的极坐标(r,θ),则其对应的参数方程为x = rcosθ,y = rsinθ。

(2)参数方程转极坐标:已知参数方程x = f(t),y = g(t),则其对应的极坐标为r =√(f(t)²+g(t)²),θ = tan^(-1)⁡(g(t)/f(t))。

4.极坐标和参数方程的应用利用极坐标和参数方程可以描述和绘制很多有趣的图形,如圆、椭圆、心形线等。

教学步骤:步骤一:导入1.引出极坐标和参数方程的概念和特点。

2.通过示例和图示介绍极坐标和参数方程的基本表示方法。

步骤二:极坐标和参数方程的转换关系1.介绍极坐标和参数方程的转换关系,包括极坐标转参数方程和参数方程转极坐标的方法。

2.通过示例演示转换过程,让学生理解和掌握转换的思路和方法。

步骤三:极坐标和参数方程的绘制1.引导学生利用极坐标和参数方程描述和绘制简单的图形,如圆、椭圆、心形线等。

2.通过实例演示和练习让学生掌握绘制图形的方法和技巧。

步骤四:综合应用1.引导学生利用极坐标和参数方程解决实际问题,如天文学中的行星运动、工程中的曲线绘制等。

2.通过实例和讨论,激发学生的兴趣和创造力,培养学生的实际应用能力。

步骤五:总结和拓展1.对极坐标和参数方程的知识进行总结归纳。

极坐标与参数方程教案

极坐标与参数方程教案

极坐标与参数方程教案目标:通过本节课的学习,学生能够理解和应用极坐标和参数方程的原理,能够将直角坐标系下的函数转换为极坐标或参数方程,并能够使用极坐标和参数方程解决问题。

一、引入(10分钟)1.通过引诱学生思考问题,引出极坐标和参数方程的概念。

提问:如果我们要描述一个物体在平面上运动的轨迹,可以使用直角坐标系的方程来表示。

那么是否还有其他方式来表示这个轨迹呢?2.引入极坐标的概念,定义极坐标的含义。

讲解:极坐标是一种描述平面上点位置的方式,使用极径和极角来表示点的坐标。

极径表示点到原点的距离,极角表示点与坐标轴正半轴的夹角。

二、极坐标(20分钟)1.转换方式讲解:将直角坐标系转换为极坐标可以通过以下公式进行:x = rcosθ,y = rsinθ这样,一个在直角坐标系上的点(x,y)就可以用极坐标(r,θ)来表示。

2.根据已知的极坐标点,求直角坐标示例:已知一个点的极坐标为(r,θ),求出对应的(x,y)坐标。

练习:学生进行练习题,验证是否掌握了极坐标与直角坐标之间的转换。

三、参数方程(20分钟)1.参数方程的概念讲解:参数方程是一种描述曲线的方式,使用参数的形式来表示坐标点的位置。

通过给出参数的范围,可以描绘出整个曲线。

2.转换方式讲解:将直角坐标系转换为参数方程可以通过以下形式进行:x=f(t),y=g(t)这样,一个在直角坐标系上的点(x,y)就可以用参数t来表示。

3.根据已知的参数方程,求直角坐标示例:已知一个点的参数方程为x=f(t),y=g(t),求出对应的(x,y)坐标。

练习:学生进行练习题,验证是否掌握了参数方程与直角坐标之间的转换。

四、综合运用(30分钟)1.根据已知的直角坐标系方程,转换为极坐标或参数方程示例:将直角坐标系方程y=x²转换为极坐标和参数方程。

2.根据已知的极坐标或参数方程,转换为直角坐标系方程示例:将极坐标方程r = 2cosθ转换为直角坐标系方程。

高中数学选修4-4极坐标与参数方程全册教案

高中数学选修4-4极坐标与参数方程全册教案

二、极坐标系【基础知识导学】1. 极坐标系和点的极坐标极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。

2. 平面直角坐标与极坐标的区别在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。

3. 极坐标系中,点M ),(θρ的极坐标统一表达式Z k k ∈+),2,(θπρ。

4. 如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。

5. 极坐标与直角坐标的互化(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两种坐标系中取相同的长度单位。

(2) 互化公式⎩⎨⎧==θρθρsin cos y x ,⎪⎩⎪⎨⎧≠=+=0,tan 222x x yy x θρ。

【知识迷航指南】 【例1】在极坐标系中,描出点)3,2(πM ,并写出点M 的统一极坐标。

【点评】点)3,2(πM 的统一极坐标表示式为)32,2(ππ+k ,如果允许0<ρ,还可以表示为)3)12(,2(ππ++-k 。

OMX【例2】已知两点的极坐标)6,3(),2,3(ππB A ,则|AB|=______,AB 与极轴正方向所成的角为________.解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即∆AOB 为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=65π 【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果. 【例3】化下列方程为直角坐标方程,并说明表示的曲线. (1)43πθ=,()R ∈ρ (2)θθρcos 2sin +=【解】(1)根据极坐标的定义,因为x y xy-==即,43tanπ,所以方程表示直线. (2)因为方程给定的ρ不恒为0,用ρ同乘方程的两边得:θρθρρcos 2sin 2+=化为直角坐标方程为,222x y y x +=+即45)21()1(22=-+-y x ,这是以(1,21)为圆心,半径为25的圆. 【点评】①若没有R ∈ρ这一条件,则方程表示一条射线.②极坐标方程化为直角坐标方程,方程两边同乘ρ,使之出现ρ2是常用的方法.【解题能力测试】1.已知点的极坐标分别为)4,3(π-A ,)32,2(πB ,),23(πC ,)2,4(π-D ,求它们的直角坐标。

极坐标与参数方程教案

极坐标与参数方程教案

一、复习、检查函数与方程重点知识二、梳理本节课重要知识1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程点M 直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠为原点,直。

极坐标与全参数方程教案设计

极坐标与全参数方程教案设计

极坐标与参数方程【教课目的】1、知识目标:( 1)掌握极坐标的意义,会把极坐标转变一般方程(2)掌握参数方程与一般方程的转变2、能力目标:经过对公式的应用,提升学生剖析问题和解决问题的能力,多方面考虑事物,培育他们的创新精神和思想谨慎性.3、感情目标:培育学生数形联合是思想方法.【教课重点】1、极坐标的与一般坐标的转变2、参数方程和一般方程的转变3、几何证明的整体思路【教课难点】极坐标意义和直角坐标的转变【考点剖析】坐标系与参数方程和几何证明在广东高考取为两者选一考,一般是 5 分的比较简单的题,知知趣对照较独立,与其余章节联系不大,简单拿分.依据不一样的几何问题能够成立不同的坐标系,坐标系选用的适合与否关系着解决平面内的点的坐标和线的方程的难易以及它们地点关系的数据确定.有些问题用极坐标系解答比较简单,而有些问题假如我们引入一个参数就能够使问题简单下手解答,计算简易.高考出现的题目常常是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与一般方程间的互相转变,并用极坐标方程、参数方程研究相关的距离问题,交点问题和地点关系的判断.【基本重点】一、极坐标和参数方程:1. 极坐标系的观点:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向) ,这样就成立了一个极坐标系.2.点 M的极坐标:设 M是平面内一点,极点O与点M的距离OM叫做点 M的极径,记为;以极轴O x 为始边,射线 OM为终边的∠ XOM叫做点 M的极角,记为.有序数对(, ) 叫做点1适用标准文案M 的极坐标 ,记为 M (,).极坐标( , ) 与 ( ,2k )(k Z) 表示同一个点.极点O 的坐标为 (0, )(R) .2x 2 y 2 , xcos ,3.极坐标与直角坐标的互化:ysin ,tany( x 0)x4.圆的极坐标方程: 在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是r ;在极坐标系中, 以 C(a,0) (a>0) 为圆心, a 为半径的圆的极坐标方程是2acos ;在极坐标系中, 以 C(a,) (a>0) 为圆心, a 为半径的圆的极坐标方程是 2asin ;25.参数方程的观点: 在平面直角坐标系中,假如曲线上随意一点的坐标 x,y 都是某个变数 t的函数x f (t ),而且关于 t的每一个同意值, 由这个方程所确定的点M(x,y) 都在这条曲 yg(t ),线上,那么这个方程就叫做这条曲线的 参数方程 ,联系变数 x,y 的变数 t叫做参变数 ,简称参数 .相关于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程 .6. 圆 (x a) 2( y b) 2 r 2 的参数方程可表示为x a rcos ,( 为参数) .yb rsin .椭圆x2y 2x acos ,1(a>b>0) 的参数方程可表示为y bsin . ( 为参数).a 2b 2抛物线 y 22px 的参数方程可表示为x 2pt 2,( t 为参数 ) .y 2pt.经过点 M O (x o , y o ) ,倾斜角为的直线 l的参数方程可表示为xx o tcos , ( t 为参y y o tsin .数).出色文档适用标准文案【典型例题】题型一:极坐标与直角坐标的互化和应用例 1、(1)点M的极坐标(5,2) 化为直角坐标为() B 3A.(5,5 3) B .(5,5 3) C .(5,5 3) D .(5,5 3) 22222222( 2)点 M的直角坐标为(3,1) 化为极坐标为() B. 5 )B .7)C.( 2,11 )D.(2,)A(2,(2,66 66评注:极坐标和直角坐标的互化,注意角度的范围.变式:( 1)点2, 2 的极坐标为.12A(1,) ,半径为1的圆的极坐标方程是___________.()在极坐标系中,圆心在4评注:注意曲线极坐标与直角坐标的互化之间的联系.例 2、(1)曲线的极坐标方程4sin化成直角坐标方程为()22222222A.x +(y+2)+(y-2)=4 C.(x-2)+y =4D.(x+2)+y =4【分析】将ρ = x2y2, sin θ =y2代入ρ =4sin θ,得x2+y2=4y,2yx即 x2+(y-2) 2=4. ∴应选 B.( 2)⊙ O1和⊙ O2的极坐标方程分别为=4cos , =-4sin.把⊙ O1和⊙ O2的极坐标方程化为直角坐标方程;求经过⊙ O1,⊙ O2交点的直线的直角坐标方程.出色文档【分析】以极点为原点,极轴为 x 轴正半轴,成立平面直角坐标系,两坐标系中取同样的长度单位 . ( 1) x= cos ,y= sin , 由 =4cos , 得2=4 cos .所以 x2+y2=4x. 即 x2+y2 -4x=0 为⊙ O1的直角坐标方程. 同理 x2+y2+4y=0 为⊙ O2的直角坐标方程.( 2)由x 2y 24x0,解得x10,或x22,即⊙ O,⊙ O 交于点( 0, 0)和( 2, -2 ) .22y0,y2 2.12x y4y0,1过交点的直线的直角坐标方程为y=-x.变式 1:极坐标ρ=cos() 表示的曲线是()4A. 双曲线B. 椭圆C. 抛物线D. 圆【分析】原极坐标方程化为ρ=1(cosθ+sinθ)2 2 =ρcosθ+ρsinθ,2∴一般方程为 2 (x2+y2)=x+y,表示圆.应选D.变式 2:在极坐标系中与圆4sin相切的一条直线的方程为()A.cos2B.sin2.4sin()D.4sin()C33【分析】A4sin 的一般方程为x2( y 2)2 4 ,cos2的一般方程为 x 2 圆x2( y 2)2 4 与直线x 2明显相切.例 3、在极坐标系中,已知两点P( 5,5),Q(1,) ,求线段PQ的长度;44变式 1、在极坐标系中,直线ρsin( θ + π)=2 被圆ρ =4 截得的弦长为.4变式 2、在极坐标系中,点 1,0 到直线cos sin 2 的距离为.例 4、极坐标方程分别为2 cos 和 sin 的两个圆的圆心距为 ____________ ;变式 1、把极坐标方程cos() 1 化为直角坐标方程是.6变式 2、在极坐标系中,圆心在 ( 2,) 且过极点的圆的方程为 _.变式 3A(3,0) 且与极轴垂直的直线交曲线4 cos 于 A 、B 两点,、在极坐标系中,若过点则 | AB | __________.题型二:参数方程的互化和应用x 1 2t(t4x ky 1垂直,则常数 k = .例 1、若直线2为参数)与直线y3tx 1 t( t 为参数),直线 l 2 的方程为 y=3x+4 则 l 1 与 l 2 的变式 1、设直线 l 1 的参数方程为1 3ty距离为 _______变式 2、l 1 :x 1 (t 为参数 )与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,已知直线3ty 2 4t则 AB _______________ 。

高中数学备课教案极坐标系与参数方程

高中数学备课教案极坐标系与参数方程

高中数学备课教案极坐标系与参数方程高中数学备课教案:极坐标系与参数方程一、引言数学中的坐标系是描述平面上点位置的重要工具,常见的坐标系有直角坐标系和极坐标系。

而参数方程则是一种描述曲线的方程形式。

本教案将介绍高中数学中的极坐标系和参数方程,并探讨其应用。

二、极坐标系1. 定义与转换公式极坐标系是以原点为中心,极轴为正方向的坐标系。

任意点P在极坐标系中的位置可以由两个量确定:极径r和极角θ。

其中,极径r表示点P距离原点的长度,极角θ表示点P与极轴的夹角。

将直角坐标系中的点(x, y)转换为极坐标系中的点(r, θ)的公式为:r = √(x^2 + y^2)θ = arctan(y/x)2. 极坐标下的曲线方程在极坐标系中,曲线的方程可以表示为r = f(θ),其中f(θ)是关于θ的函数。

常见的极坐标曲线有:- 极径为常数:以原点为圆心的圆。

- 极径关于角度的函数:如r = a + bsin(θ),表示螺旋线。

- 极径为角度的函数:如r = aθ,表示阿基米德螺线。

三、参数方程1. 定义与示例参数方程是用参数表示自变量和因变量之间关系的方程。

常用的参数方程形式为x = f(t)和y = g(t),其中x和y分别表示平面上的横纵坐标,t是参数。

例如,参数方程x = cos(t),y = sin(t),描述了一个单位圆的轨迹。

2. 参数方程与直角坐标系之间的转换将参数方程x = f(t)和y = g(t)转换为直角坐标系中的方程,可以通过消去参数t来实现。

通常使用代数方法或几何方法进行转换,并根据具体情况选择适当的方法。

四、极坐标系与参数方程的应用1. 曲线的绘制极坐标系和参数方程在曲线的绘制中具有很强的优势,特别适用于描述复杂的几何图形,如心形线、螺旋线等。

通过设置极角或参数的范围,可以绘制出完整的曲线图形。

2. 积分计算对于一些特殊形状的区域,使用极坐标系可以简化积分计算。

通过转换成极坐标系的面积元素,可以减少积分的复杂程度,简化计算过程。

参数方程、极坐标含教案

参数方程、极坐标含教案

参数方程、极坐标一、知识结构1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00(t 为参数) ② 2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图) 极坐标和直角坐标的互化(1)互化的前提条件 ①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式 ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 二、知识点(一)曲线的参数方程,参数方程与普通方程的互化 例 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)例 在方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化 例 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( )A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4例 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆三、能力训练 (一)选择题1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线 B.一条垂直于x 轴的直线 C.一个圆 D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心 3.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( ) BA.直线B.圆C.双曲线D.抛物线 4.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) C A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1, -3π),r=25.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A.3π B.32πC.3π或32π D. 3π或35π6.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π7.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆 8.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1πB .⎪⎭⎫ ⎝⎛4,21πC .⎪⎭⎫ ⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π9.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ10、)0(4≤=ρπθ表示的图形是A .一条射线B .一条直线C .一条线段D .圆 11、直线αθ=与1)cos(=-αθρ的位置关系是A 、平行B 、垂直C 、相交不垂直D 、与有关,不确定(二)填空题12.直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),过点(4,-1)且与l 平行的直线在y 轴上的截距为 ;13.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .14、曲线的θθρcos 3sin -=直角坐标方程为_ 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。

(极坐标与参数方程)教学案( 2 )

(极坐标与参数方程)教学案( 2 )

高二数学 (极坐标与参数方程)教学案( 2 )极坐标与直角坐标的互化一、课前自主预习1.极坐标与直角坐标的互化公式:____________________________________________ 注意点:1. 将点的直角坐标化为极坐标时,取0ρ≥,0θ≤<π2.2. 互化公式的三个前提条件(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴的正半轴重合;(3)两种坐标系的单位长度相同. 3. (1)把点M 的极坐标)32,8(π化成直角坐标________________;(2)把点P 的直角坐标)2,6(-化成极坐标_____________________.二、课堂合作探究例1.(1)已知下列点的极坐标,求它们的直角坐标.(2)已知点的直角坐标, 求它们的极坐标(0ρ≥,0θ≤<π2).例2.在极坐标系中,已知两点(6,)6A π,2(6,)3B π.求线段AB 中点的极坐标.(3,)6A π(2,)2B π(1,)2C π-3(,)24D π(3,A (1B (5,0)C (0,2)D -B变题:在极坐标系中,已知三点)6,32(),0,2(),3,2(ππP N M -,判断P N M ,,三点是否在一条直线上.三、课堂练习1. 取直角坐标系的原点为极点,x 轴为正半轴为极轴,则点)3,1(--M 的极坐标为2.已知三点(5,)2A π,5(8,)6B π,7(3,)6C π,则ABC ∆形状为3. 在极坐标系中,极轴上的点P 和)4,24(πA 的距离为5,则点P 的极坐标为4. 点()22-,的极坐标为5.若(3,)3A π,(4)6B π-,,则||AB =_______,AOB S ∆=_______(其中O 是极点).高二数学解析几何作业 ( 2 )1、已知下列点的极坐标,求它们的直角坐标.2、已知点的直角坐标, 求它们的极坐标(0ρ≥,0θ≤<π2).DA_______________B_______________C_______________D_____________3、在极坐标系中,已知两点(6,)3A π,5(6,)6B π.求线段AB 中点的极坐标4、在极坐标系中,极轴上的点P 和3)4A π的距离为5,则点P 的极坐标为5、若(3,)6A π,(4)3B π-,,则||AB =_______,AOB S ∆=_______(其中O 是极点).6、已知三点(5,)2A π,5(8,)6B π,7(3,)6C π,判断ABC ∆形状7、已知点(5,)2Q π,分别按下列条件求出点P 的极坐标 (1)P 是点Q 关于极点O 的对称点 __________(2)P 是点Q 关于极轴的对称点_____________(3)P 是点Q 关于直线2πθ=的对称点________(4)P 是点Q 关于直线4πθ=的对称点______8、点P(2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.5(3,)6A π3(2,)2B π(4,)2C π-35(,)24D π(A -B (2,0)C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合是思想方法.【教学重点】1、极坐标的与一般坐标的转化2、参数方程和一般方程的转化3、几何证明的整体思路【教学难点】极坐标意义和直角坐标的转化【考点分析】坐标系与参数方程和几何证明在广东高考中为二者选一考,一般是5分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立.有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便.高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【基本要点】一、极坐标和参数方程:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点.极点O 的坐标为)R )(,0(∈θθ.3.极坐标与直角坐标的互化:4.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是θρ2acos =; 在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =; 5.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 6.圆222r )b y ()a x (=-+-的参数方程可表示为)(.rsin b y ,rcos a x 为参数θθθ⎩⎨⎧+=+=.椭圆1b y a x 2222=+(a>b>0)的参数方程可表示为)(.bsin y ,acos x 为参数ϕϕϕ⎩⎨⎧==.抛物线2px y 2=的参数方程可表示为)t (.2pt y ,2pt x 2为参数⎩⎨⎧==. 经过点)y ,x (M o o O ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.tsin y y ,tcos x x o o αα(t 为参数).【典型例题】题型一:极坐标与直角坐标的互化和应用 例1、(1)点M 的极坐标)32,5(π化为直角坐标为( )B A .)235,25(--B .)235,25(-C .)235,25(-D .)235,25( (2)点M 的直角坐标为)1,3(--化为极坐标为( )B A .)65,2(π B .)67,2(π C .)611,2(π D .)6,2(π 评注:极坐标和直角坐标的互化,注意角度的范围.变式1:(1)点()22-,的极坐标为 . (2)在极坐标系中,圆心在)4A(1,π,半径为1的圆的极坐标方程是___________ .评注:注意曲线极坐标与直角坐标的互化之间的联系.例2、(1)曲线的极坐标方程θρsin 4=化 成直角坐标方程为( )A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4【解析】将ρ=22y x +,sin θ=22yx y+代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.(2)⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. ①把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; ②求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.【解析】以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcos θ,y=ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ.所以x 2+y 2=4x.即x 2+y 2-4x=0为⊙O 1的直角坐标方程.同理x 2+y 2+4y=0为⊙O 2的直角坐标方程.(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==,0,011y x 或⎩⎨⎧-==.2,222y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.变式1:极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线 D .圆【解析】原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.变式2:在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-【解析】A 4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x = 圆22(2)4x y +-=与直线2x =显然相切.例3、在极坐标系中,已知两点P (5,45π),Q )4,1(π,求线段PQ 的长度;变式1、在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为 .变式2、在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 .例4、极坐标方程分别为θρcos 2=和θρsin =的两个圆的圆心距为____________;变式1、把极坐标方程cos()16πρθ-=化为直角坐标方程是 .变式2、在极坐标系中,圆心在)π且过极点的圆的方程为_ .变式3、在极坐标系中,若过点)0,3(A 且与极轴垂直的直线交曲线θρcos 4=于A 、B 两点,则=||AB _________ _.题型二:参数方程的互化和应用例1、若直线1223x t y t =-⎧⎨=+⎩(t 为参数)与直线41x ky +=垂直,则常数k = .变式1、设直线1l 的参数方程为113x ty t=+⎧⎨=+⎩(t 为参数),直线2l 的方程为y=3x+4则1l 与2l 的距离为_______变式2、已知直线113:()24x tl t y t =+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。

变式3、直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。

例2、经过曲线C :⎩⎨⎧=+=θθsin 3,cos 33y x (θ为参数)的中心作直线l :⎩⎨⎧==ty t x 33(t 为参数)的垂线,求中心到垂足的距离.【解析】由曲线C 的参数方程⎩⎨⎧=+=θθsin 3,cos 33y x 消去参数θ,得(x-3)2+y 2=9.曲线C 表示以(3,0)为圆心,3为半径的圆.由直线l 的参数方程⎩⎨⎧==ty tx 33,消去参数t,得y=33x. 表示经过原点,倾斜角为30°的直线.如图,在直角三角形OCD 中,OC=3,∠COD=30°, 所以CD=23,所以中心到垂足的距离为23.变式1、将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤变式2、下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2)2- B .31(,)42-C .(2,3)D .(1,3)变式3、P 是曲线sin cos 1sin 2x y θθθ=+⎧⎨=-⎩()2 , 0[πθ∈是参数)上一点,P 到点)2 , 0(Q 距离的最小值是 .(选讲)变式4、已知点P (x,y )在曲线⎩⎨⎧=+-=θθsin cos 2y x (θ为参数)上,则x y的取值范围为 .例4、参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。

变式1、参数方程⎪⎪⎩⎪⎪⎨⎧-=+=t t y t t x 1,1(t 为参数)的普通方程为__________________。

【解析】由⎪⎪⎩⎪⎪⎨⎧-=+=t t y t t x 11 ∴①2-②2得,x 2-y 2=4,方程表示双曲线.题型三:参数方程与圆锥曲线 例1、参数方程⎩⎨⎧==θθcos 5sin 4y x (θ为参数)的普通方程为__________________。

【解析】⎩⎨⎧==θθcos 5sin 4y x ,得⎪⎪⎩⎪⎪⎨⎧==5cos 4sin y x θθ ①2+②2,得251622y x +=1表示椭圆. 例2、(选讲)在平面直角坐标系xOy 中,设P(x,y)是椭圆32x +y 2=1上的一个动点,求S=x+y的最大值.【解析】 由椭圆32x +y 2=1的参数方程为⎩⎨⎧==ϕϕsin cos 3y x (ϕ为参数), 可设动点P 的坐标为(3cos ϕ,sin ϕ),其中0≤ϕ<2π.因此,S=x+y=3cos ϕ+sin ϕ =2·⎪⎪⎭⎫ ⎝⎛+ϕϕsin 21cos 23=2sin (ϕ+3π). 所以当ϕ=6π时,S 取得最大值2. ①②① ②变式1: 已知2x 2+3y 2-6x=0 (x,y ∈R ),则x 2+y 2的最大值为 . 【解析】 9题型四:综合运用例1、以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中 取相同的长度单位。

已知直线的极坐标方程为()4R πθρ=∈,它与曲线12cos 22sin x y αα=+⎧⎨=+⎩(α为参数)相交于两点A 和B ,则|AB|=_______.例2、在直角坐标系中,曲线1C 的参数方程为],0[sin ,cos πθθθ∈⎩⎨⎧==y x ,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为θθρcos sin -=b.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是 .例3、在极坐标系下,已知圆O :cos sin ρθθ=+和直线:sin()42l πρθ-=, (1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求直线l 与圆O 公共点的一个极坐标.例4、 已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩(t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

相关文档
最新文档